26,653 research outputs found

    A Cyber-Physical Threat Analysis for Microgrids

    Get PDF
    SSD 2018, 15th International Multi-Conference on Systems, Signals and Devices, Hammamet, TUNISIE, 19-/03/2018 - 22/03/2018MicroGrids (MGS) are foreseen as a building block of the smart grid. They allow for the integration of distributed energy resources and storage within the conventional grid. This is partly possible through deployment of Information and Communication Technologies (ICTS) within these structures. Therefore cyber security is a major concern for MGS. This paper investigates cyber-physical security aspects of the MG, including vulnerabilities and threat landscape. A cyber-physical security risk assessment is presented for evaluating impacts of exploiting existing vulnerabilities by potential threats on MG operations

    Investigating the Cybersecurity of Smart Grids Based on Cyber-Physical Twin Approach

    Full text link
    While the increasing penetration of information and communication technology into distribution grid brings numerous benefits, it also opens up a new threat landscape, particularly through cyberattacks. To provide a basis for countermeasures against such threats, this paper addresses the investigation of the impact and manifestations of cyberattacks on smart grids by replicating the power grid in a secure, isolated, and controlled laboratory environment as a cyber-physical twin. Currently, detecting intrusions by unauthorized third parties into the central monitoring and control system of grid operators, especially attacks within the grid perimeter, is a major challenge. The development and validation of methods to detect and prevent coordinated and timed attacks on electric power systems depends not only on the availability and quality of data from such attack scenarios, but also on suitable realistic investigation environments. However, to create a comprehensive investigation environment, a realistic representation of the study object is required to thoroughly investigate critical cyberattacks on grid operations and evaluate their impact on the power grid using real data. In this paper, we demonstrate our cyber-physical twin approach using a microgrid in the context of a cyberattack case study.Comment: IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm) 202

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Energy security issues in contemporary Europe

    Get PDF
    Throughout the history of mankind, energy security has been always seen as a means of protection from disruptions of essential energy systems. The idea of protection from disorders emerged from the process of securing political and military control over energy resources to set up policies and measures on managing risks that affect all elements of energy systems. The various systems placed in a place to achieve energy security are the driving force towards the energy innovations or emerging trends in the energy sector. Our paper discusses energy security status and innovations in the energy sector in European Union (EU). We analyze the recent up-to-date developments of the energy policy and exploitation of energy sources, as well as scrutinize the channels of energy streaming to the EU countries and the risks associated with this energy import. Moreover, we argue that the shift to the low-carbon production of energy and the massive deployment of renewable energy sources (RES) might become the key issue in ensuring the energy security and independency of the EU from its external energy supplies. Both RES, distributed energy resources (DER) and “green energy” that will be based on the energy efficiency and the shift to the alternative energy supply might change the energy security status quo for the EU

    Autonomic computing architecture for SCADA cyber security

    Get PDF
    Cognitive computing relates to intelligent computing platforms that are based on the disciplines of artificial intelligence, machine learning, and other innovative technologies. These technologies can be used to design systems that mimic the human brain to learn about their environment and can autonomously predict an impending anomalous situation. IBM first used the term ‘Autonomic Computing’ in 2001 to combat the looming complexity crisis (Ganek and Corbi, 2003). The concept has been inspired by the human biological autonomic system. An autonomic system is self-healing, self-regulating, self-optimising and self-protecting (Ganek and Corbi, 2003). Therefore, the system should be able to protect itself against both malicious attacks and unintended mistakes by the operator

    The not so smart, smart grid - potential security risks associated with the deployment of smart grid technologies

    Get PDF
    The electricity grid has been up until now a relatively stable artifice of modern industrialized nations. The power grids are the most widespread wired networks in the world. They are heavily regulated and standardized to protect the integrity, stability and reliability of supply. The grids have been essentially closed systems, this is now rapidly changing with the introduction of the network enabled smart meter. These meters are “web” accessible, connect and interact directly with electrical appliances in domiciles and businesses. This move now brings a range of extreme risks and complexities into these stable networks. This paper explores the security issues and potential problems associated with current moves to provide these smart meters to existing grid connections

    Autonomic computing meets SCADA security

    Get PDF
    © 2017 IEEE. National assets such as transportation networks, large manufacturing, business and health facilities, power generation, and distribution networks are critical infrastructures. The cyber threats to these infrastructures have increasingly become more sophisticated, extensive and numerous. Cyber security conventional measures have proved useful in the past but increasing sophistication of attacks dictates the need for newer measures. The autonomic computing paradigm mimics the autonomic nervous system and is promising to meet the latest challenges in the cyber threat landscape. This paper provides a brief review of autonomic computing applications for SCADA systems and proposes architecture for cyber security
    corecore