28 research outputs found

    Available Membrane Computing Software

    Get PDF
    The simulation of a P system with current computers is a quite com-plex task. P systems are intrinsically nondeterministic computational devices and therefore their computation trees are di±cult to store and handle with computers with one processor (or a bounded number of processors). Nevertheless, there exists a ¯rst generation of simulators which can be successfully used for pedagogical pur-poses and as assistant tools for researchers. This chapter summarizes some of these simulators, presenting the state of the art of the available software for simulating (di®erent variants of) cell-like membrane systems.Ministerio de Ciencia y Tecnología TIC2002-04220-C03-0

    The GPU on the simulation of cellular computing models

    Get PDF
    Membrane Computing is a discipline aiming to abstract formal computing models, called membrane systems or P systems, from the structure and functioning of the living cells as well as from the cooperation of cells in tissues, organs, and other higher order structures. This framework provides polynomial time solutions to NP-complete problems by trading space for time, and whose efficient simulation poses challenges in three different aspects: an intrinsic massively parallelism of P systems, an exponential computational workspace, and a non-intensive floating point nature. In this paper, we analyze the simulation of a family of recognizer P systems with active membranes that solves the Satisfiability problem in linear time on different instances of Graphics Processing Units (GPUs). For an efficient handling of the exponential workspace created by the P systems computation, we enable different data policies to increase memory bandwidth and exploit data locality through tiling and dynamic queues. Parallelism inherent to the target P system is also managed to demonstrate that GPUs offer a valid alternative for high-performance computing at a considerably lower cost. Furthermore, scalability is demonstrated on the way to the largest problem size we were able to run, and considering the new hardware generation from Nvidia, Fermi, for a total speed-up exceeding four orders of magnitude when running our simulations on the Tesla S2050 server.Agencia Regional de Ciencia y Tecnología - Murcia 00001/CS/2007Ministerio de Ciencia e Innovación TIN2009–13192Ministerio de Ciencia e Innovación TIN2009-14475-C04European Commission Consolider Ingenio-2010 CSD2006-0004

    A Simulation Workflow for Membrane Computing: From MeCoSim to PMCGPU Through P-Lingua

    Get PDF
    P system simulators are of high importance in Membrane Computing, since they provide tools to assist on model validation and verification. Keeping a balance between generality and flexibility, on the one side, and efficiency, on the other hand, is always challenging, but it is worth the effort. Besides, in order to prove the feasibility of P system models as practical tools for solving problems and aid in decision making, it is essential to provide functional mechanisms to have all the elements required at disposal of the potential users smoothly integrated in a robust workflow. The aim of this paper is to describe the main components and connections within the approach followed in this pipeline.Ministerio de Industria, Economía y Competitividad TIN2017-89842-

    Comparing simulation algorithms for multienvironment probabilistic P systems over a standard virtual ecosystem

    Get PDF
    Membrane Computing has recently proved to be a suitable framework for addressing the modelling of dynamical biological systems in general, and ecosystems in particular. Due to the inherent randomness and uncertainty in biological systems, when designing a model the relevant tasks to be addressed are the validation and virtual experimentation processes, rather than the formal verification. It is therefore crucial to rely on software implementations of efficient simulation algorithms. This paper presents a simple (but realistic enough) ecosystem where a carnivore and several herbivorous species interact. The model of this ecosystem has been used to compare experimentally the performance of two different simulation algorithms.Ministerio de Ciencia e Innovación TIN2009–13192Junta de Andalucía P08-TIC-0420

    A new simulation algorithm for multienvironment probabilistic P systems

    Get PDF
    Multienvironment P systems are the base of a general framework for modeling ecosystems dynamics. On one hand, this modeling framework represents the structural and dynamical aspects of real ecosystems in a discrete, modular and compressive way. On the other hand, the inherent randomness and uncertainty of biological systems are captured by using probabilistic strategies. Nowadays, the simulation of these P systems based models is fundamental for experimentation and validation. In this paper, we introduce a new simulation algorithm, called DNDP, which performs object distribution and maximal consistency in the application of rules, that are crucial aspects of these systems. The paper also depicts a parallel implementation of the algorithm, and a comparison with the existing algorithm in PLinguaCore is provided. In order to test the performance of the presented algorithm, several experiments (simulations) have been carried out over four simple P systems with the same skeleton and different number of environments.Ministerio de Ciencia e Innovación TIN2009–13192Junta de Andalucía P08–TIC-0420

    MPSoCBench : um framework para avaliação de ferramentas e metodologias para sistemas multiprocessados em chip

    Get PDF
    Orientador: Rodolfo Jardim de AzevedoTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Recentes metodologias e ferramentas de projetos de sistemas multiprocessados em chip (MPSoC) aumentam a produtividade por meio da utilização de plataformas baseadas em simuladores, antes de definir os últimos detalhes da arquitetura. No entanto, a simulação só é eficiente quando utiliza ferramentas de modelagem que suportem a descrição do comportamento do sistema em um elevado nível de abstração. A escassez de plataformas virtuais de MPSoCs que integrem hardware e software escaláveis nos motivou a desenvolver o MPSoCBench, que consiste de um conjunto escalável de MPSoCs incluindo quatro modelos de processadores (PowerPC, MIPS, SPARC e ARM), organizado em plataformas com 1, 2, 4, 8, 16, 32 e 64 núcleos, cross-compiladores, IPs, interconexões, 17 aplicações paralelas e estimativa de consumo de energia para os principais componentes (processadores, roteadores, memória principal e caches). Uma importante demanda em projetos MPSoC é atender às restrições de consumo de energia o mais cedo possível. Considerando que o desempenho do processador está diretamente relacionado ao consumo, há um crescente interesse em explorar o trade-off entre consumo de energia e desempenho, tendo em conta o domínio da aplicação alvo. Técnicas de escalabilidade dinâmica de freqüência e voltagem fundamentam-se em gerenciar o nível de tensão e frequência da CPU, permitindo que o sistema alcance apenas o desempenho suficiente para processar a carga de trabalho, reduzindo, consequentemente, o consumo de energia. Para explorar a eficiência energética e desempenho, foram adicionados recursos ao MPSoCBench, visando explorar escalabilidade dinâmica de voltaegem e frequência (DVFS) e foram validados três mecanismos com base na estimativa dinâmica de energia e taxa de uso de CPUAbstract: Recent design methodologies and tools aim at enhancing the design productivity by providing a software development platform before the definition of the final Multiprocessor System on Chip (MPSoC) architecture details. However, simulation can only be efficiently performed when using a modeling and simulation engine that supports system behavior description at a high abstraction level. The lack of MPSoC virtual platform prototyping integrating both scalable hardware and software in order to create and evaluate new methodologies and tools motivated us to develop the MPSoCBench, a scalable set of MPSoCs including four different ISAs (PowerPC, MIPS, SPARC, and ARM) organized in platforms with 1, 2, 4, 8, 16, 32, and 64 cores, cross-compilers, IPs, interconnections, 17 parallel version of software from well-known benchmarks, and power consumption estimation for main components (processors, routers, memory, and caches). An important demand in MPSoC designs is the addressing of energy consumption constraints as early as possible. Whereas processor performance comes with a high power cost, there is an increasing interest in exploring the trade-off between power and performance, taking into account the target application domain. Dynamic Voltage and Frequency Scaling techniques adaptively scale the voltage and frequency levels of the CPU allowing it to reach just enough performance to process the system workload while meeting throughput constraints, and thereby, reducing the energy consumption. To explore this wide design space for energy efficiency and performance, both for hardware and software components, we provided MPSoCBench features to explore dynamic voltage and frequency scalability (DVFS) and evaluated three mechanisms based on energy estimation and CPU usage rateDoutoradoCiência da ComputaçãoDoutora em Ciência da Computaçã

    MAREX: A general purpose hardware architecture for membrane computing

    Get PDF
    Membrane computing is an unconventional computing paradigm that has gained much attention in recent decades because of its massively parallel character and its usefulness to build models of complex systems. However, until now, there was no generic hardware implementation of P systems. Computational frameworks to execute P systems up to this day rely on the simulation of the parallel working mechanisms of P systems by inherently sequential algorithms. Such algorithms can then be implemented as is or can be parallelized, up to a certain point, to run on parallel computers. However, this is not as efficient as a dedicated parallel hardware implementation. There have been ad hoc implementations of particular P systems for parallel hardware, but they lack to be problem-generic or they are not scalable enough to implement large P systems. In this paper, a first intrinsically parallel hardware architecture to implement generic P system models is introduced. It is designed to be straightforwardly implemented in programmable logic circuits like FPGAs. The feasibility and correct execution of our architecture has been verified by means of a simulator, and several simulation results for different P system examples have been analysed to foresee the pros and cons of this design.Ministerio de Ciencia e Innovacion of Spain and the AEI/FEDER (EU) project TIN2017-89842-P (MABICAP)Ministerio de Ciencia e Innovacion of Spain and the AEI/FEDER (EU) project PID2019-110455GB-I00 (Par-HoT

    A new P-Lingua toolkit for agile development in membrane computing

    Get PDF
    Membrane computing is a massively parallel and non-deterministic bioinspired computing paradigm whose models are called P systems. Validating and testing such models is a challenge which is being overcome by developing simulators. Regardless of their heterogeneity, such simulators require to read and interpret the models to be simulated. To this end, P-Lingua is a high-level P system definition language which has been widely used in the last decade. The P-Lingua ecosystem includes not only the language, but also libraries and software tools for parsing and simulating membrane computing models. Each version of P-Lingua supported new types or variants of P systems. This leads to a shortcoming: Only a predefined list of variants can be used, thus making it difficult for researchers to study custom ones. Moreover, derivation modes cannot be user-defined, i.e, the way in which P system computations should be generated is determined by the simulation algorithm in the source code. The main contribution of this paper is a completely new design of the P-Lingua language, called P-Lingua 5, in which the user can define custom variants and derivation modes, among other improvements such as including procedural programming and simulation directives. It is worth mentioning that it has backward-compatibility with previous versions of the language. A completely new set of command-line tools is provided for parsing and simulating P-Lingua 5 files. Finally, several examples are included in this paper covering the most common P system types.Agencia Estatal de Investigación TIN2017-89842-

    Towards resource-aware computing for task-based runtimes and parallel architectures

    Get PDF
    Current large scale systems show increasing power demands, to the point that it has become a huge strain on facilities and budgets. The increasing restrictions in terms of power consumption of High Performance Computing (HPC) systems and data centers have forced hardware vendors to include power capping capabilities in their commodity processors. Power capping opens up new opportunities for applications to directly manage their power behavior at user level. However, constraining power consumption causes the individual sockets of a parallel system to deliver different performance levels under the same power cap, even when they are equally designed, which is an effect caused by manufacturing variability. Modern chips suffer from heterogeneous power consumption due to manufacturing issues, a problem known as manufacturing or process variability. As a result, systems that do not consider such variability caused by manufacturing issues lead to performance degradations and wasted power. In order to avoid such negative impact, users and system administrators must actively counteract any manufacturing variability. In this thesis we show that parallel systems benefit from taking into account the consequences of manufacturing variability, in terms of both performance and energy efficiency. In order to evaluate our work we have also implemented our own task-based version of the PARSEC benchmark suite. This allows to test our methodology using state-of-the-art parallelization techniques and real world workloads. We present two approaches to mitigate manufacturing variability, by power redistribution at runtime level and by power- and variability-aware job scheduling at system-wide level. A parallel runtime system can be used to effectively deal with this new kind of performance heterogeneity by compensating the uneven effects of power capping. In the context of a NUMA node composed of several multi core sockets, our system is able to optimize the energy and concurrency levels assigned to each socket to maximize performance. Applied transparently within the parallel runtime system, it does not require any programmer interaction like changing the application source code or manually reconfiguring the parallel system. We compare our novel runtime analysis with an offline approach and demonstrate that it can achieve equal performance at a fraction of the cost. The next approach presented in this theis, we show that it is possible to predict the impact of this variability on specific applications by using variability-aware power prediction models. Based on these power models, we propose two job scheduling policies that consider the effects of manufacturing variability for each application and that ensures that power consumption stays under a system wide power budget. We evaluate our policies under different power budgets and traffic scenarios, consisting of both single- and multi-node parallel applications.Los sistemas modernos de gran escala muestran crecientes demandas de energía, hasta el punto de que se ha convertido en una gran presión para las instalaciones y los presupuestos. Las restricciones crecientes de consumo de energía de los sistemas de alto rendimiento (HPC) y los centros de datos han obligado a los proveedores de hardware a incluir capacidades de limitación de energía en sus procesadores. La limitación de energía abre nuevas oportunidades para que las aplicaciones administren directamente su comportamiento de energía a nivel de usuario. Sin embargo, la restricción en el consumo de energía de sockets individuales de un sistema paralelo resulta en diferentes niveles de rendimiento, por el mismo límite de potencia, incluso cuando están diseñados por igual. Esto es un efecto causado durante el proceso de la fabricación. Los chips modernos sufren de un consumo de energía heterogéneo debido a problemas de fabricación, un problema conocido como variabilidad del proceso o fabricación. Como resultado, los sistemas que no consideran este tipo de variabilidad causada por problemas de fabricación conducen a degradaciones del rendimiento y desperdicio de energía. Para evitar dicho impacto negativo, los usuarios y administradores del sistema deben contrarrestar activamente cualquier variabilidad de fabricación. En esta tesis, demostramos que los sistemas paralelos se benefician de tener en cuenta las consecuencias de la variabilidad de la fabricación, tanto en términos de rendimiento como de eficiencia energética. Para evaluar nuestro trabajo, también hemos implementado nuestra propia versión del paquete de aplicaciones de prueba PARSEC, basada en tareas paralelos. Esto permite probar nuestra metodología utilizando técnicas avanzadas de paralelización con cargas de trabajo del mundo real. Presentamos dos enfoques para mitigar la variabilidad de fabricación, mediante la redistribución de la energía a durante la ejecución de las aplicaciones y mediante la programación de trabajos a nivel de todo el sistema. Se puede utilizar un sistema runtime paralelo para tratar con eficacia este nuevo tipo de heterogeneidad de rendimiento, compensando los efectos desiguales de la limitación de potencia. En el contexto de un nodo NUMA compuesto de varios sockets y núcleos, nuestro sistema puede optimizar los niveles de energía y concurrencia asignados a cada socket para maximizar el rendimiento. Aplicado de manera transparente dentro del sistema runtime paralelo, no requiere ninguna interacción del programador como cambiar el código fuente de la aplicación o reconfigurar manualmente el sistema paralelo. Comparamos nuestro novedoso análisis de runtime con los resultados óptimos, obtenidos de una análisis manual exhaustiva, y demostramos que puede lograr el mismo rendimiento a una fracción del costo. El siguiente enfoque presentado en esta tesis, muestra que es posible predecir el impacto de la variabilidad de fabricación en aplicaciones específicas mediante el uso de modelos de predicción de potencia conscientes de la variabilidad. Basados ​​en estos modelos de predicción de energía, proponemos dos políticas de programación de trabajos que consideran los efectos de la variabilidad de fabricación para cada aplicación y que aseguran que el consumo se mantiene bajo un presupuesto de energía de todo el sistema. Evaluamos nuestras políticas con diferentes presupuestos de energía y escenarios de tráfico, que consisten en aplicaciones paralelas que corren en uno o varios nodos

    Towards resource-aware computing for task-based runtimes and parallel architectures

    Get PDF
    Current large scale systems show increasing power demands, to the point that it has become a huge strain on facilities and budgets. The increasing restrictions in terms of power consumption of High Performance Computing (HPC) systems and data centers have forced hardware vendors to include power capping capabilities in their commodity processors. Power capping opens up new opportunities for applications to directly manage their power behavior at user level. However, constraining power consumption causes the individual sockets of a parallel system to deliver different performance levels under the same power cap, even when they are equally designed, which is an effect caused by manufacturing variability. Modern chips suffer from heterogeneous power consumption due to manufacturing issues, a problem known as manufacturing or process variability. As a result, systems that do not consider such variability caused by manufacturing issues lead to performance degradations and wasted power. In order to avoid such negative impact, users and system administrators must actively counteract any manufacturing variability. In this thesis we show that parallel systems benefit from taking into account the consequences of manufacturing variability, in terms of both performance and energy efficiency. In order to evaluate our work we have also implemented our own task-based version of the PARSEC benchmark suite. This allows to test our methodology using state-of-the-art parallelization techniques and real world workloads. We present two approaches to mitigate manufacturing variability, by power redistribution at runtime level and by power- and variability-aware job scheduling at system-wide level. A parallel runtime system can be used to effectively deal with this new kind of performance heterogeneity by compensating the uneven effects of power capping. In the context of a NUMA node composed of several multi core sockets, our system is able to optimize the energy and concurrency levels assigned to each socket to maximize performance. Applied transparently within the parallel runtime system, it does not require any programmer interaction like changing the application source code or manually reconfiguring the parallel system. We compare our novel runtime analysis with an offline approach and demonstrate that it can achieve equal performance at a fraction of the cost. The next approach presented in this theis, we show that it is possible to predict the impact of this variability on specific applications by using variability-aware power prediction models. Based on these power models, we propose two job scheduling policies that consider the effects of manufacturing variability for each application and that ensures that power consumption stays under a system wide power budget. We evaluate our policies under different power budgets and traffic scenarios, consisting of both single- and multi-node parallel applications.Los sistemas modernos de gran escala muestran crecientes demandas de energía, hasta el punto de que se ha convertido en una gran presión para las instalaciones y los presupuestos. Las restricciones crecientes de consumo de energía de los sistemas de alto rendimiento (HPC) y los centros de datos han obligado a los proveedores de hardware a incluir capacidades de limitación de energía en sus procesadores. La limitación de energía abre nuevas oportunidades para que las aplicaciones administren directamente su comportamiento de energía a nivel de usuario. Sin embargo, la restricción en el consumo de energía de sockets individuales de un sistema paralelo resulta en diferentes niveles de rendimiento, por el mismo límite de potencia, incluso cuando están diseñados por igual. Esto es un efecto causado durante el proceso de la fabricación. Los chips modernos sufren de un consumo de energía heterogéneo debido a problemas de fabricación, un problema conocido como variabilidad del proceso o fabricación. Como resultado, los sistemas que no consideran este tipo de variabilidad causada por problemas de fabricación conducen a degradaciones del rendimiento y desperdicio de energía. Para evitar dicho impacto negativo, los usuarios y administradores del sistema deben contrarrestar activamente cualquier variabilidad de fabricación. En esta tesis, demostramos que los sistemas paralelos se benefician de tener en cuenta las consecuencias de la variabilidad de la fabricación, tanto en términos de rendimiento como de eficiencia energética. Para evaluar nuestro trabajo, también hemos implementado nuestra propia versión del paquete de aplicaciones de prueba PARSEC, basada en tareas paralelos. Esto permite probar nuestra metodología utilizando técnicas avanzadas de paralelización con cargas de trabajo del mundo real. Presentamos dos enfoques para mitigar la variabilidad de fabricación, mediante la redistribución de la energía a durante la ejecución de las aplicaciones y mediante la programación de trabajos a nivel de todo el sistema. Se puede utilizar un sistema runtime paralelo para tratar con eficacia este nuevo tipo de heterogeneidad de rendimiento, compensando los efectos desiguales de la limitación de potencia. En el contexto de un nodo NUMA compuesto de varios sockets y núcleos, nuestro sistema puede optimizar los niveles de energía y concurrencia asignados a cada socket para maximizar el rendimiento. Aplicado de manera transparente dentro del sistema runtime paralelo, no requiere ninguna interacción del programador como cambiar el código fuente de la aplicación o reconfigurar manualmente el sistema paralelo. Comparamos nuestro novedoso análisis de runtime con los resultados óptimos, obtenidos de una análisis manual exhaustiva, y demostramos que puede lograr el mismo rendimiento a una fracción del costo. El siguiente enfoque presentado en esta tesis, muestra que es posible predecir el impacto de la variabilidad de fabricación en aplicaciones específicas mediante el uso de modelos de predicción de potencia conscientes de la variabilidad. Basados ​​en estos modelos de predicción de energía, proponemos dos políticas de programación de trabajos que consideran los efectos de la variabilidad de fabricación para cada aplicación y que aseguran que el consumo se mantiene bajo un presupuesto de energía de todo el sistema. Evaluamos nuestras políticas con diferentes presupuestos de energía y escenarios de tráfico, que consisten en aplicaciones paralelas que corren en uno o varios nodos.Postprint (published version
    corecore