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Chemical Reaction Optimization for Task
Scheduling in Grid Computing

Jin Xu, Student Member, IEEE, Albert Y.S. Lam, Member, IEEE, and Victor O.K. Li, Fellow, IEEE

Abstract—Grid computing solves high performance and high-throughput computing problems through sharing resources ranging from

personal computers to supercomputers distributed around the world. One of the major problems is task scheduling, i.e., allocating

tasks to resources. In addition to Makespan and Flowtime, we also take reliability of resources into account, and task scheduling is

formulated as an optimization problem with three objectives. This is an NP-hard problem, and thus, metaheuristic approaches are

employed to find the optimal solutions. In this paper, several versions of the Chemical Reaction Optimization (CRO) algorithm are

proposed for the grid scheduling problem. CRO is a population-based metaheuristic inspired by the interactions between molecules in

a chemical reaction. We compare these CRO methods with four other acknowledged metaheuristics on a wide range of instances.

Simulation results show that the CRO methods generally perform better than existing methods and performance improvement is

especially significant in large-scale applications.

Index Terms—Grid computing, task scheduling, multicriteria scheduling, chemical reaction optimization.

Ç

1 INTRODUCTION

WITH the advancement of high-speed networks, grid
computing (also known as computational grid) is

proposed and considered as the foundation of the next-
generation Internet [1]. The goal of a grid system is to solve
large-scale and high-performance computing problems
through sharing many geographically distributed comput-
ing resources belonging to different administrative do-
mains. Grid technology has a wide range of applications in
many fields of science and engineering, e.g., astronomy,
meteorology, bioinformatics, transportation, financial mod-
eling, drug discovery, high energy physics, data mining,
and image manipulation [2], [3], [4].

A grid usually consists of five parts: clients, the Global
and Local Grid Resource Brokers (GGRB and LGRB), Grid
Information Server (GIS), and resource nodes [5] (see Fig. 1).
Clients register their requests of processing their computa-
tional tasks at GGRB. Resource nodes register their donated
resource at LGRB and process clients’ tasks according to the
instructions from LGRB. In practice, client and resource
node can be the same computer. GIS collects the resource
information from all LGRBs, and transfers it to GGRB.
GGRB is responsible for scheduling. It possesses all
necessary information about the tasks and resources and

acts like a database of the grid [5]. A grid operates in time
intervals. At the beginning of each interval, GGRB performs
scheduling. During an interval, the registered resources
process the tasks. Scheduling tasks for various heteroge-
neous nodes is an essential part of a grid system. Efficient
scheduling (i.e., performing a scheduling scheme which
minimizes the computational overheads and uses the
resources effectively) is one of the most important problems
in grid computing.

The main challenge of task scheduling in grids (different
from the scheduling problems of other computer/commu-
nication system, e.g., [6], [7]) is its highly dynamic environ-
ment, where the resource nodes have their own access
policies, availability, and so on. In other words, some nodes
are completely dedicated to the grid; some provide service
only when they are idle; and the rest falls between the two
extremes [8]. Meanwhile, the resources can be of great
heterogeneity, ranging from desktop PCs to supercomputers.

Task scheduling in grids (also named as grid scheduling)
is an NP-hard optimization problem [9], and many
metaheuristic algorithms have been proposed to solve it.
Some of these algorithms are nature-inspired, e.g., Simu-
lated Annealing (SA) [10], Genetic Algorithm (GA) [11], Ant
Colony Optimization (ACO) [12], Particle Swarm Optimiza-
tion (PSO) [13], etc. There are also non-nature-inspired
metaheuristics, such as Tabu Search [14] and Threshold
Accepting (TA) [15]. Chemical Reaction Optimization
(CRO) is recently proposed [16], and it mimics the
interactions of molecules in chemical reactions. CRO is a
population-based metaheuristic, and it has already shown
its power in solving problems like Quadratic Assignment
Problem (QAP), Resource-Constrained Project Scheduling
Problem (RCPSP), and Channel Assignment Problem (CAP)
[16]. In this paper, we develop several versions of CRO to
solve the grid scheduling problem, and we compare the
performance of CROs with that of SA, GA, PSO, and TA.

The rest of the paper is organized as follows: related
work is described in Section 2. In Section 3, we formulate
the grid scheduling problem. Section 4 describes the
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framework of CRO, as well as two different solution
representations with their operator mechanisms. Simulation
results and analysis are given in Section 5. Finally, we
present concluding remarks and suggestions for future
work in Section 6.

2 RELATED WORK

In this section, we will first review the previous work on the
grid scheduling problem. Then brief description of the
metaheuristic approaches considered in this paper will be
given.

2.1 Grid Scheduling

Recently grid scheduling has attracted much attention.
Many grid computing infrastructure have emerged, such as
the e-Minerals Grid [17] in the United Kingdom, and the
EGEE project [18] funded by the European Commission. At
the same time, a number of scheduling systems have been
developed, such as Condor-G [19], AppLes [20], and
CHIMERA [21]. In [22], scheduling in grids can be classified
into different types. From the system’s perspective, sche-
duling can be centralized, hierarchical or decentralized.
Also, the system can process the tasks in batches or handle a
task immediately once submitted. Other policies like
Deferred Assignment Scheduling (DAS) [23], [24] are
adopted by some researchers as well. Moreover, tasks can
also be independent or have precedence relationship. In
most cases, applications with intensive use of CPUs may be
split into independent parts, which can be considered as
independent tasks. For those applications involving ex-
tensive data sharing among resources, we need to account
for the precedence relationship between tasks, also known
as the Grid Workflow. In this paper, we consider problems
in batch-processed mode with independent tasks.

Heuristic and metaheuristic methods have been applied
to solve different types of grid scheduling problems. In [25],
the authors tried to map independent tasks onto hetero-
geneous distributed computing systems, and they com-
pared eleven approaches, including heuristic methods
(such as Min-Min, Max-Min, Duplex, etc.) and metaheur-
istic (like GA, SA, and GSA which is a hybridization of the
former two.). The outcome is that GA consistently gave the
best results when the benchmarking and parameter values
were set according to some rules. Fidanova [26] used SA for
grid scheduling, optimizing the makespan, and showed
that it performed better than ACO. A novel PSO approach

was proposed in [27], and it evaluated makespan and
flowtime simultaneously. Threshold Accepting Algorithm
[28], which was relatively simple and easy to implement,
converged faster than SA and GA-LS (GA combined with a
local search) when solving the workflow problem.

2.2 Metaheuristics

Since we shall compare CRO with GA, SA, PSO, and TA, we
describe them below.

GA, a particular class of evolutionary algorithms, was
created by Holland [11]. It follows the natural selection law,
which means only the fittest can survive. GA is a
population-based metaheuristic and produces the next
generation with the techniques inspired by evolutionary
biology, such as inheritance, mutation, crossover, and
selection. Consider a solution as an organism. The better
the quality of a solution, the higher the probability it will
survive. Through crossover (also called recombination) and
mutation, GA can escape from the local optimal to search
for the global optimal.

SA, originated from annealing in metallurgy, imitates its
process of decreasing the defects of a substance according to
a cooling procedure. For each iteration, SA generates a new
solution randomly in the neighborhood of the present
solution, and it will be accepted if it is better, or accepted
with a probability controlled by a temperature parameter.
As the temperature gradually drops, the ability to jump out
of local optima decreases and finally moves to the global
optimum.

PSO, introduced by Kennedy and Eberhart [13], is a
population-based direct search method. It is modeled on
swarm intelligence, like bird flocking and fish schooling.
Particles, similar to individuals, not only remember their
own local best positions (solutions), but also communicate
with each other and record the globally best position. These
two parameters are used in the velocity function to balance
exploration and exploitation.

TA, presented by Dueck and Scheuer [15], is similar to
SA but with a different acceptance rule. Every new solution
would be accepted as long as the difference is smaller than a
threshold. Like the temperature in SA, the threshold also
decreases gradually with the iterations. TA is simple and
does not require probability calculations and random
decision making, yielding computational results superior
to SA in many cases [15].

3 PROBLEM FORMULATION

We formulate the problem based on the “Expected Time to
Compute” (ETC) Model [29]. In a particular time interval, n
independent tasks J1; J2; . . . ; Jn (expressed in millions of
instructions) are submitted to GGRB for scheduling, and at
the same time, GIS locates m (usually n� m) grid nodes
R1; R2; . . . ; Rm, donating resources. As the nature of a grid
node’s resources (e.g., CPU speed, memory, storage, etc.)
varies greatly, we simply measure the combined processing
power of a grid node, in terms of “millions of instructions
per second.” We use the terms “node” and “resource”
interchangeably.

Based on the specifications of the resources and tasks,
GGRB computes an n�m matrix ETC, where entity ETCij
represents the expected time for resource j to process task i.
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If resource j cannot handle task i; ETCij is set to infinity. In
addition, the grid nodes may have unfinished workload
accumulated from the previous intervals. We use
W1;W2; . . . ;Wm to denote the time required for processing
the remaining tasks for the m resources. We also assume:

1. A task can only be executed on one grid node in each
interval.

2. No preemptive process is allowed within tasks or
resources.

3. When a node fails, its tasks will be reallocated to
other node(s) in the next interval.

4. When a node processes its tasks, there is no priority
distinctions between the tasks assigned in the
previous intervals and those assigned in the current
interval.

5. A node cannot remain idle when tasks have been
assigned to it.

In this paper, we employ both the permutation- and
vector-based representations for the schedules, i.e., the
solutions. For the permutation-based representation, two
vectors are usually employed. The first one describes the
number of tasks allocated to each resource. So the position of
the element is the resource’s ID, and the sum of values of all
the elements is equal ton, wheren is the total number of tasks.
The second vector is a permutation of f1; 2; . . . ; ng. For the
vector-based representation, the number of elements in the
vector is equal to the number of tasks. The position of the
element in the vector denotes the task’s ID. All the elements
are integers in the range of ½1;m�, wherem is the total number
of resources. The element’s value indicates which resource is
chosen to process the corresponding task, and these values
can be repetitive. For example, let ! be a vector denoting a
solution, and suppose six tasks are scheduled with four
resources, and the first and third tasks are allocated to
Resource 1, the second task runs on Resource 3, the fourth task
on Resource 4, and the fifth and sixth on Resource 2. When the
solution employs the permutation-based representation, let
the first solution vector !1 be ½2; 2; 1�. It means that both
Resources 1 and 2 have two tasks and Resources 3 and 4 each
own one task. Let the second vector !2 be ½1; 3; 5; 6; 2; 4� and it
means that first group of elements underlined are given to
Resource 1, the second group allocated to Resource 2, and so
on. When it comes to the vector-based one, the same solution
can be represented by ! ¼ ½1; 3; 1; 4; 2; 2�.

Makespan and Flowtime are two commonly used metrics
for measuring the quality of a schedule in grid computing
[22], [25], [27]. Makespan is the completion time of the last
finished task, while Flowtime is the total time consumed by
all tasks. We define CJ as the time required for Node j to
complete all its assigned tasks. Mathematically, we have

Cj ¼
X

fij!i¼jg
ETCij þWj; ð1Þ

Makespan ¼ maxfCjg; ð2Þ

and

Flowtime ¼
Xm

j¼1

Cj; ð3Þ

where j ¼ 1; 2; . . . ;m, and fij!i ¼ Jg represents the tasks
assigned to Node j.

As mentioned before, system performance is vulnerable
to the volatile donated grid resources. Grid nodes may
become unavailable due to disconnection of power or
communication, unwillingness or policies of the resource
owners, etc., [8] describes a failure predictor, which utilizes
historical data to forecast the availability of grid nodes.
Thus, besides Makespan and Flowtime, it is important to take
the reliability into account. We define PJ as the reliability
probability of resource j, where j 2 1; 2; . . . ;m. This allows
GGRB to select a resource with higher PJ when more than
one resource is available. We evaluate the impact of
reliability with T_aborted, where

T aborted ¼
Xm

j¼1

X

fij!i¼jg
½ð1� PjÞ �ETCij�: ð4Þ

T_aborted, in fact, represents the total wasted time caused
by the aborted tasks in terms of reliability. The higher the
PJ , the smaller T_aborted is.

In this paper, we try to minimize Makespan, Flowtime,
and T_aborted simultaneously, and thus, the grid schedul-
ing problem is a multiobjective optimization problem.
However, as discussed in [30], minimizing Makespan
requires the most demanding tasks to be assigned to the
fastest resource, at the expense of increasing the finish time
of other tasks, and hence increasing Flowtime. On the other
hand, optimizing Flowtime requires all tasks to finish
quickly on the average, at the expense of having the most
demanding tasks taking a longer completion time, thus
increasing Makespan. Moreover, to minimize T_aborted, the
tasks tend to be allocated to the resources with high
reliability. Therefore, these three criteria lead to contra-
dictory decisions. Let f denote the fitness function. We
formulate the grid scheduling problem as

min fð!Þ ¼ a�Makespanþ b� ðFlowtime=mÞ
þ c� ðT aborted=mÞ;

ð5Þ

where aþ bþ c ¼ 1 and 0 � a; b; c � 1.
The weights put on the three objectives will be further

discussed in [31]. Flowtime and T_aborted have higher order
of magnitude over Makespan, and thus, we normalize them
by m.

4 ALGORITHM DESIGN

4.1 Modified Framework of CRO

The basic concept of CRO and its main executing process are
illustrated in [31]. The canonical framework of CRO [16] has
been employed to solve the grid scheduling problem in [32].
Based on that, we develop a modified framework of CRO for
the problem and its flowchart is shown in [31, Fig. S3].

In the modified framework, only one molecule is
generated in the initialization stage. Besides, before reaction
happens, we put some energy in the container which means
that the central energy buffer is set to a certain positive
value, instead of zero in the buffer of the canonical
framework. The initial quantity of energy in the central
buffer will influence the number of molecules in the system.
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Then we divide the iteration stage into two parts. In the first
part, only unimolecular collisions (on-wall ineffective
collision and decomposition)are allowed. As the decom-

position is executed frequently, more and more molecules
will be generated. The purpose is to explore the solution
space as much as possible. After the predefined number of

iterations, the second part starts. This part is similar to the
whole iteration stage of the canonical framework, except
that it excludes the decomposition reaction. This part aims
to enhance the convergence of solutions.

4.2 Operators

As mentioned before, both permutation-based and vector-
based representations of solutions are used in CRO compar-

isons. However, in the implementation, operators are totally
different for these two representations when they are
employed to generate solutions. In the following two sections,

we will describe the operators for these two representations.

4.2.1 Permutation-Based Representation

As described in Section 3, in the permutation-based form,
usually we need to use two vectors to represent the
solutions. In this paper, we transform these two vectors

into one. We extend the vector with length n to length
nþm� 1, where the added m� 1 elements are the
delimiters to distinguish which tasks are assigned to the

nodes. In other words, the tasks between the adjacent
delimiters are distributed to the specified resource. For
simplicity, we use nþ 1, nþ 2; . . . ; nþm� 1 as the

delimiters. For example, originally, we use ½1; 3; 5; 6; 2; 4�
and ½2; 2; 1; 1� to denote one solution; now, it is instead
expressed by ½1; 3; 7; 5; 6; 8; 2; 9; 4�, where 7, 8, 9 are the
delimiters. The elements before 7, i.e., Tasks 1 and 3 are

distributed to Resource 1; Tasks 5 and 6 which are between
the delimiters 7 and 8 are allocated to Resource 2; Task 2
between 8 and 9 is assigned to Resource 3, and Task 4 is

given to Resource 4. If there is no task between any two
neighboring delimiters, the relative resource will be idle.
With this transformation, only one vector is needed to

represent the solutions of the grid scheduling problem.
Following are the operators used in CRO:

1. Insertion operator (for on-wall ineffective collision).
Two numbers are randomly selected from the vector,
then the second number is inserted before the first
number. As shown in the example below, the
numbers 7 and 2 are selected, and we put the
number 2 ahead of 7 in the insertion operator

½1; 3;7; 5; 6; 8;2; 9; 4� ! ½1; 3;2;7; 5; 6; 8; 9; 4�:

2. Position-based operator (for synthesis). It involves
two molecules and combines two solutions !1 and !2

into a new one !0. Each number in !1 has 50 percent
probability to be chosen and passed to !0 at the same
position. Then, the numbers in the unfilled positions
of !0 are picked from !2. For example, let !1 be [1, 3,
7, 5, 6, 8, 2, 9, 4]. We randomly choose the numbers 7,
6, and 2, then pass them to the same positions in !0.
The remaining numbers, 1, 3, 4, 5, 8 and 9 in !0 are

put in the vacant positions according to their orders
in !2, which is 4, 5, 3, 1, 8, 9. Thus, we have

Strings before synthesis

!1 : ½1; 3;7; 5;6; 8;2; 9; 4�
!2 : ½7; 4; 5; 3; 1; 2; 8; 6; 9�

String after synthesis

!0 : ½4; 5; 7; 3; 6; 1; 2; 8; 9�:

3. Two-exchange neighborhood operator (for the inter-
molecular ineffective collision). We select two
numbers randomly from the solution, then exchange
their positions. In the following example, the
positions of 7 and 2 are exchanged

½1; 3;7; 5; 6; 8;2; 9; 4� ! ½1; 3;2; 5; 6; 8;7; 9; 4�:

4. For the decomposition reaction in the CRO, we
randomly generate two totally new solutions.

4.2.2 Vector-Based Representation

We also introduce four operators for this representation as
follows:

1. One-resource change operator (for on-wall ineffec-
tive collision). One task is randomly selected and
then assigned to another resource. As shown below,
we assign the fifth task from Resource 2 to 3

½1; 3; 1; 4;2; 2� ! ½1; 3; 1; 4;3; 2�:

2. Pairwise exchange operator (for on-wall ineffective
collision and intermolecular ineffective collision).
We randomly pick two tasks and exchange their
respective assigned resources. In the following
example, originally the second task and the fifth
task are assigned with Resources 3 and 2, respec-
tively. After the change, the second task is now
assigned to Resource 2, and the fifth to Resource 3

½1;3; 1; 4;2; 2� ! ½1;2; 1; 4;3; 2�:

3. One-position exchange operator (for synthesis). We
combine two solutions !1 and !2 into a new one !0.
An integer value k is randomly generated in the
range of ½1; n�, where n is the total number of tasks.
Then !0 is generated by picking the first k values
from !1 and the rest of the ðn� kÞ values from !2.
Below, !0 (½1; 3; 2; 3; 4; 1�) is formed by combining the
first two numbers (1 and 3) from !1 and the last four
(2, 3, 4, and 1) from !2. Thus, we have

Strings before synthesis

!1 : ½1; 3;1; 4; 2; 2�
!2 : ½3; 2; 2; 3; 4; 1�

String after synthesis

!0 : ½1; 3; 2; 3; 4; 1�:
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4. Half-random operator (for decomposition). We
produce two new solutions !01 and !02 from one
solution !0. We divide the values of the solution into
two sets, depending on whether they are in the odd-
or even-numbered positions. The odd-position set of
! is assigned to the odd positions of !01, while the
even-position set of ! is assigned to the even
position of !02. The unassigned positions in these
two new solutions are filled with random numbers.
As the example shown below, the numbers 1, 1, and
2 are given to !01 in the same odd places, while 3, 4,
and 2 are allocated to !02 in the even places. Then we
generate random numbers (2, 3, and 1) to fill in the
vacant positions (boxed) of these two new solutions.
Thus, we have

Strings before decomposition

! : ½1;3; 1;4; 2;2�

String after decomposition

4.3 Summary

Up till now, we have two frameworks of the CRO and two
representations for the solutions. Thus totally, we have four
versions of CRO, named as CRO_P1, CRO_P2, CRO_V1,
and CRO_V2, respectively (“P” means permutation-based
representation, while “V” is vector-based one; “1” stands
for the canonical framework of CRO, while “2” is the

modified one). We will compare the performance of these
CRO versions with other algorithms below.

5 SIMULATION RESULTS

In this section, we first show simulation results with
permutation-based and vector-based representations, re-
spectively. Second, the outcomes of employing these two
different representations are compared. Details on the
simulation environment, parameter analysis for CRO and
weights selection for the fitness functions are given in [31].

5.1 Permutation-Based Results

In this section, we use the permutation type as the solution
representations. Operator mechanisms adapted to this type
are also employed. As described in Section 2, PSO evolves
according to the velocity and position of the particles. In
essence, PSO is updated (generating new solutions) auto-
matically, and does not utilize any operator mechanism to
get new solution. The only thing that influences the
performance of this algorithm is the parameter settings.
Hence, it will perform the same in both permutation- and
vector-based representations. So we compare PSO in the
vector-based section, and this part includes TA_P, SA_P,
GA_P, CRO_P1, and CRO_P2 only.

Fig. 2 [31, Fig. S4] show the performance of the five
algorithms in terms of fitness value in a wide range of cases.
We adopt the notation “x_y_z” for the test cases, where “x”
can be consistent “c,” inconsistent “i,” or semiconsistent “s,”
while “y” and “z” indicate the number of jobs and resources,
respectively. For example, “c_100_10” refers to the case
which is a consistent system with 100 jobs and 10 resources.
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We conclude that: 1) Generally, CRO_P1 performs best in the
inconsistent system, while GA_P does best in the consistent
and semiconsistent systems. 2) CRO_P2, TA_P, and SA_P
obtain similar results. More specifically, among these three
algorithms, CRO_P2 gets the best results in more than half of
the cases. This reveals that it is better than TA_P and SA_P.
3) From the consistent system to the inconsistent one, the
performance of GA_P deteriorates. In the inconsistent cases,
GA_P is the worst. Therefore, in terms of effectiveness and
practicability, CRO_P1 is the best choice if we use the
permutation-based representations.

5.2 Vector-Based Results

We add PSO when using the vector-based representations.
Fig. 3 gives the fitness values for the 36 test cases with
configurations of (100,10), (300,10), and (512,16). In general,
CRO_V1 and CRO_V2 outperform the other four metaheur-
istics in most of the cases. For those cases, in which CRO_V1
and CRO_V2 are not the best, they can achieve results very
close to the best ones. We also find that CRO_V2 performs a
little better. The differences of performance among these six
algorithms become more pronounced as the scale increases,
and the difference is the greatest in the largest configuration
(204,864), shown in [31, Fig. S5]. (Below, we will show why
PSO_V is not included in this figure.) Fig. S5 also shows that
CRO_V2 outperforms all of the other five algorithms in all
12 different cases.

We compute the improvement of an algorithm over
another one as follows:

Improvementð%Þ ¼ �1 � �2

�2
� 100%; ð6Þ

where �1 and �2 are the fitness values of two different
algorithms. On average, CRO_V1 performs 5.92, 55.72,
and 5.50 percent better than TA_V, SA_V, and GA_V in
fitness, respectively, while CRO_V2 achieves 9.98, 62.63,
and 9.52 percent, respectively.

Moreover, we can also observe that: 1) the lower the task
and resource heterogeneity, the worse SA_V performs. For
the cases with low task and resource heterogeneity, SA_V
turns out to be the worst algorithm. 2) For cases with few
tasks and resources, PSO_V and GA_V can produce
solutions as good as CRO_V1 and CRO_V2 (albeit not
better). However, as the numbers of tasks and resources
increase, the performance of CRO_V1 and CRO_V2
improves significantly.

Meanwhile, CRO_V1 and CRO_V2 take similar CPU
time as TA_V, SA_V, and GA_V, but PSO_V requires much
longer time than the rest. The reason is that the velocity
updating in PSO_V consumes much time in each iteration.
In the largest configuration, the time PSO_V consumes is
much higher than what we can accept (about millions of
seconds for a case). Besides, as mentioned before, the
performance of PSO_V deteriorates with the adding of tasks
and resources. Based on the above two considerations, we
exclude PSO_V in the largest scale cases.

In [31, Fig. S6] illustrates the convergence of the
algorithms. We choose four cases with a configuration of
512 tasks and 16 resources. An advantage of PSO is its
convergence speed. From Fig. S6, it is clear that PSO_V
converges faster than the other metaheuristics and its
convergence rate is almost double than those of TA_V,
SA_V, and GA_V. CRO_V1 and CRO_V2 are the second
best in terms of convergence speed.
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5.3 Comparison between Permutation and
Vector-Based Representations

We compare the results of using permutation-based and
vector-based representations in [31, Table S4]. For simpli-
city, we only show the results of the configurations with
high task heterogeneity and high resource heterogeneity.
The results of other configurations are similar. The bold
numbers are the better results when comparing between
permutation-based and vector-based representations for the
same algorithms, while the bracketed ones are the best
results among all the algorithms. From this table, it is clear
that vector-based representation is better than permutation-
based one in each algorithm (except for one instance with
GA, namely the case of chh_100_10). As described in
Section 5.1, GA_P gets the best fitness value, but, it is worse
than any algorithm using the corresponding vector-based
representations. Furthermore, we also find that the stan-
dard deviations of fitness values with permutation-based
representation are greater than 7 percent, while the
standard deviations of those with vector-based are less
than 1 percent. Hence, vector-based representation is
superior to the permutation-based one when solving the
grid scheduling problem. This is because in our model, we
do not consider the workflow (precedence relationship)
between tasks, while permutation-based representation
mainly handles the problem with sequential solution, like
TSP. Therefore, solutions with vector-based representation
can be transformed to others with better quality more
directly and efficiently than the permutation-based ones.

Both SA and TA manipulate a single solution in each
iteration, while GA and PSO control a population of solutions
at a time. Though CRO is also a population-based metaheur-
istic, the number of manipulated solutions at each time
instance varies in the course of simulation. With appropriate
control through parameter settings, in the early stage, CRO
acts more like GA but has more operators to use. As the
simulation continues, it tends to keep a single solution in each
iteration, like SA. Therefore, CRO enjoys the advantages of
both GA and SA, and generally it performs the best. Besides,
the structure of CRO is quite flexible. Through adjusting and
combining the elementary reactions, we can get new frame-
works of CRO which adapt to the specific problem.

5.4 Summary

Basically, the algorithm with vector-based representation is
superior to that with permutation-based representation, and
CRO_V2 performs the best. In order to further support the
superiority of CRO_V2, we adopt the t-tests with 95 percent
confidence levels. We compared the means of CRO_V2 and
those of other algorihtms with vector-based representation
for all the 48 cases, tabulated in [31, Table S5]. “sþ; ” “s�; ”
and “� ” indicate that CRO_V2 is significantly better,
significantly worse, and comparable in performance to the
counterpart, respectively. It is clear that CRO_V2 is signifi-
cantly better than other algorithms in almost every case.

6 CONCLUSION

Grid Computing has emerged as one of the hot research
areas in the field of computer networking. Scheduling,
which decides how to distribute tasks to resources, is one of
the most important issues. CRO, inspired by the chemical

reaction process, is a metaheuristic approach and can be
applied to solve NP-hard problems, like grid scheduling.
Compared with the previous version [32], we summarize
the new contributions of this paper as follows:

1. Based on the canonical framework of CRO, we
design a new framework according to the character-
istics of the grid scheduling problem.

2. We compare the performance of CRO with other
popular metaheuristics, for a large variety of test
cases, and with the consideration of the heteroge-
neous environment of different configurations.

3. Two solution representations, namely, permutation-
based and vector-based, are implemented and
compared with each other.

4. We provide the optimal parameters for CRO in [31],
which can be used as the reference for further
research.

5. Weights for the multiobjective function fð!Þ are
analyzed in [31].

6. We demonstrate that the vector-based representation
is better than the permutation-based one for inde-
pendent task grid scheduling problem. From the
simulation results, we find that CRO_V2 gives the
best performance when compared with CRO_V1,
GA_V, SA_V, TA_V, and PSO_V.

In the future, our work can be carried forward in the
following three directions. First, other models of grid
scheduling (e.g., workflow model [28], priority model [5],
etc.) can be studied with the CRO approach. Second, to
understand CRO further, we can design more operators for
CRO, develop some heuristic components dedicated to the
grid scheduling problem, and test the performance. In
addition, other ways solving multiobjective optimization
problem can be adopted.
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