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Abstract
In this paper the application of model predictive control (MPC) to a two-mode model of the dynamics of the combustion process is considered. It is shown that the MPC by itself does not stabilize the combustor and the control gains obtained by applying the MPC algorithms need to be optimized further to ensure that the phase difference between the two modes is also stable. The results of applying the algorithm are compared with the open loop model amplitude responses and to the closed loop responses obtained by the application of a direct adaptive control algorithm. It is shown that the MPC coupled with the cost parameter optimisation proposed in the paper, always guarantees the closed loop stability, a feature that may not always be possible with an adaptive implementations. 
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1. Introduction
Combustion may be described as a process comprising of reacting, exothermic flows which exhibit several instabilities at the interfaces between the liquid fuel and air as well as thermo-diffusive instabilities at the fronts of the propagating flames. Whether they are local and intrinsic due to the growth of a laminar flame after ignition, or convective instabilities such as puffing or cycle-to-cycle instabilities that cover the whole of a cavity or are system oriented thermo-acoustic instabilities involving the whole of the combustor, the instabilities result in severe pressure fluctuations which in turn can cause extensive structural vibrations. Thus the pressure fluctuation modes that arise within a combustion chamber need to be effectively controlled in order to not only make the process adequately stable but also to reduce the vibrations and the accompanying high frequency acoustic noise. Moreover the acoustic noise always seems to have an internal feedback effect, in that it influences the combustion or the process of heat release, and consequently causes the instability to be self-exciting. Thus the overall process must necessarily be stabilized.  A typical schematic diagram of a combustion chamber is illustrated in fig. 1.
There have been several studies where a number of control schemes have been proposed. The phenomenon had been modelled by the so called Rijke tube which is a vertically placed, cylindrical tube, open at both ends with a heat source placed at height of about 20% of the length of the tube. For certain ranges of position of the heat source within the tube, the Rijke tube emits a strong tone at its resonant frequency. This phenomenon was discovered by Rijke around 1859, and therefore the tube is called the Rijke tube [1]. The open loop dynamic model and characteristics of the response of a typical Rijke tube are discussed by Vepa [2]. The Rijke tube was used as a model of a combustor, for the passive and active control of combustion, in several early studies by Feldmann [3], Bisio and Rubatto [4], Raun, Beckstead, Finlinson, and Brooks [5], Heckl [6], Hantschk and Vortmeyer [7] and Matveev [8]. Bernhard et al. [9] investigates an open loop control of combustion instabilities. Annaswamy and Ghoniem [10] and Dowling and Morgan [11] have presented reviews of the state of the art of the technology of active control of combustion instabilities till the end of the last millennium. Apart from open loop control, four different classes of controllers have been developed for the feedback control of combustion including, model based optimal controllers, observer /estimator based controllers, phase-shift controllers and adaptive feedback controllers including self-tuning controllers involving some form of system identification, have been developed over the last decade. Hong, Ray and Yang [12] developed an optimal control law using a linear parameter varying model. The control law was evaluated by simulation experiments. Annaswamy et al [13] developed model based optimal controllers which were subsequently validated experimentally, on a combustor rig. Jain, Ananthkrishnan and Culick [14] employed feedback linearization and synthesised an adaptive, Lyapunov based controller using a nonlinear observer/estimator for state estimation. Guyot, Rößler, Bothien and Paschereit [15] were able apply a form of phase shift control, to an atmospheric premix combustor test rig equipped with a swirl-stabilized burner. Actuation was achieved by modulating either the pilot or the premix fuel mass flow controller that was modulated with a standard on-off valve and a high frequency proportional valve. Krstic et al. [16] present a self-tuning PI controller to stabilize a Culick type model of nonlinear acoustic oscillations. Yi and Santavicca [17] used flame transfer function to model and control of combustion instability in their study. Rosentsvit et al. [18] improved combustion stability in lean premixed gas turbine combustors by injecting free radicals into the combustion zone. Hervas et al. [19] studied on an observer-based feedback control of combustion instability in a Rijke-type thermoacoustic system in their study. Another study is conducted to determine the possibility of using the method of external periodic perturbation to control the combustion instability by Akhmadullin et al. [20].
In this paper we introduce the application of MPC to a two-mode model of the dynamics of the combustion process. It is shown that the MPC by itself does not stabilize the combustor and the control gains obtained by applying the MPC algorithms need to optimized further to ensure that the phase difference between the two modes is also stable. The results of applying the algorithm are compared with the open loop modal amplitude responses and to the closed loop responses obtained by the application of a direct adaptive control algorithm. It is shown that the MPC coupled with the cost parameter optimisation proposed in the paper, always guarantees the closed loop stability, a feature that may not always be possible with adaptive implementations.
2. Design and analysis
2.1. Two Mode Model of Combustion Chamber Oscillation Dynamics
It had been shown by Krstic et al. [16] and Culick [21] that the dynamics of the pressure oscillations within a combustion chamber can be modelled by using the continuity, momentum conservation and energy conservations of a two phase mixture. The energy equation is expressed in terms of the local pressure. The equations mass, momentum and energy conservation may be expressed as, 
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The terms,
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 is the local density of the two phase mixture, 
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 is the local velocity of the gas phase, 
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 is the local pressure, 
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 is mean ratio of specific heats, 
and 
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 account, respectively, for the exchange of mass, momentum, and energy (including the heat of combustion) between the fuel and the gas.
Writing the pressure as the sum of steady component and a time dependent component, Culick [22] showed that the unsteady time dependent component of the pressure satisfies an inhomogeneous wave equation, where the driving term includes the control inputs in terms of the secondary fuel injection and the unsteady behaviour of the boundary in response to imposed pressure fluctuations [16]. Thus,
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where 
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is the pressure fluctuation, and

[image: image14.wmf]a

 is the speed of sound in the mixture.
  The quantities 
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 indicate all influences of acoustic motions, mean flow, and combustion response, under conditions without external forcing. The terms 
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 show the effects of the control inputs.

    The distributed control of the secondary fuel is approximated by a mounting of M point actuators and 
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is explained by [16, 23]:
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Here, 
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 defines the spatial distribution of the actuator output,
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 defines the time delay relative to the moment of injection for the kth point actuator,
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  defines the Dirac delta function, and
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  is a scaled version of the mass flow rate of the secondary fuel
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   can be redefined as the following [16]:
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In this equation,
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 represents the constant volume specific heat of the fuel mixture,
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 represents the heat of combustion of the fuel, and
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represents the gas constant of the mixture.
Due to the small perturbation treatment of source terms 
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to the acoustic field, an approximation can be done within second-order accuracy [16];
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According to equation below, the variable 
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y

 is the normal mode function that is hold true the following equations:
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The problem is reduced to the set of nonlinear ordinary differential equations using the method of Galerkin and related equations (4), (7) and (8) respectively. The equation is of the form,
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      (10)
From the equation above, the control input of nth mode can be described as follows:
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Where,

 
[image: image37.wmf]òòò

=

dV

E

n

n

2

2

y

                                                                                                                       (12)
The uncontrolled case (
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) was considered by Paparizos and Culick [24] and their co-workers while closed loop controlled case was developed by Fung and Yang [25]. Fung, Yang and Sinha [23] also considered the distributed control case. Fung and Yang [25] studied on a PI controller for the secondary fuel injection 
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 and it gives PD control law as follows:
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Here, 
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is defined as the measurement, computation and actuation in application of control.
If the PD control law is substituted in equation (11):
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The terms,
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According to Fung and Yang’s PI controller [25], considering the equations (13 and 14), if the constant gains 
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    As a result, two mode model can be presented:
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    Where,
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is the phase difference between the modes and it is calculated by
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 are the closed-loop growth coefficients are defined by the following expressions
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The terms,
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 is the spatial distribution of the control input,

M is the number of point actuators,
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 is the frequency of each mode.
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 is the specific heat ratio.

              Generally, the first two modes are used in modelling part. The reason of that is the first two mode’s high amplitude values considering other mode’s amplitudes.

2.2. Control of Combustion Chamber Oscillation Dynamics
Krstic, Krupadanam, and Jacobson [16] considered the design of an adaptive proportional-integral controller based on the model of Fung and Yang [25]. However given the fact that combustion dynamics is never strictly positive real one can experience instabilities in the adaptation process, in general. In some of our implementations convergence was often slow and prone to 'bursting', particularly during the initial phases. We also observed, very often, a slow unstable drift which in turn could result in significant levels of control spillover as the system is a distributed system. Higher order combustion instabilities are then facilitated and this is not desirable.  Moreover very rarely did the parameters being adaptively estimated converged to the 'true' values, which in fact are generally unknown. This is not to say that the method presented by Kristic, Krupadanam, and Jacobson [16] is prone to the above mentioned problems. Rather it was our implementation of their general method that resulted in some of the above mentioned problems. Yet our implementation of the specific application considered by Kristic, Krupadanam, and Jacobson [16] gave results in complete agreement with theirs. The real problem is the fact that the closed loop model developed by Fung and Yang [25] and "linearised" about a stable equilibrium point, is not really a linear model; it is affine. This is because the control gains rather than the control input drive the dynamics of the phase angle between the two modes. It is actually very important that the phase angle is also steady when the loop is closed as it can be shown that the first two modes and the phase angle between them tend to excite higher order modes in the flow which in reality is an infinite degree of freedom system. The growth and decay of the wave is determined by the phase difference which represents the net in-phase and out-of-phase wave motion. Kristic, Krupadanam, and Jacobson [16] do not seem to have paid much attention to this issue. However considering the general features of adaptive control, we began seeking alternate approaches. Our approach was to design the controller based on model predictive control (MPC) coupled with parameter optimisation. Parameter optimisation was done using particle swarm optimisation. Yet in the first instance will consider the MPC and then consider the parameter optimisation aspect. 
The closed dynamic two-mode model is developed by Fung and Yang [25] and stated by Kristic, Krupadanam, and Jacobson [16] is defined by the dynamic equations for the two modal amplitudes 
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where 
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 are parameters defined in Kristic, Krupadanam, and Jacobson [16]. Yang, Kim and Culick [26], Culllick [27], Hong, Yang and Ray [28], Hong, Ray and Yang [12] and Jain, Ananthkrishnan and Culick [14] have also shown how the set of nonlinear ordinary differential equations may be reduced to equations (23), (24) and (25). Hence this will not be repeated here. If we linearize the above system of equations about a stable equilibrium point, the resulting equations would be affine. If we let,
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and let 
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with 
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The system has been defined as two-input two-output system. The system equations can now be linearized by Jacobean linearization using the first order Taylor's series expansion of the right hand side of equations (28)-(30). Finally, the system expressed as a linear system for the perturbation states, defined about an equilibrium point in the form,
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(31)
The above equations (31) are not in a standard form because of the presence of the phase excitation term, which should be minimised in practice.

2.3. Model Predictive Control
To fully understand the nature of the control laws arising from MPC we shall revisit the derivation of the control law presented by Wijewardana, Shaheed, Vepa [29]. To briefly describe the synthesis of linear optimal control based on the MPC approach, consider a linear discrete time system in the form,
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Our aim is to find an optimal control input sequence defined over a control prediction window, 
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 so as to minimise the performance index,


[image: image95.wmf](

)

(

)

(

)

(

)

(

)

(

)

{

}

(

)

(

)

å

+

+

=

-

=

1

0

,

0

N

k

N

T

T

T

N

q

N

k

r

k

k

q

k

J

y

Q

y

Ru

u

Qy

y

U

x

,
(33)

where 
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and 
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 are scaling parameters which are used to re-scale the relative contributions of the states and the control inputs to the cost function. When the magnitude of the control input is relatively large when compared with the magnitude of the state, 
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 is assumed to be small number relative to 
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 and vice-versa.
Defining the vector, 
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, we may write,
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where 
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 is a block diagonal matrix with matrix 
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 is a block diagonal matrix with matrix 
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 along the diagonal. Using the state space model (32) recursively, we may construct a prediction model in the form,
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where
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Thus the cost function may be expressed as,
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with, 
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The optimum control sequence is obtained by setting the gradient of 
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  to zero. Minimising the cost function results in,


[image: image116.wmf](

)

(

)

(

)

0

0

,

0

=

+

=

F

x

H

U

U

U

x

T

T

d

dJ


 
[image: image117.wmf]Þ

 
[image: image118.wmf](

)

0

0

=

+

x

F

HU

T

 
[image: image119.wmf]Þ
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The state 
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, at the start of the prediction window, is assumed to represent the state at the next time instant, in real time. The control law based on the receding horizon is,
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The control sequence is recursively calculated over successive control prediction windows. If we examine 
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 closely, it may be expressed as,
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If we let 
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, equation (40) reduces to,
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where 
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 is treated as a free parameter, to be chosen by some form of posteriori optimisation. Assuming that performance weights for the output and the control are nominally equal when 
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The control law is given by equation (39) and equation (42) is used to synthesize the gains 
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, by considering system dynamics given by equations (31) as two single-input, single-output dynamic systems by relating 
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.The control so obtained does not guarantee the stability of the phase angle 
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, which must be achieved by a further parameter optimization to choose the free parameter 
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 which is considered in the next section.
2.4. Optimisation of the Free Parameters: Particle Swarm Optimisation
Particle swarm optimization (PSO) is a bio-inspired meta-heuristic technique developed by Kennedy and Eberhart [30]. PSO is essentially a search algorithm, where each potential solution in the search space is represented as a 'particle' which is assumed to be 'flying' in the search space. The biomimetic features of PSO were discussed by Parsopoulos and Vrahatis [31]. PSO has been extensive applied to parameter optimizations in control algorithms [32-34]. Thus its particle is characterised by its state, comprising of the position and velocity and its past trajectory in the search space. A swarm of particles are influenced by their 'leaders' which are the best performers either from the entire swarm or their neighbourhood. To apply PSO, the state of the particle is initially assigned at random. The particles current velocity is then updated by using the performance index as a fitness function. The update is based on a linear combination of its position relative its optimum position, its position relative to the optimum position of the leader, and its previous velocity. The current position is obtained by integrating the velocity. At each cycle, the objective function is evaluated for each particle, with respect to its current state, and that value is used to assign a measure of quality to the particle which in turn is used to determine the leader of the swarm and of the entire population. Thus PSO shares the information about the state of each particle with the rest of the swarm. By updating the velocity, each particle adjusts its trajectory so it is steered towards its best solution in terms of the fitness values evaluated along the trajectory. Each particle also modifies its trajectory towards the best previous position attained by the leader of the swarm. Thus the velocity of the particle is continuously updated so it moves to the optimum solution in the search space. PSO may be easily implemented in MATLAB using the function particleswarm.m.
3. Typical Simulations 
The parameters of the combustion dynamic model given by equations (23)-(25) are defined in Table I. To facilitate comparisons with Kristic, Krupadanam, and Jacobson [16] the data was chosen to be the same as that considered by them. In the first instance, the open loop modal amplitudes and the closed loop modal amplitudes with the adaptive controller of Kristic, Krupadanam, and Jacobson [16] are compared and shown in Fig. 2. The integration time step is 0.005 secs. The corresponding phase angles are compared in Fig. 3. The adaptive closed-loop responses conform to the results of Kristic, Krupadanam, and Jacobson [16]. We then consider the application of the MPC with control law updated every 100 time steps where the time step of integration remains at 0.005 secs. The prediction window s chosen as 10 time steps.
The closed loop modal amplitudes with the MPC controller with the cost function parameter 
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 are compared with the open loop modal amplitudes in Fig. 4. The corresponding phase angles are compared in Fig. 5 which clearly indicates the instability of the phase angle.
 As explained by Culick [35], the importance maintaining a stable phase difference is vital since, with unsteady waves present, the amplitude of the waves will increase when sufficient energy from combustion and/or evaporation is added in phase with the waves in the combustion chamber, whereas it will reduce if the addition is out of phase.
We now consider the case with particle swarm optimisation of the control cost function parameter 
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. The control gains are computed using equations (39) and (42) and the optimal cost function parameter 
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 chosen by particle swarm optimisation so as to stabilize the phase difference 
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, between the two-modes. The block diagram for model predictive control with particle swarm optimisation can be seen in Fig. 6. By means of particle swarm optimisation, control parameters are tried to calculated to minimize cost function parameter r and phase angle difference square 
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 is the desired steady-state value of 
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 which satisfies the equation (30). The effect of particle swarm optimization on phase angle stability is searched. The MPC algorithm is applied just once after the combustor has been in operation for 300 secs in the open loop state. The prediction window is chosen to be 10 time steps. 
The closed loop modal amplitude responses are compared with the corresponding responses obtained by the application of the adaptive control algorithm in Fig. 7. The corresponding phase angles are compared in Fig. 8. The phase angle response, with the MPC law in place, over the 5 minute interval clearly demonstrates that it is stable while the phase angle response, with the adaptive controller, tends to slowly drift. Thus we observe that all the three state responses obtained by the application of the MPC algorithm with parameter optimisation to choose the cost function parameter stable and do not exhibit any form of instability or drift. 
4. Results and Discussion 
The results shown in Figs. 2-7 clearly demonstrate the superiority of the MPC approach proposed in this paper, with associated parameter optimisation, over the adaptive controller synthesis approach which has been one of best methods for the feedback control of combustion instabilities proposed so far in the literature. In particular, from the long term simulation of the closed loop system over a time frame of 300 secs., shown in Figs. 6 and 7, it is seen that the closed loop system with the adaptive controller in place, indicates a slow unstable drift, albeit small, both in the modal amplitudes and the phase angle between the two modes. However, in comparison, the closed loop system with the MPC law in place, indicates that both the modal amplitude responses and the phase angle are indeed asymptotically stable. We believe that the MPC based methodology is the best for applications to the control of instability problems associated with combustion. 
NOMENCLATURE
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Fig. 1 Schematic diagram of a typical combustion chamber and its controller
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Fig. 2 Comparison of the open-loop and adaptive closed loop modal amplitudes
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Fig.3 Comparison of the open-loop and adaptive closed loop phase difference
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Fig. 4 Comparison of the open-loop and the closed loop, with the MPC controller, modal amplitudes
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Fig.5 Comparison of the open-loop and the closed loop, with the MPC controller, phase difference
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Fig. 6 Block diagram for MPC with PSO
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Fig. 7 Comparison of the open-loop and the closed loop modal amplitudes, with the MPC controller applied just once.
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Fig. 8 Comparison of the open-loop and the closed loop phase difference, with the MPC controller applied just once.
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