12 research outputs found

    Many-objective optimization meets recommendation systems:A food recommendation scenario

    Get PDF
    Due to the ever-increasing amount of various information provided by the internet, recommendation systems are now used in a large number of fields as efficient tools to get rid of information overload. The content-based, collaborative-based and hybrid methods are the three classical recommendation techniques, whereas not all real-world problems (e.g. the food recommendation problem) can be best addressed by such classical recommendation techniques. This paper is devoted to solving the food recommendation problem based on many-objective optimization (MaOO). A novel recommendation approach is proposed by transforming the original recommendation problem into an MaOO one that contains four different objectives, i.e., the user preferences, nutritional values, dietary diversity, and user diet patterns. The experimental results demonstrate that the designed recommendation approach provides a more balanced way of recommending food than the classical recommendation methods that only consider individuals’ food preferences.</p

    Towards Responsible Media Recommendation

    Get PDF
    Reading or viewing recommendations are a common feature on modern media sites. What is shown to consumers as recommendations is nowadays often automatically determined by AI algorithms, typically with the goal of helping consumers discover relevant content more easily. However, the highlighting or filtering of information that comes with such recommendations may lead to undesired effects on consumers or even society, for example, when an algorithm leads to the creation of filter bubbles or amplifies the spread of misinformation. These well-documented phenomena create a need for improved mechanisms for responsible media recommendation, which avoid such negative effects of recommender systems. In this research note, we review the threats and challenges that may result from the use of automated media recommendation technology, and we outline possible steps to mitigate such undesired societal effects in the future.publishedVersio

    A Conversation is Worth A Thousand Recommendations: A Survey of Holistic Conversational Recommender Systems

    Full text link
    Conversational recommender systems (CRS) generate recommendations through an interactive process. However, not all CRS approaches use human conversations as their source of interaction data; the majority of prior CRS work simulates interactions by exchanging entity-level information. As a result, claims of prior CRS work do not generalise to real-world settings where conversations take unexpected turns, or where conversational and intent understanding is not perfect. To tackle this challenge, the research community has started to examine holistic CRS, which are trained using conversational data collected from real-world scenarios. Despite their emergence, such holistic approaches are under-explored. We present a comprehensive survey of holistic CRS methods by summarizing the literature in a structured manner. Our survey recognises holistic CRS approaches as having three components: 1) a backbone language model, the optional use of 2) external knowledge, and/or 3) external guidance. We also give a detailed analysis of CRS datasets and evaluation methods in real application scenarios. We offer our insight as to the current challenges of holistic CRS and possible future trends.Comment: Accepted by 5th KaRS Workshop @ ACM RecSys 2023, 8 page

    Evaluating Recommender Systems: Survey and Framework

    Get PDF
    The comprehensive evaluation of the performance of a recommender system is a complex endeavor: many facets need to be considered in configuring an adequate and effective evaluation setting. Such facets include, for instance, defining the specific goals of the evaluation, choosing an evaluation method, underlying data, and suitable evaluation metrics. In this paper, we consolidate and systematically organize this dispersed knowledge on recommender systems evaluation. We introduce the “Framework for EValuating Recommender systems” (FEVR) that we derive from the discourse on recommender systems evaluation. In FEVR, we categorize the evaluation space of recommender systems evaluation. We postulate that the comprehensive evaluation of a recommender system frequently requires considering multiple facets and perspectives in the evaluation. The FEVR framework provides a structured foundation to adopt adequate evaluation configurations that encompass this required multi-facettedness and provides the basis to advance in the field. We outline and discuss the challenges of a comprehensive evaluation of recommender systems, and provide an outlook on what we need to embrace and do to move forward as a research community

    Re-examining assumptions in fair and unbiased learning to rank

    Get PDF
    In this thesis, we re-examine the assumptions of existing methods for bias correction and fairness optimization in ranking. Consequently, we propose methods that are more general than the existing ones, in the sense that they rely on less assumptions, or they are applicable in more situations. On the bias side, we first show that the click model assumption matters and propose cascade model-based inverse propensity scoring (IPS). Next, we prove that the unbiasedness of IPS relies on the assumption that the clicks do not suffer from trust bias. When trust bias exists, we extend IPS and propose the affine correction (AC) method and prove that, in contrast to IPS, it gives unbiased estimates of the relevance. Finally, we show that the unbiasedness proofs of IPS and AC are conditioned on an accurate estimation of the bias parameters, and propose a bias correction method that does not rely on relevance estimation. On the fairness side, we re-examine the implicit assumption that fair distribution of exposure leads to fair treatment by the users. We argue that fairness of exposure is necessary but not enough for a fair treatment and propose a correction method for this type of bias. Finally, we notice that the existing general post-processing framework for optimizing fairness of ranking metrics is based on the Plackett-Luce distribution, the optimization of which has room for improvement for queries with a small number of repeating sessions. To close this gap, we propose a new permutation distribution based on permutation graphs

    The Challenges of Big Data - Contributions in the Field of Data Quality and Artificial Intelligence Applications

    Get PDF
    The term "big data" has been characterized by challenges regarding data volume, velocity, variety and veracity. Solving these challenges requires research effort that fits the needs of big data. Therefore, this cumulative dissertation contains five paper aiming at developing and applying AI approaches within the field of big data as well as managing data quality in big data
    corecore