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Abstract

The goal of this work was to �nd an anonymous threshold signature scheme with
compact signature. Although such scheme is not found in this work, few solutions
published by other authors are reviewed and an improvement is proposed to obtain a
scheme similar to the desired one, but computationally expensive and interactive

Resum

Aquest treball tenia l'objectiu de trobar un esquema de llindar de signatura anòn-
ima compacte. Tot i no haver-ne trobat cap, s'analitzen diverses solucions que s'acosten
a l'objectiu publicades per altres autors i es proposa una millora per obtenir un es-
quema com el desitjat, però costós i interactiu.

Resumen

Este trabajo tenía el objetivo de encontrar un esquema umbral de �rma anónima
compacta. Aún no haberla encontrado, se analizan diversas soluciones que se acercan
al objetivo publicadas por otros autores y se propone una mejora para obtener un
esquema como el deseado, pero costoso e interactivo.
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CHAPTER 1

INTRODUCTION

There are many practical applications for threshold signature schemes.

Case 1: There is a toll system that gives a discount on the price if there are at least
three passengers in the vehicle. The passengers prove that they are at least three by
running a threshold signature with their personal devices (e.g. their smart-phones).

Case 2: There is an e-voting system where each candidate needs a certain amount of
signatures to get to the next round. This can be done with a threshold signature
from the voters on the candidate's identi�er.

Case 3: An advertising company pays to website holders for showing their ads. But
they pay depending on the amount of distinct users that have seen (or clicked) the
ad instead of the total amount of watches (or clicks). This can be done with a
threshold signature from the users on the ad identi�er.

We would want the schemes, in all three cases, to be anonymous. Also we would
want them to be unlinkable for di�erent messages. Otherwise, if the anonymity of a
signer is compromised at some point, an attacker link all messages that the signer has
signed. In case 1 this would result in the ability of tracking the geographic location of
a signer, in case 2 the information of who the signer has voted for, and in case 3 the
information on which sites visits the signer.

For case 1, we want the signatures to be compact and not excessively complex to
compute, but the signing protocol could be interactive. For case 3, since the value of
the threshold is large, we want the signature to be compact and the signing protocol
should not be interactive.

In this work, we attempt to �nd a threshold signature scheme such that signatures
are anonymous, unlinkable, compact and that does not require interaction between
the signers.

In chapter 2 we introduce the cryptographic notions necessary to understand and
review the solutions we explain.
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CHAPTER 1. INTRODUCTION

In chapter 3 we discuss the concept of anonymity in threshold signature schemes
to clear it up, since many authors use the concept with di�erent meanings.

In chapter 4 we detail some solutions that are valid for only once because they
do not have the non-traceability property, so the signature scheme needs to be setup
newly every time a signature is computed.

In chapter 5 we detail three solutions that are anonymous and non-traceable:

� The �rst gives a compact signature, but depending on the setup not every set of
participants of same size as the threshold will be able to compute a signature.

� The second gives a signature whose size grows linearly with the threshold.

� The third is an improvement we propose on the scheme detailed in 2.7.1 that is
compact and any set of participants of same size as the threshold is able to compute
a signature. The counterpart is that the protocol is interactive and requires a number
of interactions between the signers that grows with the square of the threshold.

In chapter 6 we sum up the advantages and disadvantages that has every detailed
solution and discuss the utility of each, and explain the conclusions of the work.

2



CHAPTER 2

PRELIMINARIES

Here we introduce some basic notions of cryptography and other �elds that we will
need to understand the schemes described in the subsequent chapters.

2.1 Homomorphic Public Key Encryption

A public key encryption scheme PKE = (KG, E ,D) consists of three probabilistic
and polynomial time algorithms:

� The key generation algorithm KG generates a pair (sk, pk) of secret and public keys
on the input of a security parameter

� The encryption algorithm E takes as input a plaintext m and a public key pk, and
outputs a ciphertext c = Epk(m).

� The decryption algorithm D takes as input a ciphertext c and a secret key and
outputs a plaintext m = Dsk(c)

For any pair (sk, pk) of secret and public keys, and any plaintext m, it must hold
m = Dsk (Epk(m)).

A PKE scheme (KG, E ,G) has an homomorphic property if there exist two op-
erations, de�ned on the set of plaintexts and ciphertexts, respectively, such that the
result of operating two ciphertexts is an encryption of the result of operating the two
corresponding plaintexts.

Formally written: let M be the set of plaintexts and let • be an operation on
M s.t. m1 •m2 ∈ M ∀m1,m2 ∈ M. Let C the set of ciphertexts and let ◦ be an
operation on C s.t. c1 ◦ c2 ∈ C ∀c1, c2 ∈ C. (KG, E ,D) is an homomorphic PKE if

Dsk
(
Epk(m1) ◦ Epk(m2)

)
= m1 •m2 ∀m1,m2 ∈M.

3



CHAPTER 2. PRELIMINARIES

WriteM additivelly and C multiplicativelly. For a ∈ Z+, we have

Dsk (Epk(m)a) = a ·m

An example of an homomorphic PKE was developed by ElGamal in [ElG85].

2.2 Oblivious Polynomial Evaluation

Oblivious polynomial evaluation is a protocol involving two parties, a sender whose
input is a polynomial P ∈ F[x], and a receiver whose input is a value α ∈ F. At the
end of the protocol, the receiver learns P (α) and the sender learns nothing.

Before explaining the �rst oblivious polynomial evaluation protocol we have to
introduce the concept of oblivious transfer protocols.

Oblivious Transfer (OT) protocols allow the sender to transmit part of its inputs to
the receiver in a manner that: the sender does not receive more information than it is
entitled, while the receiver is assured that the sender does not learn which part of the
inputs it received. In a 1-out-of-N OT protocol (introduced in [BCR86] by Brassard,
Crépeau, and Robert), the receiver can choose only one input of the sender between
N possible choices. Naor and Pinkas desccribe in [NP01] an n-out-of-N improved OT
protocol where the receiver chooses n inputs of the sender from M possible choices.

2.2.1 A Solution Based on Noisy Polynomials

Naor and Pinkas proposed in [NP99] a protocol for Oblivious Polynomial Evalua-
tion that relies on the hardness of the Noisy Polynomial Reconstruction problem.

• Input:

� Sender: a polynomial P (y) =
∑dP

i=0 biy
i of degree dP in the �eld F.

� Receiver: a value α ∈ F

• Output:

� Sender: nothing.

� Receiver: P (α)

• Protocol security parameters: m, k.

Generic protocol for oblivious polynomial evaluation:

4



CHAPTER 2. PRELIMINARIES

1. The sender hides P in a bivariate polynomial: The sender generates a ran-
dom masking polynomial Px(x) of degree d, s.t. Px(0) = 0, where d = k · dP .

Px(x) =
d∑
i=1

aix
i

The sender de�nes a bivariate polynomial

Q(x, y) = Px(x) + P (y) =
d∑
i=1

aix
i +

dP∑
i=0

biy
i

2. The receiver hides α in a univariate polynomial: The receiver chooses a ran-
dom polynomial S of degree k, such that S(0) = α.

De�ne R(x) = Q(x, S(x)). R(x) is a polynomial of degree dR = d = k · dP . The
goal of the receiver is to use R(x) to learn P (α). Note that R(0) = Q(0, S(0)) =
P (S(0)) = P (α).

3. The receiver learns points of R: The receiver learns dR + 1 values of the form
〈xi, R(xi)〉.

4. The receiver computes P (α): The receiver uses the values of R that it learned
to interpolate R(0) = P (α).

The key is in the third step on how the receiver learns dR + 1 evaluations of R(x)
in a secure way.

• The receiver sets n = dR+1 and choosesN = nm distinct random values x1, · · · , xN ∈
F, all di�erent from 0.

• The receiver chooses a random set T of n indices 1 ≤ i1 < i2 < · · · < in ≤ N . Then
de�nes N values yi:

yi =

{
S(xi) if i ∈ T
yi ∈R F if i /∈ T

• The receiver sends the N points {(xi, yi)}Ni=1 to the sender.

• The receiver and sender execute an n-out-of-N oblivious transfer protocol, for the
N values Q(xi, yi). The receiver chooses to learn {Q(xi, yi)}i∈T

2.2.2 A Solution Based on Homomorphic PKE

Let (KG, E ,D) be a Homomorphic PKE Scheme.

� The sender knows a polynomial P (x) =
∑d

i=0 aix
i with ai ∈ Z of degree d which can

be evaluated on M (i.e. we can de�ne an additive operation and a multiplicative
operation onM).

5



CHAPTER 2. PRELIMINARIES

� Let (sk, pk) be the secret and public key pair of the receiver. The receiver sends to
the sender the powers of α encrypted: Epk(αi) for i ∈ {0, ..., d}.

� The sender uses the homomorphic property of the encryption scheme to compute
the encryption of P (α):

Epk(P (α)) = Epk(a0 + a1α + ...+ anα
n) =← Epk(α0)a0 · Epk(α1)a1 · ... · Epk(αn)an

and sends it to the receiver.

� The receiver decrypts the received value to get P (α):

Dsk(Epk(P (α))) = P (α)

2.3 Bilinear Pairings

Let G1 and G2 be two (multiplicative) cyclic groups of prime order q. Let g1 be a
�xed generator of G1 and g2 be a �xed generator of G2.

De�nition 2.3.1. Computation Di�e-Hellman (CDH) Problem: Given a randomly
chosen g ∈ G1, g

a, and gb (for unknown randomly chosen a, b ∈ Zq), compute gab.

De�nition 2.3.2. Decision Di�e-Hellman (DDH) Problem: Given randomly chosen
g ∈ G1, g

a, gb, and gc (for unknown randomly chosen a, b, c ∈ Zq), decide whether
c = ab. (If so, (g, ga, gb, gc) is called a valid Di�e-Hellman tuple.)

De�nition 2.3.3. Computational co-Di�e-Hellman (co-CDH) Problem on (G1, G2):
Given g2, g

a
2 ∈ G2 and h ∈ G1 as input, compute ha ∈ G1.

De�nition 2.3.4. Decision co-Di�e-Hellman (co-DDH) on (G1, G2): Given g2, g
a
2 ∈

G2 and h, h
b ∈ G1 as input, decide whether a = b. If so, we say that (g2, g

a
2 , h, h

a) is a
co-Di�e-Hellman tuple.

De�nition 2.3.5. Bilinear map: Let GT be an additional group such that |G1| =
|G2| = |GT |. A bilinear map is a map e : G1×G2 → GT with the following properties:

1. Bilinear: for all u ∈ G1, v ∈ G2 and a, b ∈ Z, e(ua, vb) = e(u, v)ab.

2. Non-degenerate: e(g1, g2) 6= 1.

De�nition 2.3.6. A Gap co-Di�e-Hellman (co-GDH) group pair is a pair of groups
(G1, G2) on which co-DDH is easy but co-CDH is hard. When (G1, G1) is a co-GDH
group pair, we say G1 is a Gap group (GDH).

Remark 2.3.7. If there s a bilinear map on G1, G2, then they are a co-GDH group
pair. If there is a bilinear map over G1 × G1, then G1 is a gap group, since one can
use the bilinear map to solve the DDH problem.

6
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2.4 Secret Sharing

2.4.1 De�nitions

De�nition 2.4.1. An access structure Γ is the set of all subsets of P that can recover
the secret.

De�nition 2.4.2. Let P := {P1, . . . , Pn} be a set of participants. A monotone access

structure Γ on P is a subset Γ ⊆ 2P , which is monotone increasing

A ∈ Γ, A ⊆ A′ ⊆ P ⇒ A′ ∈ Γ

De�nition 2.4.3. Let P := {P1, . . . , Pn} be a set of participants and let A ⊆ 2P . The
closure of A, denoted cl(A), is the set

cl(A) = {C : ∃B ∈ A s.t. B ⊆ C ⊆ P}

For a monotone access structure Γ we have Γ = cl(Γ).

De�nition 2.4.4. Let Γ be an access structure on a set of participants P . B ∈ Γ is
a minimal quali�ed set if A /∈ Γ whenever A ( B.

De�nition 2.4.5. Let Γ be an access structure on a set of participants P . The family
of minimal quali�ed sets Γ0 of Γ is called the basis of Γ.

For a basis Γ0 of an access structure Γ we have Γ = cl(Γ0)

De�nition 2.4.6. An access structure Γ is trivial if either Γ = 2P or Γ = {P}.

Let K be a set of q elements called secret keys, and let S be a �nite set whose
elements are called shares. Let D be a dealer who wants to share a secret key k ∈ K
among the participants in P .

De�nition 2.4.7. A distribution rule is a function f : P∪{D} → K∪S which satis�es
the conditions f(D) ∈ K and f(Pi) ∈ S for i = 1, 2, . . . , n.

Secret sharing schemes will be represented by a collection of distribution rules,
which represent a possible distribution of shares to the participants where f(D) is the
secret key being shared and f(Pi) is the share given to Pi.

De�nition 2.4.8. Let F be a family of distribution rules, and let k ∈ K. Then
Fk := {f ∈ F : f(F ) = k} is the family of all distribution rules having k as secret.

If k ∈ K is the secret that D wants to share, then D will chose a distribution rule
f ∈ FK uniformly at random.

Let {pK(k)}k∈K be a probability distribution on K, and let a collection of distribu-
tion rules for secrets in K be �xed.

7
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De�nition 2.4.9. A perfect secret sharing scheme, with respect to a monotone access
structure Γ ⊆ 2P , is a collection of distribution rules that satisfy the following two
properties:

1. If a subset A ∈ Γ of participants pool their shares, then they can determine the
value of the secret k.

2. If a subset A /∈ Γ of participants pool their shares, then they can determine
nothing about the value of the secret k. Formally, if A /∈ Γ then for all a =
{(Pi, si) : Pi ∈ A and si ∈ S} with p(a) > 0, and for all k ∈ K, it holds
p(k|a) = pK(k). In other words, the a priori probability of the value of k does
not change after knowing the shares held by A.

De�nition 2.4.10. An ideal secret sharing scheme is a secret sharing scheme for
which |K| = |S|. An access structure admitting an ideal secret sharing scheme will be
referred as ideal access structure.

2.4.2 Shamir Secret Sharing

A classic example of a secret sharing scheme is the one described by Shamir in
[Sha79] and it is based on polynomial interpolation. The goal of the scheme is to share
a secret s ∈ Zp, for p a large prime number, among n parties s.t. any t parties can
recover the secret, and no t− 1 can learn anything about the secret.

� Let s ∈R Zp be the secret we want to share among the set of participants P =
{P1, ..., Pn}.

� Let P (x) = a0 + a1x+ · · ·+ at−1x
t−1 of degree t− 1 with a1, ..., at−1 ∈R Zp, at−1 6= 0

and a0 = s. Let α1, ..., αn ∈R Zp all distinct.

� Each participant Pi ∈ P is given the share (αi, yi) where yi = P (αi).

� If a set {Pi1 , ..., Pit} of t participants want to recover the secret, they share their
shares and compute

s = q(0)←
t∑

j=1

yij
∏

k∈[t]\{j}

−αik
αij − αik

2.4.3 Anonymous Secret Sharing

In an anonymous secret sharing scheme the secret can be reconstructed without
the knowledge of which participants hold which shares. Examples of such anonymous
sharing schemes can be found in [BS97].

8
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2.5 Digital Signatures

To ensure integrity of data in communications and authentication, the concept of
digital signatures appeared.

A digital signature scheme consists of 3 algorithms:

• Key generation: on input of a security parameter k (usually the desired length
for the keys), outputs a pair (sk, pk) of secret and public keys.

• Signature: given an input messagem and the secret key sk, outputs a signature
σ.

• Veri�cation: given an input message m, a signature σ on the message and a
public key pk, outputs whether the signature is valid or not.

A signature scheme must satisfy the following properties:

• Correctness: A signature generated with the signing algorithm must always be
accepted by the veri�er.

• Unforgeability: An adversary who only knows the public key pk cannot obtain
valid signatures for this public key. That is, only the owner of the matching
secret key sk can properly sign with respect to pk.

2.5.1 Examples

ElGamal

[ElG85] Let H be a collision-resistant hash function. Let p be a large prime such
that the discrete logarithm problem is di�cult over Zp. Let g be a randomly chosen
generator of Z∗p

Key generation. Randomly choose a secret key x ∈ Z∗p, and compute the public key
y = gx.

Signature. To sign a message m, the signer chooses a random k ∈ Z∗p. Compute

r = gk. To compute s, the following equation must be satis�ed: gH(m) = gxrgks. So
s = (H(m)− xr) k−1 (mod p− 1)

If s = 0, it starts over again with a di�erent k.

The pair (r, s) is the digital signature for m.

Veri�cation. Check gH(m) = yrrs

The use of H(·) prevents an existential forgery attack.

9
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Boneh-Lynn-Shacham (BLS)

[BLS01] Let G1, G2 be a bilinear group pair of prime order p. Let g be a generator of
G1. Let e : G1×G2 → GT be a non-degenerate bilinear pairing. Let H : {0, 1}∗ → G1

be a full-domain hash function.

Key generation. Randomly choose a secret key x ∈ Zp. The public key is y = gx2 .

Signature. Given a private key x ∈ Zp, and a message m ∈ {0, 1}∗, compute h =
H(m) ∈ G1 and σ = hx. The signature is σ ∈ G1.

Veri�cation. Given a public key y, a message m ∈ {0, 1}∗ and a signature σ ∈ G1,
compute h = H(m) ∈ G1 and verify that e(σ, g2) = e (h, y).

Schnorr

[Sch90] Let G be a cyclic group of prime order p. Let g be a generator of G. Let
H : {0, 1}∗ → Zp be a hash function.

Key generation. Randomly choose a secret key x ∈ Zp. The public key will be
y = gx.

Signature. Randomly choose z ∈ Zp, and compute L := gz.
Compute c := H(L ‖ m).
Compute s := z + c · x
The signature on m is σ = (c, s).

Veri�cation. Given a signature σ and a public key y, computes L† := gsy−c and then
check that c = H(L† ‖ m)

2.6 Group Signatures

A group signature scheme is a signature scheme that allows a member of a group
to anonymously sign a message on behalf of the group.

In a group signature scheme there is a group manager, who is in charge of adding
members to the group, in a registration process where the group manager sends to the
new member some private information.

A group signature scheme, together with the requirements of a simple signature
scheme, should have the following properties:

Unforgeability: Only group members can perform valid group signatures.

10
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Anonymity: Given a message and its signature, the identity of the signer cannot be
determined (except for maybe the group manager).

There are other properties that some proposed group signature schemes have and
that others do not:

Unlinkability: Given two messages and their signatures, one cannot tell if the signa-
tures are from the same signer or not.

Traceability: Given any valid signature, the group manager is able to trace which
participant issued the signature.

Some schemes have the unlinkability property. Other schemes can have the link-
ability property for any two signatures on two messages, or can have the linkability
property for two signatures on the same message while signatures on di�erent messages
remain unlinkable.

We are interested in group signature schemes without traceability and with link-
ability only for signatures on the same message, and unlinkability for signatures on
distinct messages. An example of such group signature scheme is detailed in section
5.2.

2.7 Threshold Digital Signatures

A (t, n)-threshold signature scheme is a signature scheme in which any t partici-
pants of the group P = {P1, ..., Pn} of participants is able to compute a signature on
behalf of the group. Any subset of less than t participants must be unable to compute
a valid signature.

2.7.1 An Example: Threshold BLS Signatures by Boldyreva

This threshold signature scheme is based on the BLS scheme (see section 2.5.1)
and was proposed by Boldyreva in [Bol03].

Setup Algorithm

� Let P = {P1, . . . , Pn} be the set of participants. Let G be a gap group of large
prime order p > n. Let g ∈ G be a generator of the group.

� Let sk ∈R Zp be the secret key of the threshold signature scheme. Set pk = gsk the
public key. Let P (x) be a random polynomial over Zp of degree t−1 with P (0) = sk.

11



CHAPTER 2. PRELIMINARIES

� Let α1, ..., αn ∈R Zp all distinct. Each participant Pi ∈ P is assigned a public key
pki = αi and a secret key ski = si := P (αi).

Note that, for any set {Pi1 , ..., Pit} = P ⊆ P of t participants:

sk = P (0) =
t∑

j=1

sijλ
P
ij

where λPij :=
∏

k∈[t]\{j}
−αk
αj−αk

Signing Algorithm

� Let P = {Pi1 , ..., Pit} be a set of t participants. Each participant Pij computes his
partial signature σij(m) = H(m)sij and broadcasts the pair (αij , σij(m)).

� The signature σ on m is computed:

σ(m) =
∏
Pi∈P

σi(m)λ
P
i = H(m)

∑
Pi∈P

λPi si = H(m)sk

Verifying Algorithm

� Let e : G×G→ Gt be a bilinear pairing. Let σ be a signature on a message m.

� The signature σ on m is valid if and only if e(σ, g) = e(H(m), pk)

12



CHAPTER 3

ANONYMITY IN THRESHOLD

SIGNATURES

In order to compare di�erent schemes we need to clear up the de�nition of anonymity.

The word anonymity is derived from the Greek word anonymia, meaning "without
a name". In technical terms, the "name" of a participant would be something that
uniquely identi�es him, e.g. his public key. So, a scheme would be anonymous if the
public key of the participant is not disclosed or cannot be obtained in any way at any
moment.

Many authors use the term anonymous threshold scheme referring to a threshold
scheme that does not require knowing which participant holds which share. The scheme
proposed by Boldyreva in [Bol03] does not require knowing which participant holds
each share, but we cannot call it an anonymous scheme because there is only one
participant Pi holding the value αi even though the proper identity of Pi was not
disclosed. Any party can check if a certain participant Pi that holds the value αi has
participated in a signature σ just by checking if αi was used in the computation of
σ. But still without knowing which participant holds it. We will call this property
linkability.

What we are looking for in this work, by saying anonymity, is two properties:

• Unlinkability: cannot decide whether two di�erent signatures were signed by the
same user.

• Untraceability: cannot get the public key of the signer from a valid signature.

A threshold signature scheme that has the linkability property is suitable for a "one-
time anonymity". That is, once a signature has been computed, the whole scheme has
to be set up again. We discuss solutions of this kind in chapter 4.

A threshold signature scheme that is unlinkable is suitable for anonymity still after
multiple uses. We discuss three solutions in chapter 5.

13





CHAPTER 4

SINGLE USE: ANONYMITY

In this chapter we consider threshold signature schemes with non-traceability but
with linkability.

As we commented previously, we can avoid the linkability of a threshold signature
scheme by setting it up newly every time a signature is computed. We describe two
examples.

4.1 Anonymous Secret Sharing Scheme

Consider a signature scheme with secret sk. Using the (t, n)-anonymous thresh-
old secret sharing scheme described in [BS97] we can share the secret sk among the
participants through a secure channel. When a set of t participants want to sign a
message, they can just recover the secret sk and compute a signature with it.

After that, the signature scheme is newly setup by choosing a di�erent secret sk
and sharing it again using an anonymous threshold secret sharing scheme.

In this solution, the dealer (the one who gives the shares to the participants) can
know which participant holds which share because the participants have to authenti-
cate themselves to avoid a single participant getting multiple shares. We can approach
this by running a 1-out-of-N OT protocol randomly choosing a share for su�ciently
large N � n s.t. the probability of two participants choosing the same share is suf-
�ciently low. In this way, the dealer does not know which participants holds which
share, but the execution of an OT protocol for large N is computationaly way too
expensive.

A solution in this way for the e-voting case described in the introduction would be
the following:

� Let C1, ..., Ck be the candidates to be voted, and let {P1, ..., Pn} be the set of voters.
Each candidate needs at least t votes to be validated. A voter can vote more than

15
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one candidate.

� Let p be a su�ciently large prime. For each Ci, the system chooses a random secret
ski ∈R Zp and a random polynomial Qi(x) =

∑t−1
j=0 ai,jx

j of degree t − 1 where
ai,0 = ski.

� Each candidate Pj chooses k random values αj,1, ..., αj,k ∈R Zp, then runs an obliv-
ious polynomial evaluation protocol to learn the evaluations Q1(αj,1), ..., Qk(αj,k)
from the system.

� If a voter Pj wants to vote a candidate Ci, just needs to share the pair (αj,i, Qi(αj,i).

� At the end of the voting, if a candidate Ci knows at least t shares (αj,i, Qi(αj,i), he
can interpolate Qi(x) to obtain the secret ski = Qi(0) and be validated.

4.2 Anonymized Threshold BLS Signatures

Using the BLS threshold signature scheme described in 2.7.1 we can avoid linka-
bility setting up a new secret after a signature is computed.

After the signature scheme is set up with a new secret sk and a new random
polynomial P (x), a participant Pi chooses αi ∈R Z∗p and learns P (αi).

Recall that the threshold BLS signature scheme in section 2.7.1 is not anonymous
with respect to the dealer, who knows the αi assigned to each participant Pi. A way
to avoid this is to use an oblivious polynomial evaluation protocol (see section 2.2).
In this way, Pi obtains his secret share P (αi) and the dealer obtains nothing on αi.

Given a set {P1, ..., Pt} of t participants, there is a positive probability that two
participants Pi, Pj chose the same αi = αj, thus failing to perform a signature. If
αi are randomly chosen with uniform distribution among Z∗p, the probability that at

least two participants hold the same share is q = 1 −
∏t−1

k=1(1 −
k
p−1). Since p � n

and therefore p� t, we can approximate q = t(t−1)
2(p−1) + o

(
t2

p

)
. If p is a 1024-bit prime

(usual bit length for large primes in cryptography), and considering that there is no
practical use for, lets say, n > 2128 (the number of distinct IPv6 addresses) we can
claim that q < 2−769 in any practical case, which is absurdly small.
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CHAPTER 5

MULTIPLE USE: ANONYMITY WITH

NON-LINKABILITY

Here we describe three solutions for anonymous threshold signature schemes with
non-linkability property.

5.1 Constant Size Anonymous Threshold Signature

Daza et al. proposed in [DDSV09] an anonymous threshold signature scheme that
sets a (t, r)-threshold signature scheme based on Shamir's secret sharing over a parti-
tion of the set P of participants.

5.1.1 Description

Setup Algorithm

� Let P = {P1, . . . , Pn} be the set of participants. Consider d distinct partitions of P
into r parts. P i = {P i1, ...,P ir} for i ∈ {1, ..., d}. This algorithm will set d di�erent
threshold signature schemes, one for each partition of P .

� Let p > n be a su�ciently large prime. Let ski ∈R Zp be the secret key of the i-th
threshold signature scheme. Let Pi(x) be a random polynomial over Zp of degree
t− 1 with Pi(0) = ski for i ∈ {1, ..., d}.

� For i ∈ {1, ..., d} let α(i)
1 , ..., α

(i)
r ∈R Zp all distinct (for �xed i). Each participant

Pk ∈ P ij is given public key pk
(i)
k = α

(i)
j and secret key sk

(i)
k = Pi(α

(i)
j ) for the i-th

threshold signature scheme.

17
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Signing Algorithm

� Let {Pi1 , ..., Pit} ⊆ P a set of t participants which will try to sign a message m.

� A signature on m over the i-th threshold signature scheme is attempted using the
protocol described in section 2.7.1 providing the message, the signature and the
signature scheme over which is signed: (m,σ, i).

� If the signature fails (because α
(i)
i1
, ..., α

(i)
it

are not all distinct), a new signature on
m is attempted over a threshold signature scheme di�erent from the previous tried.

� Eventually, the signature will succeed over a certain signature scheme.

Verifying Algorithm

� Let (m,σ, i) be a signature on a message m. The veri�cation is done using the
verifying algorithm described in 2.7.1.

� Let e be a bilinear pairing. The signature is valid if and only if e(σ, g) = e(H(m), pki).

5.1.2 Analysis

In this signature scheme it is not sure that any set of t participants will be able to
compute a signature on a given message. The probability of succeeding on signing a
message depends on the parameters t, n, r, d and how the partitions are made.

To see the relation between these parameters and the probability of success, we
will describe a few examples.

Given {Pi1 , ...Pit} a set of t participants, they will succeed only if α
(i)
i1
, ..., α

(i)
it

are
all distinct for a certain i ∈ {1, ..., d}. Hence, t ≤ r.

Random partitions

Suppose that for each participant Pk ∈ P and for all i ∈ {1, ..., d} the probability
Pr(Pk ∈ P ij) = 1

r
holds.

The probability that, given t participants, they succeed on signing a message in
the i-th threshold signature scheme (i.e. no two participants share the same public

key) is given by psucc,i =
∏t−1

k=0(1−
i
r
) = 1− t(t−1)

2r
+ o

(
t2

r

)
Thus, the probability of failing to sign a message in the i-th threshold signature

scheme is pfail,i = 1− psucc,i = t2

2r
+ o

(
t2

r

)
.

18



CHAPTER 5. MULTIPLE USE: ANONYMITY WITH NON-LINKABILITY

The global probability of failing to sign a message is

pfail =
d∏
i=1

pfail,i =

(
t2

2r

)d
+ o

((
t2

r

)d)

t2

2r
t n

r
n r pfail

10−3

5

103

12.5 · 106 12.5 · 103 0.80 · 10−3

10 50 · 106 50 · 103 0.90 · 10−3

50 1.25 · 109 1.25 · 106 0.98 · 10−3

100 5 · 109 5 · 106 0.99 · 10−3

Table 5.1: Sample values for pfail,i

Deterministic partitions

To simplify the analysis, for each participant Pk ∈ P we will consider the corre-
sponding codeword in a (not necessary linear) code of length d over an alphabet of
size r given by:

ck := (j1, ..., jd) i� Pk ∈ P iji ∀i ∈ {1, ..., d}

Theorem 5.1.1 (Singleton [Sin64]). Let C be a code of length n, minimum distance

d over an alphabet of size q and cardinality M . The cardinality is upper bounded by

logqM ≤ n− d+ 1.

Changing the notation to adapt it to our case, if we want all codewords associated
to the participants to be di�erent, we have logrn ≤ d − δ + 1 where δ would be
the minimum distance of the code (i.e. the least number of schemes that any two
participants have distinct public keys in them). For δ ≥ 1 we have n ≤ rd.

It is reasonable to wonder whether it is possible or not to de�ne d partitions of P ,
such that any set of t participants lie in di�erent parts of a certain partition P i. To
answer that question, we need the following de�nition.

De�nition 5.1.2. Let m ≥ w ≥ 2. An (n,m,w)-perfect hash family is a set of
functions F where |Y | = n, |X| = m and f : Y → X for each f ∈ F , such that,
for any C ⊆ Y with |C| = w, there exists at least one function f ∈ F such that f |C
is one-to-one. When |F | = N , an (n,m,w)-perfect hash family will be denoted by
PHF(N ;n,m,w).

Getting back to our question: let Y = P , X = {1, ..., r} and let F = {f1, ..., fd}
where fi(Pk) = (ck)i. It is possible to de�ne d partitions of P in a way that any set of
t participants lie in di�erent parts of a certain partition P i if and only if there exists
a PHF(d;n, r, t). PHF exist only for suitable sets of values for the parameters. The
following theorem gives a (not tight) lower bound on |F | s.t. there exists a PHF.
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Theorem 5.1.3 (2.1 [DSW04]). There exists a PHF(d;n, r, t) if

d >
log
(
n
t

)
log rt − log(rt − t!

(
r
t

)
)

Figure 5.1: Lower bound of d for di�erent values of t with n
r

= 103

The plot in Figure 5.1 gives a hint that the bound might have limit when r →∞
�xing n

r
= c constant. Note that rt − t!

(
r
t

)
= t(t−1)

2
rt−1 + o(rt−1) for �xed t. Using the

inequality
(
n
t

)t ≤ (n
t

)
≤ nt and the previous approximation for r � t, we have:

t log n
t

log r + log t(t−1)
2

.
log
(
n
t

)
log rt − log(rt − t!

(
r
t

)
)
.

t log n

log r + log t(t−1)
2

Clearly, the limit when r → ∞ and n = c · r (c a constant), is t on both sides of
the inequality.

5.2 Linkable Group Signature Scheme

Chen, Ng, and Wang proposed a (t, n)-threshold signature scheme in [CNW11]
using a group signature scheme where you can link two signatures on the same message
but cannot link signatures on di�erent messages. As one can link signatures on the
same message, the threshold signature is simply a set of t valid signatures on the same
message.
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5.2.1 Description

Setup Algorithm

� Let G1, G2, GT be cyclic groups of su�ciently large prime order q. Two random
generators g1 ∈ G1, g2 ∈ G2, and a bilinear pairing t̂ : G1 ×G2 → GT .

DDH problem in G1, Gap-DL problem in G1 and G2 and the blind bilinear LRSW
problem are hard.

� Let H0 : {0, 1}∗ → Zq and H1 : {0, 1}∗ → G1 be two hash functions.

� For each issuer i ∈ I the following is performed.

Two integers are selected x, y ∈R Zq and the issuer secret key isk is assigned to be
(x, y). Then the values X = gx2 ∈ G2 and Y = gy2 ∈ G2 are computed. The issuer
public key ipk is assigned to be (X, Y ).

� The system public parameters par are set to be par = (G1, G2, GT , t̂, g1, g2, H0, H1, ipkk)
and are published.

Join protocol

� In this a protocol, an issuer i ∈ I computes a credential for a signer s ∈ S that
allows him to compute valid signatures on messages.

� The signer s randomly chooses the secret key sks = f ∈R Zp and computes the

public key pks = F = gf1 .

� The issuer i randomly chooses r ∈R Zq and computes A = gr1, B = Ay and
C = AxF rxy. The credential for s is set to be cres ← (A,B,C).

Signing Algorithm

� Let m ∈ {0, 1}∗ be the message that a signer s wants to sign where sks = f , pks = F
and cres = (A,B,C).

� s chooses z ∈R Zq and computes J = H1(m), K = Jf and L = Jz.

� s chooses a ∈R Zq and randomizes its credential into (R, S, T )← (Aa, Ba, Ca), and
computes τ = t̂(S,X)z where X is from the issuer's public key.

� s computes c← H0(R‖S ‖T ‖τ ‖J ‖K ‖L‖m) and sets s = z + c · f .

� The signature on m is set to be σ = (R, S, T, J,K, L, c, s)

21



CHAPTER 5. MULTIPLE USE: ANONYMITY WITH NON-LINKABILITY

The computation of L,c and s gives a non-interactive Zero-Knowledge Proof of
Knowledge for f .

The computation of τ gives a proof of knowledge of the credentials of the signer.
This is based on the Schnorr Signature Scheme detailed in section 2.5.1.

Verifying Algorithm

� Let σ = (R, S, T,K, L, c, s) be a signature on a message m computed by a signer s.

� The veri�er v checks if J = H1(m) and t̂(R, Y ) = t̂(S, g2) hold. If not, the signature
is not valid.

� v computes τ ′ = t̂(R,X)ct̂(S,X)st̂(T, g2)
−c and L′ = H1(m)s ·K−c.

� The signature is valid only if c = H0(R‖S ‖T ‖τ ′ ‖K ‖L′ ‖m)

Threshold Checking Algorithm

� When a veri�er v receives a signature (σ,m), checks that the signature is valid, and
then checks the signature against the list of ` valid signatures (σi,m) on the message
m already received to ensure it is not a duplicate message signed by some veri�er.
To do it, just check K 6= Ki for i ∈ {1, ..., `}.

� If it is not a duplicate, then v adds (σ,m) to the list of valid signatures.

� When ` = t, the threshold signature is set to be the collection {(σi)}i∈{1,...,t} of t
valid signatures on m computed by t distinct signers.

5.3 Anonymous Interactive Protocol

We propose an interactive protocol based on the signature scheme described in
section 2.7.1. Recall that this scheme does not have the unlinkability property because
it uses "pseudonyms" and they are shared to compute the signature. Thus, the idea
of this new protocol is to hide these "pseudonyms".

As in the BLS signature scheme, a participant Pi from a subset P ⊂ P of t
participants will compute a partial signature σi(m) on a message m. The partial

signature will be σi(m) = H(m)
si

∏
Pj∈(P\Pi)

−αj
αi−αj .

The goal of this modi�cation is to compute a
−αj
αi−αj without sharing the values of αi

and αj, for 1 6= a ∈ G and a given Pj ∈ P .
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To compute a
−αj
αi−αj we need participants Pi, Pj and a third party Ps that could be

any other participant or a reliable party (like secure hardware).

5.3.1 Description

Interaction

Let a
−αj
αi−αj ← B(a, Pi, Pj) the protocol that outputs a

−αj
αi−αj given 1 6= a ∈ G, a �rst

participant Pi and a second participant Pj.

This protocol is split in �ve steps. In the �gures, the arrows between partici-
pants represent communication through a secure channel. The BC block represents a
broadcast channel, so anything sent to BC is broadcast to the rest.

First step: Pi chooses xi, xj, xs ∈ Z∗p three random values and shares them with Pj
and Ps. These will be the new "pseudonyms".

Pi and Pj randomly choose polynomials fi, gi, zi and fj, gj, zj, respectively, where:
fi, fj and gi, gj are linear, gi(0) = αi and gj(0) = αj, and zi, zj are quadratic
polynomials with zi(0) = zj(0) = 0.

Pi Pj

Ps

BC

xi, xj, xs ∈R Z∗p
γi,0, γi,1, γi,2, γi,3, γi,4 ∈R Zp
gi(x)← γi,1 · x+ γi,0
fi(x)← γi,2 · x+ αi
zi(x)← γi,4 · x+ γi,3

γj,0, γj,1, γj,2, γj,3, γj,4 ∈R Zp
gj(x)← γj,1 · x+ γj,0
fj(x)← γj,2 · x+ αj
zj(x)← γj,4 · x+ γj,3

x i,
xj,
xs

Figure 5.2: Step 1

Second step: Let h(x) = (gi(x) + gj(x))(fi(x) − fj(x)) + zi(x) + zj(x). Note that
h(0) = v · (αi − αj) for v := gi(0) + gj(0).

Pi and Pj share with the rest the evaluations of the random polynomials s.t. Pi, Pj, Ps
can compute the evaluations h(xi), h(xj), h(xs) respectively.
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Pi Pj

Ps

BC
For k ∈ {i, j, s}
gik ← gi(xk)
fik ← fi(xk)
zik ← zi(xk)

For k ∈ {i, j, s}
gjk ← gj(xk)
fjk ← fj(xk)
zjk ← zj(xk)

gij, fij, zij

gji, fji, zji

g is
, f
is
, z
is

g
js , f

js , z
js

Figure 5.3: Step 2

Third step: Pi,Pj,Ps compute the evaluation of h and share it with the rest. Pi and
Pj interpolate the value h(0).

Pi Pj

Ps

BC

hi ← (gii + gji)(fii − fji) + zii + zji
h←

∑
k∈{i,j,s} hk

∏
6̀=k

−x`

xk−x`

hj ← (gij + gjj)(fij − fjj) + zij + zjj
h←

∑
k∈{i,j,s} hk

∏
6̀=k

−x`

xk−x`

hs ← (gis + gjs)(fis − fjs) + zis + zjs

hi hj

hs

Figure 5.4: Step 3

Fourth step: Pi,Pj compute Ai = a
1

h(0)
(gi(xi)+gj(xi)), Aj = a

1
h(0)

(gi(xj)+gj(xj)) respec-
tively. Pj shares Aj with Pi.

Pj can interpolate the exponents of Ai and Aj and compute a
gi(0)+gj(0)

h(0) = a
v

v(αi−αj) =

a
1

αi−αj .

Pi PjAi ← a
1
h (gii+gji)

Aj ← a
1
h (gij+gjj)

B ← A

−xj
xi−xj

i A
−xi

xj−xi

j

Ai

Figure 5.5: Step 4

Fifth step: Pj computes B−αj = a
−αj
αi−αj and shares it with Pi.
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Pi PjOutput: B′ B′ ← B−αj
B′

Figure 5.6: Step 5

Partial signature

Let P = {Pi, Pj1 , . . . , Pjt−1}.

For Pi to compute the partial signature over a message m, computes σi(m) = at−1
where ak ← B(ak−1, Pi, Pjk) for k ∈ {1, ..., t− 1} and a0 = H(m)si

σi(m) = at−1

−αjt−1
αi−αjt−1 = ak

−αjk
αi−αjk

···
−αjt−1
αi−αjt−1 = a1

−αj1
αi−αj1

···
−αjt−1
αi−αjt−1 = H(m)

si
−αj1
αi−αj1

···
−αjt−1
αi−αjt−1

Signature

The signature σ(m) on a message m from a group of t participants {P1, ..., Pt} is

σ(m) =
m∏
i=1

σi(m)

5.3.2 Analysis

Unlinkability

The scheme keeps the unlinkability property while all participants remain honest
but curious. Consider an interaction step with participants Pi, Pj, Ps. If an adversary
A corrupts Pj and Ps, A knows fi(xj) and fi(xs), being able to interpolate fi to obtain
αi = fi(0).

If we want the scheme to be still unlinkable after corrupting ` participants, we can
extend the protocol in an analogous way where fk and gk are polynomials of degree
` and each interaction step needs 2` + 1 participants (Pi, Pj and 2` − 1 other parties
Psk .

Computational Cost

For a participant Pi to compute σi, t − 1 interactions with di�erent participants
are needed. Then, to compute a valid signature, t(t−1) interactions. We can consider
this computationally expensive for large t.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this chapter we sum up the advantages and disadvantages of the solutions dis-
cussed in chapters 4 and 5.

The protocols described in 4 are anonymous and unlinkable, but they are not
practical in many applications, since the whole system has to be set up again after a
signature is computed.

The signature scheme described in section 5.1.1 simulates a (t, n)-threshold signa-
ture scheme setting d di�erent (t, r)-threshold signature schemes. Not always a group
of t participants can compute a signature.

If we suppose that the participants are homogeneously distributed in the partitions,
we can say that the amount of participants in a part P ij is approximately g := n

r
. The

unlinkability of the scheme is determined by the value g and must be large enough so
that the linkability at the group level does not imply linkability at participant level.

For random partitions, the probability to succeed at signing a message p ' 1− t2

2r

can be improved by setting large r, but there is a tradeo� with linkability as g decreases.

For deterministic partitions there is a smart way to set them such that any set of
t participants can perform a signature. This can be done for su�ciently large d. This
results in the fact that the participants have to store d key pairs and perform up to d
partial signatures to compute a valid signature, and the lower bound on d grows with
t and n, and decreases with r. We have seen that for r →∞ with g → c then d→ t.
Then, we can lower the value of d by increasing r. Again, this results in a tradeo�
with linkability since g decreases.

An important detail to comment is that to improve the e�ciency of the signature
for d ≥ 2 (random or deterministic partitions), the participant could compute the
partial signatures for the d schemes, broadcast them, and eventually one of the d
schemes will succeed. But, if no two participants share the same distribution over
partitions, this identi�es the participants. Thus, maybe it is a good idea to avoid this
improvement.
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The protocol described in section 5.2 sets an anonymous (t, n)-threshold signature
scheme where any set of t participants can compute a signature based on a linkable
group signature when signing the same message (but not linkable for signatures on
distinct messages). The threshold is achieved by collecting t unlinked signatures over
the same message. This implies that the length of the signature grows linearly with t
and the veri�cation complexity is quadratic on t (since all

(
t
2

)
pairs of signatures have

to be checked).

The protocol described in section 5.3.1 sets an anonymous (t, n)-threshold signature
scheme that is unlinkable, and untraceable whenever an adversary can corrupt at most
one participant. It is compact since the length of the signature is the same as the
length of the keys (independent of t). The counterpart is that, since it is interactive,
it requires an amount of interactions that is quadratic in t. It is a standard BLS
signatures and can be veri�ed in constant time (independent of t).

The main problem of �nding a compact and non-interactive anonymous threshold
signature scheme that is unlinkable (or a proof of non-existence) still remains open.
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