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Abstract—Nonlinear optimization problems with dynamical
parameters are widely arising in many practical scientific and
engineering applications, and various computational models are
presented for solving them under the hypothesis of short-time
invariance. To eliminate the large lagging error in the solution
of the inherently dynamic nonlinear optimization problem, the
only way is to estimate the future unknown information by using
the present and previous data during the solving process, which
is termed the future dynamic nonlinear optimization (FDNO)
problem. In this paper, to suppress noises and improve the
accuracy in solving FDNO problems, a novel noise-tolerant neural
(NTN) algorithm based on zeroing neural dynamics is proposed
and investigated. In addition, for reducing algorithm complexi-
ty, the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method is employed to eliminate the intensively computational
burden for matrix inversion, termed NTN-BFGS algorithm.
Moreover, theoretical analyses are conducted, which show that
the proposed algorithms are able to globally converge to a tiny
error bound with or without the pollution of noises. Finally,
numerical experiments are conducted to validate the superiority
of the proposed NTN and NTN-BFGS algorithms for the online
solution of FDNO problems.

Index Terms—Noise-tolerant neural algorithm, neural dynam-
ics, quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS),
future dynamic nonlinear optimization (FDNO), robotics.

I. INTRODUCTION

TO date, due to the important role that the nonlinear

optimization problem plays in various areas [1]–[11],

many numerical methods and neural dynamics have been

developed and extended to solve it, among which, gradient
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related methods and Newton-Raphson iteration (NRI) and their

modifications are commonly used [2]. For example, a class of

nonlinear conjugate gradient methods aiming at solving opti-

mization problems are summarized in [12], which are of global

convergence properties. More recently, a three-term conjugate

gradient algorithm providing descent searching directions is

investigated in [13]. It is worth pointing out that a large number

of practical problems are dynamic in nature, of which the

parameters involved are varying with time, thereby leading to

a time-dependent theoretical solution. When solved by these

traditional algorithms, a dynamic optimization problem is

assumed to be time-invariant during the computational interval

and thus the generated solution is directly employed to the

problem at the next time instant. This is mainly due to the

fact that, without leveraging the velocity compensation for the

dynamic parameters, a traditional model is not able to track

the time-dependent theoretical solutions in a predictive manner

[14]. Therefore, for a time-dependent problem aided with a

traditional model, large lagging error is unavoidable.

Neural networks and the related neural dynamics methods

have shown superior properties in parallel distribution and

high-speed computing with extensive applications in neu-

rophysiology, chemical equilibrium and robotics [2], [15]–

[26]. For instance, Liu and Tong present an adaptive neural

network based on optimal control for a class of nonlinear

discrete-time systems in [17], which achieves optimal control

performance with system stability guaranteed. Continuous-

time zeroing neural dynamics is reported to be able to track

the time-dependent solution of dynamic problems in an error-

free manner [20]. A discrete-time numerical algorithm based

on zeroing neural dynamics is presented in [25], [27], which

is able to solve time-varying nonlinear optimization (termed

future dynamic nonlinear optimization (FDNO) problem) ac-

curately without perturbed by noises. However, in spite of

the fact that noises and perturbations are widely existing in

the online solution process, existing methods for solving the

FDNO problem in the presence of noises are considerably

rare. Therefore, it is of crucial importance to find a new

computational method to handle noises and perturbations with

high accuracy achieved for the FDNO problem.

Considering that the continuous-time model can not be

applied to digital hardware directly, computational method

depicted in discrete form is desirable. To this end, based on

zeroing neural dynamics, a discrete-time noise-tolerant neural

(NTN) algorithm is constructed in this paper to solve the

FDNO problem in the presence of noises and perturbations.
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Given that the Hessian matrix inversion is involved in the NT-

N algorithm, the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

[28], [29] is leveraged to approximate the inverse of Hessian

matrix, which is especially helpful for the situation that direct

computing of Hessian matrix inverse is expensive or difficult to

conduct. The content of this paper is organized as follows. In

Section II, the FDNO problem is formulated and the NTN and

NTN-BFGS algorithms are proposed to handle such a future

problem. Moreover, for comparison, the existing solutions

are presented as well. Then, Section III provides theoretical

analyses to illustrate the global convergence of the proposed

NTN and NTN-BFGS algorithms with or without noises.

Moreover, numerical experiments and applications to the robot

manipulator are presented in Section IV to validate the supe-

riority of the proposed NTN and NTN-BFGS algorithms, as

compared with other existing models. Finally, conclusions are

drawn in Section VI. In the end of this introductory section,

main contributions of this paper are summarized as follows.

1) This is the first work for solving nonlinear optimizations

with dynamic parameters and noise suppressed, of which

an intrinsic requirement is that the solution should be

calculated before its corresponding mathematical formu-

lation appeared. In this sense, this is quite different

from the conventionally investigated static optimization,

and thus termed future dynamic nonlinear optimization

(FDNO) problem.

2) Two neural algorithms, termed NTN and NTN-BFGS, are

proposed to solve the FDNO problems in the presence of

noises based on neural dynamics approach, of which the

latter one eliminates the intensively computational burden

for matrix inversion.

3) Control techniques are leveraged to conduct the theoret-

ical analyses, which reveal that the residual errors of the

two proposed neural algorithms are able to converge to a

tiny value near zero globally with or without noises.

II. PROBLEM FORMULATION AND SOLUTIONS

This section presents the framework and formulations of the

FDNO problem with two newly proposed neural algorithms.

For comparison, existing solutions are provided as well.

A. Problem Formulation

It is required in the digital hardware implementation that

a problem should be depicted in discrete form. Therefore, it

is desirable to formulate a problem in discrete manner. Let

ts and tf denote the start and the final time instant of the

solving process, respectively. An FDNO problem, for which

the calculation should be conducted during the time internal

[tk, tk+1) ∈ [ts, tf], is expressed as

min
y(tk+1)∈Rm

Φ
(
y(tk+1), tk+1

)
∈ R, (1)

where t = kδ with updating index k = 0, 1, 2, · · · , which

is abbreviated as tk; δ > 0 represents the time sampling

gap; Φ
(
y(tk+1), tk+1

)
is discretized from the smoothly time-

varying signal Φ
(
y(t), t

)
, for which the following assumptions

are made: Φ(·, ·) is a time-varying nonlinear function and

twice differentiable and lower bounded.

This work is dedicated to finding the future solution

y(tk+1) ∈ R
m during the computational interval [tk, tk+1)

that makes function (1) achieve its minimum value at time

instant tk+1. Note that, during the present computational

interval [tk, tk+1), Φ(y(tk+1), tk+1) and its derivatives are not

available. In this sense, only the present and/or previous data

(e.g., y(tk)) rather than the unknown data (e.g., y(tk+1)) can

be leveraged to compute y(tk+1).

B. Continuous-Time NTN Model

The continuous-time FDNO problem is defined as

min
y(t)∈Rm

Φ
(
y(t), t

)
∈ R, t ∈ [ts, tf], (2)

of which the gradient is

q(y(t), t) =
∂Φ(y(t), t)

∂y(t)
∈ R

m. (3)

The 2-norm of q(y(t), t) of an algorithm is a measure of the

geometric distance between the current solution y(t) and the

zero of q(y(t), t). An intuitive approach to obtain the desired

path y∗(t) on which q(y(t), t) = 0 is to exploit the derivative

method. Therefore, to obtain the online solution of FDNO (2),

the derivative of q(y(t), t) with regard to time t should be 0
for each time instant t ∈ [ts, tf], that is,

dq(y(t), t)

dt
=
∂q(y(t), t)

∂t
+

∂q(y(t), t)

∂y(t)

dy(t)

dt

=q̇t(y(t), t) +H(y(t), t)
dy(t)

dt
, (4)

where H(y(t), t) ∈ R
m×m represents Hessian matrix. In

detail, q̇t(y(t), t) is the derivative of q(y(t), t) with respect

to time t and can be defined as

q̇t(y(t), t) =
∂q(y(t), t)

∂t
=

∂2Φ(y(t), t)

∂y(t)∂t
∈ R

m.

For performance evaluations in this paper, how well each

model solves the FDNO problem is observed through the

following error-function

ξ(t) = [ξ1(t), ξ2(t), · · · , ξm(t)]T = q(y(t), t) ∈ R
m, (5)

where ξh(t) is the hth element of ξ(t), ∀h ∈ {1, 2, · · · ,m}.

Based on the design formula constructed in [30], [31]:

ξ̇(t) = −γξ(t) − λ
∫ t

0 ξ(α)dα, a continuous-time NTN (CT-

NTN) algorithm perturbed by noises is designed as

H(y(t), t)ẏ(t) =− γq(t)− q̇t(y(t), t)−

λ

∫ t

0

q(y(α), α)dα+ ǫ(t), (6)

where λ > 0 and γ > 0 with an invertible Hessian matrix;

ǫ(t) represents additive noises in the system, which can be

classified as constant noises, linear noises and random noises.
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(a)

Fig. 1. Schematic circuit diagram realizing NTN algorithm (13) for solving FDNO problem (1), where (13) can be rewritten as following two equations:
y(tk+1) = y(tk)−H−1(y(tk), tk)

(

(c1+1)q(y(tk), tk)−q(y(tk), tk−1)+c2ξ(tk)
)

and ξ(tk) = ξ(tk−1)+q(y(tk), tk), with B = H−1(y(tk), tk)
and its σςth entry denoted by bσς . The subscripts “m” and “n” represent the dimension of the input (y(tk), tk) and the gradient q(y(t), t), respectively.

Then, the CT-NTN algorithm can be formulated as

ẏ(t) =−H−1(y(t), t)
(
γq(y(t), t) + q̇t(y(t), t)+

λ

∫ t

0

q(y(α), α)dα+ ǫ(t)
)

=−H−1(y(t), t)
(
γ

(
∂Φ(y(t), t)

∂y(t)

)
+

∂2Φ(y(t), t)

∂y(t)∂t
+

λ

∫ t

0

∂Φ(y(α), α)

∂y(α)
dα+ ǫ(t)

)
. (7)

It has been proven in [25] that the FDNO (2) achieves its

minimal when the solution to equation (7) is obtained with a

position definite H(y(t), t).

C. Existing Discrete-Time Solutions

Existing discrete-time solutions are presented here for com-

parison. The discrete-time zeroing dynamics (DTZD) model

derived from [30], [31] is formulated as

y(tk+1) =y(tk)−H−1(y(tk), tk)
(
(c+ 1)q(y(tk), tk)−

q(y(tk), tk−1)
)
, (8)

where step-size c = δγ > 0. The three-step DTZD model

obtained from [30]–[32] is

y(tk+1) =
3

2
y(tk)− y(tk−1) +

1

2
y(tk−2)−

H−1(y(tk), tk)
(
(c+ 1)q(y(tk), tk)−

q(y(tk), tk−1)
)
, (9)

and the four-step DTZD model [30]–[32] is

y(tk+1) =
−1

8
y(tk) +

3

4
y(tk−1) +

5

8
y(tk−2)−

1

4
y(tk−3)

−
9

4
H−1(y(tk), tk)

(
(c+ 1)q(y(tk), tk)−

q(y(tk), tk−1)
)
. (10)

In addition, the five-step DTZD model [33] is also presented

here:

y(tk+1) =
6

13
y(tk) +

2

13
y(tk−1) +

4

13
y(tk−2)+

3

13
y(tk−3)−

2

13
y(tk−4)−

24

13
H−1(y(tk), tk)

(
(c+ 1)q(y(tk), tk)−

q(y(tk), tk−1)
)
. (11)
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Besides, the NRI model in [34] is provided as follows:

y(tk+1) = y(tk)−H−1(y(tk), tk)q(y(tk), tk). (12)

D. NTN and NTN-BFGS Neural Algorithms

Noise-interference is ever present during the solving pro-

cess, e.g., the observational error, the truncation error, the

quantization error and the sampling error. Therefore, a high-

speed algorithm with noise-tolerant competence for solving

the FDNO problem is in demand. In this section, discrete-

time NTN and NTN-BFGS algorithms are derived to tolerate

noises during the solution.

In order to simplify the structure of discrete-time NTN

algorithm, the numerical differentiation formula with the least

items is chosen. Thus, substituting Euler forward difference

[27] to CT-NTN algorithm (7), we can obtain discrete-time

NTN algorithm:

y(tk+1) = y(tk)−H−1(y(tk), tk)
(
(c1 + 1)q(y(tk), tk)−

q(y(tk), tk−1) + c2

k∑

j=0

q(y(tj), tj)
)
, (13)

where step-size c1 = δγ > 0 and c2 = δλ > 0; noise

term ǫ(tk) is eliminated to depict the NTN algorithm structure

only. Sum term of q(y(tj), tj), which is discretized from

integral term of (7), plays a significant role in offsetting the

impact brought by abrupt disturbance for (13). The circuit

diagram showing general components of NTN algorithm (13)

is illustrated in Fig. 1.

To solve y(tk+1) through NTN algorithm (13), the cal-

culation of Hessian matrix inversion is unavoidable, which

could be quite costly if Hessian matrix is complicated. Be-

sides, it is not likely to make the calculation offline because

H−1(y(tk), tk) is required to be computed online. In order

to overcome this drawback, the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm [35] is utilized in this section.

The highlight of BFGS algorithm [35] is its capability

to explicitly escape the usage of inverted Hessian matrix,

reducing the computation complexity. In BFGS, exact Hessian

matrix is replaced by an approximation consisting of least-

change updates generated from gradient at every iteration. It is

known in Section II-A that Φ(·, ·) is a convex function whose

Hessian matrix is positive-definite. Thus we can conclude

that the Hessian approximation matrix obtained by BFGS

algorithm [35] converges to the Hessian matrix inversion.

The following NTN-BFGS algorithm is given for FDNO

(1) in case of computing the Hessian matrix inversion being

expensive.

y(tk+1) =y(tk)− D̃k(y(tk), tk)
(
(c1 + 1)q(y(tk), tk)−

q(y(tk), tk−1) + c2

k∑

j=0

q(y(tj), tj)
)
, (14)

where D̃k(y(tk), tk) is the approximation of H−1(y(tk), tk)
supported by BFGS iterative formula:

D̃k+1 = D̃k +∆D̃k, (15)

where

∆D̃k =
(sT

kzk + zT
kD̃kzk)(sks

T
k)

(sT
kzk)

2
−

(D̃kzks
T
k + skz

T
kD̃k)

(sT
kzk)

;

(16)

y(tk+1) = y(tk)+sk; D̃k(y(tk+1)−y(tk)) = zk. Computing

(16) has no temporary matrices. Besides, scalar sT
kzk, zT

kD̃kzk
and symmetric D̃k accelerate the computation. The initial

iterative value D̃0 should be positive-definite to achieve rapid

convergence, wherein D̃0 = I is a typical choice.

Remark 1: The BFGS iterative formula (15) uses the hy-

pothesis of short-time invariance, which pays the price to avoid

expensive computation on the inversion of H(y(tk), tk). Even

so, the major scheme of NTN-BFGS algorithm (14) still breaks

the hypothesis of short-time invariance, which is supported by

the following theoretical analyses.

For one thing, NTN-BFGS algorithm (14) exploits the time

difference [i.e., term q(y(tk), tk)−q(y(tk), tk−1)] during the

real-time solution process and therefore adapts to the change

of coefficients in a predictive manner, making itself suitable for

solving FDNO (1), whereas many conventional algorithms do

not. For another, NTN-BFGS algorithm (14) exploits the error-

feedback information [i.e., term c1q(y(tk), tk)] as the input to

handle the occurrence of computational errors. Additionally,

sum term of q(y(tj), tj) plays a significant role in offsetting

the impact brought by abrupt disturbance.

III. THEORETICAL ANALYSES AND RESULTS

NTN algorithm (13) polluted by noises is written as

y(tk+1) = y(tk)−H−1(y(tk), tk)
(
(c1 + 1)q(y(tk), tk)−

q(y(tk), tk−1) + c2

k∑

j=0

q(y(tj), tj) + ǫ(tk)
)
. (17)

Theorem 1: There is an equivalence between NTN algorithm

(13) and the following equation

ξ(tk+1) + (c1 − 1)ξ(tk) + c2

k∑

j=0

ξ(tj) +O(δ2) = 0, (18)

where O(δ2) denotes the vector of truncation errors with each

entry being O(δ2).

Proof: (13) can be rewritten as

H(y(tk), tk)(y(tk+1)− y(tk)) = −(c1 + 1)q(y(tk), tk)+

q(y(tk), tk−1)− c2

k∑

j=0

q(y(tj), tj). (19)

Then, we can obtain

− c1q(y(tk), tk)− c2

k∑

j=0

q(y(tj), tj)

= H(y(tk), tk)
(
y(tk+1)− y(tk)

)
+
(
q(y(tk), tk)−

q(y(tk), tk−1)
)
. (20)

The Euler forward difference [27] is utilized for

y(tk+1)− y(tk) = δẏ(tk) +O(δ2),
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and

q(y(tk), tk)− q(y(tk−1), tk−1) = δq̇(y(tk), tk) +O(δ2).

Substituting the above two formulas into (20) can directly

generate

H(y(tk), tk)(δẏ(tk) +O(δ2)) + δq̇(y(tk), tk) +O(δ2) =

− c1q(y(tk), tk)− c2

k∑

j=0

q(y(tj), tj). (21)

The discrete version of equation (4) is

ξ̇(tk) = q̇t(y(tk), tk) +H(y(tk), tk)ẏ(tk). (22)

Then, substituting (22) into (21), a simple form of (21) with

respect to error function is shown as

δξ̇(tk) +O(δ2) = −c1ξ(tk)− c2

k∑

j=0

ξ(tj). (23)

In addition, operating Euler forward difference [27] on

ξ(y(tk), tk) leads to

δ
ξ(tk+1)− ξ(tk)

δ
+O(δ2) = −c1ξ(tk)− c2

k∑

j=0

ξ(tj), (24)

which is simplified as

ξ(tk+1) + (c1 − 1)ξ(tk) + c2

k∑

j=0

ξ(tj) +O(δ2) = 0. (25)

The proof is completed. �

Remark 2: To prove the linear property of formula (18), we

rewrite (18) as a function ξ(tk+1) = f(ξ(tk)).
Setting a as a random coefficient, it is evident that

f(aξ(tk)) = aξ(tk+1) = af(ξ(tk)), which proves the ho-

mogeneity of formula (18). Similarly, by substituting ξ(tk) +
ξ(tk+1) into f(·), we can get f

(
ξ(tk)+ξ(tk+1)

)
= f(ξ(tk))+

f(ξ(tk+1)), which proves the additivity of formula (18). In

summary, the linear property of formula (18) is proved from

aspects of homogeneity and additivity.

Regarding the noise suppressing property of NTN algorithm

(13), we offer the following theoretical analyses.

Theorem 2: Consider FDNO (1). The residual error

limk→∞ ‖ξ(tk)‖2 of NTN algorithm (13) for solving future

dynamic nonlinear optimization problem is O(δ2), wherein

‖·‖2 denotes 2-norm.

Proof: Using ξi(tk) to denote the ith subsystem of ξ(tk)
generates

ξi(tk) + (c1 − 1)ξi(tk−1) + c2

k−1∑

j=0

ξi(tj) +O(δ2) = 0. (26)

Subtracting (26) from the ith subsystem of (18), we can get:

ξi(tk+1) = (2 − c1 − c2)ξ
i(tk) + (c1 − 1)ξi(tk−1) +O(δ2).

(27)

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

c1: 1.105

c2: 1.789

c1: 0.153

c2: 3.694

c1: 1.854

c2: 0.291

c1

c2

(a)

Fig. 2. Parameter region of convergence (PROC) on NTN algorithm (13).
PROC upper border lies in function c2 = −2c1 + 4 which is approximated
by least square method. c1 and c2 in the picture correspond to step-size c1, c2
respectively.

Letting Υi(tk+1) = [ξi(tk+1), ξ
i(tk)]

T, we can transform

equation (27) into the pattern of state-space matrix:

Υi(tk+1) = UΥi(tk) +O(δ2), (28)

where

U = [(2− c1 − c2), (c1 − 1); 1, 0] . (29)

Taking (28) into Minkowski’s inequality [36] for the 2-

norm, we have

‖Υi(tk+1)‖2 ≤ ‖UΥi(tk)‖2 + ‖O(δ2)‖2

= ‖UΥi(tk)‖2 +O(δ2)

≤ ‖U‖2‖Υ
i(tk)‖2 +O(δ2)

≤ ‖U‖2‖UΥi(tk−1)‖2 + ‖U‖2O(δ2) +O(δ2)

= ‖U‖2‖UΥi(tk−1)‖2 +O(δ2)

...

≤ ‖U‖k2‖Υ
i(t1)‖2 +O(δ2). (30)

Matrix U (29) has two different eigenvalues which are

µ1 = 1 −
(
c1 + c2 +

√
(c1 + c2)2 − 4c2

)
/2 and µ2 =

1 −
(
c1 + c2 −

√
(c1 + c2)2 − 4c2

)
/2. The region shown in

Fig. 2 describes the value of c1, c2 that make the real part

of µ1, µ2 ranging from −1 to 1. Thereby, we can obtain

limk→∞ ‖U‖k2 = 0 which further assists that

lim
k→∞

‖Υi(tk+1)‖2 ≤ lim
k→∞

‖U‖k2‖Υ
i(t1)‖2+O(δ2) = O(δ2).

(31)

As long as c1, c2 which we choose for (13) belonging to that

parameter region of convergence (PROC) depicted in Fig. 2,

we have limk→∞ ‖ξ(tk)‖2 of NTN algorithm (13) convergent

to O(δ2). The proof is completed. �

Theorem 3: Consider FDNO (1). Polluted by arbitrary linear

noise ǫ(tk) = ηδk + Ω, the residual error limk→∞ ‖ξ(tk)‖2
of NTN algorithm (13) for solving future dynamic nonlinear

optimization problem is ‖ηδ/c2‖2+O(δ2); for constant noise

ǫ(tk) = Ω degraded from linear noises with η = 0, the residual

error of NTN algorithm (13) is O(δ2), which has nothing to

do with the value of constant noise Ω.
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Proof: The factors that determine the residual error of noise-

polluted NTN algorithm (17) can be classified as O(δ2) and

injecting constant noise ǫ(tk). The linear property of (18)

which is proved in Remark 2 allows us to independently

investigate the two factors.

Firstly, we simply change the form of (18) as

ξ(tk+1) =
(
(1− c1)ξ(tk)− c2

k∑

j=0

ξ(tj)
)
+O(δ2). (32)

It has been proven in Theorem 2 that the residual error of (32)

is O(δ2).
Next, consider how constant noises influence the convergent

performance of

ξ(tk+1) + (c1 − 1)ξ(tk) + c2

k∑

j=0

ξ(tj) + ǫ(tk) = 0. (33)

In a more general sense, constant noise ǫ(tk) = Ω is a

subcase of linear time-variant noise ǫ(tk) = ηδk + Ω, k =
0, 1, 2, · · · . Thus, the subsystem of (33) can be rewritten as

ξi(tk+1) =
(
(1− c1)ξ(tk)− c2

k∑

j=0

ξ(tj)
)
+ ηikδ+Ωi. (34)

The Z-transformation of (34) is

ξi(z) =
−Ωi(z − 1)2 − ηiδz + z(z − 1)2ξi(0)

z(z − 1)2 + (c1 − 1)(z − 1)2 + c2z(z − 1)
, (35)

where ξi(0) is the initiation of ξi(z) and its poles are

z1 = 1 −
(
c1 + c2 +

√
(c1 + c2)2 − 4c2

)
/2 and z2 = 1 −(

c1 + c2 −
√
(c1 + c2)2 − 4c2

)
/2. It is the same as the range

of c1, c2 in Fig. 2. Thus, utilizing Z-transformation final

theorem of (35), the limit formula of ξi(tk) is

lim
k→∞

ξi(tk) = lim
z→1

(z − 1)ξi(z)

= lim
z→1

−Ωi(z − 1)2 − ηiδz + z(z − 1)2ξi(0)

z(z − 1) + (c1 − 1)(z − 1) + c2z
=

−ηiδ

c2
.

(36)

Summing up, taking linear noise ǫ(tk) = ηδk + Ω and

the residual error of (32) into account, the residual error

limk→∞ ‖ξ(tk)‖2 of NTN algorithm (17) is ‖ηδ/c2‖2+O(δ2);
Setting η = 0, we can know that when it comes to constant

noise ǫ(tk) = Ω, it is for certain that the residual error

limk→∞ ‖ξ(tk)‖2 of NTN algorithm (17) is O(δ2), which has

nothing to do with the value of constant noises. The proof is

completed. �

For further investigation, the ensuring theorem reveals how

NTN algorithm (13) handles bounded random noises.

Theorem 4: Consider FDNO (1). For bounded random noise

ǫ(t) = ρ, NTN algorithm (13) keeps a bounded residual error

limk→∞ ‖ξ(tk)‖2, which is 2m sup1≤ι≤k, 1≤i≤m |ρiι|/(1 −
‖U‖2) +O(δ2).

Proof: In accordance with superposition principle exploited in

Theorem 3, the difference equation is generated:

ξi(tk+1) =(2 − c1 − c2)ξ
i(tk) + (c1 − 1)ξi(tk−1)+

ρi(tk)− ρi(tk−1). (37)

Let ̟i(tk) = [ρi(tk) − ρi(tk−1), 0]
T, the aforesaid (37)

in terms of Υi(tk) is Υi(tk+1) = UΥi(tk) + ̟i(tk) and

U = [(2 − c1 − c2), (c1 − 1); 1, 0]. Then, it is of foundation

to obtain

‖Υi(tk+1)‖2

≤ ‖UΥi(tk)‖2 + ‖̟i(tk)‖2

≤ ‖U‖2‖Υ
i(tk)‖2 + ‖̟i(tk)‖2

≤ ‖U‖2‖UΥi(tk−1)‖2 + ‖U‖2‖̟
i(tk−1)‖2 + ‖̟i(tk)‖2

...

≤ ‖U‖k2‖Υ
i(t1)‖2 + ‖U‖k−1

2 ‖̟i(t1)‖2 + . . .+ ‖̟i(tk)‖2

< ‖U‖k2‖Υ
i(t1)‖2 + max

1≤ι≤k
‖̟i

ι‖2/(1− ‖U‖2)

< ‖U‖k2‖Υ
i(t1)‖2 + 2 max

1≤ι≤k
|ρiι|/(1− ‖U‖2). (38)

Moreover, with limk→∞ ‖U‖k2 = 0, we can get

lim
k→∞

‖Υi
k+1‖2<2 max

1≤ι≤k
|ρiι|/(1− ‖U‖2).

Finally, we come to the conclusion that

lim
k→∞

‖ξ(tk)‖2<2m sup
1≤ι≤k, 1≤i≤m

|ρiι|/(1− ‖U‖2) +O(δ2).

The proof is completed. �

BFGS algorithm has been found dramatically helpful for

easing the expensive computational burden for NTN algorithm

(13) while the Hessian matrix inversion is diffcult to get.

Several theorems regarding to NTN-BFGS algorithm (14)

are provided as follows. In addition, noises denote by ǫ(t)
polluting NTN-BFGS algorithm (14)

y(tk+1) = y(tk)− D̃k(y(tk), tk)
(
(c1 + 1)q(y(tk), tk)

− q(y(tk), tk−1) + c2

k∑

j=0

q(y(tj), tj) + ǫ(tk)
)
. (39)

Theorem 5: Consider FDNO (1). Given that ‖D̃k −H−1
k ‖2 =

O(δ2), the theoretical solution generated by NTN-BFGS al-

gorithm (14) converges to that solutioned by NTN algorithm

(13) with the residual error being O(δ2).

Proof: To begin this proof, ỹ(tk) and y(tk) are used to denote

the solutions of NTN-BFGS algorithm (14) and NTN algorith-

m (13), respectively. We further substitute ‖D̃k − H−1
k ‖2 =
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TABLE I
THE NOISE LEVEL THAT NTN ALGORITHM (13) CAN HANDLE WITH THE

DIFFERENT PRECISION χ OF THE RESIDUAL ERROR limk→∞ ‖ξ(tk)‖2
FOR SOLVING FDNO (41) WITH δ = 0.0001 S, c1 = 0.05, c2 = 0.6

χ < 1.0× 10−3 1.0× 10−2 1.0× 10−1

Linear noises: η < 3.0 3× 101 3× 102

random noises: ρ+ − ρ- < 2.0× 10−3 2.0× 10−2 2.0× 10−1

TABLE II
THE NOISE LEVEL THAT NTN-BFGS ALGORITHM (14) CAN HANDLE

WITH THE DIFFERENT PRECISION χ OF THE RESIDUAL ERROR

limk→∞ ‖ξ(tk)‖2 FOR SOLVING FDNO (41) WITH δ = 0.0001 S,
c1 = 0.05, c2 = 0.6

χ < 1.0× 10−3 1.0× 10−2 1.0× 10−1

Linear noises: η < 3.0 3× 101 3× 102

random noises: ρ+ − ρ- < 1.0× 10−3 1.0× 10−2 1.0× 10−1

O(δ2) into (14) and then obtain

ỹ(tk+1) = y(tk)− (H−1
k +O(δ2))

(
(c1 + 1)q(y(tk), tk)−

q(y(tk), tk−1) + c2

k∑

j=0

q(y(tj), tj)
)

= y(tk)− (H−1
k

(
(c1 + 1)q(y(tk), tk)−

q(y(tk), tk−1) + c2

k∑

j=0

q(y(tj), tj)
)
+

O(δ2)

= y(tk+1) +O(δ2). (40)

It is evident that ỹ(tk+1) = y(tk+1) + O(δ2). Therefore,

we can get that the residual error relationship between NTN-

BFGS algorithm (14) and NTN algorithm (13): ‖ỹ(tk) −
y(tk)‖2 = O(δ2). The proof is completed. �

Theorem 5 verifies the feasibility of using NTN-BFGS

algorithm (14) to replace inverse calculation from the

perspective of theoretical derivation. In addition, the

following theorem is provided to reveal the effectiveness of

the NTN-BFGS algorithm (14).

Theorem 6: Consider FDNO (1).

1) When it comes to NTN-BFGS algorithm (14) for solv-

ing future dynamic nonlinear optimization problem, the

residual error limk→∞ ‖ξ(tk)‖2 is O(δ2).
2) With respect to noise-polluted NTN-BFGS algorithm

(39) for solving future dynamic nonlinear optimization

problem, the residual error limk→∞ ‖ξ(tk)‖2 is O(δ2)
which has nothing to do with the value of constant noise

ǫ(t).
3) For a bounded random noise ǫ(t) = ρ, the resid-

ual error of NTN-BFGS algorithm (39) is bound-

ed, with its upper bound limk→∞ ‖ξ(tk)‖2 being

2m sup1≤ι≤k, 1≤i≤m |ρiι|/(1− ‖U‖2) +O(δ2).

Proof: It can be generalized from proofs in Theorem 2 though

Theorem 4, and thus omitted. The proof is completed. �

Remark 3: To illustrate how noise level influences the

performance of NTN algorithm (13), upper bounds of every

kind of noises are given with the precision of the residual error

being χ according to Theorem 2-5.

For constant noise ǫ(tk) = Ω, there is no upper bound

for the residual error of NTN algorithm (14) invariably be-

ing O(δ2). For linear noise ǫ(tk) = ηδk + Ω, there only

exists an upper bound of the rate of change η, which is

c2χ/δ + O(δ2). For random noises, the upper bound lies in

sup1≤ι≤k, 1≤i≤m |ρiι| ≤ (1 − ‖U‖2)χ+O(δ2)/2m.

In addition, based on Theorem 6, the above conclusion can

be applied to NTN-BFGS algorithm (14).

Via the theorem proposed in [25], the residual error of

traditional methods which are intrinsically constructed to solve

static optimization problems for future dynamic nonlinear

optimization is O(δ), within computing interval [0, δ]. Besides,

a step-by-step methodology to carry out noise-polluted NTN

algorithm (17) and NTN-BFGS algorithm (39) is presented in

Algorithm 1.

IV. NUMERICAL EXPERIMENTS

In this section, the effectiveness of the proposed NTN

algorithm (13) and NTN-BFGS algorithm (14) with rapid

calculating ability for FDNO (1) is substantiated through

numerical experiments in the presence of noises. Meanwhile,

several representative existing models, which are DTZD model

(8), three-step DTZD model (9), four-step DTZD model (10),

five-step DTZD model (11) and NRI (12) model, are also used

to solve the same FDNO problem in the presence of noises

for comparison.

A. Example 1

In this subsection, one FDNO benchmark problem originat-

ed from [25] is addressed by above mentioned discrete models:

min
y(tk+1)∈R4

Φ(y(tk), tk)

= (y1(tk) + tk)
2 + (y2(tk) + tk)

2 + (y3(tk)−

exp(−tk))
2 + 0.1(tk − 1)y3(tk)y4(tk)− (y1(tk)+

ln(0.1tk + 1))(y2(tk) + sin(tk)) + (y1(tk)+

sin(tk))y3(tk) + (y4(tk) + exp(−tk))
2, (41)

where [kδ, (k + 1)δ) ∈ [0, 10] denotes the kth time

computing interval, ∀k ∈ {0, 1, 2, · · · }, and y(tk) =
[y1(tk), y2(tk), y3(tk), y4(tk)]. In order to evaluate differ-

ent performances generated by models just mentioned, we

choose the L2 norm of residual error which is ‖ξ(tk)‖2 =
‖∂Φ(y(t), t)/∂y(t)‖2 as the monitoring variable.

To begin with, Fig. 3 shows comparative performances of

NRI model (12) and NTN algorithm (13) in the presence

of random noises. In addition, the starting states y(t0) used

in computing process is randomly generated. Specifically

speaking, as demonstrated in Fig. 3(a), NTN algorithm (13)

successfully obtains the minimum value of Φ(y(tk), tk) at

each time instant, while NRI model (12) fails to cope with the

interference caused by random noises. Furthermore, Fig. 3(b)

shows that the residual error of NTN algorithm (13) converges

to a very small value which is basically 103 times less than

that of NRI model (12). In addition, the comparison of each
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Fig. 3. Comparisons of NRI model (12) and NTN algorithm (13) for solving FDNO (41) with δ = 0.01 s and random noise ρ ∈ [99.9, 100.1]. (a)
Comparison of Φ(y(tk), tk). (b) ‖ξ(tk)‖2 of NRI model (12) and NTN algorithm (13). (c) Comparison of y(tk). (d) Comparison of minimal eigenvalue of
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Fig. 4. Convergence performance of the proposed NTN algorithm (13), NTN-BFGS algorithm (14), DTZD model (8), three-step DTZD model (9), five-step
DTZD model (11) and NRI model (12) and for solving FDNO (41) with constant noise ǫ(t) = 100. (a) δ = 0.0001 s. (b) δ = 0.001 s. (c) δ = 0.01 s.

0 2 4 6 8 10

10
4

0

500

1000

1500

2000

2500

3000

3500

4000

8 8.5 9

10
4

0

0.05

3.79913845565

10
4

1519.57538232

1519.57538234

‖ξ(tk)‖2

k

NRI

DTZD-5
DTZD-3
DTZD-1
NTN

(a)

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

3000

3500

4000

6663.102602

2664.44

6663.00001353

2664.4000054105

8000 8500 9000
0.1

0.15

0.2

‖ξ(tk)‖2

k

NRI

DTZD-5
DTZD-3
DTZD-1
NTN

(b)

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

4000

705.0002
2812

2812.001

800 850 900
0

1

2
3

705.000099

2812.000395

‖ξ(tk)‖2

k

NRI

DTZD-5
DTZD-3
DTZD-1
NTN

(c)

Fig. 5. Convergence performance of the proposed NTN algorithm (13), DTZD model (8), three-step DTZD model (9), five-step DTZD model (11) and NRI
model (12) and for solving FDNO (41) with linear noise ǫ(t) = 100(t − 1). (a) δ = 0.0001 s. (b) δ = 0.001 s. (c) δ = 0.01 s.

element trajectory of y(tk) is plotted in Fig. 3(c). As shown

in Fig. 3(d), Hessian matrix minimal eigenvalues of FDNO

benchmark problem (41) obtained from two models coincide

with each other, which are both larger than zero during the

computational time. That is the prerequisites for utilizing NRI

model (12) and NTN algorithm (13) on FDNO benchmark

problem (41).

Next, no matter what kind of noises they are, we can use

combinations of constant noises, linear noises and random

noises to define it mathematically. Thereby, it is allowed to

explore effects which noises exert on different models in a

categorical way. Experimental results of FDNO benchmark

problem (41) among all the aforementioned models in the

presence of different kinds of additive noises are plotted Fig.

4 through Fig. 7.

1) Constant Noises: As shown in Fig. 4, DTZD model (8),

three-step DTZD model (9), five-step DTZD model (11)

and NRI model (12) basically fail to handle constant

noises. The residual error generated by NRI model (12)

is smaller than these three DTZD models. Fig. 4(a)

through (c) indicate that constant noises have negligible

influence on existing models with residual error being

about 2× 102 or 4× 102. In contrast, since associating

the error-integration term with the proposed novel NT-

N algorithm (13) and the NTN-BFGS algorithm (14),

residual error values of those two are expedited from

order 10−7 to 10−12, as time sampling interval being

0.01 s, 0.001 s and 0.0001 s.

2) Linear Time-Varying Noises: As observed from Fig. 5,

when linear time-varying noise ǫ(t) = 100(t − 1), the
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Fig. 6. Convergence performance of the proposed NTN algorithm (13), DTZD model (8), three-step DTZD model (9), five-step DTZD model (11) and NRI
model (12) and for solving FDNO (41) with random noise ǫ(t) ∈ [99.9, 100.1]. (a) δ = 0.0001 s. (b) δ = 0.001 s. (c) δ = 0.01 s.
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Fig. 7. Convergence performance of the proposed NTN algorithm (13), DTZD model (8), three-step DTZD model (9), five-step DTZD model (11) and NRI
model (12) and for solving FDNO (41) without noises. (a) δ = 0.0001 s. (b) δ = 0.001 s. (c) δ = 0.01 s.

TABLE III
COMPARISON BETWEEN METHODS FOR SOLVING FUTURE DYNAMIC NONLINEAR OPTIMIZATION PROBLEM (41)

Method
Residual error in terms of different kinds of noises Property in noisy environment

Essentially designed to

Constant noises Linear noises Random noises Zero noises Convergent Noise-tolerant solve time-variant problems

NTN (13) 2.9× 10−13 1.0× 10−2 2.5× 10−1 7.6× 10−13 Yes Yes Yes

NTN-BFGS (14) 7.2× 10−13 3.3× 10−2 1.8× 10−1 1.4× 10−12 Yes Yes Yes

one-step DTZD (8) 8.0× 102 infinite 4.0× 102 1.6× 10−8 No† No Yes

three-step DTZD (9) 8.0× 102 infinite 4.0× 102 2.7× 10−8 No† No Yes

four-step DTZD (10) 8.0× 102 infinite 4.0× 102 7.7× 10−8 No† No Yes

five-step DTZD (11) 8.0× 102 infinite 4.0× 102 2.7× 10−8 No† No Yes

NRI model (12) 4.0× 102 infinite 2.0× 102 4.5× 10−4 No† No No

Parameters involved are set as follows: δ = 0.0001 s, c2 = 0.6, constant noise ǫ(t) = 200, linear noise ǫ(t) = 100(t − 1), random noise ǫ(t) ∈ [99.9, 100.1];

For c1, four-step DTZD (10) is 0.05; the other aforementioned algorithms is 0.5.

No† means that influences exerted by noises is non-negligible

residual error of NTN algorithm (13) holds at the order

of 100, 10−1 and 10−2, respectively. The above result

of convergence rate verifies that NTN algorithm (13)

follows O(δ) convergent speed proved in Theorem 3.

DTZD model (8), three-step DTZD model (9), five-

step DTZD model (11) and NRI model (12), of which

residual errors linearly change with time as rather large

slope, are not capable of solving FDNO problems with

linear noises.

3) Random Noises: From Fig. 6, it is evident that the

maximum steady residual error synthesized by NTN

algorithm (13) is restricted to 0.2, which is 1×102 times

less than mean value of input random noises. In contrast,

other existing models have pretty high residual errors.

4) No Noises: Observing contrasting principle, Fig. 7 dis-

plays results of benchmark problem (41) as to no noises.

All the discrete-time models perform accurately under

the condition that there is no perturbation. Besides,

NTN algorithm (13) synthesizes the smallest residual

error compared with other discrete-time existing models.

From the perspective of convergence rate, NRI model

(12) has the best performance. Meanwhile, subgraphs

of Fig. 7 indicate that NTN algorithm (13) converges a

little bit slower than DTZD model (8) and NRI model
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Fig. 8. End-effector movement of a two-link robot following a four-leaf-clover trajectory synthesized by NTN algorithm (13) with δ = 0.001 s. (a) Motion
trajectories without perturbation. (b) Profiles of joint angle. (c) Profiles of position error in Cartesian coordinate system.
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Fig. 9. Position errors in Cartesian coordinate system of a two-link robot tracking an ideal four-leaf-clover path obtained from NTN algorithm (13) with
constant noise ǫ(t) = 10. (a) δ = 0.0001 s. (b) δ = 0.001 s. (c) δ = 0.01 s.
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Fig. 10. Position errors in Cartesian coordinate system of a two-link robot tracking an ideal four-leaf-clover path obtained from NTN algorithm (13) with
linearly time-dependent noise ǫ(t) = 10(t − 1). (a) δ = 0.0001 s. (b) δ = 0.001 s. (c) δ = 0.01 s.

(12), and the approximating integration term inevitably

causes extra updates.

Note that, the noise level that NTN algorithm (13) and

NTN-BFGS algorithm (14) can handle for solving FDNO

(41) is shown in TABLE I and TABLE II, respectively.

Besides, there is no upper bound of constant noises according

to Remark 3. Table III is further given, which compares

models of NTN algorithm (13), NTN-BFGS algorithm (14)

and existing discrete models for solving FDNO problem (41)

in the presence of noises. Summing up, we show how the

theoretical analyses of NTN algorithm (13)and NTN-BFGS

algorithm (14) are substantiated by experimental results.

Overall, FDNO benchmark problem (41) verifies that the

proposed NTN algorithm (13) and NTN-BFGS algorithm

(14) possesses extraordinary ability in suppressing different

kinds of noises, even their combinations, without any prior

information of noises.

V. APPLICATION TO MOTION GENERATION

Robotic systems have evolved rapidly in engineering fields

[37]–[40]. In this section, we apply NTN algorithm (13),

NTN-BFGS algorithm (14) and NRI model (12) to solve the

inverse kinematics of a two-link planar robot. Afterwards, let

a(t) ∈ R
2 denotes the vector of practical end effector posi-

tion in Cartesian coordinate system, meanwhile ad(t) is the

corresponding desired one; θ(t) = [θ1(t), θ2(t)]
T symbolizes
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Fig. 11. Position errors in Cartesian coordinate system of a two-link robot tracking an ideal four-leaf-clover path obtained from NTN algorithm (13) with
random noise ǫ(t) ∈ [9, 11]. (a) δ = 0.0001 s. (b) δ = 0.001 s. (c) δ = 0.01 s.

Algorithm 1 Solution to FDNO problem (1) generated by

noise-polluted NTN algorithm (17) and NTN-BFGS algorithm

(39)

1. initial set m,maxstep, c1, c2, noise = ǫ(tk),Φ(·, ·),
calculate random y(t0) and q(y(t0), t0)

2.

for (k = 1; k ≤ maxstep; k ++) do

error = 0;

calculate q(y(tk), tk) = ∂Φ(y(tk), tk)/∂y(tk);

calculate
k∑

j=0

q(y(tj), tj) = q(y(t0), t0) + · · · +

q(y(tk), tk) ;

calculate H(y(tk), tk) = ∂q(y(tk), tk)/∂y(tk);
if NTN algorithm then

calculate y(tk+1) = y(tk) − H−1(y(tk), tk)
(
(c1 +

1)q(y(tk), tk)−q(y(tk), tk−1)+ c2
k∑

j=0

q(y(tj), tj)+

noise
)
;

end if

if NTN-BFGS algorithm then

calculate y(tk+1) using D̃k+1 = D̃k + ∆D̃k,

and y(tk+1) = y(tk) − D̃k(y(tk), tk)
(
(c1 +

1)q(y(tk), tk)− q(y(tk), tk−1) + c2
k∑

j=0

q(y(tj), tj +

noise)
)
;

end if

calculate error equals to the Euclidean norm of

q(y(tk), tk);
ERROR(k) = ‖q(y(tk), tk)‖2;

end for

3. plot the residual error

the joint-angle vector; f(·) represents the forward-kinematics

mapping relation between the end effector position and the

joint-angle [39], which means f(θ(t)) = a(t). Considering

that T indicates the end point of solving process, every com-

putational time interval can be expressed by [kδ, (k + 1)δ) ∈
[0, T ], where k = 0, 1, 2, · · · and δ is sampling gap. Thereby,

the cost function of the aforementioned robot motion could be

defined as

Φ(θk, tk) = fT(θk)f(θk)− 2aT
d (tk)f(θk). (42)

Evidently, the solution of a(t) tracking ad(t) can be classified

as the following FDNO problem:

min
θk+1∈R2

Φ
(
θk+1, tk+1

)
. (43)

For simple illustration, each link length is set as 1 m. To

be specific, our aim is to use the two-link planar robot

manipulator with NTN algorithm (13) and NRI model (12)

embed to draw a four-leaf-clover.

The ensuring figures show comparative experimental results

conducted under various experimental environments which

differs in kinds of additive noises. For comparison, Fig. 8 plots

profiles of the whole tracking motion trajectories, joint angle

and the position error without the presence of noises. Through

Fig. 9 to Fig. 11, it is shown that the given motion is completed

well by NTN algorithm (13) where the position error is slight,

despite additive noises. Specifically, adding constant noise

ǫ(t) = 10 to joint velocities when being solved by NTN

algorithm (13), the position error of the manipulator’s end-

effector in Fig. 9(a) is less than 10−9 m. Thus, the proposed

NTN algorithm (13) is feasible to industrial applications.

VI. CONCLUSIONS

In this paper, NTN algorithm (13) has been addressed

for future dynamic nonlinear optimization problems in the

presence of a class of noises affecting the system. Integration

control from control-technique has been defined to minimize

the cost function rapidly. The use of quasi-Newton BFGS

method has been proposed through NTN-BFGS algorithm

(14), which can not only deal with noises for the FDNO

problem, but eliminate the expensive calculation of inversion

matrices. Results obtained by numerical experiments are re-

ported in comparison with DTZD model (8) , three-step DTZD

model (9), five-step DTZD model (11) and NRI model (12),

thereby highlighting the superiority of the proposed algorithms

in robustness, efficacy and computational complexity when

solving the FDNO problem with noises. Besides, a possible

future research direction is the proposing of an algorithm

independent of the short-time invariance hypothesis with the

explicit matrix-inversion operation eliminated for solving FD-

NO problems.
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