4,524 research outputs found

    CONTROLLERS AND METHODS FOR DIFFERENT ELECTRICAL MEASUREMENTS IN SYNCHRONIZATION OF RENEWABLE ENERGY SOURCES FOR GRID CONNECTIVITY: A REVIEW

    Get PDF
    In this paper, different controllers used in synchronization of renewable energy sources are studied. A study regarding the use of artificial intelligence in synchronization of grid connected power converters, efficient method for phase angle detection, frequency variation detection and good performance during voltage depression etc  carried out here. Importance of hybrid controllers over conventional controllers is also presented. Possibility of  Z source T type inverter as an alternate solution to DC-DC converter is explored based on existing works

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Modeling and Controlling a Hybrid Multi-Agent based Microgrid in Presence of Different Physical and Cyber Components

    Get PDF
    This dissertation starts with modeling of two different and important parts of the distribution power systems, i.e. distribution line and photovoltaic (PV) systems. Firstly, it studies different approximation methods and develops a new approach for simplification of Carson\u27s equations to model distribution lines for unbalanced power flow and short circuit analysis. The results of applying the proposed method on a three-phase unbalanced distribution system are compared with different existing methods as well as actual impedance values obtained from numerical integration method. Then steady state modeling and optimal placing of multiple PV system are investigated in order to reduce the total loss in the system. The results show the effectiveness of the proposed method in minimizing the total loss in a distribution power system.;The dissertation starts the discussion about microgrid modeling and control by implementing a novel frequency control approach in a microgrid. This study has been carried out step by step by modeling different part of the power system and proposing different algorithms. Firstly, the application of Renewable Energy Sources (RES) accompanied with Energy Storage Systems (ESS) in a hybrid system is studied in the presence of Distributed Generation (DG) resources in Load Frequency Control (LFC) problem of microgrid power system with significant penetration of wind speed disturbances. The next step is to investigate the effect of PHEVs in modelling and controlling the microgid. Therefore, system with different penetrations of PHEVs and different stochastic behaviors of PHEVs is modeled. Different kinds of control approaches, including PI control as conventional method and proposed optimal LQR and dynamic programming methods, have been utilized and the results have been compared with each other. Then, Multi Agent System (MAS) is utilized as a control solution which contributes the cyber aspects of microgrid system. The modeled microgrid along with dynamic models of different components is implemented in a centralized multi-agent based structure. The robustness of the proposed controller has been tested against different frequency changes including cyber attack implications with different timing and severity. New attack detection through learning method is also proposed and tested. The results show improvement in frequency response of the microgrid system using the proposed control method and defense strategy against cyber attacks.;Finally, a new multi-agent based control method along with an advanced secondary voltage and frequency control using Particle Swarm Optimization (PSO) and Adaptive Dynamic Programming (ADP) is proposed and tested in the modeled microgrid considering nonlinear heterogeneous dynamic models of DGs. The results are shown and compared with conventional control approaches and different multi-agent structures. It is observed that the results are improved by using the new multi-agent structure and secondary control method.;In summary, contributions of this dissertation center in three main topics. Firstly, new accurate methods for modeling the distribution line impedance and PV system is developed. Then advanced control and defense strategy method for frequency regulation against cyber intrusions and load changes in a microgrid is proposed. Finally, a new hierarchical multi-agent based control algorithm is designed for secondary voltage and frequency control of the microgrid. (Abstract shortened by ProQuest.)

    Optimal Control of Power Quality in Microgrids Using Particle Swarm Optimisation

    Get PDF
    Driven by environmental protection, economic factors, conservation of energy resources, and technical challenges, the microgrid has emerged as an innovative small-scale power generation network. Microgrids consist of a cluster of Distributed Generation units that encompass a portion of an electric power distribution system and may rely on different energy sources. Functionally, the microgrid is required to provide adequate levels and quality of power to meet load demands. The issue of power quality is significant as it directly affects the characteristics of the microgrid’s operation. This problem can be defined as an occurrence of short to long periods of inadequate or unstable power outputs by the microgrid. In a stand-alone operation mode, the system voltage and frequency must be established by the microgrid, otherwise the system will collapse due to the variety in the microgrid component characteristics. The harmonic distortion of the output power waveforms is also a serious problem that often occurs because of the high speed operation of the converter switches. The long transient period is a critical issue that is usually caused by changing the operation mode or the load demand. Power sharing among the Distributed Generation units is also an important matter for sharing the load appropriately, particularly given that some renewable energy resources are not available continuously. In a utility connected microgrid, the reliable power quality mainly depends on the regulation of both active and reactive power, because the microgrid’s behaviour is mostly dominated by the bulk power system. Therefore, an optimal power control strategy is proposed in this thesis to improve the quality of the power supply in a microgrid scenario. This controller comprises an inner current control loop and an outer power control loop based on a synchronous reference frame and conventional PI regulators. The power control loop can operate in two modes: voltage-frequency power control mode and active-reactive power control mode. Particle Swarm Optimisation is an intelligent searching algorithm that is applied here for real-time self-tuning of the power control parameters. The voltage-frequency power controller is proposed for an inverter-based Distributed Generation unit in an autonomous operation mode. The results show satisfactory system voltage and frequency, high dynamic response, and an acceptable harmonic distortion level. The active-reactive power controller is adopted for an inverter-based Distributed Generation unit in a utility operation mode. This controller provides excellent regulation of the active and reactive power, in particular when load power has to be shared equally between the microgrid and utility. The voltage-frequency and active-reactive power control modes are used for a microgrid configured from two DG units in an autonomous operation mode. The proposed control strategy maintains the system voltage and frequency within acceptable limits, and injects sustained output power from one DG unit during a load change. The reliability of the system’s operation is investigated through developing a small-signal dynamic model for the microgrid. The results prove that the system was stable for the given operating point and under the proposed power controller. Consequently, this research reveals that the microgrid can successfully operate as a controllable power generation unit to support the utility, thus reducing the dependency on the bulk power system and increasing the market penetration of the micro-sources

    Investigation of domestic level EV chargers in the Distribution Network: An Assessment and mitigation solution

    Get PDF
    This research focuses on the electrification of the transport sector. Such electrification could potentially pose challenges to the distribution system operator (DSO) in terms of reliability, power quality and cost-effective implementation. This thesis contributes to both, an Electrical Vehicle (EV) load demand profiling and advanced use of reactive power compensation (D-STATCOM) to facilitate flexible and secure network operation. The main aim of this research is to investigate the planning and operation of low voltage distribution networks (LVDN) with increasing electrical vehicles (EVs) proliferation and the effects of higher demand charging systems. This work is based on two different independent strands of research. Firstly, the thesis illustrates how the flexibility and composition of aggregated EVs demand can be obtained with very limited information available. Once the composition of demand is available, future energy scenarios are analysed in respect to the impact of higher EVs charging rates on single phase connections at LV distribution network level. A novel planning model based on energy scenario simulations suitable for the utilization of existing assets is developed. The proposed framework can provide probabilistic risk assessment of power quality (PQ) variations that may arise due to the proliferation of significant numbers of EVs chargers. Monte Carlo (MC) based simulation is applied in this regard. This probabilistic approach is used to estimate the likely impact of EVs chargers against the extreme-case scenarios. Secondly, in relation to increased EVs penetration, dynamic reactive power reserve management through network voltage control is considered. In this regard, a generic distribution static synchronous compensator (D-STATCOM) model is adapted to achieve network voltage stability. The main emphasis is on a generic D-STATCOM modelling technique, where each individual EV charging is considered through a probability density function that is inclusive of dynamic D-STATCOM support. It demonstrates how optimal techniques can consider the demand flexibility at each bus to meet the requirement of network operator while maintaining the relevant steady state and/or dynamic performance indicators (voltage level) of the network. The results show that reactive power compensation through D-STATCOM, in the context of EVs integration, can provide continuous voltage support and thereby facilitate 90% penetration of network customers with EV connections at a normal EV charging rate (3.68 kW). The results are improved by using optimal power flow. The results suggest, if fast charging (up to 11 kW) is employed, up to 50% of network EV customers can be accommodated by utilising the optimal planning approach. During the case study, it is observed that the transformer loading is increased significantly in the presence of D-STATCOM. The transformer loading reaches approximately up to 300%, in one of the contingencies at 11 kW EV charging, so transformer upgrading is still required. Three-phase connected DSTATCOM is normally used by the DSO to control power quality issues in the network. Although, to maintain voltage level at each individual phase with three-phase connected device is not possible. So, single-phase connected D-STATCOM is used to control the voltage at each individual phase. Single-phase connected D-STATCOM is able maintain the voltage level at each individual phase at 1 p.u. This research will be of interest to the DSO, as it will provide an insight to the issues associated with higher penetration of EV chargers, present in the realization of a sustainable transport electrification agenda

    Machine Learning based Early Fault Diagnosis of Induction Motor for Electric Vehicle Application

    Get PDF
    Electrified vehicular industry is growing at a rapid pace with a global increase in production of electric vehicles (EVs) along with several new automotive cars companies coming to compete with the big car industries. The technology of EV has evolved rapidly in the last decade. But still the looming fear of low driving range, inability to charge rapidly like filling up gasoline for a conventional gas car, and lack of enough EV charging stations are just a few of the concerns. With the onset of self-driving cars, and its popularity in integrating them into electric vehicles leads to increase in safety both for the passengers inside the vehicle as well as the people outside. Since electric vehicles have not been widely used over an extended period of time to evaluate the failure rate of the powertrain of the EV, a general but definite understanding of motor failures can be developed from the usage of motors in industrial application. Since traction motors are more power dense as compared to industrial motors, the possibilities of a small failure aggravating to catastrophic issue is high. Understanding the challenges faced in EV due to stator fault in motor, with major focus on induction motor stator winding fault, this dissertation presents the following: 1. Different Motor Failures, Causes and Diagnostic Methods Used, With More Importance to Artificial Intelligence Based Motor Fault Diagnosis. 2. Understanding of Incipient Stator Winding Fault of IM and Feature Selection for Fault Diagnosis 3. Model Based Temperature Feature Prediction under Incipient Fault Condition 4. Design of Harmonics Analysis Block for Flux Feature Prediction 5. Flux Feature based On-line Harmonic Compensation for Fault-tolerant Control 6. Intelligent Flux Feature Predictive Control for Fault-Tolerant Control 7. Introduction to Machine Learning and its Application for Flux Reference Prediction 8. Dual Memorization and Generalization Machine Learning based Stator Fault Diagnosi
    • …
    corecore