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Membrane computing is a massively parallel and non-deterministic bioinspired computing
paradigm whose models are called P systems. Validating and testing such models is a chal-
lenge which is being overcome by developing simulators. Regardless of their heterogeneity,
such simulators require to read and interpret the models to be simulated. To this end, P-
Lingua is a high-level P system definition language which has been widely used in the last
decade. The P-Lingua ecosystem includes not only the language, but also libraries and soft-
ware tools for parsing and simulating membrane computing models. Each version of P-
Lingua supported new types or variants of P systems. This leads to a shortcoming: Only
a predefined list of variants can be used, thus making it difficult for researchers to study
custom ones. Moreover, derivation modes cannot be user-defined, i.e, the way in which
P system computations should be generated is determined by the simulation algorithm
in the source code.
The main contribution of this paper is a completely new design of the P-Lingua language,

called P-Lingua 5, in which the user can define custom variants and derivation modes,
among other improvements such as including procedural programming and simulation
directives. It is worth mentioning that it has backward-compatibility with previous ver-
sions of the language. A completely new set of command-line tools is provided for parsing
and simulating P-Lingua 5 files. Finally, several examples are included in this paper cover-
ing the most common P system types.
� 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Membrane computing [1–5] is an unconventional model of computation inspired by the structure and functions of living
cells. The computational devices in membrane computing are called membrane systems or P systems. They consist of a struc-
ture of compartments containing objects that evolve along a computation according to a set of rewriting rules. The compart-
ments, a.k.a. membranes, can also evolve by the application of special rules that are able to divide, separate or create
membranes. In Fig. 1, a simple cell-like membrane system with its characteristic hierarchical structure is depicted. There
are many types of P systems, called P system variants or just variants.
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Fig. 1. A simple cell-like membrane system.

I. Pérez-Hurtado, D. Orellana-Martín, M.A. Martínez-del-Amor et al. Information Sciences 587 (2022) 1–22
From the beginning, membrane computing has been applied to a large variety of research areas [6]: The study of the P vs
NP problem [5,7–9]; the modelling of biological systems from the microscopic level [10,11] to the ecosystem level [12,13];
the modelling of certain types of economics systems [14]; the study of neural models [15,16] incorporating fuzzy reasoning
[17]; the simulation of robot controllers [18–20]; the application to robot motion planning problems [21,22], and many
more.

Nevertheless, it is important to remark that today there is no biological implementation of such devices, neither in vivo
nor in vitro. Even though there are some promising solutions in silico by using parallel architectures [23], they must deal with
problems such as genuine non-determinism, generation of computational resources on demand and other challenges at the
frontiers of tractability. Despite researchers can always study P system models on the whiteboard, additional software/hard-
ware tools to design, debug and apply such models have been proven to be useful in order to accelerate and improve the
investigation on membrane computing. In this paper, the term P system simulator refers to a software or hardware tool cap-
able of reproducing the behavior of one or more P systems. A simulator can be incorporated as a module or library in a larger
software according to a particular application. On the other hand, a simulator can be used just to assist in the creation of new
P system models.

The computation of P systems differs significantly from the way in which conventional computers (i.e. machines based on
Von Neumann architecture) operate. First, P systems are non-deterministic machines in which the computation proceeds
according to a multi-branch computational tree. Second, P systems are massively parallel devices in which rules can be exe-
cuted in parallel for all compartments. Moreover, it is possible to create new compartments by applying special rules, thus
generating new computational resources on demand dynamically. These features make it a real challenge to simulate certain
types of P systems in an efficient manner [24].

Despite these challenges, today there is a wide variety of P system simulators [25] based on different architectures: From
sequential simulators [26], in which only one thread of execution is applied, to parallel simulators based on multi-threading
programming [22], FPGAs [23,27] or GPUs [28–31].

A common element required in all these simulators is the input module. It is the software or hardware module used to
define the P systems to be simulated. There are several approaches: From ad hoc simulators [30,21] in which the definition
is integrated in the source code, to definition languages [32] specifically designed to express P systems, which is the strategy
followed by P-Lingua [32–37]. From more than a decade, P-Lingua language has been progressively extended to accept new
variants of P systems. A GNU GPLv3 Java library called pLinguaCore [38] includes the necessary code to parse P-Lingua files,
produce P system simulations and generate output files. A fork of the library was integrated in the project MeCoSim (Mem-
brane Computing Simulator) [39,40] in order to offer the users a general purpose application to design, simulate, analyse and
verify different types of models based on P systems (and to define custom user interfaces oriented to the end users). This
library, pLinguaCore, can also transform P-Lingua files defining P systems to other formats such as XML and Binary after ana-
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lysing the files and ensuring they are error-free. This is the approach used for the input module in PMCGPU [41], a project
aimed to develop parallel simulators for P systems.

P-Lingua has been successfully applied to several fields [32]: From assisting the design process of new P system models
[37,36] to the application to ecosystem modelling [13] and robot path planning [21]. In general terms, P-Lingua and its
related tools and libraries have provided to the research community an agile development solution for software based on
membrane computing.

Each P system variant has its own syntax and semantics. The syntax defines the set of valid expressions in the variant. On
the other hand, the semantics or derivation mode describes how P system computations must be generated. The traditional
approach in P-Lingua was to progressively extend the language for new variants. Each supported variant is related to a
unique identifier which has to be included at the beginning of the P-Lingua file. Thus, after reading the identifier, the pLin-
guaCore library can apply a specific parser to recognize the corresponding syntax. This led to several shortcomings: It is
not possible for the P-Lingua user to work directly with a custom P system variant, they must work with those types of P
systems whose syntax has been specifically defined in pLinguaCore. Moreover, there are several versions and forks of the
library, making it difficult to maintain them. On the other hand, the semantics for each variant is implemented in a P system
simulator. The library pLinguaCore includes one or more simulators for each supported variant. It is also possible to use
external simulators. In any case, the semantics is hard-coded in the simulator and it is not possible for the P-Lingua user
to experiment with a custom derivation mode.

In this paper, we propose a completely new design of the P-Lingua framework in order to solve the shortcomings men-
tioned above. It includes a new version of the language, called P-Lingua 5, as well as a set of software tools called the P-
Lingua 5 toolkit. In such a new version of the language, the syntax and semantics of the variants, instead of being hard-
coded, can be defined together with the corresponding P system definitions. Therefore, it is not necessary to implement a
custom parser for each P system variant. A stand-alone compiler for P-Lingua 5 developed in C++ under GNU GPLv3 license
is included in the toolkit, somehow replacing the parsers in pLinguaCore. On the other hand, the user can define derivation
modes in P-Lingua 5, being possible to use generic simulators that are able to simulate P systems according to custom deriva-
tion modes. Indeed, the toolkit includes a simulator implemented in C++ under GNU GPLv3 license which is able to produce P
System computations for the derivation modes that can be defined in P-Lingua 5, replacing most of the simulators in pLin-
guaCore. This approximation has backward-compatibility with previous versions of the language. Thus, old P-Lingua files can
be used with little or no modification. Examples for the most common variants are included in this paper. Other useful
improvements have also been included in the language, such as procedural programming, simulation directives, header files,
mathematical functions, string functions and user input/output functions.

The rest of this paper is structured as follows: Section 2 introduces the necessary preliminaries for the paper. Section 3 is
focused on the new design of the framework, explaining how to write custom syntax and semantics for P systems, along with
the rest of improvements. The next Section is dedicated to the software presented in this work, i.e., the P-Lingua 5 compiler
and the P-Lingua 5 simulator. Section 5 explains how to connect the output of the compiler to external simulators. Section 6
analyses the advantages and disadvantages of our new design and compares it with other similar solutions in the literature.
Finally, Section 7 enumerates the conclusions of this work and describes possible lines of future work.
2. Background

2.1. Membrane Computing

As mentioned in the previous Section, membrane computing is a bio-inspired unconventional computing paradigm, tak-
ing inspiration from the way cells interact with the environment (sending/sensing signals) and process information within
them (biochemical reactions transforming and transporting molecules across inner vesicles/compartments). More precisely,
a P system is a kind of automata whose behaviour is governed by rewriting rules that are applied over multisets of objects
distributed along its compartments. A P system is defined basically by three components:

� A set of rewriting rules, that change the objects or their location within the membrane system (possibly also altering the
structural elements).
� The structure of the system, defined (implicitly or explicitly) by a graph.
� The initial configuration, with both the initial contents of the compartments and the initial structure of the system.

A configuration of a P system is an instantaneous description of itself, defining both the multiset of objects present inside
each compartment and the structure of the system at a certain moment of the computation. Let P be a P system. By the
application of a set of rules of P at a certain moment t we can pass from configuration Ct to Ctþ1 in a transition or compu-
tation step, and we denote it by Ct)PCtþ1. If no rules can be applied to a certain configuration, we call it a halting
configuration.

A computation C of length nþ 1 of a P system is a sequence ðC0;C1; . . . ;CnÞ where Ci)PCiþ1, for 0 6 i 6 n� 1. If Cn is a
halting configuration, we call C a halting computation.

P systems are non-deterministic machines; that is, from a certain configuration, two different rules can be applicable to a
certain object. In that moment, a decision is made and a certain rule will be applied to such object. It can be viewed as the
3
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computation branches and that one rule is chosen in the first branch and the other rule is chosen in the second branch. Due
to the non-deterministic nature of these systems, different ‘‘runs” can lead to different computations. We say that a P system
P has a computation tree, and each ‘‘run” goes through a computation branch.

The applicable rules are defined by the semantics of the system. In a certain configuration, different multisets of rules can
be applied. Let R be the set of multisets of possible applicable rules to the P system P. A derivation mode is a way to select
certain multisets of rules from R according to some criteria. For instance, maximally parallel mode is a derivation mode that
selects all the non-extensible multisets of rules from R. Finally, a non-deterministic choice is made from the set of these
selected multisets of rules. A large study about derivation modes can be found in [42,43].

From the beginning of the discipline, several variants of P systems have been defined, differing in their structure, types of
rules, derivation mode and other aspects.

2.2. Simulation in Membrane Computing

Along the present paper, it is widely used the term P system simulator, or just simulator, denoting a software or hardware
tool capable of reproducing the behavior of one or more P systems. More precisely, according to the implementations in
pLinguaCore [38], PMCGPU [41] and MeCoSim [40]: given a P system P, a simulator is a tool which receives (1) the set of
rules R defined in P; (2) a starting configuration C0 compatible with P, not necessarily being the initial configuration of
P; and (3) a maximum number n 2 N of computation steps to simulate. The simulator produces a finite sequence
ðC0; . . . ;CmÞ with 0 6 m 6 n, following a computation branch of P from C0 to Cm. The sequence ends when a halting config-
uration is included or when m ¼ n. Therefore, n is an upper bound in order to avoid an infinite simulation if the halting con-
dition cannot be reached in a reasonable number of steps. For a generic implementation matching a wide range of P system
variants, the halting condition can be triggered when no rules can be applied to the current configuration. The output of the
simulation consists of the sequence ðC0; . . . ;CmÞ and the corresponding multisets of rules ðR0; . . . ;Rm�1Þ applied at each step
of the computation. From a software development point of view, a minimal P system simulator can be obtained by imple-
menting the following three functions:

1. selectRules(Ci;R): Ri

2. executeRules(Ci;Ri): Ciþ1
3. isHalting(Ci): Boolean

The first function, selectRules, computes a multiset of applicable rules for a particular configuration given the set of
rules of the P system. Such a function should follow a derivation mode according to the variant of the P system being sim-
ulated. It is important to remark that, due to the non-deterministic nature of P systems, different calls of the function with
the same input can return different outputs. In that case, it is not required a particular probability distribution of outputs, but
for debugging purposes, the uniform random distribution could be appropriate. Another possible implementation is to
obtain always the same output for the same input. This approach can be implemented in a more efficient manner and it
is enough to simulate certain types of P systems such as those with confluent computations (i.e. P systems returning the
same results independently on the computation branch followed). This view would be useful when the focus is in the result,
not in the full simulation output (sequence of transitions plus multisets of rules). The executeRules function applies a mul-
tiset of rules (generally, the one obtained by the previous function) to a given configuration, returning the next configuration.
Such a function can be implemented in a generic manner, regardless of the P system variant. Finally, the function isHalting

returns True if a given configuration is a halting configuration, and False otherwise. This function should be implemented
depending on the variant being used.

In general terms, the expression simulation algorithm will refer to the algorithm which is implemented by a simulator to
produce a P system computation. As an example, Algorithm 1 shows the general scheme of a sequential simulation algorithm
implemented by the simulators in pLinguaCore [36]. It can be used for a wide range of P system variants just changing the
code of the functions.

Algorithm1: A sequential simulation algorithm

bf Require: Set of rules R; starting configuration C; maximum number n of computation steps to simulate.
i 0
Ci  C
whilei < n and not isHalting(Ci) do
Ri  selectRules(Ci, R)
Ciþ1  executeRules(Ci, Ri)
i iþ 1

end while
return the sequences ðC0; . . . ;CiÞ and ðR0; . . . ;RiÞ
4
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According to the way in which the input of the simulator is read, we can classify them into three categories: ad hoc sim-
ulators, where the P system definition, i.e., its rules and/or its starting configuration, is totally or partially integrated together
with the source code of the simulator; simulators for a P system variant, where the P system definition is given by external
files, but the derivation mode is hard-coded in the simulator (which is the approximation of P-Lingua 4) and generic simu-
lators, when the whole input (syntax and semantics of the P system to be simulated) is given by one or more external files. In
this paper, we focus on the third category, being P-Lingua 5 a language to define such an input and being the P-Lingua 5
toolkit the software required to parse and simulate the corresponding P system definitions.

2.3. P-Lingua

The approximation of P-Lingua is to use a programming language to define P systems. The files written in P-Lingua are
close to the standard scientific notation, minimizing the effort of writing them. P-Lingua code is parametric, using variables
and iterators, modular, using reusable source blocks, and can be translated to other formats by using parsers. We could say
that the main goal of the P-Lingua language is to minimize the time from the whiteboard to the computer.

P-Lingua aims at flexibility and extensibility to simulate P systems. The term itself is employed at different extents, so it is
usually confused. P-Lingua can be used to denote:

� the software project: P-Lingua is an open-source software project published under license GNU GPL license. All the devel-
oped code is freely available to the community, and we hope that it helps other researchers to run their models and to
develop new simulators. It includes the parser, the generation of files, and the simulation framework.
� the simulation framework: more commonly known as pLinguaCore, it is Java framework that aims at simulating P systems
in a flexible and extensible way. Several design patterns of object oriented programming were employed to help devel-
oping new simulations in a clear and clean manner.
� the programming language: instead of having a specific GUI to enter the information of the models, P-Lingua enables P-
system designers to write their models into plain-text files in a very similar way (i.e. with similar syntax) than they write
them down in paper or whiteboard.
� the files with.pli extension: files including models described in P-Lingua programming language have the.pli extension, and
they are the input for the simulation software framework.
� the command-line tool: pLinguaCore can be employed from the Terminal (Linux) or Cmd or equivalent (Windows), using a
command-line tool with specific parameters to define the input.pli files, the output files (when used as a compiler) or the
simulation options (when used as a simulator).
� the translator/compiler to binary files: efficient, parallel simulators came after P-Lingua, looking for small runtimes. They
harness the P-Lingua parsing engine in order to process.pli files, and specific binary files are generated for them.

PLinguaCore [38] is a GNU GPL library written in Java for parsing P-Lingua files, simulating computations and translating
input P-Lingua files to other file formats. The library detects errors in the file and reports them such as a regular compiler
tool. For each supported P system variant, several simulation algorithms are included. Eventually, the library translates files,
which define a P system, between formats; for instance, from P-Lingua format to binary format.

Each version of the library is associated with an extension of the programming language and simulation engines to cover
more types of P systems [32]:

� pLinguaCore 1.0: The initial version. It was able to define active membrane P systems with rules to create new mem-
branes by division. pLinguaCore was in very early state.
� pLinguaCore 2.0: Several cell-like P system models and built-in simulators for each supported model were added.
� pLinguaCore 2.1: Support for tissue-like P systems with division rules were added.
� pLinguaCore 3.0: The simulation algorithm called DCBA for Population Dynamics P systems (PDP systems) was added
[44], along with a new binary output file for PDP systems. In this version, stochastic P systems were discontinued. Some
bugs were fixed.
� pLinguaCore 4.0: Support for Spiking Neural P systems was added. Moreover, Tissue-Like P systems with Cell Separation
Rules were also added. Some bugs were also fixed.

The development of pLinguaCore continued as part of MeCoSim tool [39], a flexible GUI to solve specific problems by
means of P systems. Among the main computing models added within P-Lingua version inside MeCoSim we can find:

� sep1pt
� Simple kernel P systems.
� Probabilistic Guarded (Scripted) P systems.
� Evolutional-communication P systems.
� Fuzzy Reasoning Spiking Neural P systems.
� Cell-like Spiking Neural P systems.
� P systems with minimal cooperation.
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� Tissue P systems with promoters.
� Spiking Neural P systems with delay on synapses.
� Spiking Neural P systems with autapses.

It is worth mentioning that MeCoSim is fully compatible with any version of P-Lingua, and uses pLinguaCore as its engine
for parsing and simulation (additionally, it allows the simulation through other external simulators, but its predominant use
is definitely based on pLinguaCore). Thus, MeCoSim mainly exposes the types of computing models, with their parsers and
simulators, provided by the version of pLingua we decide to deploy with MeCoSim. Therefore, depending on which version of
pLinguaCore (see previous sections) we use, a different set of models and simulators will be available to use in MeCoSim.

3. Design

The whole P-Lingua framework has been redesigned in this paper, i.e., not only the language but also its related tools and
the simulation workflow 1. The main ideas of the new design are the following:

� The user can define in P-Lingua 5 custom P system variants by means of three mechanisms: Definition of P system rule
patterns (SubSection 3.1), definition of derivation modes (SubSection 3.2) and definition of simulation directives (SubSec-
tion 3.7). The first one is used to define the syntactic constraints for the rules allowed in the variant. The second one is
used to define the way in which the rules should be executed. Finally, simulation directives can optionally be included to
provide additional information to the simulator that cannot be expressed by the former methods. Most of the existing
variants in the literature can be expressed in P-Lingua 5. In the website and in A there are several examples.
� Other improvements have been included to the language, such as procedural programming (SubSection 3.3), mathemat-
ical functions (SubSection 3.4), string functions (SubSection 3.5), user input/output functions (SubSection 3.6) and inclu-
sion of header files (SubSection 3.8).
� A compiler has been implemented to parse P-Lingua 5 files, detect syntactic errors and generate the corresponding P sys-
tem definitions in XML, JSON, Binary and low-level P-Lingua formats (SubSection 4.1). It is important to remark that the
compiler does not simulate the defined P systems, it only validates the syntax and translates the definitions to low-level
formats that external simulators can read and simulate. The information about the derivation mode and simulation direc-
tives is passed to the external simulator, which is in charge of interpreting this information and producing the P system
computations requested.
� A P-Lingua 5 generic simulator is included in the toolkit (SubSection 4.2) which is able to simulate P systems according to
the custom derivation modes that can be expressed in P-Lingua 5. External simulators for specific variants can also be
used as explained in Section 5.

3.1. P system rule patterns

One of the most relevant syntactic differences among the existing P system variants is related to the type of P system
rules that can be used on each of them. From the point of view of P-Lingua 5, the user can write patterns to define types
of rules. Patterns are grouped into sets and included together with the corresponding P system definitions. In this way,
the parser only recognizes the rules matching the included patterns. It is worth mentioning that the user does not have
to write the corresponding patterns each time a P system is defined, since the files can be reused as explained in SubSec-
tion 3.8. Moreover, such patterns do not contain information about the derivation mode, i.e., they are used to recognize valid
rules, not to provide information about how to apply the rules. Next, a brief description of the P-Lingua 5 syntax to define a
set of rule patterns is included. A set of rule patterns can be written as follows:

!name

{pattern1;
pattern2;
. . .

patternN;
}

where name is a unique identifier for the set of rule patterns (also called rule type) and pattern1 to patternN are rule pat-
terns with the following syntax:

(X) LHR RELATION RHR :: ID(TYPE)
1 For a more extensive description of the P-Lingua 5 framework, including examples and tutorials, please visit the P-Lingua 5 website [45] https://github.
com/RGNC/plingua/.
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where:

� (X) is optional. The symbol X can be an integer number or the question mark character: ’?’. If such a string is included in
the pattern, the corresponding matching rules must include an integer number between parentheses at the left of the
rule. If X is the question mark character, such a number can be any integer number. Otherwise, such a number must
be exactly the value in X. It can be used as a priority value, among other possibilities.
� LHR and RHR are patterns for the left-hand and right-hand sides of the matching rules, respectively. Let us note that
rewriting rules usually include a left-hand side with objects that are consumed, a relational operation (typically a right
arrow) and a right-hand side with the objects that are produced. Of course, there exist other more complex types of rules.
Special characters can be used to define or constrain the electrical charges of the membranes involved in the rule. Mem-
brane dissolution, creation, separation and/or division flags can be included. The allowed multiplicities of all the multisets
of objects in the rule can be defined or constrained, as well as the identifiers for all the membrane labels. For the sake of a
brief description, a more detailed explanation is omitted in this paper, but it can be found in the P-Lingua 5 website.
� RELATION can be the strings ’-->’, ’->’, ’<->’ or ’<-->’ representing the relation between the left-hand and right-hand
sides of the rule. The meaning of such a relation is not fixed by the parser, it will be given by the simulator according
to the semantics of the P system.
� ID is an optional string identifier and TYPE can be: ’double_t’, ’int_t’, ’long_t’ or ’string_t’, among other data types.
The idea is to optionally associate a value of the data type to each rule. It can be used as a probability constant, a kinetic
constant or a regular expression, among other possibilities.

Different sets of rule patterns can be grouped together in order to define a new P system variant. This is done using the
command @model, where the derivation mode for such rules is also specified. Details on the syntax of this command will be
explained in the next section.

Rules in a given P system definition will be recognized by P-Lingua 5 parser if and only they match any of the rule types
included in the declaration of the corresponding variant. Any non-matching rule will throw a compiler-time error. Moreover,
the parser associates a simulator directive to each rule with the name of the corresponding pattern set. In this manner, the
simulator knows exactly what type of rule is each one.
3.2. Derivation modes

From an informal point of view, a derivation mode is a set of indications explaining, for a given configuration, which are
the possible multisets of rules that the system can execute in the next step of computation. In other words, the derivation
mode guides the behaviour of the function selectRules(Ci;R) from Algorithm 1. The underlying logic of this function can
be better understood when presented as a sequence of three steps:

1. Checking rules eligibility: given a configuration C of a P system P, each membrane can discard all its rules whose LHR is
not satisfied by C (e.g. because of some object is missing, mismatching electrical charges, etc). Rules not discarded will be
referred to as eligible.

2. Applicability filter with respect to derivation mode: eligible rules are not handled independently. Typically, derivation
mode includes conditions over the whole multiset of rules to be applied.

3. Selection of the multiset of rules which will be actually applied: there may exist several multisets of rules complying with
the applicability conditions. One of them is selected non-deterministically, and passed as an argument to the next func-
tion in Algorithm 1, namely executeRules(C;R0).

Let us try to formalize this process. Given a configuration C of a P system P, let R be the set of rules from P, and let us
assume that each rule r 2 R is associated with one and only one membrane in C. This assumption can be made without loss of
generality, since rules associated with a label not appearing in C can be ignored, and if several membranes in C share the
same label we can create a copy of the corresponding rules for each of such membranes. Then, we denote by ApplðP;CÞ
the set of all multisets over R, such that the multiplicity of each rule ranges from 0 to the maximum number of times that
such rule could be applied in C. That is, for each membrane in C, the multisets in ApplðP;CÞ may contain any of the rules
associated to that membrane such that the ‘‘requisites” of their LHR are fulfilled in C, and for each rule its multiplicity is
bounded by the maximum number of times that it could be applied if competition and conflicts were not taken into account.

The first restriction to be taken into account is the competition (several rules may want to use the same symbol). Depend-
ing on the variant of P system and the selected derivation mode, some further restrictions should be taken into account. A
derivation mode indicates which of all the multisets of applicable rules are eligible to be applied to a given configuration.
Classical examples of derivation modes are maximally parallel mode (max), where only non-extendable multisets of rules
are applicable. Another derivation mode is sequential mode (sequ), that only allows one rule per configuration.
7
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In P-Lingua 5, derivation modes can be specified in the code. A maximally parallel behaviour is assumed by default,
although it can be restrained by adding restrictions for some of the rule types, via a number of special expressions, called
bound-terms. More precisely, the definition of the derivation modes in P-Lingua 5 is integrated within the declaration of
the P system variant, by means of the following sentence:
@modelðidÞ ¼ boundTerm1; . . . ;boundTermn
where @model is a reserved keyword, id is the name of the variant being defined, and boundTerm1; . . . ;boundTermn is a
sequence of bound terms with the additional condition that each rule type can appear only once in the whole sequence.

The syntax for such bound-terms can be described in a recursive way as follows:

1. A rule type (i.e. the name of a set of rule patterns previously declared) is a bound-term, which is interpreted as
‘‘unbounded”;

2. @xor(lb) is a bound-term, where lb is a list of bound-terms;
3. @n(lb) is a bound-term, where n2 N and lb is a list of bound-terms such that each B 2lb is either a rule type, or is the

form @m(lb’), with m 6 n. In this case, n is said to be the bound of the bound-term.

Cases 2 and 3 will be referred to as non-elementary bound-terms.
A type of rule a is in the context of a bound-term B if:

� B ¼ a; or
� B ¼ @bðlbÞ, with b 2 N [ fxorg and9B0 2 lb such that a is in the context of B0.

Therefore, given a P system P of a variant X, defined as @modelðXÞ ¼ boundTerm1; . . . ;boundTermn, the applicability of
the rules of P on a configuration C is defined as follows:

� If boundTermi ¼ a, for any i ¼ 1; . . . ;n, then rules of rule type a can be applied in a maximal parallel way; and
� If boundTermi ¼ @sðlbÞ with s 2 N, for any i ¼ 1; . . . ; n, then the multiset of rules to be applied will contain at most s
rules of rule types within the context of boundTermi for each membrane in C. Note that the multiset of rules must be max-
imal (up to size s on each membrane, subject to availability of objects on each of them), and any other non-elementary
bound B0 2 lb will involve stronger restrictions that must also be fulfilled.
� If boundTermi ¼ @xorðlbÞ, for any i ¼ 1; . . . ;n, then the system will non-deterministically choose one of the bound-terms
B0 2 lb and will try to apply the rules of the types in the context of B0 accordingly, while ignoring the rest (that is, rule
types in other elements of lb will not be applied in that step).

This syntax was created in a flexible way, but obviously it cannot cover all possible derivation modes that one may think
of. Actually, as it was explained above, derivation modes can be customized, but there will always be an underlying
‘‘bounded-by-rule maximally parallel” behaviour.

The classical example for a non-trivial derivation mode is the one used in P systems with active membranes. Let a be
object evolution rules, b send-in communication rules, c send-out communication rules, d dissolution rules, e division rules
for elementary membranes and f division rules for non-elementary membranes. Taking into account that, while rules of type
a can be applied in a maximal parallel way, only one rule of type b; c; d or e can be applied at most once for each membrane.
Therefore, this derivation mode could be expressed as follows:

@model(active_membranes) = evolution_rule, @1(send_in_rule, send_out_rule,
dissolution_rule,
division_elem_rule, division_non_elem_rule);

Another interesting non-trivial derivation mode is the one used in tissue P systems with symport/antiport rules and divi-
sion rules. In this model, communication rules can be applied multiple times in each cell, but if a division rule is applied in a
cell, this cell is called to be blocked, and no communication with this cell is permitted. Therefore, this derivation mode could
be defined as follows:

@model(tissue_sa_division) = @xor(communication_rule, @1(division_rule));
8
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3.3. Procedural programming

From its early versions, P-Lingua supports modular and parametric programming to define P systems. A P-Lingua defini-
tion contains one or more independent modules defining P system rules, multisets of objects and membrane structures.
There must be a main module to begin the P system definition. The rest of the modules can be called one or more times from
any other module.

Moreover, P-Lingua uses a technique known as parametric sentences in order to easily define sets of rules. For instance, the
next P-Lingua sentence defines 1000 rules in only one line of code:

[ai --> bi + 1]’h: 1 <= i <= 1000;

Indeed, the concept of parametric sentences can be applied to other types of P-Lingua declarations, including module
calls. For instance, the next sentence executes 1000 calls to module f with parameter i:

f(i): 1 <= i <= 1000;

Furthermore, it is possible to define blocks of sentences by using curly braces. A block of sentences can also be associated
to parameters. The next example combines all the concepts described above:

{
a{j} [b{i}]’1 --> b{j + 1} [a{i-1}]’1;
+[c{i + j} --> c{i-j}, d{k}]’2: 1<=k<=5;
f(i,j);

}:1 <= i <= 10, 1<=j<=10;

This example describes a block parametrized with i and j;1 6 i; j 6 10, with two rules: the first one is associated with
membrane labeled by 1 and neutral charge, taking object aj in the parent and bi inside membrane 1, and evolve them to
object bjþ1 in the parent and object ai�1 in the membrane; the second rule is associated with membrane labeled by 2 and
positive charge, and evolves object ciþj to objects ci�j; dk inside that membrane, with 1 6 k 6 5. Moreover, function f is called
with parameters i and j. This function is defined elsewhere in the P-Lingua file.

Modular and parametric programming in P-Lingua can be seen as a constrained type of procedural programming, in
which procedures (modules) contains a series of definitions to be carried out. But procedural languages are also imperative
languages in which control structures can be used to specify the flow of control in the program.

In P-Lingua 5, control structures have been included in order to fully support the paradigm of procedural programming.
Control structures can be written by using standard C syntax. The next control structures are allowed in P-Lingua 5: Multiple
alternatives structure (if-else), repeat-while structure (while) and repeat-for structure (for). The next example defines a set of
rules by using control structures in P-Lingua 5:

for (i = 1; i<= 10; i++) {
j = 0;

while (j < 10) {
if ( (i+j) % 2 == 0) {
// A rule definition inside a C style code.

[a{i} --> b{j}]’1;
}
j++;

}
}

On the other hand, modules in P-Lingua 5 can optionally return a value by using the return sentence (as in standard C). In
this way, the user can write algorithms returning values. Such values can be used, for example, as parameters for rule def-
initions. Variables (numerical, logical and string) as well as arithmetic, string, logical and bitwise operations are supported.
For more information about procedural programming in P-Lingua 5, please visit the website [45].
9
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3.4. Mathematical functions

P-Lingua 5 natively includes a library of mathematical functions. Such functions can be used in any numerical expression.
For example:

[a{i} --> b{i}]’h: 1<=i <= floor(sqrt(N));

The next functions can be used in P-Lingua 5, with the same meaning than the corresponding functions in the standard C
librarymath.h: abs(a), acos(a), acosh(a), asin(a), asinh(a), atan(a), atanh(a), atan2(b,a), ceil(a), cos(a), cosh(a), exp(a), exp2(a),
floor(a), log(a), pow(a), round(a), sin(a), sinh(a), sqrt(a), tan(a), tanh(a). The next functions have a special meaning:

� random(a): This function returns an i.i.d. random natural number in the range [0,a).
� log(a,b): This function returns the logarithm of a in base b.
� logN(a): This function returns the logarithm of a in base N, where N is a natural number > 1. For instance, log2(3).

3.5. String functions

The next string functions are supported in P-Lingua 5:

� len(str): This function returns the length of a string.
� pos(str,n): This function returns the character at position n in string str.
� cat(str0,str1): This function returns the string resulting of concatenating strings str0 and str1.
� cmp(str0,str1): This function returns true if strings str0 and str1 are equals, false otherwise.
� substr(str,a,n): This function returns the substring of str starting at position a with length n.

3.6. Input/output functions

In P-Lingua 5 it is possible to generate P systems in an interactive way. In order to achieve this, three special input/output
functions are natively supported:

� print(msg): This function prints a message to the standard output during the definition of the P system.
� printn(msg): This function is equals to the previous one, but including a line break.
� scan(): This function reads a numerical value from the standard input.

As example, the next P-Lingua fragment asks the user for a number n and then generates n rules.

print(‘‘Enter a number: ");

n = scan();

[a{i} --> a{i + 1}]’h: 1<=i <=n;
printn(n, " rules have been generated");
3.7. Simulator directives

P-Lingua can be seen as a programming language to declare P systems. Its syntax allows to define the ingredients
employed in most of the existent variants: membranes, objects and rules. Today, many general-domain programming lan-
guages include elements for high-level information that can be passed to the compiler (e.g. in C++/OpenMP they are called
directives, in Python decorators, etc.). These directives can be either dismissed by the compiler if they are not supported, or
used to improve the behavior otherwise.

A novel feature of P-Lingua 5 is the introduction of simulator directives. That is, high-level information that can be pro-
vided along with the definition of the P system, and that are passed straight to the simulator. If the simulator understands
them, they will be used to enhance the simulation or just skipped if they are not supported. In this way, the P system
designer can provide more information to the simulator rather than only the P system elements. In fact, simulation directives
can be used to optimize the simulation algorithm by providing information about how to simulate the execution of certain
rules. For instance, ecosystemmodels on PDP systems are usually designed by cycles which are repeated over the simulation
time (representing years, seasons, etc.), and these cycles are composed of modules of rules (representing phases like repro-
duction, migration, etc.). The information of cycles and modules are not part of PDP system syntax, so it cannot be repre-
sented in P-Lingua, and hence, given to the simulator. However, using simulation directives, P system designers can
attach this information to the P-Lingua file, so that the simulator knows, for each step, which rules can be executed according
10
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the design of modules [30]. Moreover, directives can be used to improve the expressivity of the language, opening the way to
include more complex elements introduced by variants whose syntax is far from the classic models.

Simulator directives can be defined as follows:

@directive_name = directive_value;

A directive can be also defined without value; in such a case, the default value of 1 is assigned. Simulation directives are
numeric or string literals that can be associated to the rules in the P system definition and/or the whole P system definition.
Specifically:

� Global directives are declared at the global scope and are attached to the P system. For example:

@number_of_stages = 5;

@sequence = ‘‘2, 1, 4, 3, 5";

@levels = ‘‘high, low"

� Local directives are declared at the rule scope after providing the rest of the syntax (i.e. before the semicolon). Thus,
these directives are only associated to particular rules. For example:

[A]’1 --> [B]’1 [C]’1 @phase = ‘‘generation";

[S{i} G]’1 --> [SP{i}]’1 :: 0.8: 0 < i<N @stage = ‘‘feed";

An example is shown in Section 5, based on the simulator published in [30].
3.8. Header files

In P-Lingua 5, definition modules can be written in different files. A file can include the modules and definitions in
another file by using the next include directive: @include < file>, where file is the absolute or relative path to the file
to be included. Default directories can be configured in the P-Lingua 5 compiler as described in SubSection 4.1.

This approximation produces more reusable and legible code. In particular, it is recommended to write rule patterns and
derivation modes, i.e., definition of variants, in separate files. In A, there are some examples of such files.

4. The P-Lingua 5 toolkit

A software toolkit for the Linux Operating System is included in this work. The toolkit has been developed in C++ under
GNU/GPLv3 license. It is composed by two command-line programs: a compiler and a simulator. The toolkit can be down-
loaded from the P-Lingua 5 website, including instructions about the installation and its dependencies.

4.1. The P-Lingua 5 compiler

The compiler is used to parse P-Lingua 5 files and generate output files codifying the defined P systems (including deriva-
tion modes) in four alternative types of file formats: XML, JSON, Binary and low-level P-Lingua. The next properties are guar-
anteed after the execution of the compiler, if no errors occur:

� Only one output file is generated, if no errors. Such a unique file contains the definition of the P system given by the input
P-Lingua 5 files.
� Neither procedural programming nor parametric sentences nor functions or modules are included in the output file. That
is, the compiler follows the flow control in the input files, executing all the functions, modules, input/output calls and
unrolling all the parametric sentences.
� The output file is free of syntactic and semantic errors, since the compiler has checked the input files. This implies that all
rules have been successfully matched to a defined rule pattern.
� A simulation directive containing the name of the corresponding rule pattern is automatically associated to each rule, for
example, ”send-in”, ”send-out”, ”division”, etc. This information can be used by the simulator to classify and sort the rules
in an efficient manner.
11
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The user can set several parameters by using the command-line options, such as the default input directories, the output
file format, the verbosity level, and others. A detailed description of the command-line options can be found in the P-Lingua 5
website, as well as the description of the output file formats. As stated above, the output file formats are XML, JSON, Binary
and low-level P-Lingua. XML and JSON are well-known data-interchange file formats. The Binary file format generates com-
pressed binary files, i.e., non-text files. The Cereal library2 was used for the serialization to XML, JSON and Binary. Examples on
how to use the Cereal library in order to easily deserialise the XML, JSON and Binary files can be found in the website.

The low-level P-Lingua is, indeed, a subset of P-Lingua 5. The idea is to write the P system definition after unrolling sen-
tences, executing functions, following procedural programming instructions, assigning automatic simulation directives, etc.
Low-level P-Lingua can be used to debug P systems. For example, it is easy to count the number of rules in a low-level P-
Lingua definition. The next example shows a P-Lingua 5 definition using the variant described in Appendix A.1, and the cor-
responding output in low-level P-Lingua for n ¼ 2:

@include "p_active.pli"// See Appendix A.1.

@model < active_membranes>
def main() {
@mu = [[]’2]’1;

print("Input n: ");

n = scan();

multisets(n);

rules(n);

}
def multisets(n) {
@ms(1) = a1;

@ms(2) = bn;

}
def rules(n)

[a{i}]’1 --> [ai + 1, a{i + 1}]’1: 1<=i<=n;
[b{i}]’2 --> [bi-1]’2 [b{i-1}]’2: 1<=i<=n;
a{n + 1} []’2 --> +[c]’2;

}

The corresponding low-level P-Lingua is:

@model < active_membranes>
@model(active_membranes)
= evolution_rule, @1(send_in_rule, send_out_rule,
dissolution_rule, division_elem_rule, division_non_elem_rule);

def main() {
@mu = [[]’2]’1;

@ms(1) = a1;

@ms(2) = b2;

[a{1}]’1 --> [a{2}*2]’1 @ pattern = ‘‘evolution_rule";
[a{2}]’1 --> [a{3}*2]’1 @ pattern = ‘‘evolution_rule";
[b{1}]’2 --> [b{0}]’2 [b{0}]’2 @ pattern = ‘‘division_elem_rule";
[b{2}]’2 --> [b{1}]’2 [b{1}]’2 @ pattern = ‘‘division_elem_rule";
a{3} []’2 --> +[c]’2 @ pattern = ‘‘send_in_rule";

}

4.2. The P-Lingua 5 simulator

The toolkit includes a command-line simulator which is able to simulate P system computations. The simulator receives
the XML/JSON/Binary output file from the compiler and interprets the derivation mode in the file. Only derivation modes
that can be defined in P-Lingua 5 can be simulated by this simulator. For other derivation modes or special simulation algo-
rithms, the output of the compiler can be connected to external simulators (see Section 5).
2 https://uscilab.github.io/cereal/
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The parameters and instructions of the simulator are described in the P-Lingua 5 website. The simulator follows Algo-
rithm 1. It is able to simulate one of more steps of computation following a branch of the computation tree given by the
defined P system. The user can set how many steps to simulate or if the simulation should run until a halting configuration.
The simulator used pseudo-random numbers to simulate the non-determinism. The user can set the random seed for each
simulation in order to obtain the same results. Indeed, the simulator has an efficient mode in which no pseudo-random num-
bers are required because the first option is always selected for each decision in which randomization should be used. Such a
mode produces always the same computation for a given P system.

The P system configuration can be saved in XML, JSON or Binary file format after each simulation step. In this manner, it is
possible to continue a previous simulation by using such a configuration file together with the P system definition. The user
can obtain a trace about the simulation if the verbosity parameter is set. The next example is the trace of a simulation until a
halting configuration for the P system defined in SubSection 4.1:
5. Connection to external simulators

Some P system variants require very sophisticated simulation algorithms. For example, three different algorithms (BBB,
DNDP and DCBA) were defined in the literature for Population Dynamics P (PDP) systems [30]. This variant is employed as a
formal modelling framework for population dynamics, and their semantics was first implemented with BBB algorithm. The
13
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behaviour of PDP systems when rules compete for resources (i.e. two rules have intersections in their left-hand sides) was
refined with DNDP and later with DCBA. In such a situation, a generic simulator cannot be extended to support special algo-
rithms without loosing the achieved generality. Therefore, simulators for specific variants are needed. Moreover, expert
developers can prefer to implement their own simulators because of several reasons: using different languages rather than
C++, exploiting parallel architectures such as GPUs, using different technologies, freedom of coding, etc. In such situations,
the P-Lingua 5 framework can still help since it can provide the input module for the simulators, offering a high-level input
language and a compiler. In this way, developers can forget about parsing input files, declaring syntax, rule pattern matching,
etc.

As described in Section 4.1, the compiler included in the toolkit translates from P-Lingua 5 files to either XML, JSON, bin-
ary or even low-level P-Lingua file format. With such a compiled file, the external simulator has the full description of the P
system to be simulated with the guarantee that the described P system is conformed to the constraints of the variant. Since
the syntax has been already checked by the compiler, the external simulator is only in charge of implementing the corre-
sponding derivation mode.

The concepts described above were applied in [30], where a preliminary version of P-Lingua 5 was used as input language
for a PDP system simulator running on GPUs called ABCDGPU [41]. A previous version of the compiler presented in this paper
was applied to translate the P system definitions to a Binary file format. The required data structures by ABCDGPU are opti-
mized for the CUDA programming model. Therefore, a translation from the serialized data structures in the Binary file format
to the required data structures by ABCDGPU was implemented.

The implementation of ABCDGPU in [30] employed the concept of simulator directives to pass high-level information to
the simulator. Certain types of P systems are usually designed by applying an algorithmic scheme, where the computation of
the model is divided into stages or modules. For instance, the computation of P systems solving SAT usually contains a stage
for generation of membranes and another for checking the solution. Regarding ecosystem modelling, the models work in
cycles of a fixed size (in terms of transitions). The execution of rules along one cycle is subdivided in modules (e.g., for repro-
duction, feeding, etc.). This means that the model designer knows which rules are eligible at each step, because one rule can
be only in one module. This information is not part of the P system definition, and so far P-Lingua did not allow a way to pass
this kind of data. By using P-Lingua 5’s directives, the information of modules can be sent to the ABCDGPU simulator, and
hence, it is able to discard rules from selection stages when they belong to non-active modules in a step, achieving a speedup.
6. Comparison with other simulation frameworks

In the previous sections the P-Lingua 5 framework has been presented, enriching the features available in its predecessors
while keeping the original spirit of a standard language and powerful parsers making sure that the computational models
used meet the specifications of the theoretical computing models they belong to.

Other software products have pursued some converging goals, while preserving significant differences. For instance,
UPsimulator [46] was conceived to provide a flexible simulator that would accept the specification of systems and their sim-
ulation, but not putting the focus on the correctness, reliability with respect to the formal models being properly captured,
nor similarity with the syntax of the P systems in the academic papers of the field. On the contrary, the main idea in their
case was to provide a general simulator able to combine a number of possible types of rules and features and make them run
in a general simulator. For sure, that approach can be very helpful for some people to simulate arbitrary combinations of
rules with a specific execution strategy. However, most of the types and variants of P systems present particular simulation
algorithms and very specific combinations of rules and semantic aspects to consider, what makes it difficult to express the
right properties being adopted by some general oracle, generic simulator able to simulate with different strategies depend-
ing on many aspects of the variants adopted in the framework. Additionally, the syntax UPsimulator proposes for the intro-
duction of P systems is looking for common patterns and simplicity, in a more programmatic flavor, more developer-oriented
than researcher-oriented.

In this context, P-Lingua 5 aims to take the best of both approaches. Thus, it keeps the focus of P-Lingua 4 [34,32] with
regards of similarity with P system designs expressed in papers; errors detection with respect to the intended variants of P
systems being covered by the approach; and reliability in the perfect matching between the semantics and the dynamic
aspects detailed in the proposal of each new type or variant of P system. Along with that, it also expands the scope, similarly
to UPSimulator, in the sense of providing generic tools allowing the use of the parsing and simulation tools for new, unseen,
novel types and variants of P systems, with some extensions of P-Lingua language to accept the meta-definition of model
types, including both syntactic and semantic aspects, and including certain elements in the definition of the model types
covering dynamic aspects for the simulation. With these extensions, a specification of a P-Lingua model can be expressed
for each type and variant of P system, in such a way that the P system designers providing specific solutions will be able
to detect if their designs are compliant with those specifications, but this mechanism will also allow to include future model
description with this meta-language, making the framework well adapted to accept many possible combination of features
for future variants.

Despite the fact that many other software products have been developed within membrane computing community, it is
worth highlighting that most of them are focused on specific frameworks (as metabolic P systems, kernel P systems or multi-
compartmental stochastic P systems), or directly addressing particular problems with ad hoc simulators, as extensively
14
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described in [25]. To the best of our knowledge, no other software tools have been developed with the wide scope we can
find in UPSimulator or P-Lingua frameworks.
7. Conclusions

P-Lingua 5 has been presented along the paper, extending the scope of P-Lingua 4 and its predecessors. Originally, the
idea was to provide a number of tools for P system designers to describe or specify their P systems of different types using
a standard language, instead of building software tools on their own. Thus, the focus was in bringing them the technology to
make their lives easier, with a syntax being as close as possible to the way the researchers usually wrote their membrane
systems in papers. Along with this primary intent, it was crucial to detect any possible error in the designs prepared by
the authors, in such a way that, for each well-known type or variant of P system, P-Lingua would provide a parser to detect
all possible syntactic or semantic errors. Finally, it would be necessary to test the P systems designed in motion, in order to
automatically simulate the behavior of the system.

In order to achieve such goals, the P-Lingua framework has been redesigned, as detailed along the paper, including rich
syntactic features to define custom computing models (with their own P system rules accepted and the derivation modes
capturing their semantics). Besides, interesting programming structures and simulator directives (high-level information
to be bypassed to the simulator) have been added to the language. Additionally, the P-Lingua toolkit has been provided,
including a compiler to parse the source files and generate the representation of the systems in several possible output for-
mats, and a simulator to receive a P system in some of such formats and emulate certain computations, according to the syn-
tactic and semantic elements defined in its specification. Finally, some steps forward has been made regarding the
connection with external simulators, following a decoupled model, as described in previous sections.

It is important to note that P-Lingua 5 is a generic tool for membrane computing, but it is not a panacea. Whilst most of
the common P system variants can be defined in P-Lingua 5 by writing rule patterns and derivation modes, there are types of
membrane systems that do not fit in the current syntax, e.g., Enzymatic Numerical P systems (ENPS) or Dendrite P systems
(DeP) and their inclusion might be analysed in further P-Lingua releases.

Looking at the future, our new proposal should be further tested against new possible variants of P systems not covered
by previous versions of the framework. In fact, it would be interesting to define some kind of benchmarking sets of models
for particular problems of different nature and size, that stress the tools at both functional and performance level, and serve
as a valuable tool for this and possible future versions of the infrastructure provided by P-Lingua or other software projects
within Membrane computing community. Additionally, the integration with other simulation tools could be explored in
detail through some standardized protocol, increasing real inter-operability serving relevant problems being solved by
means of P systems.
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Appendix A. Case studies

A.1. Cell-like P systems

P systems with active membranes is one of the most active areas in, for instance, the search of frontiers of efficiency. In
the process of design of an efficient solution to presumably hard problems, a simulator is crucial to see if the family of P sys-
tems is functioning correctly. There are different kinds of rules in this variant:
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� Object evolution rules: ½a! u�ah , where a 2 C;u 2 Mf ðCÞ;h 2 H and a 2 fþ;�;0g.
� Send-in communication rules: a½ �ah ! ½b�bh; a; b 2 C;a; b 2 fþ;�;0g and h 2 H.

� Send-out communication rules: ½a�ah ! b½ �bh; a; b 2 C;a; b 2 fþ;�;0g and h 2 H.
� Dissolution rules: ½a�ah ! b; a; b 2 C;a 2 fþ;�;0g and h 2 H.

� Division rules for elementary membranes: x½a�ah ! ½b�b1h ½c�b2h , where a; b; c 2 C;a; b1; b2 2 fþ;�; 0g and h 2 H.

� Division rules for non-elementary membranes: ½½ �a1h1 ½ �
a2
h2
�ah ! ½½ �b1h1 �

b
h½ �b2h2 �

b
h, where a;a1;a2; b; b1; b2 2 fþ;�; 0g and

h 2 H.

We can define the syntax of the rules of P systems with active membranes in P-Lingua as follows:

!evolution_rule
{
?[a --> v]’h;

?[a -->]’h;
}
!send_in_rule
{
a?[]’h -->?[b]’h;

}
!send_out_rule
{
?[a]’h --> b?[]’h;

}
!dissolution_rule
{
?[a]’h --> b;

?[a]’h -->;
} !division_elem_rule
{
?[a]’h -->?[]’h?[]’h;
?[a]’h -->?[b]’h?[]’h;
?[a]’h -->?[]’h?[b]’h;
?[a]’h -->?[b]’h?[c]’h;

}
!division_non_elem_rule
{
?[?[]’h1?[]’h2]’h -->?[?[]’h1]’h?[?[]’h2]’h;

}
@model(active_membranes) =

evolution_rule, @1(send_in_rule, send_out_rule, dissolution_rule, division_elem_rule,
division_non_elem_rule);

This model should be saved in a file called, for instance, p_active.pli. A simple P system with active membranes (as the
one in Fig. 2) could be described as follows:

@model < active_membranes>
@include "p_active.pli"
def main()

{
@mu = [[]’2]’1;

@ms(1) = c;

@ms(2) = a, b{0};
[a]’2 --> +[a]’2 -[a]’2;

+[a]’2 --> +[a]’2 [a]’2;

[b{i} --> b{i + 1}]’2: 0 <= i < 100;

+[b{i} --> b{i + 1}]’2: 0 <= i < 100;

-[b{i} --> b{i + 1}]’2: 0 <= i < 100;
16



Fig. 2. Cell-like P system with active membranes.
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[b{100}]’2 -->;
+[b{100}]’2 --> t;

-[b{100}]’2 --> f;

[t]’1 --> t []’1;

[f]’1 --> f []’1];
A.2. Tissue-like P systems

The main difference between tissue P systems and cell-like membrane systems is that, while the underlying structure is
explicitly given as a rooted tree, the graph of tissue P systems is implicitly given by the rules of the systems. Rules of a tissue-
like membrane system with symport/antiport rules and division rules can be the following ones:

� Communication rules: ði;u=v ; jÞ, where u;v 2 Mf ðCÞ and 0 6 i; j 6 q.
� Division rules: ½a�h ! ½b�h½c�h, where a; b; c 2 C and h 2 H.

These systems can be defined as follows:

!communication_rule
{
[a]’h1 <--> []’h2;

}
!division_rule
{
?[a]’h -->?[]’h?[]’h; ?[a]’h -->?[b]’h?[]’h; ?[a]’h -->?[]’h?[b]’h; ?[a]’h -->?[b]’h?[c]’h;
}
@model(tissue_symport_antiport_division) = @xor(communication_rule, @1(division_rule));

Once the model has been implemented (let us think that it is saved in a file called p_tissue.pli. Then, we can use it to
define a tissue P system (the one shown in Fig. 3) as follows:
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@model < tissue_symport_antiport_division>
@include "p_tissue.pli"
def main() {
@mu = [[]’1 []’2 []’3]’0;

@ms(0) = app{i}: 0 <= i < 100;

@ms(0) = a{i}: 1 <= i < 100;

@ms(0) += b; @ms(1) = a0;

[a{i}]’1 --> [api]’1 [ap{i}]’1: 0 <= i < 100;

[ap{i}]’1 <--> [app{i},b]’0: 0 <= i < 100;

[app{i}]’1 <--> []’2: 0 <= i < 100;

[app{i}]’2 <--> []’3: 0 <= i < 100;

[app{i}]’3 <--> [a{i + 1}]’0: 0 <= i < 100;

[a{i}]’3 <--> [b]’1: 0 <= i < 100;

}

A.3. Spiking Neural P systems

Spiking Neural P systems are brain-inspired membrane systems whose working alphabet contains only one object a,
called spike, and represents the electrical impulses that flow through the neurons of the system. The rules of a basic SNP sys-
tem are the following:

� Spiking rules: E=ac ! a; d, where a 2 O E is a regular expression over fag; c; d 2 N and c P 1.
� Forgetting rules: ac ! k, where c 2 N and c P 1.
Fig. 3. Tissue P system.
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As the syntax is quite different from the previous ones, new features must be evidenced in the corresponding P-Lingua
rules:

!spiking_rule
{
[u --> a]’h;

d [u --> a]’h;

[u --> a]’h :: E(string_t);
d [u --> a]’h :: E(string_t);
}
!forgetting_rule
{
[u -->]’h;
}
@model(spiking_neural) = @1(spiking_rule, forgetting_rule);
The structure of SNP systems is defined by a set of ordered pairs syn representing the synapses of the system. Let p_spik-
ing.pli be the file where the model is saved. Then, to create a test spiking neural P system (as the one shown in Fig. 4), a
new file must be created with the following contents:

@model < spiking_neural>
@include "p_spiking.pli"
def main()

{
@mu = [[]’1 []’2 []’3 []’4]’0;
@syn = "(1, 2), (1, 3), (2, 4), (3, 4)"

@in = "1";

@out = "4";

@ms(1) = a*30; [a*3 --> a]’1;

1 [a --> a]’2;

1 [a*2 --> a]’3 :: "a*3";

[a -->]’3;
}

Let us recall again that the aim of P-Lingua 5 is providing a useful generic tool for the specification of the syntax and
semantics of P systems. However, it is not possible and is therefore out of its scope covering every possible type and variant
of P systems conceived by researchers. In any case, the project is not closed to exploring its capabilities to specify other vari-
ants of P systems. For instance, as SN P systems have attracted major attention over the last few years (including recent
applications [47,48]), some recent variants of such systems may be explored, as it might be the case of Spiking Neural P Sys-
tems with Communication on Request [49,50], among others.

A.4. PDP systems

Population Dynamics P systems is a hybrid variant consisting of a directed graph of n environments, and inside each envi-
ronments there is only one cell-like P system with q membranes. PDP systems have two types of rules (see [30] for more
details):

� Skeleton rules: u½v �ai !
f r;j

u0½v 0 �a0i where u;v; u0;v 0 are multisets over the working alphabet associated to the P systems
(Mf ðCÞ),1 6 i 6 q (label of membrane in the P system), uþ v – £ and a;a0 2 f0;þ;�g; f r;j is a computable function that
depends on the rule r and environment j (1 6 j 6 n) from f1; . . . ; Tg to ½0;1�..
� Communication rules (between environments): ðxÞej!

p ðy1Þej1 � � � ðyhÞejh where x; y1; . . . ; yh are objects from the alphabet

associated to the environments (R), ðej; ejl Þ 2 S (part of the directed graph), ð1 6 l 6 nÞ and p is a computable function
from f1; . . . ; Tg to ½0;1�.

We can define the syntax of the rules of PDP systems in P-Lingua as follows:
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!skeleton_rule
{
u1?[v1]’h -> u2?[v2]’h :: probability(double_t);
}
!communication_rule
{
[[a]’e1 []’e2]’p -> [[]’e1 [b]’e2]’p :: probability(double_t);
[[a]’e]’p -> [[b]’e]’p :: probability(double_t);
[[a]’e]’p -> [[]’e]’p :: probability(double_t);
[[a]’e1]’p -> [[b]’e2]’p :: probability(double_t);
}
@model(probabilistic) = skeleton_rule,communication_rule;

Next, we will illustrate how to simulate the model with P-Lingua 5 and the external simulator ABCDGPU [41,30], by using
the test example (see Fig. 5) employed to analyse the DCBA algorithm in [44]. The file was taken directly from P-Lingua 4 and
we just added the second line that includes the model of PDP systems. We add in comments at the beginning of each rule the
id read by the simulator from the generated Binary file, while the order in which they are defined is the same than in the
experiments in [44].

@model < probabilistic>
@include "pdp_model.pli"
def main()

{
@mu = [[[[]’2]’1]’101,101]’p;

@ms(2,101) = a*90, b*72, c*66, d*30;

@ms(1,101) = a*60;

@ms(101,101) = b;

/*r3*/ [a*4, b*4, c*2]’2 --> e*2 []’2 :: 0.7;

/*r4*/ [a*4, b*4, c*2]’2 --> [e*2]’2 :: 0.2;

/*r5*/ [a*4, b*4, c*2]’2 --> [e, f]’2 :: 0.1;

/*r6*/ [a*4, d*1]’2 --> f*2 []’2 :: 1;

/*r7*/ [b*5, d*2]’2 --> g*2 []’2 :: 1;

/*r0*/ b -[a*7]’1 --> -[h*100]’1 :: 1;

/*r1*/ a*3 []’2 --> [e*3]’2 :: 1;

/*r2*/ a, b []’2 --> -[g*3]’2 :: 1;

}

Finally, we will assume that both P-Lingua 5 and ABCDGPU simulator are compiled and installed in the system. The steps
to reproduce the experiments are the following (tested only in Ubuntu 18.04, 20.04 and CentOS 7 systems with CVMFS):
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Fig. 5. PDP system.
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� Execute plingua dcba.pli -f bin -o dcba.bin. This generates the Binary file dcba.bin. The model file for PDP systems
must be placed along with the input file dcba.pli.
� Execute abcdgpu -f 1 -i dcba.bin -s 5 -t 1 -a 1 -v 5. This launches the external simulator for PDP systems on the CPU
with the largest verbosity level to check the execution of rules (we are interested only on the distribution of rule selec-
tion). We also launch 5 simulations (-s 5), give 1 to A parameter of DCBA (-a 1), simulate just one step (-t 1), and indicate
that we want to read P-Lingua 5 Binary file (-f 1 -i dcba.bin).
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