63 research outputs found

    Heritage education through serious games. A web-based proposal for primary schools to cope with distance learning

    Full text link
    [EN] In recent years a growing amount of research has shown interest in studying how virtual reality (VR) could be relevant in many fields. In this respect, VR has gained consideration throughout many applications such as education. Among other aims for its use in education, serious games based on VR were used to promote heritage and make students experience either far or inaccessible scenarios. Until now, VR-based applications have been mainly implemented using head mounted displays (HMD), which actually reduced their circulation. This gap is particularly remarkable in the current Sars-CoV19 pandemic because students, being at home or being at school without sharing equipment, cannot exploit educational programs based on this technology. The current paper proposes a web-based platform on which VR applications could be accessed on any device, either desktop- or mobile-based. The serious game was initially set up on a computer with a specialized software using a HMD, while the process of turning it into a web-based platform is described so that the used methodology could be available to those, who would like to follow it. This project is probably also able to cope with the general aim of making inaccessible objects available to students and, thus, to make the application useful even beyond the current pandemic emergency.The VAR.HEE. project – Virtual and Augmented Reality for Heritage and art Education in school and museum Experiences – was funded by the Free University of Bozen/Bolzano with a competitive call for proposals by the Central Research Commission in 2017. The project lasts three years, started in January 2018 and will end in December 2020 (June 2021, after Covid-19 health emergency).Luigini, A.; Fanini, B.; Basso, A.; Basso, D. (2020). Heritage education through serious games. A web-based proposal for primary schools to cope with distance learning. VITRUVIO - International Journal of Architectural Technology and Sustainability. 5(2):73-85. https://doi.org/10.4995/vitruvio-ijats.2020.14665OJS73855

    A platform for developing and fine tuning adaptive 3D navigation techniques for the immersive web

    Get PDF
    Navigating through a virtual environment is one of the major user tasks in the 3D web. Although hundreds of interaction techniques have been proposed to navigate through 3D scenes in desktop, mobile and VR headset systems, 3D navigation still poses a high entry barrier for many potential users. In this paper we discuss the design and implementation of a test platform to facilitate the creation and fine-tuning of interaction techniques for 3D navigation. We support the most common navigation metaphors (walking, flying, teleportation). The key idea is to let developers specify, at runtime, the exact mapping between user actions and virtual camera changes, for any of the supported metaphors. We demonstrate through many examples how this method can be used to adapt the navigation techniques to various people including persons with no previous 3D navigation skills, elderly people, and people with disabilities.This work has been partially funded by the Spanish Ministry of Economy and Competitiveness and FEDER under grant TIN2017-88515-C2-1-R, by EU Horizon 2020, JPICH Conservation, Protection and Use initiative (JPICH-0127) and the Spanish Agencia Estatal de Investigación, grant PCI2020-111979 Enhancement of Heritage Experiences: the Middle Ages; Digital Layered Models of Architecture and Mural Paintings over Time (EHEM).Peer ReviewedPostprint (author's final draft

    Designing, testing and adapting navigation techniques for the immersive web

    Get PDF
    One of the most essential interactions in Virtual Reality (VR) is the user’s ability to move around and explore the virtual environment. The design of the navigation technique plays a crucial role in the user experience since it determines key usability aspects. VR devices allow for an immersive exploration of 3D worlds, but navigation in VR is challenging for many users, due to potential usability issues related to specific VR controllers, user skills, and motion sickness. Although hundreds of interaction techniques have been proposed for this task, VR navigation still poses a high entry barrier for many users. In this paper we argue that adapting the navigation technique to its context of use can lead to substantial improvements in navigation usability and accessibility. The context of use includes the type of scene, the available physical space, as well as the profile of the user. We present a test platform to facilitate the design and fine-tuning of interaction techniques for 3D navigation. We focus on mainstream VR devices (headsets and controllers) and support the most common navigation metaphors (walking, flying, teleportation). The key idea is to let developers specify, at runtime, the exact mapping between user actions and locomotion changes, for any of the supported metaphors. Such mappings are described by a collection of parameters (e.g. maximum speed) whose values can be adjusted interactively through a GUI, or be provided by user-defined code which can be edited at runtime. Feedback obtained from developers suggests that this approach can be used to quickly adapt the navigation techniques to various people including persons with no previous 3D navigation skills, elderly people, and people with disabilities, as well as to the type, size and semantics of the virtual environment.This work has been funded by MCIN/AEI/10.13039/501100011033/FEDER ‘‘A way to make Europe’’. Pedret model partially funded by EU Horizon 2020, JPICH Conservation, Protection and Use initiative (JPICH-0127) and the Spanish Agencia Estatal de Investigación, grant PCI2020-111979 Enhancement of Heritage Experiences: the Middle Ages; Digital Layered Models of Architecture and Mural Paintings over Time (EHEM)Peer ReviewedPostprint (published version

    VRIA: A Web-based Framework for Creating Immersive Analytics Experiences

    Get PDF
    We present, a Web-based framework for creating Immersive Analytics (IA) experiences in Virtual Reality.is built upon WebVR, A-Frame, React and D3.js, and offers a visualization creation workflow which enables users, of different levels of expertise, to rapidly develop Immersive Analytics experiences for the Web. The use of these open-standards Web-based technologies allows us to implement VR experiences in a browser and offers strong synergies with popular visualization libraries, through the HTMLDocument Object Model (DOM). This makesubiquitous and platform-independent. Moreover, by using WebVR’s progressive enhancement, the experiencescreates are accessible on a plethora of devices. We elaborate on our motivation for focusing on open-standards Web technologies, present thecreation workflow and detail the underlying mechanics of our framework. We also report on techniques and optimizations necessary for implementing Immersive Analytics experiences on the Web, discuss scalability implications of our framework, and present a series of use case applications to demonstrate the various features of . Finally, we discuss current limitations of our framework, the lessons learned from its development, and outline further extensions

    The Entanglement: Volumetric Music Performances in a Virtual Metaverse Environment

    Get PDF
    Telematic music performances are an established performance practice in contemporary music. Performing music pieces with geographically distributed musicians is both a technological challenge and an artistic one. These challenges and the resulting possibilities can lead to innovative aesthetic realizations. This paper presents the implementation and realization of “The Entanglement,” a telematic concert performance in a metaverse environment. The system is realized using web-based frameworks to implement a platform-independent online multi-user environment with volumetric, three- dimensional, streaming of audio and video. This allows live performance of this improvisation piece based on an algorithmic quantum computer composition within a freely explorational virtual environment. We describe the development and realization of the piece and metaverse environment, as well as its artistic and conceptual contextualization

    Ubiq-exp: A toolkit to build and run remote and distributed mixed reality experiments

    Get PDF
    Developing mixed-reality (MR) experiments is a challenge as there is a wide variety of functionality to support. This challenge is exacerbated if the MR experiment is multi-user or if the experiment needs to be run out of the lab. We present Ubiq-Exp - a set of tools that provide a variety of functionality to facilitate distributed and remote MR experiments. We motivate our design and tools from recent practice in the field and a desire to build experiments that are easier to reproduce. Key features are the ability to support supervised and unsupervised experiments, and a variety of tools for the experimenter to facilitate operation and documentation of the experimental sessions. We illustrate the potential of the tools through three small-scale pilot experiments. Our tools and pilot experiments are released under a permissive open-source license to enable developers to appropriate and develop them further for their own needs

    Advancing computational biophysics with Virtual Reality

    Get PDF
    Modelos computacionais são ferramentas poderosas para explorar as propriedades de sistemas biológicos complexos. Na neurociência computacional, permitir fácil exploração e visualização computacional desses modelos é crucial para o progresso do campo. Nos últimos anos, os sistemas de visualização 3D e o hardware de realidade virtual tornaram-se mais acessíveis e isso abre uma janela de oportunidade para os serviços de visualização. O principal problema atual da visualização 3D diz respeito à usabilidade (ou seja, navegação e seleção). Durante esta dissertação, hipotetizaremos que a substituição do 3D por VR irá (1) superar os problemas de usabilidade mencionados e, eventualmente, (2) aumentar a eficácia dos utilizadores em relação às questões do campo de estudo (neurociência). Para avaliar os resultados do trabalho desenvolvido nesta dissertação, será realizada uma experiência de duas partes, em que um grupo de indivíduos deverá executar um conjunto de tarefas pré-determinadas e avaliar sua experiência usando 3D na primeira e VR na última parte. Além da autoavaliação da experiência, dados como tempo de conclusão e correção da tarefa também serão usados para quantificar a eficácia do método de visualização. Dada a experiência mencionada, um protótipo de uma aplicação (baseada na Web) com visualização de Realidade Virtual deve ser desenvolvido. A visualização 3D será fornecida por uma framework de código aberto baseada na Web, chamada Geppetto. Cada uma das decisões tomadas no desenvolvimento do protótipo será analisada adequadamente neste documento, bem como a literatura científica que servirá de base quando necessário. Além do estudo da Realidade Virtual propriamente dita, também serão analisados métodos padronizados para a visualização de informações (neuro) científicas. A solução proposta procurará constituir uma base de trabalho sólida e suficientemente genérica a ser aplicada, não apenas no contexto da neurociência, mas também em vários outros contextos onde a visualização de modelos através de Realidade Virtual poderá ser bem-sucedida.Computational models are powerful tools for exploring the properties of complex biological systems. In computational neuroscience, allowing easy computational exploration and visualization of this models is crucial for the progress of the field. In recent years, Virtual Reality hardware and visualization systems have become more affordable and this opens a window of opportunity for visualization services. The current major problem of 3D visualization concerns usability (i.e., navigation and selection). During this dissertation, we will hypothesize that the replacement of 3D for VR will (1) overcome the usability issues mentioned and eventually (2) boost user effectiveness regarding field of study (neuroscience) concerns. In order to evaluate the results of the work developed under this dissertation, a two-part experiment will be carried out where a group of individuals must perform a set of predetermined tasks and evaluate their experience using 3D in the first and VR in the last part. Besides the self-evaluation of the experiment, data such as completion time and task correctness will also be used to quantify the effectiveness of the visualization method. Given the aforementioned experiment, a prototype of a (web-based) application with Virtual Reality visualization shall be developed. The 3D visualization will be provided by a web-based open-sourced framework called Geppetto. Each of the decisions made in the development of the prototype will be properly analyzed in this document, as well as the scientific literature that will serve as a basis when necessary. Besides the study of Virtual Reality itself, standard methods with respect to the visualization of (neuro)scientific information will also be analyzed. The proposed solution will seek to constitute a solid and sufficiently generic work base to be applied, not only in the scope of neuroscience, but also in several other contexts where visualization through VR might be successful

    Using In-Browser Augmented Reality to Promote Knowledge-Based Engineering throughout the Product Life Cycle

    Get PDF
    While industry vastly undergoes digitalization, knowledge-based engineering becomes a powerful tool, helping enterprises to operate in context of shorter product life cycles and complex value chains. However, there are several challenges to be addressed in order to make knowledge-based engineering a common industry practice. There is a need for affordable tools, trained professionals, and extended use of outcomes of knowledge-based engineering processes beyond design phase of product life cycle. This article describes how web-based system delivering mobile augmented reality experience in browser may leverage results of product design process implemented with knowledge-based engineering tools in order to integrate information, and support its integrity and consistency for different stakeholders along the product life cycle. The approach relies on use of open standards and libraries in order to insure affordability and ease of integration, which is necessary for wider adoption of knowledge-based engineering among small and medium enterprises.acceptedVersionPeer reviewe

    A2W: Context-Aware Recommendation System for Mobile Augmented Reality Web Browser

    Get PDF
    Peer reviewe
    corecore