6,045 research outputs found

    Simultaneous identification, tracking control and disturbance rejection of uncertain nonlinear dynamics systems: A unified neural approach

    Get PDF
    Previous works of traditional zeroing neural networks (or termed Zhang neural networks, ZNN) show great success for solving specific time-variant problems of known systems in an ideal environment. However, it is still a challenging issue for the ZNN to effectively solve time-variant problems for uncertain systems without the prior knowledge. Simultaneously, the involvement of external disturbances in the neural network model makes it even hard for time-variant problem solving due to the intensively computational burden and low accuracy. In this paper, a unified neural approach of simultaneous identification, tracking control and disturbance rejection in the framework of the ZNN is proposed to address the time-variant tracking control of uncertain nonlinear dynamics systems (UNDS). The neural network model derived by the proposed approach captures hidden relations between inputs and outputs of the UNDS. The proposed model shows outstanding tracking performance even under the influences of uncertainties and disturbances. Then, the continuous-time model is discretized via Euler forward formula (EFF). The corresponding discrete algorithm and block diagram are also presented for the convenience of implementation. Theoretical analyses on the convergence property and discretization accuracy are presented to verify the performance of the neural network model. Finally, numerical studies, robot applications, performance comparisons and tests demonstrate the effectiveness and advantages of the proposed neural network model for the time-variant tracking control of UNDS

    Discrete-time zeroing neural network for solving time-varying Sylvester-transpose matrix inequation via exp-aided conversion

    Get PDF
    Time-varying linear matrix equations and inequations have been widely studied in recent years. Time-varying Sylvester-transpose matrix inequation, which is an important variant, has not been fully investigated. Solving the time-varying problem in a constructive manner remains a challenge. This study considers an exp-aided conversion from time-varying linear matrix inequations to equations to solve the intractable problem. On the basis of zeroing neural network (ZNN) method, a continuous-time zeroing neural network (CTZNN) model is derived with the help of Kronecker product and vectorization technique. The convergence property of the model is analyzed. Two discrete-time ZNN models are obtained with the theoretical analyses of truncation error by using two Zhang et al.’s discretization (ZeaD) formulas with different precision to discretize the CTZNN model. The comparative numerical experiments are conducted for two discrete-time ZNN models, and the corresponding numerical results substantiate the convergence and effectiveness of two ZNN discrete-time models

    New noise-tolerant neural algorithms for future dynamic nonlinear optimization with estimation on hessian matrix inversion

    Get PDF
    Nonlinear optimization problems with dynamical parameters are widely arising in many practical scientific and engineering applications, and various computational models are presented for solving them under the hypothesis of short-time invariance. To eliminate the large lagging error in the solution of the inherently dynamic nonlinear optimization problem, the only way is to estimate the future unknown information by using the present and previous data during the solving process, which is termed the future dynamic nonlinear optimization (FDNO) problem. In this paper, to suppress noises and improve the accuracy in solving FDNO problems, a novel noise-tolerant neural (NTN) algorithm based on zeroing neural dynamics is proposed and investigated. In addition, for reducing algorithm complexity, the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is employed to eliminate the intensively computational burden for matrix inversion, termed NTN-BFGS algorithm. Moreover, theoretical analyses are conducted, which show that the proposed algorithms are able to globally converge to a tiny error bound with or without the pollution of noises. Finally, numerical experiments are conducted to validate the superiority of the proposed NTN and NTN-BFGS algorithms for the online solution of FDNO problems

    Complex Noise-Resistant Zeroing Neural Network for Computing Complex Time-Dependent Lyapunov Equation

    Get PDF
    Complex time-dependent Lyapunov equation (CTDLE), as an important means of stability analysis of control systems, has been extensively employed in mathematics and engineering application fields. Recursive neural networks (RNNs) have been reported as an effective method for solving CTDLE. In the previous work, zeroing neural networks (ZNNs) have been established to find the accurate solution of time-dependent Lyapunov equation (TDLE) in the noise-free conditions. However, noises are inevitable in the actual implementation process. In order to suppress the interference of various noises in practical applications, in this paper, a complex noise-resistant ZNN (CNRZNN) model is proposed and employed for the CTDLE solution. Additionally, the convergence and robustness of the CNRZNN model are analyzed and proved theoretically. For verification and comparison, three experiments and the existing noise-tolerant ZNN (NTZNN) model are introduced to investigate the effectiveness, convergence and robustness of the CNRZNN model. Compared with the NTZNN model, the CNRZNN model has more generality and stronger robustness. Specifically, the NTZNN model is a special form of the CNRZNN model, and the residual error of CNRZNN can converge rapidly and stably to order 10−5 when solving CTDLE under complex linear noises, which is much lower than order 10−1 of the NTZNN model. Analogously, under complex quadratic noises, the residual error of the CNRZNN model can converge to 2∥A∥F/ζ3 quickly and stably, while the residual error of the NTZNN model is divergent

    Neural Architecture Search by Estimation of Network Structure Distributions

    Get PDF
    The influence of deep learning is continuously expanding across different domains, and its new applications are ubiquitous. The question of neural network design thus increases in importance, as traditional empirical approaches are reaching their limits. Manual design of network architectures from scratch relies heavily on trial and error, while using existing pretrained models can introduce redundancies or vulnerabilities. Automated neural architecture design is able to overcome these problems, but the most successful algorithms operate on significantly constrained design spaces, assuming the target network to consist of identical repeating blocks. While such approach allows for faster search, it does so at the cost of expressivity. We instead propose an alternative probabilistic representation of a whole neural network structure under the assumption of independence between layer types. Our matrix of probabilities is equivalent to the population of models, but allows for discovery of structural irregularities, while being simple to interpret and analyze. We construct an architecture search algorithm, inspired by the estimation of distribution algorithms, to take advantage of this representation. The probability matrix is tuned towards generating high-performance models by repeatedly sampling the architectures and evaluating the corresponding networks, while gradually increasing the model depth. Our algorithm is shown to discover non-regular models which cannot be expressed via blocks, but are competitive both in accuracy and computational cost, while not utilizing complex dataflows or advanced training techniques, as well as remaining conceptually simple and highly extensible.Comment: 16 pages, 4 figures, 3 table

    A Survey on Graph Kernels

    Get PDF
    Graph kernels have become an established and widely-used technique for solving classification tasks on graphs. This survey gives a comprehensive overview of techniques for kernel-based graph classification developed in the past 15 years. We describe and categorize graph kernels based on properties inherent to their design, such as the nature of their extracted graph features, their method of computation and their applicability to problems in practice. In an extensive experimental evaluation, we study the classification accuracy of a large suite of graph kernels on established benchmarks as well as new datasets. We compare the performance of popular kernels with several baseline methods and study the effect of applying a Gaussian RBF kernel to the metric induced by a graph kernel. In doing so, we find that simple baselines become competitive after this transformation on some datasets. Moreover, we study the extent to which existing graph kernels agree in their predictions (and prediction errors) and obtain a data-driven categorization of kernels as result. Finally, based on our experimental results, we derive a practitioner's guide to kernel-based graph classification

    A LightGBM-Based EEG Analysis Method for Driver Mental States Classification

    Get PDF
    Fatigue driving can easily lead to road traffic accidents and bring great harm to individuals and families. Recently, electroencephalography- (EEG-) based physiological and brain activities for fatigue detection have been increasingly investigated. However, how to find an effective method or model to timely and efficiently detect the mental states of drivers still remains a challenge. In this paper, we combine common spatial pattern (CSP) and propose a light-weighted classifier, LightFD, which is based on gradient boosting framework for EEG mental states identification. ,e comparable results with traditional classifiers, such as support vector machine (SVM), convolutional neural network (CNN), gated recurrent unit (GRU), and large margin nearest neighbor (LMNN), show that the proposed model could achieve better classification performance, as well as the decision efficiency. Furthermore, we also test and validate that LightFD has better transfer learning performance in EEG classification of driver mental states. In summary, our proposed LightFD classifier has better performance in real-time EEG mental state prediction, and it is expected to have broad application prospects in practical brain-computer interaction (BCI)
    • …
    corecore