137,177 research outputs found

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    Bayesian Methods for Analysis and Adaptive Scheduling of Exoplanet Observations

    Full text link
    We describe work in progress by a collaboration of astronomers and statisticians developing a suite of Bayesian data analysis tools for extrasolar planet (exoplanet) detection, planetary orbit estimation, and adaptive scheduling of observations. Our work addresses analysis of stellar reflex motion data, where a planet is detected by observing the "wobble" of its host star as it responds to the gravitational tug of the orbiting planet. Newtonian mechanics specifies an analytical model for the resulting time series, but it is strongly nonlinear, yielding complex, multimodal likelihood functions; it is even more complex when multiple planets are present. The parameter spaces range in size from few-dimensional to dozens of dimensions, depending on the number of planets in the system, and the type of motion measured (line-of-sight velocity, or position on the sky). Since orbits are periodic, Bayesian generalizations of periodogram methods facilitate the analysis. This relies on the model being linearly separable, enabling partial analytical marginalization, reducing the dimension of the parameter space. Subsequent analysis uses adaptive Markov chain Monte Carlo methods and adaptive importance sampling to perform the integrals required for both inference (planet detection and orbit measurement), and information-maximizing sequential design (for adaptive scheduling of observations). We present an overview of our current techniques and highlight directions being explored by ongoing research.Comment: 29 pages, 11 figures. An abridged version is accepted for publication in Statistical Methodology for a special issue on astrostatistics, with selected (refereed) papers presented at the Astronomical Data Analysis Conference (ADA VI) held in Monastir, Tunisia, in May 2010. Update corrects equation (3

    An empirical study of inter-concept similarities in multimedia ontologies

    Get PDF
    Generic concept detection has been a widely studied topic in recent research on multimedia analysis and retrieval, but the issue of how to exploit the structure of a multimedia ontology as well as different inter-concept relations, has not received similar attention. In this paper, we present results from our empirical analysis of different types of similarity among semantic concepts in two multimedia ontologies, LSCOM-Lite and CDVP-206. The results show promise that the proposed methods may be helpful in providing insight into the existing inter-concept relations within an ontology and selecting the most facilitating set of concepts and hierarchical relations. Such an analysis as this can be utilized in various tasks such as building more reliable concept detectors and designing large-scale ontologies
    corecore