249 research outputs found

    Spatial Displays and Spatial Instruments

    Get PDF
    The conference proceedings topics are divided into two main areas: (1) issues of spatial and picture perception raised by graphical electronic displays of spatial information; and (2) design questions raised by the practical experience of designers actually defining new spatial instruments for use in new aircraft and spacecraft. Each topic is considered from both a theoretical and an applied direction. Emphasis is placed on discussion of phenomena and determination of design principles

    THE DEVELOPMENT OF A HOLISTIC EXPERT SYSTEM FOR INTEGRATED COASTAL ZONE MANAGEMENT

    Get PDF
    Coastal data and information comprise a massive and complex resource, which is vital to the practice of Integrated Coastal Zone Management (ICZM), an increasingly important application. ICZM is just as complex, but uses the holistic paradigm to deal with the sophistication. The application domain and its resource require a tool of matching characteristics, which is facilitated by the current wide availability of high performance computing. An object-oriented expert system, COAMES, has been constructed to prove this concept. The application of expert systems to ICZM in particular has been flagged as a viable challenge and yet very few have taken it up. COAMES uses the Dempster- Shafer theory of evidence to reason with uncertainty and importantly introduces the power of ignorance and integration to model the holistic approach. In addition, object orientation enables a modular approach, embodied in the inference engine - knowledge base separation. Two case studies have been developed to test COAMES. In both case studies, knowledge has been successfully used to drive data and actions using metadata. Thus a holism of data, information and knowledge has been achieved. Also, a technological holism has been proved through the effective classification of landforms on the rapidly eroding Holderness coast. A holism across disciplines and CZM institutions has been effected by intelligent metadata management of a Fal Estuary dataset. Finally, the differing spatial and temporal scales that the two case studies operate at implicitly demonstrate a holism of scale, though explicit means of managing scale were suggested. In all cases the same knowledge structure was used to effectively manage and disseminate coastal data, information and knowledge

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 354)

    Get PDF
    This bibliography lists 225 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during September, 1991. Subject coverage includes aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Evolution of a Sandur : sixty years of change, Skeiºarársandur, Iceland

    Get PDF
    PhD ThesisGlaciers are a major component of the global climate system, adjusting to changes in climate over a range of timescales. Knowledge of the dynamics of contemporary glaciated landscapes will allow accurate reconstruction of glacier margin fluctuations within the landform and sedimentary record as well as predictions of the response of ice-marginal landscapes to future glacier margin fluctuations. Existing models of ice-marginal, proglacial landscape evolution focus primarily on landforms generated in response to single, relatively short-lived, highmagnitude large-scale events such as glacier surges or glacier outburst floods (jökulhlaups). Observations of these events have frequently been restricted to short time windows (days to several years) or inferred from stratigraphic sections and are therefore subject to misinterpretation. Relatively little research has been undertaken on the development of icemarginal and proglacial landscapes over decadal time-scales (101-102 years). This study examines the controls on the evolution of the ice-marginal landscape of Skeiðarárjökull over a decadal timescale. Skeiðarárjökull is a temperate, surge-type, piedmont outlet glacier located in south-east Iceland. Skeiðarárjökull, and its outwash plain Skeiðarársandur, have been subject to numerous surges and jökulhlaups and post-depositional modification due to the melt out of buried glacier ice, providing a valuable modern process-form analogue for landscape evolution at Pleistocene ice sheet margins. Digital Elevation Models (DEMs) were extracted from the aerial photographs taken at intervals over the past six decades to quantify the rate of landscape change over decadal time periods. This data, when combined with observations from aerial photographs of numerous suites of large-scale sub- and englacial features exposed by the glacier's recession permits models of the long-term response of proglacial regions to surges, jökulhlaups and glacier margin recession to be tested. This study developed a holistic model to describe the interdependence of glacier margin fluctuations, jökulhlaups and post-depositional modification and their impact on sandur evolution.NER

    Ubiquitous computing and natural interfaces for environmental information

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia do Ambiente, perfil Gestão e Sistemas AmbientaisThe next computing revolution‘s objective is to embed every street, building, room and object with computational power. Ubiquitous computing (ubicomp) will allow every object to receive and transmit information, sense its surroundings and act accordingly, be located from anywhere in the world, connect every person. Everyone will have the possibility to access information, despite their age, computer knowledge, literacy or physical impairment. It will impact the world in a profound way, empowering mankind, improving the environment, but will also create new challenges that our society, economy, health and global environment will have to overcome. Negative impacts have to be identified and dealt with in advance. Despite these concerns, environmental studies have been mostly absent from discussions on the new paradigm. This thesis seeks to examine ubiquitous computing, its technological emergence, raise awareness towards future impacts and explore the design of new interfaces and rich interaction modes. Environmental information is approached as an area which may greatly benefit from ubicomp as a way to gather, treat and disseminate it, simultaneously complying with the Aarhus convention. In an educational context, new media are poised to revolutionize the way we perceive, learn and interact with environmental information. cUbiq is presented as a natural interface to access that information

    Integrated modelling for 3D GIS

    Get PDF
    A three dimensional (3D) model facilitates the study of the real world objects it represents. A geoinformation system (GIS) should exploit the 3D model in a digital form as a basis for answering questions pertaining to aspects of the real world. With respect to the earth sciences, different kinds of objects of reality can be realized. These objects are components of the reality under study. At the present state-of-the-art different realizations are usually situated in separate systems or subsystems. This separation results in redundancy and uncertainty when different components sharing some common aspects are combined. Relationships between different kinds of objects, or between components of an object, cannot be represented adequately. This thesis aims at the integration of those components sharing some common aspects in one 3D model. This integration brings related components together, minimizes redundancy and uncertainty. Since the model should permit not only the representation of known aspects of reality, but also the derivation of information from the existing representation, the design of the model is constrained so as to afford these capabilities. The tessellation of space by the network of simplest geometry, the simplicial network, is proposed as a solution. The known aspects of the reality can be embedded in the simplicial network without degrading their quality. The model provides finite spatial units useful for the representation of objects. Relationships between objects can also be expressed through components of these spatial units which at the same time facilitate various computations and the derivation of information implicitly available in the model. Since the simplicial network is based on concepts in geoinformation science and in mathematics, its design can be generalized for n-dimensions. The networks of different dimension are said to be compatible, which enables the incorporation of a simplicial network of a lower dimension into another simplicial network of a higher dimension.The complexity of the 3D model fulfilling the requirements listed calls for a suitable construction method. The thesis presents a simple way to construct the model. The raster technique is used for the formation of the simplicial network embedding the representation of the known aspects of reality as constraints. The prototype implementation in a software package, ISNAP, demonstrates the simplicial network's construction and use. The simplicial network can facilitate spatial and non spatial queries, computations, and 2D and 3D visualizations. The experimental tests using different kinds of data sets show that the simplicial network can be used to represent real world objects in different dimensionalities. Operations traditionally requiring different systems and spatial models can be carried out in one system using one model as a basis. This possibility makes the GIS more powerful and easy to use

    Mapping three-dimensional geological features from remotely-sensed images and digital elevation models.

    Get PDF
    Accurate mapping of geological structures is important in numerous applications, ranging from mineral exploration through to hydrogeological modelling. Remotely sensed data can provide synoptic views of study areas enabling mapping of geological units within the area. Structural information may be derived from such data using standard manual photo-geologic interpretation techniques, although these are often inaccurate and incomplete. The aim of this thesis is, therefore, to compile a suite of automated and interactive computer-based analysis routines, designed to help a the user map geological structure. These are examined and integrated in the context of an expert system. The data used in this study include Digital Elevation Model (DEM) and Airborne Thematic Mapper images, both with a spatial resolution of 5m, for a 5 x 5 km area surrounding Llyn Cow lyd, Snowdonia, North Wales. The geology of this area comprises folded and faulted Ordo vician sediments intruded throughout by dolerite sills, providing a stringent test for the automated and semi-automated procedures. The DEM is used to highlight geomorphological features which may represent surface expressions of the sub-surface geology. The DEM is created from digitized contours, for which kriging is found to provide the best interpolation routine, based on a number of quantitative measures. Lambertian shading and the creation of slope and change of slope datasets are shown to provide the most successful enhancement of DEMs, in terms of highlighting a range of key geomorphological features. The digital image data are used to identify rock outcrops as well as lithologically controlled features in the land cover. To this end, a series of standard spectral enhancements of the images is examined. In this respect, the least correlated 3 band composite and a principal component composite are shown to give the best visual discrimination of geological and vegetation cover types. Automatic edge detection (followed by line thinning and extraction) and manual interpretation techniques are used to identify a set of 'geological primitives' (linear or arc features representing lithological boundaries) within these data. Inclusion of the DEM data provides the three-dimensional co-ordinates of these primitives enabling a least-squares fit to be employed to calculate dip and strike values, based, initially, on the assumption of a simple, linearly dipping structural model. A very large number of scene 'primitives' is identified using these procedures, only some of which have geological significance. Knowledge-based rules are therefore used to identify the relevant. For example, rules are developed to identify lake edges, forest boundaries, forest tracks, rock-vegetation boundaries, and areas of geomorphological interest. Confidence in the geological significance of some of the geological primitives is increased where they are found independently in both the DEM and remotely sensed data. The dip and strike values derived in this way are compared to information taken from the published geological map for this area, as well as measurements taken in the field. Many results are shown to correspond closely to those taken from the map and in the field, with an error of < 1°. These data and rules are incorporated into an expert system which, initially, produces a simple model of the geological structure. The system also provides a graphical user interface for manual control and interpretation, where necessary. Although the system currently only allows a relatively simple structural model (linearly dipping with faulting), in the future it will be possible to extend the system to model more complex features, such as anticlines, synclines, thrusts, nappes, and igneous intrusions

    3D-in-2D Displays for ATC.

    Get PDF
    This paper reports on the efforts and accomplishments of the 3D-in-2D Displays for ATC project at the end of Year 1. We describe the invention of 10 novel 3D/2D visualisations that were mostly implemented in the Augmented Reality ARToolkit. These prototype implementations of visualisation and interaction elements can be viewed on the accompanying video. We have identified six candidate design concepts which we will further research and develop. These designs correspond with the early feasibility studies stage of maturity as defined by the NASA Technology Readiness Level framework. We developed the Combination Display Framework from a review of the literature, and used it for analysing display designs in terms of display technique used and how they are combined. The insights we gained from this framework then guided our inventions and the human-centered innovation process we use to iteratively invent. Our designs are based on an understanding of user work practices. We also developed a simple ATC simulator that we used for rapid experimentation and evaluation of design ideas. We expect that if this project continues, the effort in Year 2 and 3 will be focus on maturing the concepts and employment in a operational laboratory settings

    An interest point based illumination condition matching approach to photometric registration within augmented reality worlds

    Get PDF
    With recent and continued increases in computing power, and advances in the field of computer graphics, realistic augmented reality environments can now offer inexpensive and powerful solutions in a whole range of training, simulation and leisure applications. One key challenge to maintaining convincing augmentation, and therefore user immersion, is ensuring consistent illumination conditions between virtual and real environments, so that objects appear to be lit by the same light sources. This research demonstrates how real world lighting conditions can be determined from the two-dimensional view of the user. Virtual objects can then be illuminated and virtual shadows cast using these conditions. This new technique uses pairs of interest points from real objects and the shadows that they cast, viewed from a binocular perspective, to determine the position of the illuminant. This research has been initially focused on single point light sources in order to show the potential of the technique and has investigated the relationships between the many parameters of the vision system. Optimal conditions have been discovered by mapping the results of experimentally varying parameters such as FoV, camera angle and pose, image resolution, aspect ratio and illuminant distance. The technique is able to provide increased robustness where greater resolution imagery is used. Under optimal conditions it is possible to derive the position of a real world light source with low average error. An investigation of available literature has revealed that other techniques can be inflexible, slow, or disrupt scene realism. This technique is able to locate and track a moving illuminant within an unconstrained, dynamic world without the use of artificial calibration objects that would disrupt scene realism. The technique operates in real-time as the new algorithms are of low computational complexity. This allows high framerates to be maintained within augmented reality applications. Illuminant updates occur several times a second on an average to high end desktop computer. Future work will investigate the automatic identification and selection of pairs of interest points and the exploration of global illuminant conditions. The latter will include an analysis of more complex scenes and the consideration of multiple and varied light sources.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore