313 research outputs found

    Chemical reaction optimization for task scheduling in grid computing

    Get PDF
    Grid computing solves high performance and high-throughput computing problems through sharing resources ranging from personal computers to supercomputers distributed around the world. One of the major problems is task scheduling, i.e., allocating tasks to resources. In addition to Makespan and Flowtime, we also take reliability of resources into account, and task scheduling is formulated as an optimization problem with three objectives. This is an NP-hard problem, and thus, metaheuristic approaches are employed to find the optimal solutions. In this paper, several versions of the Chemical Reaction Optimization (CRO) algorithm are proposed for the grid scheduling problem. CRO is a population-based metaheuristic inspired by the interactions between molecules in a chemical reaction. We compare these CRO methods with four other acknowledged metaheuristics on a wide range of instances. Simulation results show that the CRO methods generally perform better than existing methods and performance improvement is especially significant in large-scale applications. © 2011 IEEE.published_or_final_versio

    Architecture for wireless grids

    Get PDF
    Evolving consumer expectations will require changes to the existing access network – next generation access networks (NGNs). Emerging services leads to a great increase in bandwidth demand. Another great challenge to access networks is mobility. By other side, wireless mobile devices have become an indispensable tool for households and businesses. The increase of wireless devices, motivated by the rapid decrease of the cost and ease installation, leads to the redesign of the way applications and services are delivered. So, the integration of wireless grids with NGNs is extremely important. This paper presents a new architecture to integrate wireless grids in access networks.info:eu-repo/semantics/publishedVersio

    Architecture to integrate broadband access networks and wireless grids

    Get PDF
    Today, the access networks face two main challenges: the increasing bandwidth demand and mobility trends. All this will require fundamental changes to the operations of access networks, the functionality of network nodes and the architecture itself. By other side, the evolution of computing and communication networks toward decentralized and distributed systems implies that all the intelligence is on the edge nodes of the networks. Integrating wireless devices with the traditional wired grid infrastructure will allow the access (transfer, processing, etc) to the information that is now scattered across the different devices. In this paper, we present a new architecture and a cost model to support the new requirements of broadband access (fixed and nomadic users) and wireless grids in an integrated way

    Personal mobile grids with a honeybee inspired resource scheduler

    Get PDF
    The overall aim of the thesis has been to introduce Personal Mobile Grids (PMGrids) as a novel paradigm in grid computing that scales grid infrastructures to mobile devices and extends grid entities to individual personal users. In this thesis, architectural designs as well as simulation models for PM-Grids are developed. The core of any grid system is its resource scheduler. However, virtually all current conventional grid schedulers do not address the non-clairvoyant scheduling problem, where job information is not available before the end of execution. Therefore, this thesis proposes a honeybee inspired resource scheduling heuristic for PM-Grids (HoPe) incorporating a radical approach to grid resource scheduling to tackle this problem. A detailed design and implementation of HoPe with a decentralised self-management and adaptive policy are initiated. Among the other main contributions are a comprehensive taxonomy of grid systems as well as a detailed analysis of the honeybee colony and its nectar acquisition process (NAP), from the resource scheduling perspective, which have not been presented in any previous work, to the best of our knowledge. PM-Grid designs and HoPe implementation were evaluated thoroughly through a strictly controlled empirical evaluation framework with a well-established heuristic in high throughput computing, the opportunistic scheduling heuristic (OSH), as a benchmark algorithm. Comparisons with optimal values and worst bounds are conducted to gain a clear insight into HoPe behaviour, in terms of stability, throughput, turnaround time and speedup, under different running conditions of number of jobs and grid scales. Experimental results demonstrate the superiority of HoPe performance where it has successfully maintained optimum stability and throughput in more than 95% of the experiments, with HoPe achieving three times better than the OSH under extremely heavy loads. Regarding the turnaround time and speedup, HoPe has effectively achieved less than 50% of the turnaround time incurred by the OSH, while doubling its speedup in more than 60% of the experiments. These results indicate the potential of both PM-Grids and HoPe in realising futuristic grid visions. Therefore considering the deployment of PM-Grids in real life scenarios and the utilisation of HoPe in other parallel processing and high throughput computing systems are recommended.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Feedback-control & queueing theory-based resource management for streaming applications

    Get PDF
    Recent advances in sensor technologies and instrumentation have led to an extraordinary growth of data sources and streaming applications. A wide variety of devices, from smart phones to dedicated sensors, have the capability of collecting and streaming large amounts of data at unprecedented rates. A number of distinct streaming data models have been proposed. Typical applications for this include smart cites & built environments for instance, where sensor-based infrastructures continue to increase in scale and variety. Understanding how such streaming content can be processed within some time threshold remains a non-trivial and important research topic. We investigate how a cloud-based computational infrastructure can autonomically respond to such streaming content, offering Quality of Service guarantees. We propose an autonomic controller (based on feedback control and queueing theory) to elastically provision virtual machines to meet performance targets associated with a particular data stream. Evaluation is carried out using a federated Cloud-based infrastructure (implemented using CometCloud) – where the allocation of new resources can be based on: (i) differences between sites, i.e. types of resources supported (e.g. GPU vs. CPU only), (ii) cost of execution; (iii) failure rate and likely resilience, etc. In particular, we demonstrate how Little’s Law –a widely used result in queuing theory– can be adapted to support dynamic control in the context of such resource provisioning

    STaRS: A scalable task routing approach to distributed scheduling

    Get PDF
    La planificación de muchas tareas en entornos de millones de nodos no confiables representa un gran reto. Las plataformas de computación más conocidas normalmente confían en poder gestionar en un elemento centralizado todo el estado tanto de los nodos como de las aplicaciones. Esto limita su escalabilidad y capacidad para tolerar fallos. Un modelo descentralizado puede superar estos problemas pero, por lo que sabemos, ninguna solución propuesta hasta el momento ofrece resultados satisfactorios. En esta tesis, presentamos un modelo de planificación descentralizado con tres objetivos: que escale hasta millones de nodos, sin una pérdida de prestaciones que lo inhabilite; que tolere altas tasas de fallos; y que permita la implementación de varias políticas de planificación para diferentes situaciones. Nuestra propuesta consta de tres elementos principales: un modelo de datos genérico para representar la disponibilidad de los nodos de ejecución; un esquema de agregación que propaga esta información por una capa de red jerárquica; y un algoritmo de reexpedición que, usando la información agregada, encamina tareas hacia los nodos de ejecución más apropiados. Estos tres elementos son fácilmente extensibles para proporcionar diversas políticas de planificación. En concreto, nosotros hemos implementado cinco. Una política que simplemente asigna tareas a nodos desocupados; una política que minimiza el tiempo de finalización del trabajo global; una política que cumple con los requerimientos de fecha límite de aplicaciones tipo "saco de tareas"; una política que cumple con los requerimientos de fecha límite de aplicaciones tipo "workflow"; y una política que otorga una porción equitativa de la plataforma a cada aplicación. La escalabilidad se consigue a través del esquema de agregación, que provee de suficiente información de disponibilidad a los niveles altos de la jerarquía sin inundarlos, y el algoritmo de reexpedición, que busca nodos de ejecución en varias ramas de la jerarquía de manera concurrente. Como consecuencia, los costes de comunicación están acotados y los de asignación muestran un comportamiento casi logarítmico con el tamaño del sistema. Un millar de tareas se asignan en una red de 100.000 nodos en menos de 3,5 segundos, así que podemos plantearnos utilizar nuestro modelo incluso con tareas de tan solo unos minutos de duración. Por lo que sabemos, ningún trabajo similar ha sido probado con más de 10.000 nodos. Los fallos se gestionan con una estrategia de mejor esfuerzo. Cuando se detecta el fallo de un nodo, las tareas que estaba ejecutando son reenviadas por sus propietarios y la información de disponibilidad que gestionaba es reconstruida por sus vecinos. De esta manera, nuestro modelo es capaz de degradar sus prestaciones de manera proporcional al número de nodos fallidos y recuperar toda su funcionalidad. Para demostrarlo, hemos realizado pruebas de tasa media de fallos y de fallos catastróficos. Incluso con nodos fallando con un periodo mediano de solo 5 minutos, nuestro planificador es capaz de continuar dando servicio. Al mismo tiempo, es capaz de recuperarse del fallo de una fracción importante de los nodos, siempre que la capa de red jerárquico que sustenta el sistema pueda soportarlo. Después de comprobar que es factible implementar políticas con muy distintos objetivos usando nuestro modelo de planificación, también hemos probado sus prestaciones. Hemos comparado cada política con una versión centralizada que tiene pleno conocimiento del estado de cada nodo de ejecución. El resultado es que tienen unas prestaciones cercanas a las de una implementación centralizada, incluso en entornos de gran escala y con altas tasas de fallo

    Trusted community : a novel multiagent organisation for open distributed systems

    Get PDF
    [no abstract

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Design and implementation of a multi-agent opportunistic grid computing platform

    Get PDF
    Opportunistic Grid Computing involves joining idle computing resources in enterprises into a converged high performance commodity infrastructure. The research described in this dissertation investigates the viability of public resource computing in offering a plethora of possibilities through seamless access to shared compute and storage resources. The research proposes and conceptualizes the Multi-Agent Opportunistic Grid (MAOG) solution in an Information and Communication Technologies for Development (ICT4D) initiative to address some limitations prevalent in traditional distributed system implementations. Proof-of-concept software components based on JADE (Java Agent Development Framework) validated Multi-Agent Systems (MAS) as an important tool for provisioning of Opportunistic Grid Computing platforms. Exploration of agent technologies within the research context identified two key components which improve access to extended computer capabilities. The first component is a Mobile Agent (MA) compute component in which a group of agents interact to pool shared processor cycles. The compute component integrates dynamic resource identification and allocation strategies by incorporating the Contract Net Protocol (CNP) and rule based reasoning concepts. The second service is a MAS based storage component realized through disk mirroring and Google file-system’s chunking with atomic append storage techniques. This research provides a candidate Opportunistic Grid Computing platform design and implementation through the use of MAS. Experiments conducted validated the design and implementation of the compute and storage services. From results, support for processing user applications; resource identification and allocation; and rule based reasoning validated the MA compute component. A MAS based file-system that implements chunking optimizations was considered to be optimum based on evaluations. The findings from the undertaken experiments also validated the functional adequacy of the implementation, and show the suitability of MAS for provisioning of robust, autonomous, and intelligent platforms. The context of this research, ICT4D, provides a solution to optimizing and increasing the utilization of computing resources that are usually idle in these contexts
    corecore