680 research outputs found

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    Advanced location-based IPv6 address for the node of wireless sensor network

    Get PDF
    Fields such as military, transportation applications, human services, smart cities and many others utilized Wireless Sensor Network (WSN) in their operations. Despite its beneficial use, occurrence of obstacles is inevitable. From the sensed data, the randomly nodes distribution will produce multiple benefits from self-configuration and regular positioning reporting. Lately, localization and tracking issues have received a remarkable attention in WSNs, as accomplishing high localization accuracy when low energy is used, is much needed. In this paper, a new method and standards-compliant scheme according to the incorporation of GPS location data into the IPv6 address of WSN nodes is suggested. The suggestion is likewise others which depends on ground-truth anchor nodes, with a difference of using the network address to deliver the information. The findings from the results revealed that perfect GPS coordinates can be conducted in the IPv6 address as well as with the transmission radius of the node, and the information is significantly adequate to predict a node’s location. The location scheme performance is assessed in OMNet++ simulation according to the positioning error and the power metrics used. Moreover, some improvement practices to increase the precision of the node location are suggested

    Internet of Things Applications - From Research and Innovation to Market Deployment

    Get PDF
    The book aims to provide a broad overview of various topics of Internet of Things from the research, innovation and development priorities to enabling technologies, nanoelectronics, cyber physical systems, architecture, interoperability and industrial applications. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from technology to international cooperation and the global "state of play".The book builds on the ideas put forward by the European research Cluster on the Internet of Things Strategic Research Agenda and presents global views and state of the art results on the challenges facing the research, development and deployment of IoT at the global level. Internet of Things is creating a revolutionary new paradigm, with opportunities in every industry from Health Care, Pharmaceuticals, Food and Beverage, Agriculture, Computer, Electronics Telecommunications, Automotive, Aeronautics, Transportation Energy and Retail to apply the massive potential of the IoT to achieving real-world solutions. The beneficiaries will include as well semiconductor companies, device and product companies, infrastructure software companies, application software companies, consulting companies, telecommunication and cloud service providers. IoT will create new revenues annually for these stakeholders, and potentially create substantial market share shakeups due to increased technology competition. The IoT will fuel technology innovation by creating the means for machines to communicate many different types of information with one another while contributing in the increased value of information created by the number of interconnections among things and the transformation of the processed information into knowledge shared into the Internet of Everything. The success of IoT depends strongly on enabling technology development, market acceptance and standardization, which provides interoperability, compatibility, reliability, and effective operations on a global scale. The connected devices are part of ecosystems connecting people, processes, data, and things which are communicating in the cloud using the increased storage and computing power and pushing for standardization of communication and metadata. In this context security, privacy, safety, trust have to be address by the product manufacturers through the life cycle of their products from design to the support processes. The IoT developments address the whole IoT spectrum - from devices at the edge to cloud and datacentres on the backend and everything in between, through ecosystems are created by industry, research and application stakeholders that enable real-world use cases to accelerate the Internet of Things and establish open interoperability standards and common architectures for IoT solutions. Enabling technologies such as nanoelectronics, sensors/actuators, cyber-physical systems, intelligent device management, smart gateways, telematics, smart network infrastructure, cloud computing and software technologies will create new products, new services, new interfaces by creating smart environments and smart spaces with applications ranging from Smart Cities, smart transport, buildings, energy, grid, to smart health and life. Technical topics discussed in the book include: • Introduction• Internet of Things Strategic Research and Innovation Agenda• Internet of Things in the industrial context: Time for deployment.• Integration of heterogeneous smart objects, applications and services• Evolution from device to semantic and business interoperability• Software define and virtualization of network resources• Innovation through interoperability and standardisation when everything is connected anytime at anyplace• Dynamic context-aware scalable and trust-based IoT Security, Privacy framework• Federated Cloud service management and the Internet of Things• Internet of Things Application

    Federated Sensor Network architectural design for the Internet of Things (IoT)

    Get PDF
    An information technology that can combine the physical world and virtual world is desired. The Internet of Things (IoT) is a concept system that uses Radio Frequency Identification (RFID), WSN and barcode scanners to sense and to detect physical objects and events. This information is shared with people on the Internet. With the announcement of the Smarter Planet concept by IBM, the problem of how to share this data was raised. However, the original design of WSN aims to provide environment monitoring and control within a small scale local network. It cannot meet the demands of the IoT because there is a lack of multi-connection functionality with other WSNs and upper level applications. As various standards of WSNs provide information for different purposes, a hybrid system that gives a complete answer by combining all of them could be promising for future IoT applications. This thesis is on the subject of `Federated Sensor Network' design and architectural development for the Internet of Things. A Federated Sensor Network (FSN) is a system that integrates WSNs and the Internet. Currently, methods of integrating WSNs and the Internet can follow one of three main directions: a Front-End Proxy solution, a Gateway solution or a TCP/IP Overlay solution. Architectures based on the ideas from all three directions are presented in this thesis; this forms a comprehensive body of research on possible Federated Sensor Network architecture designs. In addition, a fully compatible technology for the sensor network application, namely the Sensor Model Language (SensorML), has been reviewed and embedded into our FSN systems. The IoT as a new concept is also comprehensively described and the major technical issues discussed. Finally, a case study of the IoT in logistic management for emergency response is given. Proposed FSN architectures based on the Gateway solution are demonstrated through hardware implementation and lab tests. A demonstration of the 6LoWPAN enabled federated sensor network based on the TCP/IP Overlay solution presents a good result for the iNET localization and tracking project. All the tests of the designs have verified feasibility and achieve the target of the IoT concept

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    Improving RSSI based distance estimation for wireless sensor networks

    Get PDF
    In modern everyday life we see gradually increasing number of wireless sensor devices. In some cases it is necessary to know the accurate location of the devices. Most of the usual techniques developed to get this information require a lot of resources (power, bandwidth, computation, extra hardware) which small embedded devices cannot afford. Therefore techniques, using small resources without the need for extra hardware, need to be developed. Wireless sensor networks are often used inside buildings. In such environment satellite positioning is not available. As a consequence, the location computation must be done in network-based manner. In this thesis a received signal strength indicator (RSSI) based distance estimation technique for 802.15.4 network based on CC2431 radio is discussed. In this approach we try to differentiate between good and erroneous measurements by imposing limits based on standard deviation of RSSI and the number of lost packets. These limits are included as a part of the model parameter estimation process. These limits are optimized in order to improve the resulting distance estimates with minimum loss of connectivity information. We experimentally evaluated the merits of the proposed method and found it to be useful under certain circumstances.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Wireless Technologies for Indoor Asset Positioning

    Get PDF
    The Positioning of assets in a manufacturing industry is one of the milestones in the process to increase the visibility inside the factory and improve the current manufacturing practices. Furthermore, in order to cope with the high mobility of the assets in a factory, the utilization of wireless technologies has been increased in the past few years in order to develop the positioning applications. However, the utilization of these technologies must not increase the complexity of the manufacturing systems. Therefore, the utilization of a common network protocol such as the Internet Protocol is preferred. The theoretical part of this thesis work presents a general description of the wireless technologies used in industrial environments. Additionally, it discusses the different methodologies and algorithms used for the positioning of assets applications in wireless networks in more detail. Furthermore, an introduction to the latest efforts and systems developed to address the problem of position estimation of assets in wireless networks is provided. In order to understand the realization of the IP-based wireless sensor networks, a brief review of the operating systems supporting this characteristic is presented. Finally a survey about the IP-ready wireless sensor network is performed in order to select the most suitable platform to use in the practical part of this work. The practical part of this thesis work focuses on the implementation of a real-time position estimation tool for manufacturing assets based on a Wireless Sensor Network for indoor environments. The main purpose is to estimate the position of a pallet allocated on a light assembly manufacturing line. In addition, the wireless sensor network utilizes the Internet Protocol version 6 as the networking protocol. Furthermore, the estimation parameter utilized by the tool is the received signal strength. Consequently, the position estimation methodologies based on the received signal strength are implemented by this tool. Finally, the position estimation tool was tested which is documented in the results section. /Kir1
    corecore