5,274 research outputs found

    Geodetic monitoring of complex shaped infrastructures using Ground-Based InSAR

    Get PDF
    In the context of climate change, alternatives to fossil energies need to be used as much as possible to produce electricity. Hydroelectric power generation through the utilisation of dams stands out as an exemplar of highly effective methodologies in this endeavour. Various monitoring sensors can be installed with different characteristics w.r.t. spatial resolution, temporal resolution and accuracy to assess their safe usage. Among the array of techniques available, it is noteworthy that ground-based synthetic aperture radar (GB-SAR) has not yet been widely adopted for this purpose. Despite its remarkable equilibrium between the aforementioned attributes, its sensitivity to atmospheric disruptions, specific acquisition geometry, and the requisite for phase unwrapping collectively contribute to constraining its usage. Several processing strategies are developed in this thesis to capitalise on all the opportunities of GB-SAR systems, such as continuous, flexible and autonomous observation combined with high resolutions and accuracy. The first challenge that needs to be solved is to accurately localise and estimate the azimuth of the GB-SAR to improve the geocoding of the image in the subsequent step. A ray tracing algorithm and tomographic techniques are used to recover these external parameters of the sensors. The introduction of corner reflectors for validation purposes confirms a significant error reduction. However, for the subsequent geocoding, challenges persist in scenarios involving vertical structures due to foreshortening and layover, which notably compromise the geocoding quality of the observed points. These issues arise when multiple points at varying elevations are encapsulated within a singular resolution cell, posing difficulties in pinpointing the precise location of the scattering point responsible for signal return. To surmount these hurdles, a Bayesian approach grounded in intensity models is formulated, offering a tool to enhance the accuracy of the geocoding process. The validation is assessed on a dam in the black forest in Germany, characterised by a very specific structure. The second part of this thesis is focused on the feasibility of using GB-SAR systems for long-term geodetic monitoring of large structures. A first assessment is made by testing large temporal baselines between acquisitions for epoch-wise monitoring. Due to large displacements, the phase unwrapping can not recover all the information. An improvement is made by adapting the geometry of the signal processing with the principal component analysis. The main case study consists of several campaigns from different stations at Enguri Dam in Georgia. The consistency of the estimated displacement map is assessed by comparing it to a numerical model calibrated on the plumblines data. It exhibits a strong agreement between the two results and comforts the usage of GB-SAR for epoch-wise monitoring, as it can measure several thousand points on the dam. It also exhibits the possibility of detecting local anomalies in the numerical model. Finally, the instrument has been installed for continuous monitoring for over two years at Enguri Dam. An adequate flowchart is developed to eliminate the drift happening with classical interferometric algorithms to achieve the accuracy required for geodetic monitoring. The analysis of the obtained time series confirms a very plausible result with classical parametric models of dam deformations. Moreover, the results of this processing strategy are also confronted with the numerical model and demonstrate a high consistency. The final comforting result is the comparison of the GB-SAR time series with the output from four GNSS stations installed on the dam crest. The developed algorithms and methods increase the capabilities of the GB-SAR for dam monitoring in different configurations. It can be a valuable and precious supplement to other classical sensors for long-term geodetic observation purposes as well as short-term monitoring in cases of particular dam operations

    On the Generation of Realistic and Robust Counterfactual Explanations for Algorithmic Recourse

    Get PDF
    This recent widespread deployment of machine learning algorithms presents many new challenges. Machine learning algorithms are usually opaque and can be particularly difficult to interpret. When humans are involved, algorithmic and automated decisions can negatively impact people’s lives. Therefore, end users would like to be insured against potential harm. One popular way to achieve this is to provide end users access to algorithmic recourse, which gives end users negatively affected by algorithmic decisions the opportunity to reverse unfavorable decisions, e.g., from a loan denial to a loan acceptance. In this thesis, we design recourse algorithms to meet various end user needs. First, we propose methods for the generation of realistic recourses. We use generative models to suggest recourses likely to occur under the data distribution. To this end, we shift the recourse action from the input space to the generative model’s latent space, allowing to generate counterfactuals that lie in regions with data support. Second, we observe that small changes applied to the recourses prescribed to end users likely invalidate the suggested recourse after being nosily implemented in practice. Motivated by this observation, we design methods for the generation of robust recourses and for assessing the robustness of recourse algorithms to data deletion requests. Third, the lack of a commonly used code-base for counterfactual explanation and algorithmic recourse algorithms and the vast array of evaluation measures in literature make it difficult to compare the per formance of different algorithms. To solve this problem, we provide an open source benchmarking library that streamlines the evaluation process and can be used for benchmarking, rapidly developing new methods, and setting up new experiments. In summary, our work contributes to a more reliable interaction of end users and machine learned models by covering fundamental aspects of the recourse process and suggests new solutions towards generating realistic and robust counterfactual explanations for algorithmic recourse

    A review of differentiable digital signal processing for music and speech synthesis

    Get PDF
    The term “differentiable digital signal processing” describes a family of techniques in which loss function gradients are backpropagated through digital signal processors, facilitating their integration into neural networks. This article surveys the literature on differentiable audio signal processing, focusing on its use in music and speech synthesis. We catalogue applications to tasks including music performance rendering, sound matching, and voice transformation, discussing the motivations for and implications of the use of this methodology. This is accompanied by an overview of digital signal processing operations that have been implemented differentiably, which is further supported by a web book containing practical advice on differentiable synthesiser programming (https://intro2ddsp.github.io/). Finally, we highlight open challenges, including optimisation pathologies, robustness to real-world conditions, and design trade-offs, and discuss directions for future research

    Self-supervised learning for transferable representations

    Get PDF
    Machine learning has undeniably achieved remarkable advances thanks to large labelled datasets and supervised learning. However, this progress is constrained by the labour-intensive annotation process. It is not feasible to generate extensive labelled datasets for every problem we aim to address. Consequently, there has been a notable shift in recent times toward approaches that solely leverage raw data. Among these, self-supervised learning has emerged as a particularly powerful approach, offering scalability to massive datasets and showcasing considerable potential for effective knowledge transfer. This thesis investigates self-supervised representation learning with a strong focus on computer vision applications. We provide a comprehensive survey of self-supervised methods across various modalities, introducing a taxonomy that categorises them into four distinct families while also highlighting practical considerations for real-world implementation. Our focus thenceforth is on the computer vision modality, where we perform a comprehensive benchmark evaluation of state-of-the-art self supervised models against many diverse downstream transfer tasks. Our findings reveal that self-supervised models often outperform supervised learning across a spectrum of tasks, albeit with correlations weakening as tasks transition beyond classification, particularly for datasets with distribution shifts. Digging deeper, we investigate the influence of data augmentation on the transferability of contrastive learners, uncovering a trade-off between spatial and appearance-based invariances that generalise to real-world transformations. This begins to explain the differing empirical performances achieved by self-supervised learners on different downstream tasks, and it showcases the advantages of specialised representations produced with tailored augmentation. Finally, we introduce a novel self-supervised pre-training algorithm for object detection, aligning pre-training with downstream architecture and objectives, leading to reduced localisation errors and improved label efficiency. In conclusion, this thesis contributes a comprehensive understanding of self-supervised representation learning and its role in enabling effective transfer across computer vision tasks

    Classical and quantum algorithms for scaling problems

    Get PDF
    This thesis is concerned with scaling problems, which have a plethora of connections to different areas of mathematics, physics and computer science. Although many structural aspects of these problems are understood by now, we only know how to solve them efficiently in special cases.We give new algorithms for non-commutative scaling problems with complexity guarantees that match the prior state of the art. To this end, we extend the well-known (self-concordance based) interior-point method (IPM) framework to Riemannian manifolds, motivated by its success in the commutative setting. Moreover, the IPM framework does not obviously suffer from the same obstructions to efficiency as previous methods. It also yields the first high-precision algorithms for other natural geometric problems in non-positive curvature.For the (commutative) problems of matrix scaling and balancing, we show that quantum algorithms can outperform the (already very efficient) state-of-the-art classical algorithms. Their time complexity can be sublinear in the input size; in certain parameter regimes they are also optimal, whereas in others we show no quantum speedup over the classical methods is possible. Along the way, we provide improvements over the long-standing state of the art for searching for all marked elements in a list, and computing the sum of a list of numbers.We identify a new application in the context of tensor networks for quantum many-body physics. We define a computable canonical form for uniform projected entangled pair states (as the solution to a scaling problem), circumventing previously known undecidability results. We also show, by characterizing the invariant polynomials, that the canonical form is determined by evaluating the tensor network contractions on networks of bounded size

    Resource-aware scheduling for 2D/3D multi-/many-core processor-memory systems

    Get PDF
    This dissertation addresses the complexities of 2D/3D multi-/many-core processor-memory systems, focusing on two key areas: enhancing timing predictability in real-time multi-core processors and optimizing performance within thermal constraints. The integration of an increasing number of transistors into compact chip designs, while boosting computational capacity, presents challenges in resource contention and thermal management. The first part of the thesis improves timing predictability. We enhance shared cache interference analysis for set-associative caches, advancing the calculation of Worst-Case Execution Time (WCET). This development enables accurate assessment of cache interference and the effectiveness of partitioned schedulers in real-world scenarios. We introduce TCPS, a novel task and cache-aware partitioned scheduler that optimizes cache partitioning based on task-specific WCET sensitivity, leading to improved schedulability and predictability. Our research explores various cache and scheduling configurations, providing insights into their performance trade-offs. The second part focuses on thermal management in 2D/3D many-core systems. Recognizing the limitations of Dynamic Voltage and Frequency Scaling (DVFS) in S-NUCA many-core processors, we propose synchronous thread migrations as a thermal management strategy. This approach culminates in the HotPotato scheduler, which balances performance and thermal safety. We also introduce 3D-TTP, a transient temperature-aware power budgeting strategy for 3D-stacked systems, reducing the need for Dynamic Thermal Management (DTM) activation. Finally, we present 3QUTM, a novel method for 3D-stacked systems that combines core DVFS and memory bank Low Power Modes with a learning algorithm, optimizing response times within thermal limits. This research contributes significantly to enhancing performance and thermal management in advanced processor-memory systems

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Machine learning applications in search algorithms for gravitational waves from compact binary mergers

    Get PDF
    Gravitational waves from compact binary mergers are now routinely observed by Earth-bound detectors. These observations enable exciting new science, as they have opened a new window to the Universe. However, extracting gravitational-wave signals from the noisy detector data is a challenging problem. The most sensitive search algorithms for compact binary mergers use matched filtering, an algorithm that compares the data with a set of expected template signals. As detectors are upgraded and more sophisticated signal models become available, the number of required templates will increase, which can make some sources computationally prohibitive to search for. The computational cost is of particular concern when low-latency alerts should be issued to maximize the time for electromagnetic follow-up observations. One potential solution to reduce computational requirements that has started to be explored in the last decade is machine learning. However, different proposed deep learning searches target varying parameter spaces and use metrics that are not always comparable to existing literature. Consequently, a clear picture of the capabilities of machine learning searches has been sorely missing. In this thesis, we closely examine the sensitivity of various deep learning gravitational-wave search algorithms and introduce new methods to detect signals from binary black hole and binary neutron star mergers at previously untested statistical confidence levels. By using the sensitive distance as our core metric, we allow for a direct comparison of our algorithms to state-of-the-art search pipelines. As part of this thesis, we organized a global mock data challenge to create a benchmark for machine learning search algorithms targeting compact binaries. This way, the tools developed in this thesis are made available to the greater community by publishing them as open source software. Our studies show that, depending on the parameter space, deep learning gravitational-wave search algorithms are already competitive with current production search pipelines. We also find that strategies developed for traditional searches can be effectively adapted to their machine learning counterparts. In regions where matched filtering becomes computationally expensive, available deep learning algorithms are also limited in their capability. We find reduced sensitivity to long duration signals compared to the excellent results for short-duration binary black hole signals

    Exploring the effects of robotic design on learning and neural control

    Full text link
    The ongoing deep learning revolution has allowed computers to outclass humans in various games and perceive features imperceptible to humans during classification tasks. Current machine learning techniques have clearly distinguished themselves in specialized tasks. However, we have yet to see robots capable of performing multiple tasks at an expert level. Most work in this field is focused on the development of more sophisticated learning algorithms for a robot's controller given a largely static and presupposed robotic design. By focusing on the development of robotic bodies, rather than neural controllers, I have discovered that robots can be designed such that they overcome many of the current pitfalls encountered by neural controllers in multitask settings. Through this discovery, I also present novel metrics to explicitly measure the learning ability of a robotic design and its resistance to common problems such as catastrophic interference. Traditionally, the physical robot design requires human engineers to plan every aspect of the system, which is expensive and often relies on human intuition. In contrast, within the field of evolutionary robotics, evolutionary algorithms are used to automatically create optimized designs, however, such designs are often still limited in their ability to perform in a multitask setting. The metrics created and presented here give a novel path to automated design that allow evolved robots to synergize with their controller to improve the computational efficiency of their learning while overcoming catastrophic interference. Overall, this dissertation intimates the ability to automatically design robots that are more general purpose than current robots and that can perform various tasks while requiring less computation.Comment: arXiv admin note: text overlap with arXiv:2008.0639

    Contactless excitation for electric machines: high temperature superconducting flux pumps

    Get PDF
    With the intensification of global warming and climate change, the pace of transformation to a neutral-emission society is accelerating. In various sectors, electrification has become the absolute tendency to promote such a movement, where electric machines play an important role in the current power generation system. It is widely convinced that electric machines with very high power density are essential for future applications, which, however, can be hardly achieved by conventional technologies. Owing to the maturation of the second generation (2G) high temperature superconducting (HTS) technologies, it has been recognized that superconducting machine could be a competitive candidate to realize the vision. One significant obstacle that hinders the implementation of superconducting machines is how to provide the required magnetic fields, or in other words, how to energise them appropriately. Conventional direct injection is not suitable for HTS machines, because the current leads would bridge ambident temperature to the cryogenic environment, which can impose considerable heat load on the system and increase the operational cost. Thus, an efficient energisation method is demanded by HTS machines. As an emerging technology that can accumulate substantial flux in a closed loop without any physical contact, HTS flux pumps have been proposed as a promising solution. Among the existing developed HTS flux pumps, rotary HTS flux pumps, or so-called HTS dynamo, can output non-zero time-averaged DC voltage and charge the rest of the circuit if a closed loop has been formed. This type of flux pump is often employed together with HTS coils, where the HTS coils can potentially work in the persistent current mode, and act like electromagnets with a considerable magnetic field, having a wide range of applications in industry. The output characteristics of rotary HTS flux pumps have been extensively explored through experiments and finite element method (FEM) simulations, yet the work on constructing statistical models as an alternative approach to capture key characteristics has not been studied. In this thesis, a 2D FEM program has been developed to model the operation of rotary HTS flux pumps and evaluate the effects of different factors on the output voltage through parameter sweeping and analysis of variance. Typical design considerations, including the operating frequency, air gap, HTS tape width, and remanent flux density have been investigated, in particular, the bilateral effect of HTS tape width has been discovered and explained by looking at the averaged integration of the electric field over the HTS tape. Based on the data obtained from various simulations, regression analysis has been conducted through a collection of machine learning methods. It has been demonstrated that the output voltage of a rotary HTS flux pump can be obtained promptly with satisfactory accuracy via Gaussian process regression, aiming to provide a novel approach for future research and a powerful design tool for industrial applications using rotary HTS flux pumps. To enhance the applicability of the proposed statistical models, an updated FEM program has been built to take more parameters into account. The newly added parameters, namely the rotor radius and the width of permanent magnet, together with formerly included ones, should have covered all the key design parameters for a rotary HTS flux pump. Based on data collected from the FEM model, a well-trained semi-deep neural network (DNN) model with a back-propagation algorithm has been put forward and validated. The proposed DNN model is capable of quantifying the output voltage of a rotary HTS flux pump instantly with an overall accuracy of 98% with respect to the simulated values with all design parameters explicitly specified. The model possesses a powerful ability to characterize the output behaviour of rotary HTS flux pumps by integrating all design parameters, and the output characteristics of rotary HTS flux pumps have been successfully demonstrated and visualized using this model. Compared to conventional time-consuming FEM-based numerical models, the proposed DNN model has the advantages of fast learning, accurate computation, as well as strong programmability. Therefore, the DNN model can greatly facilitate the design and optimization process for rotary HTS flux pumps. An executable application has been developed accordingly based on the DNN model, which is believed to provide a useful tool for learners and designers of rotary HTS flux pumps. A new variant inspired by the working principles of rotary HTS flux pumps has been proposed and termed as stationary wave HTS flux pumps. The superiority of this type is that it has a simple structure without any moving components, and it utilises a controllable current-driven electromagnet to provide the required magnetic field. It has been demonstrated that the origin of the output voltage is determined by the asymmetric distribution of the dynamic resistance in the HTS tape, for which the electromagnet must be placed at such a position that its central line is not aligned with that of the HTS tape. A numerical model has been built to simulate the operation of a stationary wave HTS flux pump, based on which the output characteristics and dynamic resistance against various parameters have been investigated. Besides, accurate and reliable statistical models have been proposed to predict the open circuit voltage and effective dynamic resistance by adapting the previously developed machine learning techniques. The work presented in this PhD thesis can bring more insight into HTS flux pumps as an emerging promising contactless energisation technology, and the proposed statistical models can be particularly useful for the design and optimization of such devices
    corecore