315 research outputs found

    Thorough testing of any multiport memory with linear tests

    Full text link

    Modeling of radiative near-field interactions for electromagnetic compatibility and wireless power transfer assessment

    Get PDF

    Fault tolerant data management system

    Get PDF
    Described in detail are: (1) results obtained in modifying the onboard data management system software to a multiprocessor fault tolerant system; (2) a functional description of the prototype buffer I/O units; (3) description of modification to the ACADC and stimuli generating unit of the DTS; and (4) summaries and conclusions on techniques implemented in the rack and prototype buffers. Also documented is the work done in investigating techniques of high speed (5 Mbps) digital data transmission in the data bus environment. The application considered is a multiport data bus operating with the following constraints: no preferred stations; random bus access by all stations; all stations equally likely to source or sink data; no limit to the number of stations along the bus; no branching of the bus; and no restriction on station placement along the bus

    Quantum-based security in optical fibre networks

    Get PDF
    Electronic communication is used everyday for a number of different applications. Some of the information transferred during these communications can be private requiring encryption and authentication protocols to keep this information secure. Although there are protocols today which provide some security, they are not necessarily unconditionally secure. Quantum based protocols on the other hand, can provide unconditionally secure protocols for encryption and authentication. Prior to this Thesis, only one experimental realisation of quantum digital signatures had been demonstrated. This used a lossy photonic device along with a quantum memory allowing two parties to test whether they were sent the same signature by a single sender, and also store the quantum states for measurement later. This restricted the demonstration to distances of only a few metres, and was tested with a primitive approximation of a quantum memory rather than an actual one. This Thesis presents an experimental realisation of a quantum digital signature protocol which removes the reliance on quantum memory at the receivers, making a major step towards practicality. By removing the quantum memory, it was also possible to perform the swap and comparison mechanism in a more efficient manner resulting in an experimental realisation of quantum digital signatures over 2 kilometres of optical fibre. Quantum communication protocols can be unconditionally secure, however the transmission distance is limited by loss in quantum channels. To overcome this loss in conventional channels an optical amplifier is used, however the added noise from these would swamp the quantum signal if directly used in quantum communications. This Thesis looked into probabilistic quantum amplification, with an experimental realisation of the state comparison amplifier, based on linear optical components and single-photon detectors. The state comparison amplifier operated by using the wellestablished techniques of optical coherent state comparison and weak subtraction to post-select the output and provide non-deterministic amplification with increased fidelity at a high repetition rate. The success rates of this amplifier were found to be orders of magnitude greater than other state of the art quantum amplifiers, due to its lack of requirement for complex quantum resources, such as single or entangled photon sources, and photon number resolving detectors

    Ideal quantum protocols in the non-ideal physical world

    Get PDF
    The development of quantum protocols from conception to experimental realizations is one of the main sources of the stimulating exchange between fundamental and experimental research characteristic to quantum information processing. In this thesis we contribute to the development of two recent quantum protocols, Universal Blind Quantum Computation (UBQC) and Quantum Digital Signatures (QDS). UBQC allows a client to delegate a quantum computation to a more powerful quantum server while keeping the input and computation private. We analyse the resilience of the privacy of UBQC under imperfections. Then, we introduce approximate blindness quantifying any compromise to privacy, and propose a protocol which enables arbitrary levels of security despite imperfections. Subsequently, we investigate the adaptability of UBQC to alternative implementations with practical advantages. QDS allow a party to send a message to other parties which cannot be forged, modified or repudiated. We analyse the security properties of a first proof-of-principle experiment of QDS, implemented in an optical system. We estimate the security failure probabilities of our system as a function of protocol parameters, under all but the most general types of attacks. Additionally, we develop new techniques for analysing transformations between symmetric sets of states, utilized not only in the security proofs of QDS but in other applications as well

    Single Event Effects in FPGA Devices 2015-2016

    Get PDF
    This presentation provides an overview of single event effects in FPGA devices 2015-2016 including commercial Xilinx V5 heavy ion accelerated testing, Xilinx Kintex-7 heavy ion accelerated testing. Mitigation study, and investigation of various types of triple modular redundancy (TMR) for commercial SRAM based FPGAs

    Problems related to the integration of fault tolerant aircraft electronic systems

    Get PDF
    Problems related to the design of the hardware for an integrated aircraft electronic system are considered. Taxonomies of concurrent systems are reviewed and a new taxonomy is proposed. An informal methodology intended to identify feasible regions of the taxonomic design space is described. Specific tools are recommended for use in the methodology. Based on the methodology, a preliminary strawman integrated fault tolerant aircraft electronic system is proposed. Next, problems related to the programming and control of inegrated aircraft electronic systems are discussed. Issues of system resource management, including the scheduling and allocation of real time periodic tasks in a multiprocessor environment, are treated in detail. The role of software design in integrated fault tolerant aircraft electronic systems is discussed. Conclusions and recommendations for further work are included

    Online monitoring system using reactor and mass spectrometry

    Get PDF
    The combination of micro reactor and analytical devices are popular in research and industry, in addition to the automation of analytical tasks. An automated system for online reaction monitoring in a micro reactor using a mass spectrometer has therefore been realized. The system offers fast data acquisition at discrete time-point in a reaction process. In addition, different functions and utilities that facilitate the convenience to users are included: A dilution module, integration of the micro reactor system to an ICP-MS, two sampling methods, a heating module and a control software

    Intelligent Controller Based on Artificial Neural Network and INC Based MPPT for Grid Integrated Solar PV System

    Get PDF
    Solar photovoltaic (PV) systems have become an integral part of today's advanced energy infrastructure due to its low kinetic energy, its abundance availability, and its freedom from human interference. Solar PV systems have the potential to greatly reduce our reliance on fossil fuels, but their intermittent nature means they cannot provide a constant source of electricity. The system's security should be well thought out, and it should be able to withstand a lot of abuse. The current energy system faces a significant difficulty in ensuring continuous supply. In this study, a three-phase, two-stage photovoltaic system that is managed by artificial neural networks (ANN). A DC-DC boost converter with maximum power point tracking (MPPT) based on the incremental conductance (INC) method is incorporated in the first stage. In the next step, an ANN-based controller optimizes the performance of a three-phase switching PWM inverter that is connected to the grid by controlling currents along the d-q axis. Comprehensive simulations were carried out using MATLAB or Simulink to evaluate the system's performance under various illumination and temperature conditions. Results show that the suggested approach outperforms the baseline in a number of areas. Better dynamic reactions, accurate tracking of reference currents within permissible bounds, and quick settling periods after startup are all displayed by it. These findings show that our method has the potential to greatly improve the efficiency and dependability of solar PV systems. The results of this study have implications for renewable energy in general and present a viable path toward enhancing the resilience and sustainability of energy infrastructure
    corecore