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Abstract

Recommendation systems employ users history data records to predict their preference,

and have been widely used in diverse fields including biology, e-commerce, and healthcare.

Traditional recommendation techniques include content-based, collaborative-based and

hybrid methods but not all real-world problems can be best addressed by these classical

recommendation techniques. Food recommendation is one such challenging problem where

there is an urgent need to use novel recommendation systems in assisting people to select

healthy, balanced and personalized food plans. In this thesis, we make several advances in

food recommendation systems using innovative machine learning methods. First, a novel

recommendation approach is proposed by transforming an original recommendation problem

into a many-objective optimisation one that contains several different objectives resulting in

more balanced recommendations. Second, a unified approach to designing sequence-based

personalised food recommendation systems is investigated to accommodate dynamic user

behaviours. Third, a new food recommendation approach is developed with a temporal

dependent graph neural network and data augmentation techniques leading to more accurate

and robust recommendations. The experimental results show that these proposed approaches

have not only provided a more balanced and accurate way of recommending food than the

traditional methods but also led to promising areas for future research.
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Chapter 1

Introduction

1.1 Motivation

In recent years, people have become increasingly aware of the importance of their health. This

heightened awareness has been driven by the significant improvements in living conditions

that have been seen across the globe [167]. As access to food resources and nutritional

knowledge increases, people are faced with the challenge of making more informed and

conscious decisions about their health and wellbeing. Obesity and diabetes, two illnesses

influenced by nutrition and lifestyle, account for 60% of all fatalities worldwide.

Food recommender systems (RSs) [44, 82, 110, 156, 158] have been developed to provide

personalized recommendations tailored to the user’s preferences. By leveraging the power

of machine learning algorithms, Food RSs are able to analyse user data and make informed

recommendations. These systems have shown their effectiveness in a variety of contexts by

enabling users to manage information overload, supporting decision-making, and changing

user behaviour. Digital sources for culinary inspiration are growing in popularity, as are

systems that propose food-related recommendation, such as recipes, restaurant meals and

grocery store items. Food recommendation systems not only provide relevant recommen-

dations that users may wish to eat, but also assist users in consuming a healthier diet. As a



2 Introduction

result of this, health-aware food recommender systems are often proposed as a significant

component of the answers for promoting healthy dietary choices.

Various machine learning techniques, including content-based, collaborative filtering,

and hybrid recommendation approaches, have been developed and evaluated in the food

domain. Content-based filtering [109, 96] use information about the user’s preferences

and items they have interacted with to recommend similar items. Collaborative filtering

algorithms [78, 146] build a model from a user’s past behaviour and compare it to other users’

data to make predictions about what the user might like. Hybrid approaches [10, 98]use a

combination of both collaborative and content-based filtering algorithms to provide a more

accurate recommendation. Food recommendation, however, is a complex task that presents

unique challenges. First, because food recommendations are personalized, there is a need

to ensure that the recommendations are both diverse and relevant to the user. There are

often multiple optimal recommendations depending on circumstances under consideration.

Second, since food recommendation is a dynamic task, there is a need to be able to quickly

and accurately adapt to meet user preferences where dynamic user behaviour should be taken

into account when considering appropriate recommendations. Last but not least, there is a

need to accurately capture and represent users’ preferences, which can be difficult to do as

preferences are often subjective. All of these challenges make food recommendation a very

difficult task.

When suggesting food, novelty and serendipity are both important considerations when it

comes to food recommendations [75]. Novelty is the idea of introducing something new and

exciting to the diner, while serendipity is the concept of providing unexpected yet delightful

culinary experiences. Together, these qualities can create a unique and memorable dining

experience. By taking into account both novelty and serendipity, food recommendations

can be tailored to individual tastes and preferences in a way that is sure to please. Novelty

encourages customers to try new dishes, while serendipity introduces them to unexpected

items they may not have otherwise considered. By combining both of these elements, food
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establishments can offer customers exciting culinary experiences that will keep them coming

back for more. Furthermore, the preference-healthfulness trade-off is similar to research on

novelty and serendipity in that it requires recommending items that are not preferred but

healthy. The need to consider many diverse objectives in food recommendation should be

taken into account when developing innovative food RSs.

In order to make informed decisions about what to eat, individuals must understand

the implications of their dietary choices on their health. This requires an understanding of

the nutrients present in the food they are consuming and how they may affect their health.

For example, some foods may taste great but lack important vitamins and minerals that are

essential for good health. Additionally, some foods may be highly nutritious but lack flavour.

Equally important if not more is that a food RSs should be able to adapt its recommendations

to each individuals dynamic behaviour over time in order to have best dietary choices for

their health and wellbeing.

Furthermore, interpreting user preferences accurately can be a challenging task, as

individual preferences tend to be subjective and are often difficult to predict. For example,

users may have intricate, limited requirements, like allergies or dietary choices, such as only

consuming vegan or vegetarian meals. Other factors to consider include that food items can

have various titles, ingredients can be prepared in various styles, and, unlike other domains

where items or media are recommended, it is not always apparent if the suggested item can

be cooked or eaten because of the potential for limited ingredients, cooking knowledge, or

necessary utensils.
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1.2 Aim and Objectives

This thesis aims to investigate how to design innovative food recommendation systems that

can effectively address existing challenges as discussed above using advanced machine

learning methods. There are three main objectives to fulfil this aim:

• To investigate how to present balanced food recommendations by taking into consider-

ation of many desirable but conflicting objectives.

• To study how to make appropriate food recommendations to meet user preferences by

adapting to dynamic user behaviour.

• To explore how to make accurate and robust recommendations by considering advanced

deep learning and data augmentation techniques.

First, we address the challenge of considering many desirable but potentially conflicting

objectives when making food recommendation. We do so through an evolutionary many-

objective optimisation framework. In particular, the original recommendation problem is

transformed into a many-objective optimisation one that contains four different objectives,

leading to more balanced recommendations.

Second, we investigate how the dynamic user behaviours can be taken into account when

solving recommendation tasks. Especially we consider the sequentially ordered information

from user-item interactions in the food RSs and explore how to develop a sequence-based

recommendation model using the long short-term memory networks as the building block

and a collaborative filtering unit to make personalized food recommendation.

Third, we explore how to obtain more accurate and robust recommendations. As Graph

Neural Networks (GNNs) are capable of capturing the complex interactions between users

and items, we will extend a particular type of GNNs called Temporal Dependent Graph Neural

Network (TDGNN) with data augmentation techniques in developing food recommendation

systems.
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1.3 Research Approach

Our research starts with the question "What is the most effective way of making food recom-

mendation?" In order to answer this question, this research aims to identify and evaluate the

most efficient techniques for gathering and analysing data on food consumption. Specifically,

this research aims to investigate different data analysis techniques, such as machine learning

algorithms and statistical methods, and assess their effectiveness in generating personalized

food recommendations based on individual dietary needs and preferences.

First, online food consumption data is gathered from various sources such as food

tracking apps and websites to attain insight into user eating behaviors and preferences.

Various recommendation techniques such as collaborative filtering, content-based filtering,

and hybrid methods are employed to analyze the collected data. Subsequently, our work

advances the food recommendation task by considering it as a many-objective optimization

problem, rather than a single-objective one. By simultaneously optimizing multiple objectives

related to food, personalized food recommendations can be more effective and better aligned

with an individual’s goals and preferences.

After refining the food recommendation task by considering multiple objectives related

to food, our work takes a further step to enhance the effectiveness of personalized food

recommendations. More precisely, we take into account the sequential behavior of users

when making food recommendations. A user’s eating behavior is often sequential and

ordered, with one meal impacting the next. By considering the sequence of meals and their

impact on a user’s dietary goals, our work can provide personalized food recommendations

that are not only tailored to user preference but also nutritionally balanced and well-suited to

their dietary needs and goals.

To enhance our analysis of users’ sequential behavior, we have employed graph neural

networks (GNNs) to improve our study of users’ sequential behavior. The sequence of

meals a user consumes over time can be effectively modeled using GNNs, which are a

type of deep learning architecture. By representing users’ sequential behavior as a graph,
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we can more precisely depict the relationships, interactions, and impacts of various meals

on a user’s dietary goals. This approach enables us to consider the complex interactions

between multiple factors that influence food consumption patterns, such as taste preferences,

and nutritional goals. In particular, a user’s eating habits over the course of a week can be

represented as a graph, where each node corresponds to a meal the user has had and the

connections between the nodes reveal how closely related each meal is to the one before

it. This information can be used to develop personalized food recommendations that take

into account the user’s dietary goals, preferences, and eating patterns, resulting in a more

effective and tailored approach to food recommendation.

In summary, our work offers many enhancement strategies for tailored meal suggestions,

each of which is assessed in comparison to different baselines. We execute comprehensive

trials to assess how well our techniques perform in comparison to these baselines, and the

findings imply that our strategies are successful in raising the caliber of food suggestions.

1.4 Contribution

The main contributions of the thesis are summarised as follows:

• We introduce a new food recommendation problem that could offer users with a scien-

tific yet personalized diet where four different food related objectives are required to

be simultaneously optimized. A food recommendation framework is then proposed to

achieve the recommendation task where the original recommendation task is converted

into a Many Objective Optimisation (MaOO) problem and three MaOO approaches

are delicately combined to address the challenges. We have conducted extensive exper-

iments using real-world data sets that have shown the new approach provides a more

balanced way of recommending food than the classical recommendation methods that

only consider individuals food preferences.
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• We have proposed a unified food recommendation framework that leverages feedbacks

from sequences as well as historical interactions to model users long and short-term

preferences. In particular, the Long Short-Term Memory (LSTM) networks have

been used to learn high-dimensional user and item representations and a series of

computational experiments are conducted on a real-world data set to validate the

effectiveness of the developed technique. It is shown that the proposed recommendation

system is capable of effectively modelling users long-and short-term preferences and

providing more accurate and diverse food recommendation in comparison with existing

food recommendation techniques.

• We have transformed the recommendation task into a graph-based link prediction

problem resulting in more precise and robust recommendations. In particular, a

food recommendation approach is proposed based on Temporal Dependent Graph

Neural Network and data augmentation techniques is proposed. Furthermore, data

augmentation is introduced in the modelling process to enhance the diversity of data

and improve the robustness of the model, and by considering temporal behaviour of

user into the network, the accuracy of prediction is further improved. Experimental

results evaluated on real-world datasets have shown that the recommendations produced

by the system are not only more accurate but also more robust the commonly used

recommendation systems.

1.5 Thesis structure

The thesis is structured as follows:

Chapter 2 provides necessary background information for the thesis. In particular,

key recommendation techniques are reviewed, including content-based, collaborative

filtering (CF)-based, hybrid methods, many-objective optimisation and other methods.
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These techniques are discussed in the context of concrete applications including food,

biology, e-commerce and healthcare.

In Chapter 3, a novel food recommendation approach is put forward, which transforms

the original recommendation problem into a many-objective optimization one with four

different objectives, including user preferences, nutritional values, dietary diversity,

and user diet patterns. The new food recommendation framework utilises three many-

objective optimisation techniques which are evaluated on real-world datasets.

In Chapter 4, a sequence-based recommendation approach is proposed to lay an effec-

tive and systematic basis for establishing food recommendation systems. Technically,

the long short-term memory networks are employed as the basic skeletons to establish

such a recommendation model. After that, a collaborative filtering unit is adopted to

make personalized food recommendations. Real-world datasets are used to assess the

performance of the proposed approach.

In Chapter 5, to make the food recommendations more accurate and robust, a new

food recommendation approach is developed with the facility of temporal dependent

graph neural network (TDGNN) and data augmentation techniques, which converts

recommendation problems into continuous time prediction tasks. The performance of

the proposed approach is evaluated on real-world datasets.

In Chapter 6, the work presented in this thesis is summarized and future research topics

are presented.

1.6 Publications

The work resulting from this thesis has been reported in the following papers:
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– J. Zhang, M. Li, W. Liu, S. Lauria, and X. Liu, Many-objective optimization

meets recommendation systems: A food recommendation scenario, Neurocom-

puting, vol. 503, pp. 109117, 2022.

– W. Yue, Z. Wang, J. Zhang, and X. Liu, An Overview of Recommendation Tech-

niques and Their Applications in Healthcare, IEEE/CAA Journal of Automatic

Sinica, vol. 8, no. 4, pp. 701–717, 2021.

– J. Zhang, Z. Wang, X. Liu, and Q. Zheng, A Unified Approach to Designing

Sequence-Based Personalized Food Recommendation Systems: Tackling Dynam-

ic User Behaviour, International Journal of Machine Learning and Cybernetics,

https://doi.org/10.1007/s13042-023-01808-7, 2023.





Chapter 2

Background

With the advancement of technology, people have been able to utilize large amounts

of data to their advantage, enabling them to make better decisions and save time.

However, the vast amount of data also presents challenges in managing this infor-

mation. Recommendation systems (RSs) have been utilized as an efficient means of

enhancing decision-making abilities. Different types of recommendation algorithms

are employed in RSs to analyze user behavior data and identify what users are looking

for, thereby providing them with products and services that fit their needs [69, 142].

Currently, the cutting-edge recommendation methods can be categorized into three

main types: collaborative filtering-based approaches, content-based approaches, and

hybrid approaches.

Recently, people from all over the world have become increasingly aware of the

importance of health, partly due to the advances in modern society and the rise in

quality of life. More and more people are striving to keep their bodies and lifestyles in

an optimum health. The widespread adoption of unhealthy habits is one of the main

causes of the global spread of chronic illnesses. For example, a sedentary lifestyle

can increase the risk of cardiovascular disease, diabetes, and some cancers. Similarly,

smoking is linked to higher rates of lung cancer, chronic obstructive pulmonary disease,
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and cardiovascular disease. Poor nutrition, such as a diet high in processed foods, can

increase the risk of obesity, which is associated with an increased risk of many diseases

[157, 57].

When it comes to developing tailored solutions to meet the needs of individuals, it is

important to consider their unique circumstances and preferences. This means taking

into account the individual’s lifestyle, environment, and access to resources. It is also

important to consider cultural, religious, or socioeconomic factors that may affect an

individual’s ability to access certain solutions. Additionally, it is crucial to ensure

that solutions are tailored to the individual’s goals. This includes both short-term and

long-term goals. For example, if an individual is looking to improve their physical

health, their tailored solution may include a combination of lifestyle changes and

access to healthcare. However, if their goal is to maintain their health in the long-term,

then their tailored solution may include strategies to increase their physical activity

and promote healthy eating habits.

Measuring health outcomes is an essential part of providing individuals with personal-

ized suggestions to improve their health. It is important to have a reliable and accurate

way to measure health outcomes so that the suggestions provided can be tailored to

the individual’s needs and the progress of the individual can be tracked. By measuring

health outcomes, the effectiveness of any intervention can be evaluated, and this is

a vital part of improving and maintaining the health of any individual. There are

many different ways to measure health outcomes, ranging from simple observations to

more complex, sophisticated tests. Some examples of measures include self-reported

surveys, physical examinations, laboratory tests, medical imaging, and biometric data.

Each of these measures has its own advantages and disadvantages, and it is important to

select the most appropriate measure for the individual and the specific health outcome

being evaluated.
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Although food and nutrition are intricate areas that present many difficulties for recom-

mendation systems, they remain a worthwhile endeavor. In order to provide sugges-

tions, a substantial amount of food items/ingredients must be gathered. In addition,

due to recipes often combining multiple ingredients which would not typically be eaten

individually, the complexity of a recommender system is greatly increased. Moreover,

food recommender systems not only present edibles that are tailored to users’ tastes,

but also provide healthy dietary options, monitor eating habits, recognize health issues,

and encourage users to modify their behaviors [140, 13].

In this chapter, we aim to give a comprehensive review of recommendation systems

and their application in the food domain. First, a brief introduction of RS is given in

Section 2.1. After that, the multi-objective optimization for recommendation system

is briefly introduced in Section 2.2. Then, the deep learning-based recommendation

system is introduced in Section 2.3.

2.1 Recommendation system

Recommendation task, in its simplest form, may be converted to a matrix completion

task. This can be done by predicting the ratings for a given user-item pair, or by

estimating the probability that a user will like an item. Extensive research on recom-

mendation systems over the last few decades has led to the development of two key

approaches: content-based and collaborative filtering. Content-based approach focuses

on the user’s preferences, analyzing the content of items that the user has previously

interacted with in order to recommend similar items. Collaborative filtering, on the

other hand, uses the preferences of other users to recommend items to the user [115].

Fig. 2.1 provides a overview of the user-item matrix, where the elements of matrix are

the rating of m-th user for n-th item. A rating rui suggests user u’s inclination towards

item i, with higher value implying a more intense inclination [86]. Ratings may range
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Fig. 2.1 User-item matrix

from 1 (star) representing a lack of interest to 5 (stars) symbolizing a great deal of

interest. Most of the time, the great majority of ratings remain unknown. For instance,

Netflix data shows that the majority of possible ratings are absent since a user usually

rate a small selection of movies.

This matrix is an important tool for analyzing user behavior, as it allows us to better

understand the preferences and interests of the users. By using this matrix, we can

also identify potential correlations between users and items, enabling us to recommend

items that are likely to be of interest to the user.

2.1.1 Content-based filtering

Content-based filtering (CBF) uses user- or item-specified attributes to form the basis

of comparison, which will be then to determine relevance. By leveraging behaviour

history, CBF are able to identify and recommend items that are likely to be of interest

to the users [72, 170]. Specifically, content-based filtering examines a collection of

items and/or descriptions that have been evaluated by a user, and builds a representation

of the user’s preferences. The recommendation result is a correlation that reflects the

user’s degree of preference for the item. The idea behind content-based filtering is

that if a user likes an item, they are likely to like other items with similar characteris-

tics. By focusing on the characteristics of items, content-based filtering can provide

personalized recommendations that are tailored to a user’s individual interests.
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Three key components of CBF are summarized as follows:

- Content analyzer: When data presents in an unstructured format (e.g. text), a pre-

processing step is employed to obtain meaningful, structured information. The

analyzer convert inputs (e.g. documents, web pages, news, product descriptions,

etc.) into a format that is compatible with the subsequent steps in the process.

- Profile learner: By leveraging description or attributes from items the user has

interacted with, profile learner develops a profile that incorporates the user’s

interests and preferences.

- Filtering component: The recommendations are given by finding the similar items

of items users liked in the past. In particular, This component utilizes the user

profile to recommend relevant items.

In summary, the content-based approach involves assessing the attributes of items

that the target user has given a rating to and then suggesting new items having these

characteristics to the target user. On the one hand, a content-based approach has

the ability to suggest items that have yet to be rated by any individual, making it a

suitable solution for the cold-start problem in recommendation systems. On the other

hand, a content-based approach deeply relies on available information, resulting in two

potential drawbacks: limited content analysis or over-specialization. Limited content

analysis refers to limitations in the content or the amount of information available. In

such cases, the analysis will only be as accurate as the content available, meaning it

may be too superficial or inaccurate. Over-specialization occurs when a content-based

approach becomes overly focused on a single area, and as a result, fails to capture the

full scope of the data.
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2.1.2 Collaborative filtering

Collaborative filtering (CF)uses the collective knowledge of a group of users to make in-

formed recommendations. It establishes connections between distinct elements, such as

items and users, to create personalized recommendations.CF-based approaches can be

divided into two classes: Neighborhood-based CF and model-based CF.Neighborhood

techniques, which include user-based CF and item-based CF, focus on the relation-

ships between items or, in the opposite case, users. Specifically, the user-based CF

approach predicts the rating rui that the user u would likely give to item i by examining

the ratings of the user’s similar neighbors on that item. Rather than evaluating the

similarity between users like in user-based CF, item-based CF looks at the similarity

between items, and then suggests to the target user those items that are similar to what

the active user has previously liked [83, 97].

Model-based CF builds models using the user-item rating matrix’s known data to

predict unknown information. Various classification models have been tailored to CF

situations, such as decision tree, Bayesian classifier, support vector machine, neural

network, etc. [3, 34]. Different from traditional techniques, model-based CF treat

recommendation task as matrix factorization problem. Researchers have consistently

favored and paid attention to matrix factorization due to its its capacity to address sparse

issues on a large scale. Fig. 2.2 provides a concise overview of different mechanisms

of content-based and collaborative filtering.

For every user u, the set of items they have rated, denoted by R(u), includes all the

items they have provided ratings for. The latent factor models approach to collabo-

rative filtering is designed to uncover hidden characteristics that explain why certain

ratings have been given. These models include, but not limited to, pLSA [20], neural

networks [63], Latent Dirichlet Allocation [85], and techniques that are derived from

the decomposition of the user-item ratings matrix (also known as SVD-based models).
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Fig. 2.2 Content-based filtering vs Collaborative filtering

2.1.3 Hybrid approach

The hybrid filtering technique has been developed to tackle some of the shortages

encountered with the existed filtering strategies, such as the cold start issue, overspe-

cialization issue, and sparsity problem [15].The implementation of hybrid filtering

is also intended to enhance the accuracy and effectiveness of the recommendation

process.

Recent studies [10, 2] have demonstrated that a combined approach could be more

advantageous in certain situations.The primary objective of the hybrid approach is

to combine collaborative filtering and content-based filtering in order to enhance the

precision of the recommendations.Different strategies can be employed to incorporate

hybrid approaches.

- Implement both collaborative and content-based approaches separately and then

combine their outcomes.

- Incorporate some content-related qualities into a collaborative approach.

- Integrate elements of collaboration into a content-based approach and build a

unified model that brings together both content-based and collaborative elements.
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The sparsity and cold start issues encountered in recommender systems can be ad-

dressed by utilizing these techniques.Hybrid recommender can also be found in Net-

flix.They suggest films to viewers by studying the movie-viewing tendencies of similar

audiences (collaborative filtering) and by recommending titles that have similar charac-

teristics to films that the viewer has liked in the past (content-based filtering).

Burke [10] provided a categorization of Hybrid Recommendation Systems, which he

divided into eight distinct classes.

- Weighted: Various recommendation component scores are combined.This class

combines results from all factors by adding them together.

- Switching: The recommendation components system selects a specific component

from the available options and applies it.

- Integrate elements of collaboration into a content-based approach and build a

unified model that brings together both content-based and collaborative elements.

- Mixed: Various recommender systems will be presented in tandem with their

respective recommendations.This class focuses on combining several ranked lists

and presenting them as one.

- Feature Combination: This class has two distinct recommendation components,

namely, contributing and actual recommender, which contribute to feature combi-

nation. The effectiveness of a real-time recommender system relies on the data

provided by contributors.The contributor incorporates aspects from one source

into the other source’s components.

- Feature Augmentation: This class is akin to feature combination hybrids, however,

the contributor provides a distinctive quality that sets it apart. It has a greater

degree of flexibility than the feature combination approach.



2.2 Multi-Objective Optimization 19

- Cascade:Assign each recommender a priority, and if two higher-priority rec-

ommenders are in conflict, the lower-priority one will be used to decide the

outcome.

- Meta-level: At the meta-level, there are both contributing and actual recom-

menders, yet the former completely replaces the data of the latter.

2.2 Multi-Objective Optimization

2.2.1 Introduction

In real life, individuals often encounter scenarios where multiple goals need to be

considered at the same time, which are referred to as multi-objective problems (MOPs).

For example, finding an optimal balance between nutritional aspects, harmony, and

coverage of available ingredients in menus. MOPs refer to minimising or maximising

multiple objectives that are conflicting, with the improvement of one objective leading

to the degradation of others. When there are more than three objectives in the specified

problems, the tasks are defined as many-objective problems (MaOPs) [88].

2.2.2 Multiobjective optimization

Multi-objective optimization (MOO) problems gives rise to a set of optimal solutions

(known as the Pareto-optimal solutions), instead of a single optimal solution. None

of the optimal solutions can claim to be better than any other with respect to all ob-

jective functions. MOO brings a number of challenges that need be addressed, which

highlights the need for effective algorithms that can handle the growing number of ob-

jectives. Some of these successful methodologies include Strength Pareto Evolutionary

Algorithm (SPEA) [188] , SPEA2 [187], Non-dominated Sorting Genetic Algorithm

(NSGA) [148], NSGA-II [26] and Pareto Archived Evolution Strategy (PAES) [84].
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Without loss of generality, a simple multi-objective problem can be formulated as:

minF(x) = ( f1(x), f2(x), . . . fm(x))
T

x ∈ X ⊂ Rn
(2.1)

where x = (x1, . . . ,xn) is a vector of n decision variables and X is an n-dimensional de-

cision space. m is the number of objectives to be optimized. When m≥ 4, the problem

are referred to as many-objective optimization problems. The optimal solutions are

are also known as non-dominated solutions. In a minimization problem, a solution x

is considered non-dominated in comparison to another solution x∗ when no objective

value of x∗ is less than x and at least one objective value of x∗ is greater than x.

One of the most popular algorithms in literature is the NSGA-II [26]. It is often

used as a baseline algorithm for comparison with new algorithms. The NSGA-II is a

computationally fast and elitist MOEA based on a non-dominated sorting approach.

It also uses an explicit diversity-preserving mechanism to obtain a set of well-spread

Pareto-optimal solutions. The NSGA-II was initially tested on problems with smaller

number of objectives, but over the years it has shown to be successful in solving

problems with many objectives as well.

A number of NSGA-II improvements have been proposed over the years to make

the algorithm more efficient in handling a larger number of objectives. ε-NSGA-II

combines NSGA-II with an ε-dominance archive, adaptive population sizing and time

continuation [81]. This algorithm has also been widely used for many different real

world many-objective problems.

Other classical methods to tackle the MaOP problem, are ε-MOEA, which is a steady-

state MOEA that exploits the benefits of an ε-dominance archive [68]. MOEA/D is

another algorithm which has shown success with many-objective optimization. It uses

a decomposition method to decompose the given problem into a number of scalar



2.2 Multi-Objective Optimization 21

optimization problems. These sub-problems are then simultaneously optimized using

an evolutionary algorithm. The MOEA/D has been used for comparison in various

recent studies, making it a benchmark algorithm for many-objective optimization [189].

Deb and Jain [27] proposed the NSGA-III which uses a reference point based approach

for many-objective optimization, showed superior performance in comparison to

methods such as the MOEA/D and NSGA-II.

2.2.3 MOO for recommendation systems

In recent years, multi-objective optimization techniques have been successfully applied

in the field of recommender systems. In contrast to traditional recommendation models,

which often aim for a single goal, such as minimizing prediction errors or improving

recommendation accuracy, multi-objective recommender systems (MORS) are often

able to take into account multiple objectives to provide an optimal solution to a given

task. Several studies [53, 32] have been proposed to develop MORS based on different

scenarios.

Most of existing research for MORS consider recommendation quality metrics,such

as novelty, diversity, serendipity and popularity, as multiple objectives to optimize.

For example, [53] proposed a multi-objective optimization approach to collaborative

filtering that considers both accuracy and diversity. Similarly, [32] proposed a multi-

objective optimization approach to recommender systems that considers both accuracy

and coverage. Other work, such as [190, 122, 14, 12], included coverage as one

of their objectives. Xie et al. [171] proposed a new Personalized Approximate

Pareto-Efficient Recommendation model with two objectives, click-through rate and

dwell time. In contrast, Wang et al. [165] proposed a multi-objective framework

for long-tail items recommendation with accuracy and diversity as two objectives

to optimize. Despite the fact that many MORSs attempt to enhance the quality of
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recommendations through the use of various metrics, the lack of uniform definitions

for these metrics creates a challenge when comparing the effectiveness of different

recommendation systems. For instance, some research use prediction errors to indicate

recommendation accuracy, while others use other metrics such as click-through rate or

dwell time [122]. Despite these challenges, multi-objective optimization approaches

have shown promising results in improving recommendation quality by considering

multiple objectives simultaneously.

In addition to the quality metrics, MOO can be used to model conflicts between

individual choices and collective satisfaction. In their research, Xiao et al. [172]

investigated group satisfaction, social relationship density (i.e., the degree of social

proximity between group members), and group fairness. They utilized a variance-based

fairness metric in addition to four distinct group fairness indices. Multi-stakeholder

recommendation models (MOOs) provide suggestions by taking into account the

viewpoints of numerous stakeholders, such as users, sellers, merchants, job-seekers,

and recruiters. MOOs are intended to achieve a balance among various stakeholders

and execute a user matching procedure to propose a user to the target user. Reciprocal

recommendation models are based on the notion of bidirectional user preference and

perform a process of user-matching to recommend a user to the target user, such as

dating [191] or job-seeking [143].

2.3 Deep Learning for Recommendation Systems

2.3.1 Introduction

In recent years, various deep-based recommender systems have been proposed, trans-

forming the designs of recommender systems and introducing new performance-

enhancing possibilities. The wide range of neural network architectures, such as
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Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs),

have enabled the development of sophisticated deep-based recommender systems that

can improve the performance of existing recommender systems. One of the most ap-

pealing characteristics of neural networks is that they are (1) end-to-end differentiable

and (2) give input-specific inductive biases. Therefore, if the model can utilise an in-

herent structure, then deep neural networks should be beneficial. Convolutional Neural

Networks (CNNs) and RNNs, for instance, have utilised the intrinsic structure of vision

(and/or human language) for decades. Likewise, the sequential structure of session

or click-logs is well-suited for the inductive biases offered by recurrent/convolutional

models [61, 153, 166].

Deep learning has revolutionized the way in which recommendation systems can

provide personalized recommendations for each user. By leveraging the power of

artificial intelligence, deep learning algorithms can analyze large amounts of data and

use it to learn and identify patterns that are specific to each user. This allows for a

much more accurate and personalized recommendation system, as the algorithm is

able to identify each user’s individual preferences. With automated personalization,

users can receive more accurate and personalized recommendations that are tailored to

their individual needs.

Many online websites and mobile applications rely on recommender systems to en-

hance the user experience and promote sales/services [16, 21, 117]. For example, eighty

percent of movies watched on Netflix were based on recommendations [55], while

sixty percent of video clicks on YouTube were based on home page recommendations

[16].
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2.3.2 Deep learning techniques

Programming computers to learn from data is both an art and a science known as

Machine Learning. For example, spam filter utilizes machine learning to identify and

flag potential spam emails, which are distinguished from regular emails by examples

that have been previously marked. Deep Learning is a subset of machine learning

that uses neural networks to create models that can learn from large amounts of data

[100]. There are three main types of deep learning-based systems: supervised learning,

unsupervised learning, and reinforcement learning [28]. Supervised learning uses la-

beled data to learn a mapping between inputs and outputs, while unsupervised learning

uses unlabeled data to discover hidden structures and features in data. Reinforcement

learning uses rewards to teach machines to take the best action in a given situation.

Each of these approaches has its own advantages and disadvantages, and can be used

in a variety of applications.

In supervised learning, the input data set you provide to the algorithm contains the

expected solutions, referred to as labels. A common type of supervised learning is

categorization task [119]. An illustration of this can be seen in the spam filter: it is

exposed to various emails with a specified label (spam or ham) and it must learn how

to correctly categorize new emails. Another common task is to estimate a numerical

target, for example the cost of an car, based on a set of descriptors (mileage, age, make,

etc.) called predictors.The task described is referred to as regression.

In unsupervised learning, the training data does not have any labels associated with it.

This means that the algorithm does not have any prior knowledge of the data and must

learn to recognize patterns and structure from the data itself [77]. This is in contrast to

supervised learning, where the algorithm is given labels to learn from. Unsupervised

learning is a powerful tool for making sense of complex data and can be used to identify

patterns, clusters, or outliers in the data.



2.3 Deep Learning for Recommendation Systems 25

Reinforcement Learning is different from the above two methods.The agent, referred

to as the learning system in this instance, is capable of monitoring the environment,

taking action, and receiving rewards [93].It then figure out independently what is the

most efficient plan, referred to as a policy, to maximize its gains in the long run.A

policy outlines what course of action the agent must take when faced with a particular

scenario.

Despite machine learning being an effective tool for developing predictive models

from data, it also presents some unique challenges. One of the main challenges is the

need for large amounts of training data to achieve accurate predictions. Additionally,

the data must be clean and properly formatted to be used effectively. Furthermore,

there are often complex relationships between the data points which can be difficult to

model accurately.

2.3.3 Deep learning for recommendation systems

Recent years have seen an increase in the number of businesses employing deep

learning to improve the quality of their recommendations. Covington et al. [21]

demonstrated a recommendation method for YouTube videos based on a deep neural

network. Cheng et al. [16] presented a comprehensive and deep model for an App

recommender system for Google Play. Shumpei et al. [117] introduced a Yahoo News

RNN-based news recommender system.

Regarding interaction-only sorting (i.e., matrix completion or collaborative ranking

issue), the essential point presented here is that deep neural networks are justifiable

when there is a great deal of complexity or a big number of training examples. In [63],

the authors approximated the interaction function using an MLP and demonstrated

significant performance improvements over conventional approaches such as MF.

Moreover, Tay et al. [159] have reported that conventional machine learning models,
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such as BPR, and CML, demonstrate favorable performance when trained using

momentum-based gradient descent on interaction-only data.

One of the major challenges with deep learning models in recommendation systems

is their lack of interpretability. While these models can provide accurate recommen-

dations, it can be difficult to understand how they arrived at those recommendations.

This can be particularly problematic when making decisions in sensitive or high-stakes

situations. In order to address this issue, researchers have proposed various techniques

for interpreting deep learning models, such as layer-wise relevance propagation (LRP)

[8], attention mechanisms [135], and explanation-based learning [102]. However,

more research is needed to improve the interpretability of deep learning models in

recommendation systems.

Another challenge in recommendation systems is how to better capture the dynamic

relationship between users and items. Traditional recommendation systems often

rely on static user-item interactions, which may not accurately reflect the changing

preferences and behaviors of users over time. Deep learning models offer the potential

to capture these dynamic relationships, but doing so can be difficult due to the high

dimensionality and sparsity of recommendation data. Researchers have proposed

various solutions to this problem, such as incorporating temporal information into

the model [61] and using recurrent neural networks to model sequential data [62].

Additionally, deep learning models can also benefit from incorporating contextual

information, such as user demographics or item attributes, to better capture the nuanced

relationships between users and items.



Chapter 3

Many-Objective Optimization for

Food Recommendation Systems

3.1 Motivation

Due to the ever-increasing amount of various information provided by the internet,

recommendation systems are now used in a large number of fields as efficient tools to

get rid of information overload. The content-based, collaborative-based and hybrid

methods are the three classical recommendation techniques, whereas not all real-world

problems (e.g. the food recommendation problem) can be best addressed by such

classical recommendation techniques. This chapter is devoted to solving the food

recommendation problem based on many-objective optimization (MaOO). A novel

recommendation approach is proposed by transforming the original recommendation

problem into an MaOO one that contains four different objectives, i.e., the user prefer-

ences, nutritional values, dietary diversity, and user diet patterns. The experimental

results demonstrate that the designed recommendation approach provides a more bal-

anced way of recommending food than the classical recommendation methods that

only consider individuals’ food preferences.
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Recommendation systems (RSs) employ users’ history data records to predict their

preference, and have been widely used in fields like e-commerce, movie, and music

recommendation to help people overcome information overload [178, 177, 4, 179].

Due to the growing attention to a healthy and balanced diet, food recommendation has

now become more and more popular among people worldwide. It has been shown

by researchers that a long-term unhealthy diet exposes people’s health to unaware

risks [35], e.g. the development of certain chronic diseases such as cancer, diabetes

and obesity [39]. Given the importance of a balanced and healthy diet, there is an

urgent need to use recommendation techniques to assist people in selecting scientific

yet personalized food plans.

Generally speaking, food RSs utilize users’ food consumption data to predict their

food preferences and recommend healthier substitutes to such preferences. It has

been verified that traditional recommendation techniques (e.g. the content-based,

collaborative-based and hybrid methods) perform well in analyzing rectangular data

sets [80]. Rectangular data sets are structured data arranged in rows and columns,

where each row corresponds to a user and each column represents a rating, or vice versa.

When it comes to non-rectangular food-related data sets such as meals, restaurants and

food intake, these traditional recommendation techniques fail to provide satisfactory

suggestions on a balanced and nutritional diet. For instance, a meal may consist of

several food items, each with their own nutritional values, and a restaurant may have

different types of cuisines, locations, and price ranges. Such data sets may require

more sophisticated approaches to analyze and recommend items, since traditional

recommendation techniques that rely on tabular data may not capture the complexity

and interrelatedness of the data.

In order to solve this problem, the multi-objective optimization (MOO) algorithms

have been introduced to the food recommendation field. These algorithms aim to

optimize multiple objectives, such as user preferences and food nutritional values,
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to provide more personalized and balanced recommendations. However, it should

be noted that most existing MOO-based recommendation studies in the food domain

have only considered a limited number of objectives, often leading to sub-optimal

recommendation plans. Taking into account the fact that many other objectives (e.g.

food diversity and user diet patterns) also pose significant impacts on health-related

recommendation, it would be quite interesting to investigate how such objectives could

be integrated into the MOO problem so as to provide more scientific and efficient

recommendation. This seems to be a nontrivial task due to the great difficulty in

considering so many food-related objectives simultaneously in one MOO model,

which can bring high computation costs and great visualization difficulties [144, 180].

In this chapter, a novel MaOO-based approach is developed to provide a balanced

and systematic way of dealing with food recommendation tasks. An MaOO model is

proposed by considering four crucial objectives related to user preference, user diet

pattern, food nutritional values, and food diversity. Three Pareto-based algorithms

are applied to solve the given recommendation task, and the experimental results

demonstrate the effectiveness of our model in food recommendation.

The main contributions of this chapter can be summarized as follows: 1) a new food

recommendation problem is considered that targets at supplying users with a scientific

yet personalized diet, where four different food related objectives are required to be

simultaneously optimized; 2) a novel MaOO based recommendation framework is

developed to solve the proposed recommendation task, where three MaOO approaches

are delicately combined to convert the original recommendation task into an MaOO

problem; and 3) a series of experiments based on real-world data sets are conducted to

verify the effectiveness of the proposed MaOO based recommendation framework.

The rest of the chapter is organized as follows: Section 3.2 presents the related work

about traditional food recommendation methods. Section 3.3 develops an MaOO

model for food recommendation. Section 3.4 discusses the experimental results and
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the corresponding metrics chosen for algorithm evaluation. Section 3.5 presents some

conclusions and future directions.

3.2 Related work

As an efficient tool in helping users coping with overwhelming food information, the

food RS is able to employ recommendation techniques to 1) learn user requirements

from massive historical user data (e.g. recipe ratings, browsing history, and implicit

feedback); 2) build a disease- and nutrition-oriented food recommendation model; and

3) provide users with personalized and healthy diet. In the sequel, a comprehensive

introduction to typical food recommendation techniques and their application status is

provided.

Traditional recommendation algorithms (e.g. the content-based, collaborative-based,

hybrid and collaborative filtering methods) are featured with machine learning ap-

proaches (including the logistic regression, random forest and support vector ma-

chine techniques), and are often applied to deal with rectangular data sets for food

recommendation[42]. Note that food recommendation, as a special recommendation

filed, is different from its counterparts such as movie or e-commerce recommendation

[154] and the difference can be summarized as follows.

The first difference is about rating. It is known that rating has a dominant effect on

algorithm outputs in movie or e-commerce recommendation, whereas rating only has a

small influence on the algorithm outputs of food recommendation. In the context of

movie or e-commerce recommendation systems, the ratings provided by users have

a significant impact on the algorithm outputs as these systems heavily rely on user

feedback to generate recommendations and often prioritize highly rated items over

others. However, the influence of ratings in the case of food recommendation systems

is relatively small since food preferences are highly subjective and can vary widely
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among individuals. It is challenging for a rating-based system to accurately capture

the nuances of each user’s tastes, and thus, food recommendation systems rely on a

combination of other factors such as ingredient compatibility and past purchase history

to generate personalized recommendations [112].

The second difference is about information. Preference learning is a complex and

important task in food recommendation that requires more context information in

comparison with general recommendation tasks [82]. The third difference is about

feedback. Unlike many other recommendation tasks (e.g. movie recommendation), the

feedback from users in food recommendation might not always result in satisfactory

recommendation. To be specific, in food recommendation, feedback from users only

reflects their own taste preferences, and might not always contribute to a healthy diet

[112].

So far, very little work has been done on food recommendation under real-world

settings [106]. This is due to the reason that the food intake data in real-world scenarios

typically appear in a non-rectangular form. As a result, it is hard for traditional

recommendation techniques to process such data. In addition, the rich contextual

information contained in the real-world food data set is difficult to be captured by

traditional recommendation techniques. To solve these problems, in recent years, the

MaOO method has become quite popular in the field of food recommendation as the

MaOO is capable of converting food recommendation problems into MaOO ones,

which overcomes the drawback of traditional recommendation techniques.

Regarding MaOO-based health- or nutrition-oriented food recommendation, tailored

objectives (closely related to research backgrounds) are required to be added to the

MaOO model. For example, four objectives (i.e. the food preferences, preparation time

of meals, budgets, and availability from cooked dishes) have been firstly formulated in

[161], and the well-known many-objective evolutionary algorithm has then been used to

solve the diet recommendation problem. A food package suggestion has been presented
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in [164] based on real-world restaurants, where the number of dishes, diversity of dish

categories and popularity of dishes have been considered as three objectives that need

to be maximized. In [160], tailored objectives have been constructed for recommending

healthy meal plans based on the user age and vulnerable health background in real

clinic institutions.

It is worth mentioning that food recommendation is often accompanied by complex

research backgrounds, and this undoubtedly brings great challenges to the design of

MaOO-based food recommendation approaches. One way to cope with such challenges

is to come up with more scenario-related objectives. The other way is to explore more

appropriate MaOO algorithms that cast deeper insights into food recommendation

scenarios. Although the aforementioned two ways perform well in tackling challenges

underlying food recommendation, they both have built themselves on classical MaOO

algorithms and have ignored the fact that, food recommendation has its uniqueness

and restrictions (e.g. the age, location, environmental information, allergies and food

beliefs) [82]. This motivates us to investigate more specialized MaOO algorithms that

target at supplying users with better food recommendation plans.

3.3 A many-objective optimization model for food rec-

ommendation

3.3.1 Data Collection and Preparation

A free online health and fitness mobile app called MyFitnessPal (MFP) is used in this

study, which records users’ daily food intake and counts calories consumed [1]. The

MFP data set provides 1.9 million records of meals recorded by 9.8K MyFitnessPal

users from September 2014 to April 2015 on 71K food items. Furthermore, the

MFP provides an Application Programming Interface (API) that enables developers
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to access data from the application [37]. The information can be retrieved includes

the names of the food items consumed, the serving sizes, and the nutritional values

of each item. To retrieve the data from the MFP application, HTTP requests are

sent to specific endpoints with parameters such as user ID and date. The API would

then return a JavaScript Object Notation (JSON) response containing the requested

data. The nutritional information provided by the MFP API includes a wide range of

macronutrients and micronutrients, including calories, protein, fat, and carbohydrates.

This information can help to calculate user’s nutrient intake.

Table 3.1 MyFitnessPal Data Set.

user_id date meal_sequence food_ids
1 2014.09.14 1 1,2,3,4,5,6
4 2014.11.14 2 12,3,4,3
5 2015.01.14 4 9,5,9,2

173 2015.02.03 3 4,7,6,8,69
175 2015.03.14 1 2,12,42,6,9

Table 5.1 provides five examples of the MFP data set. The user_id and date represents

user identifiers and record time of this entry, respectively. The meal_sequence indicates

the order of the meals on a given day, e.g., meal_sequence = 1 indicates the day’s first

meal. The food_ids records food entries that users have consumed.

Table 3.2 MyFitnessPal Food Data Set.

id item
1 fruit_tropical_banana
2 dessert_confectionery_chocolate
3 staple_wheat_spaghetti
4 meat_sausage_hot_dog, staple_wheat_bun
5 bean_legume_legume_bean

Table 5.4 contains five examples of food entries for each food_id list. Each food_id

is composed of a triplet of meal type, food types, and specific food separated by
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underscores. The MFP API is used to retrieve nutritional information for each food

item.

Fig. 3.1 Histograms of four users.

In Fig. 3.1, we analyze the dietary frequency of four randomly users from the MFP

data set. The x-axis displays the food_id, and the y-axis shows the proportion of total

food consumption represented by each food. It is clear that users 2 and 3 possess a

strong preference for certain foods, while users 1 and 4 exhibit less inclination for

certain foods, but still prefer certain foods as their favorites. We can conclude from the

histogram that users tend to develop a stable preference for food.

3.3.2 Problem formulation

User preference

User preferences refer to the attitudes and preferences that individuals have toward

foods [42]. It is essential to learn the user’s preferences for food, since users tend to

expect food that satisfies their preferences. The Positive Point-wise Mutual Information
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(PPMI) is used in this chapter as a measure of correlation between two food items in

the data set, as well as a qualitative measurement for evaluating food preferences [7].

We compute the correlation matrix using PPMI for all the foods in the MFP data set.

Objective 1: Maximize user preference

PPMI( fi,ci) = max
(

log2
P( fi,ci)

P( fi)P(ci)
,0
)

(3.1)

where fi and ci denote the i-th food item in Table 3.2 and the i-th food context in

Table 3.1, respectively. If fi and ci are not correlated, P( fi,ci) is equal to P( fi)P(ci).

P( fi)P(ci) is greater than P( fi,ci) when fi and ci are correlated. The higher the PPMI,

the larger the correlation between the fi and ci.

The PPMI is chosen as a metric because it performs better in a context-related scenario

by comparing to other similarity measurements. As presented in Table 3.1, the food_id

vectors’ lengths are time-varying. Other widely applied similarity metrics, such as

Pearson correlation coefficient and cosine similarity, are not suitable for the data

set due to the following reasons: 1) The Pearson correlation coefficient (PCC) is a

measure of linear correlations between two sets of data, which is generally used in

recommendation areas where rating matrices are available; 2) The cosine similarity is

a measure of similarity between two non-zero vectors of an inner product space, and

the length of the vectors is required to be the same. Thus, in this chapter, the PPMI is

chosen as the measure to assess users’ food preference learning.

Table 3.3 PPMI Matrix.

food_id 1 2 3 4 5 6 7 8
1 0.0 0.0 2.55 2.06 2.25 2.45 2.50 2.46
2 0.0 0.0 0.00 2.92 3.15 2.74 2.75 2.45
3 0.0 0.0 0.00 0.00 2.72 2.08 2.11 2.48
4 0.0 0.0 0.00 0.00 0.00 2.67 2.46 2.08
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Table 5.3 shows the PPMI scores for all food items. In the PPMI matrix, each row

represents a food item f ∈ Vf and each column represents a context c ∈ Vc, where

Vf and Vc are the sets of food items and their contexts, respectively. Each cell Mi j

represents the correlation between the food item fi and the context ci indicated by

the PPMI in Equation (5.1). PPMI matrix is also used in the nutrition section to find

healthier substitutes.

Nutrition

Malnutrition is associated with symptoms such as fatigue, dizziness, and even diseases

[149]. Therefore, balanced nutrition intake is necessary for the users’ health. The

World Health Organization (WHO) published a document entitled Diet, nutrition, and

prevention of chronic diseases in 2002, where unbalanced food intake is identified as

the primary cause of chronic metabolic diseases like obesity [116]. Table 3.4 provides

information regarding the nutritional intake of users according to WHO guidelines.

Table 3.4 provides the population nutrition intake recommendation for prevention of

diet-related chronic diseases. The recommendation’s percentages may vary depending

on the intake of a particular population.

Table 3.5 contains the nutrient value of each food in the MFP food data set and is used

to calculate the proportion of each nutrient in the food.

To quantify the nutritional value of each food, we calculate nutrition scores from the

nutrition indexes of the three major nutrients: protein, carbohydrate, and fat. We set a

default value of zero for each nutrient. Using protein as an example, if the calculated

intake falls outside the recommended range, we determine the absolute difference

compared to the lower and upper bounds of the suggested range. Similar results can be

obtained for carbohydrates and fats.
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Table 3.4 WHO Daily Intake Standard.

Ranges of population nutrient intake goals
Dietary factor Goal(% of total energy, unless otherwise stated)

Total fat 15-30%
Saturated fatty acids 10%

Polyunsaturated fatty acids (PUFAs) 6-10%
n-6 Polyunsaturated fatty acids (PUFAs) 5-8%
n-3 Polyunsaturated fatty acids (PUFAs) 1-2%

Trans fatty acids 1%
Monounsaturated fatty acids (MUFAs) By difference

Total carbohydrate 55-75%
Free sugars 10%
Protein 10-15%

Cholesterol 300 mg per day
Sodium chloride (sodium) 5g per day (2g per day)

Fruits and vegetables 400g per day
Total dietary fibre From foods

Non-starch polysaccharides (NSP) From foods

Table 3.5 Table of Nutrients.

food_id total_calories fat_calories carbohydrates_calories sugar_calories protein_calories
1 150.0 72.00 48.00 44.00 32.00
2 627.0 263.97 137.76 52.92 189.16
3 410.0 117.00 248.00 4.00 88.00
4 510.0 189.00 104.00 40.00 176.00
5 270.0 54.00 12.00 4.00 80.00
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Objective 2: Maximize Si

Si = |spi−0.1|+ |spi−0.15|+ |sci−0.55|

+ |sci−0.75|+ |s fi−0.15|+ |s fi−0.3|
(3.2)

where Si stands for nutrition score of the i-th food item, and spi, sci and s fi denote the

corresponding calculated protein, carbohydrate, and fat percentage, respectively.

Food Diversity

Users often overlook the importance of food diversity, which compensates for nutri-

tional deficiencies to a large extent. For example, 97% of Americans’ fibre intake don’t

reach the daily minimum [5]. In this regard, a necessary recommendation strategy

is employed to encourage users to discover more heterogeneous foods that provide a

nutritional supplement of fiber, minerals and unsaturated fats. The Simpson index is

used as the diversity metric here, which is expressed as follows.

Objective 3: Maximize Diversity

D = 1−
n

∑
i=1

P2
i (3.3)

where n is the number of food items, Pi indicates the probability for two food items

to be chosen as the same food items of one user’s food consumption data. P2
i is the

random joint probability of two food items. This diversity index can reflect whether a

user’s food intake is heterogeneous or not in a period.

User Diet Pattern

An individual’s diet pattern is a dynamic feature that reflects their eagerness for specific

types of food at specific times, which has a non-negligible impact on the acceptance
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of recommendations. User diet patterns change over time, resulting in users having

different daily food intakes [118].

To measure changes in diet patterns over time, we chose Dynamic Time Warping

(DTW) as an indicator, which is originally designed for comparing two time series of

different lengths during the same time-period [145]. The primary reason for choosing

DTW is that it can measure the similarity of two sequences of different lengths [150].

Objective 4: Maximize DTW

DTW(i, j) =−Dist(i, j)+min[DTW(i−1, j),

DTW(i, j−1),DTW(i−1, j−1)]
(3.4)

Given two food vectors X and Y, their lengths are |X | and |Y |, respectively. The

wrapping path can be formulated as W = w1,w2, . . . ,wk, satisfying max(|X |, |Y |)<=

K <= |X |+ |Y |, where wk = (i, j) is a tuple of |X | and |Y |’s coordinates, respectively.

The wrapping path starts from W1 = (1,1) and ends at Wk = (|X |, |Y |). It finally

generates the shortest path between two distinct length vectors.

3.3.3 A many-objective optimization model

In MaOO, there are multiple objectives, typically over three. The complexity of MaOO

increases rapidly with the increasing number of objectives, making it intractable in

case of a large objective number [56]. In this chapter, an MaOO model is developed to

provide a balanced and systematic way of dealing with food recommendation tasks.

Four crucial objectives related to health, user preferences, user diet patterns, food

nutritional values, and food diversity. Three representative MaOO algorithms are

applied, and their performances evaluated. Our model is structured as follows:

Algorithm 3.1 describes the fundamental model structure. First, the initial population

is formed by N randomly-generated individuals. Second, a fitness vector of the initial
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population is obtained, where each value represents fitness for each individual. Third,

mating selection which includes mutation and crossover is performed to find the fittest

individuals for the next generation. Finally, the environmental selection is implemented

to keep the population sizes.

Algorithm 3.1 Main Algorithm
Require: P (population), N (population size)

P←− Initialize(P)
while termination criterion not fulfilled do Fitness_calculation(P)
P′←−Mating_selection(P)
P←− Environmental_selection(P′)
end while
Return P

Fitness is an indicator of an individual’s ability to adapt to their environment. Mating

Selection aims to drive the population evolution towards the optimum by a series of

biological reactions, such as mutation, crossover, and tournament selection. Algorith-

m 3.2 gives detailed steps of mating selection. First, mutation and crossover, which are

characterized by gene recombination, create the potential of gene diversity. Second,

tournament selection finds the fittest ones of the population to form the offspring

population. Finally, the offspring population is fed into the MaOO problem.

Algorithm 3.2 Mating Selection

P←− Fitness_calculation(P)
Mutation(P)
Crossover(P)
P′←− Tournament_selection(P)
return P′

Environment selection is applied to obtain the best approximation of the Pareto-set.

Only the dominant solution set of the individuals is chosen to enter the next selection.

To maintain population sizes, external non-dominant sets are created. This process

repeats until the termination criterion is satisfied.
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Algorithm 3.3 Mating Selection

P′←−Mating_selection(P)
Initialize the external non-dominant set P′

Copy non-dominant members of P to P′

Remove dominant solutions within P′

Calculate the fitness value on four objectives for each individual in
P and P′

Return P for initialization step

3.4 Experimental results and evaluation

For performance evaluation, three typical MaOO algorithms, i.e. the SPEA2 [76],

NSGA-II [26], and SPEA2+SDE [89], are adopted for two different cases where the

first case has three objectives and the other case has four objectives. Different Pareto

optimal solutions are obtained and evaluated in every scenario.

3.4.1 Case I (three objectives)

In case I, three objectives are selected from the four objectives, and four different

MaOO problems are formed. The experiment is conducted using the above stated

MaOO algorithms, and the results obtained by the SPEA2+SDE are presented as

an example. It is demonstrated by the experimental results that the Pareto optimal

solutions vary under different combinations of objective functions and therefore, it is

used as a reference of comparison in terms of trade-off patterns when adding the fourth

objective.

Figs. 5.2-4.5 show that the Pareto-fronts optimization results of the three objectives, i.e.

user preferences, nutrition scores and food diversity. Fig. 5.3 shows better convergence

and diversity than Figs. 5.2, 4.4 and 4.5 for the fact that, the results in Fig. 5.3 are

obtained by minimizing the distance of solutions to the optimal front and maximizing

the distribution of solutions over the Pareto-front. The reason behind this is that
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Fig. 3.2 Pareto-front of three objectives.

Fig. 3.3 Pareto-front of three objectives.
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Fig. 3.4 Pareto-front of three objectives.

Fig. 3.5 Pareto-front of three objectives.
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the information (about the user’s dietary preferences, nutritional intake, and dietary

patterns) is fully extracted from the data set in Fig. 5.3. Meanwhile, food diversity is

limited by the users’ dietary range of choices in Figs. 5.2,4.4 and 4.5. In summary,

food diversity is an essential factor in guaranteeing individuals’ health and should be

considered and optimized simultaneously with other objectives.

3.4.2 Case II (Four objectives)

In Case II, user preference, nutrition values, food diversity and user diet patterns are

optimized simultaneously, and the experimental results of the SPEA2+SDE-based

methods are presented in Figs. 3.6-3.8. Three kinds of user group sizes are set for

evaluating the convergence and diversity of these algorithms. It is found that Fig. 4.5

shows better convergence performance due to the density of the intersection of lines

located on small range of the objective value.

Fig. 3.6 Average of one user on four objectives.

3.4.3 Performance Comparison

Many metrics are put forward to evaluate the performance of MaOO algorithms, where

convergence and diversity are the two most widely-used ones. Convergence evaluates
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Fig. 3.7 Average of five user on four objectives.

Fig. 3.8 Average of ten user on four objectives.
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the approximation of the experiment results to the Pareto optimal front, while diversity

is used to evaluate the distribution over the Pareto front [155]. In this chapter, the

hypervolume is used as the performance metric and it has the advantage of being fully

in line with Pareto dominance [151]. The hypervolume calculates solution sets by

computing the intersection n-dimensional polytope between a set of solution points

and an additional set of reference points. The volume of this polytope is referred to as

the hypervolume. The hypervolume indicator is defined as follows:

H(S) = Λ({q ∈ Rd | ∃p ∈ S : p≤ q and q≤ r}) (3.5)

Given a Pareto-front point set S⊂ Rd and a reference point r ∈ Rd , the hypervolume

indicator of S is the measure of the Lebesgue measure region weakly dominated by S

and bounded above by r.

A point p ∈ Rd is said to weakly dominate a point q ∈ Rd if pi ≤ qi for all 1≤ i≤ d,

i.e. p≤ q. If p /∈ q, then p is said to (strictly) dominate q, i.e. p < q. If pi < qi for all

1≤ i≤ d, then p is said to strongly dominate q, i.e. p≪ q.

Fig. 3.9 Hypervolume illustration.
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As it is difficult to illustrate the hypervolume indicator in four or more dimensions,

Fig. 3.9 shows an example of hypervolume indicator calculation for two-objective

optimization. As to the choice of reference point, it remains unclear how to decide the

best reference point to use in a particular situation. Therefore, this chapter has chosen

the reference point by 1.1 times the biggest value of every objective based on common

practices [90]. The hypervolume indicator in two-objective optimization is defined as

the area between each solution point and the reference point r, and the area size is used

to compare the performance of different algorithms.

Table 3.6 Comparison of three MaOO algorithms’ experimental results.

Model Hypervolume indicator
SPEA2 0.59

NSGA-II 0.62
SPEA2+SDE 0.73

Table 3.6 presents a comparison of three MaOO algorithms according to the perfor-

mance metrics. The hypervolume indicator performs as a quantifier where higher

values indicate better results. Among the three MaOO algorithms, the SPEA2+SDE

provides the best performance when using Hypervolume indicator to measure Pareto-

front quality.

Fig. 3.10 shows the running time of the three algorithms with different user group size.

SPEA2+SDE displays certain fluctuations for different group sizes. It is observed that

1) the first ten users have a large volume of data; 2) the shift-based density step takes

longer time to process the data; 3) the running time of the three algorithms reaches

stable as the user number increases beyond a certain point; and 4) SPEA2+SDE

performs better than SPEA2 and NSGA-II in the running time under different user

group sizes.
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Fig. 3.10 The performance of different algorithms with different user group size.

3.5 Summary

In this chapter, a novel MaOO-based recommendation approach has been developed

to provide a balanced and systematic way of dealing with food recommendation

tasks. Four crucial objectives (including the user preference, user diet pattern, food

nutritional values and food diversity) have been simultaneously considered in the

proposed recommendation method. Then, three Pareto-based algorithms have been

applied to solve the presented recommendation task, and comprehensive experiments

based on real-world data sets have been conducted to verify the effectiveness of the

proposed MaOO-based recommendation framework. Some future research directions

include 1) the consideration of more user related objectives in the MaOO model; 2) the

conduction of more experiments under different food recommendation data sets; and

3) the introduction of machine learning techniques to analyze the food related time

series data. Further research topics would include the extension of the main results of

this chapter to more comprehensive systems using more up-to-date filtering algorithms

[67, 47, 94, 95, 107, 184, 29, 185, 66, 65, 74, 18, 48, 46, 152, 134, 99, 186, 73].



Chapter 4

Sequence-Based Personalized Food

Recommendation Systems

4.1 Motivation

The recommender system (RS) is a well-known practical application of the state-of-

the-art information filtering and machine learning technologies. Traditional recommen-

dation approaches, including collaborative and content-based filtering techniques, have

been widely employed to provide suggestions in RSs, where the user-item interaction

matrix is the primary data source. In many application domains, interactions between

users and items are more likely to be dynamic rather than static, and thus dynamic

user behaviors should be taken into account when solving recommendation tasks in

order to provide more accurate suggestions. In this work, we consider the sequentially

ordered information from user-item interactions in the RSs where a sequence-based

recommendation model is put forward with applications to the food recommendation

scenario. Furthermore, the long short-term memory (LSTM) network is employed

as the building block to establish such a recommendation model, and a collaborative

filtering unit is adopted to make personalized food recommendation. The proposed
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LSTM-based RS is successfully applied to a real-world food recommendation data

set. Experimental results demonstrate that the developed method outperforms some

currently popular RSs in terms of precision, recall, mean average precision and mean

reciprocal rank in food recommendation.

Food has always been at the heart of human life. In the past, people had to identify

and store food to survive, while in nowadays, people have more concerns about

dietary needs including essential nutrition, health, taste, calories, and social occasions

[35, 57]. Due to the growing information overload of various food-related content on

multimedia, food recommender systems (RSs) are becoming increasingly attractive

for people worldwide. Clearly, long-term unhealthy eating habits would be harmful

to people’s health with potential risks such as the development of undesired chronic

diseases. Taking into consideration of the importance of healthy eating habits, the RS

is now used as an efficient tool by people to make informed decisions on food selection

according to their health conditions, thereby helping people develop heathy eating

habits and reduce unaware health risks [113, 178, 177, 179].

Generally speaking, RSs have the advantage of saving time and money by using a series

of algorithms to analyze users’ food behaviors and ratings so as to recommend the most

relevant and appealing foods to users [111]. Note that there are still several challenges

(e.g., diversity, adaptation and fluctuation) that hinder the further development and

application of RSs. The diversity challenge lies in the fact that food RSs are required

to be able to handle diverse types of food preferences of all individuals, e.g., different

taste preferences, perceptual abilities, cognitive restrictions, cultural backgrounds,

and even genetic influences [147, 120, 183]. The adaptation challenge means that,

accounting for the fast change of food trends among people, food RSs are expected

to constantly adapt to the latest food fashions in order to provide up-to-date food

suggestions [36]. The fluctuation challenge implies that it is unreasonable to supply

the users with a one-size-fits-all food recommendation taking into consideration of the
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dramatic fluctuation of users’ food preferences [158]. Faced by the three challenges,

there is a practical need to develop a novel recommendation technique to help people

select food plans that are reasonable and personalized based on individually diverse,

rapidly changing and dramatically fluctuated food preferences.

The collaborative filtering (CF) as well as the content-based filtering (CBF) are two

widely used recommendation techniques for food preference learning. Typically, CF

works by taking into account the food preferences of users with similar tastes, while

CBF focuses on the attributes (e.g., ingredients, nutrition, and reviews) of the food itself

[40]. Although CF and CBF achieve reasonable performance for preference learning,

their adaptation to the change of user preferences or food contents is poor. To overcome

this problem, it is crucial to consider the dynamic pattern of user-item interactions into

the recommendation process so as to help better predict future preferences (of users)

and optimize recommendation results accordingly. In addition, the consideration of

such a dynamic pattern can also provide valuable insights into the interaction between

users and recommendation applications/systems, and therefore help improve the user

experience [133].

Recently, artificial neural networks have been successfully applied to RSs owing to

their strong feature extraction abilities [31, 153, 169, 124, 173, 128, 101]. For example,

a convolutional sequence embedding (Caser) RS has been proposed in [153] for product

recommendation, where a convolutional neural network (CNN) is employed to capture

the sequential features by analyzing the embedding matrix. It is worth mentioning

that the embedding matrix can be treated as the “image” of the items in the latent

space. Experimental results demonstrate the effectiveness of the proposed Caser

RS in extracting sequential patterns by taking both sequential patterns and general

preferences into account. In [173], a convolutional attention network has been put

forward to explore the user behaviors by unifying a general RS and a sequential

RS. A user-based recurrent neural network (RNN) has been developed in [31] for
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sequence prediction by integrating user information so as to provide personalized

recommendation. In [101], a multi-period product RS has been introduced for online

food recommendation, where an RNN-based recommendation model is developed to

provide product recommendation in multiple time periods.

Serving as a popular RNN, the long short-term memory (LSTM) network has been

widely adopted in RSs with hope to comprehensively investigate the dynamic features

through user-item interactions [101, 19, 61]. It should be noted that the LSTM network

has shown competitive performance in capturing both the long-term and short-term

patterns, which contributes to a comprehensive investigation of user behavior in RSs.

Motivated by above discussions, it becomes a seemingly natural idea to employ LSTM

networks to study the user-item interaction sequences in order to carry out personalized

food recommendation. In this chapter, a sequence-based recommendation approach

is proposed to lay an effective and systematic basis for establishing food RSs. A

traditional LSTM network is adopted to reflect users’ food preferences and generate

accurate recommendation suggestions. Furthermore, the proposed LSTM-based RS is

tested on a public data set, and the experiments verify the promising performance of

our approach for food recommendation.

The main contributions of this chapter are outlined in threefold as follows: 1) a uni-

fied framework is proposed for food recommendation that leverages feedbacks from

sequences as well as historical interactions to model users’ long- and short-term prefer-

ences; 2) a traditional LSTM network is employed to extract the user representation

by considering the user habits at a certain time period; and 3) a series of numerical

experiments are conducted on a real-world data set to validate the effectiveness of

the developed RS. In summary, the established RS is capable of effectively modeling

users’ long- and short-term preferences and providing more accurate and diverse food

recommendation in comparison with existing food recommendation techniques.
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The remainder of this chapter is organized as follows. In Section 4.2, the related

work is presented on existing solutions for food recommendation. A sequence-based

model is developed in Section 4.3 for food recommendation. The experimental results

are discussed in Section 4.4 and appropriate evaluation metrics are carefully selected

for evaluating the algorithm performance. Section 4.5 concludes the chapter while

pointing out the future directions.

4.2 Related work

In the food domain, RSs play an important role in promoting healthy eating behaviors

by approaches such as suggesting healthier food substitutes to users. Food RSs can

be divided into three types based on the information used for food recommendation

[156]. The first type adopts users’ food preference for recommendation, e.g., the

search terms or ingredient inputs of users have been utilized in [22] to conduct recipe

recommendation. The second type leverages the healthy and nutritional needs of

users for recommendation, e.g., a food plan has been generated in [114] based on

healthy ingredients instead of harmful ones. The third type finds a trade-off between

user preferences and nutritional needs, e.g., a healthy and nutritional meal plan has

been made for the elderly in [141] by taking advantage of information from both user

preferences and food nutrition.

In comparison with the general RSs, the food RSs have the following differences. The

first difference is that the food RSs have to consider more factors when conducting

recommendation, e.g., users’ nutritional needs, weight goals, and health problems

which are primary factors for food recommendation. The second difference is that

different domain knowledge and food databases (e.g., nutritional, medical, and dietary

information) are required by the RSs to supply users with healthier food suggestions.

The last difference is that the unique characteristics (e.g., cooking methods, preparation
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time, and ingredient combination effects) of various food have to be concerned when

making recommendation. In summary, more factors and information should be taken

into good consideration by the RSs in order to provide users effective and healthy food

plans [44].

For the purpose of improving the accuracy of food RSs, it is crucial to consider

both users’ dynamic preferences and historical neighbor feedbacks. In this chapter,

sequence-based recommender systems (SRSs) are introduced to capture dynamic

preferences of users. Modeling the sequential pattern of users’ behaviors allows the

RSs to understand the evolution of user tastes over time, thereby providing better

recommendation [174]. It is worth mentioning that the SRSs are different from

traditional RSs in that SRSs account for the order of items via the perspective of

users’ historical behaviors, and thus both timing and frequency of interactions are

taken into account for recommendation [38]. So far, the SRSs have been successfully

applied in many applications such as e-commerce, music, and news recommendation

[62, 70, 121, 17, 71, 45].

Incorporating sequence-based RSs into food recommendation has several advantages.

First, food recommendation is often time-sensitive where suggestions are expected

to be interactive. For example, if a customer has ordered a steak, it is reasonable for

RSs to recommend a salad as a starter and a glass of red wine as an accompaniment.

Second, SRSs make it possible to model the rather complicated couplings/interactions

among different foods that are consumed together. For example, SRSs can capture the

fact that consuming bread increases the likelihood of subsequently consuming milk.

Third, SRSs are effective at handling implicit feedbacks that are more reliable than the

explicit feedbacks (ratings) which are not always available [163].

Existing solutions for SRSs mainly fall into two categories which are the Markov

chain models and deep learning techniques. The Markov chain model treats the users’

behavior as a sequence of states and item recommendation is provided based on the
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state transition probabilities [139, 11, 58]. As for the deep learning techniques, typical

examples are CNNs, RNNs, and graph neural networks, which have been widely used

in a variety of sequence-based RSs [61, 31, 153, 30, 173]. Although the SRS has been

implemented in a variety of domains, it has been rarely considered in the food domain

due to the fact that food recommendation is a highly contextualized and personalized

task which unavoidably leads to significant difficulties to the satisfactory design of

SRSs. As such, we are motivated to investigate a specialized food recommendation

approach that effectively integrates the SRSs with other types of RSs to provide a

comprehensive and personalized solution for food recommendation.

4.3 Sequence-based deep learning model for food rec-

ommendation

In this section, the recommendation task is described with elaborated descriptions

of the proposed model. We start by introducing some key concepts required for the

model.

4.3.1 Problem formulation

Consider a set of m users U = {u1,u2, . . . ,um} and a set of n items I = {i1, i2, . . . , in},

where m and n are the sizes of the user set and item set, respectively. For user ui, it has

an ordered list of items S ui according to the action sequences. For each user ui, the

prediction task can be written as:

S ui
t−L, · · · ,S

ui
t−2,S

ui
t−1→S ui

t (4.1)
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where t for S ui denotes the temporal order in which actions happen. Given sequence

S ui
t−L, · · · ,S

ui
t−2,S

ui
t−1, the model tries to predict Sui

t as the next item with which the

user will interact. Two sequential patterns are considered in this chapter, i.e., the

point-level sequential pattern (PSP) and the union-level sequential pattern (USP).

Point-level sequential pattern

The point-level sequential pattern (PSP) is a type of sequence-to-point learning model,

where predictions are made based on all the actions that have occurred up to a certain

time point [181]. As shown in Fig. 5.1 (a), the output S ui
t is a predicted item for

the next action. All of the previous points influence the target independently. For

example, if we have a list of items ingested by a person over the course of a day, we

may be interested in finding two possible patterns, e.g., "coffee is usually consumed

after dessert" and "chips are usually consumed after fish."

Union-level sequential pattern

The USP tries to predict the behavior of users based on aggregating multiple interac-

tions [87]. The pattern is based on the assumption that the union of all the event is a

reasonable predictor for the next event in the sequence. Different from the PSP, the

USP is able to identify items that are frequently co-consumed, such as the combination

of breakfast and lunch. Fig. 5.1 (b) shows an illustration of the PSP, where several

previous actions jointly influence the target action. The LSTM network is employed in

our proposed approach to mine both PSP and USP that exist in users’ behaviors.

4.3.2 Modeling and learning

The proposed model mainly consists of two units, i.e., the LSTM unit and the CF unit,

where the LSTM network attempts to discover long- and short-term preferences that
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Fig. 4.1 Point and union-level sequential patterns.
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exist in users’ interaction sequences and to determine the latent representation of the

user in the embedding layer. The sequential learning process allows the model to learn

behavior patterns of users’ preferences at both point- and union-level, which enables

the model to make more accurate predictions about their future behaviors.

Specifically, the user-item interaction at each time step is transformed into one-hot en-

coded vector as the network input. Then, these vectors are mapped to low-dimensional

dense vectors through the embedding layer and passed to the LSTM network to capture

the behavior pattern of each user. Afterward, the user embedding vector is calculated

by averaging the trained embedding vectors. The results are fed as input vectors for

the CF unit.

The CF unit makes recommendation by suggesting items (liked by other users with

similar tastes) to target users. Cosine similarity is used to quantify the correlation

between two users. After obtaining the similarity matrix, the most similar group of

users (to the target users) is identified with the most liked item selected and forwarded

to the target users as recommendation.

LSTM networks

Recurrent neural networks (RNNs) use data patterns to predict the probability of future

events based on the sequential characteristics of the data [108]. Various ordinal or

temporal problems can be solved using this method, such as language translation,

natural language processing, speech recognition, and image captioning. In contrast to

traditional deep neural networks, which assume that inputs and outputs are independent

of each other, RNNs incorporate input and output information from previous inputs

to influence the current input and output. The LSTM network, as a variation of the

traditional RNN, is designed to better retain information over a long period of time.



4.3 Sequence-based deep learning model for food recommendation 59

In addition to learning the non-linear and non-stationary nature of sequential data, the

LSTM network has the advantage of preserving information in memory for a long

period of time, which is in line with the goal of capturing the union-level pattern. The

LSTM network controls the flow of information using three gates: the forget gate, the

input gate, and the output gate, where the forget gate determines which information

requires attention and which may be ignored by using the update function given as

follows:

ft = σ
(
Wf · [ht−1,xt ]+b f

)
(4.2)

where a sigmoid layer is applied on the input of the unit at time t and the last cell state,

denoted by xt and ht−1, respectively. The next step is to determine what information

should be stored in the current cell state. First, the input gate layer determines which

values to update. Then, a tanh layer formulates a vector consisting of the values of new

candidates, denoted as C̃t , which can be added to the state. Such two layers combine to

produce an update to the current state, which is defined as follows:

it = σ (Wi · [ht−1,xt ]+bi) (4.3)

C̃t = tanh(WC · [ht−1,xt ]+bC) (4.4)

Ct = ft ∗Ct−1 + it ∗C̃t (4.5)

The new cell state Ct is decided by the old state ft ∗Ct−1 and the new candidate value

it ∗C̃t . Finally, the output is generated from the current internal cell state Ct .

ot = σ (Wo [ht−1,xt ]+bo) (4.6)

ht = ot ∗ tanh(Ct) (4.7)
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where the values of the current state xt and the previous hidden state ht−1 are passed

into the sigmoid function to decide which parts of the cell state are to be updated.

Then, the new cell state passes through the tanh function. Both of these outputs are

multiplied point by point. The final hidden state ht is used for prediction.

Customized the LSTM network

The LSTM network is used in this chapter to learn user representation. The input

of the LSTM network is the item of the actual interaction, while the output is the

predicted item which a user tends to interact with at next time step. The item is

first converted to a one-hot encoding vector, where the length of the vector equals

the number of items. Here, only the coordinate corresponding to the active item is

one, and the rest coordinate are zeros. Then, the one-hot encoding is mapped to a

learnable, low-dimensional vector through the embedding layer. After retrieving the

pre-trained item embeddings, the user embedding can be calculated by averaging

item embeddings. Note that the pre-trained process is independent for each user, and

therefore the averaging embedding can be used as the reasonable representation for

each user. Fig. 5.2 depicts the structure of the LSTM unit. Additional embedding

layers are added between the input and the LSTM layer, and the output is the predicted

preference of the items.

CF unit

The CF unit starts with user embedding that represents the individual interest of each

user. The user embedding, which is a fixed-length vector representation of a user’s

interests or preferences, is generated by an LSTM network unit. To find the user group

most similar to the target user, the similarity between each pair of user embeddings is

calculated using the cosine similarity measurement. The cosine similarity is a measure
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Fig. 4.2 General structure of the network.
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of similarity between two vectors in a high-dimensional space, and it ranges from -1 to

1. A value of 1 means that the two vectors are identical, while a value of -1 means that

they are completely dissimilar. The cosine similarity is defined as:

sim(x,y) =
x · y
∥x∥∥y∥

(4.8)

where ∥ · ∥ is the Euclidean norm of vector “·". Conceptually, ∥ · ∥ is the length of the

vector. The measure computes the cosine of the angle between vectors x and y. The

greater the cosine value is, the more similar the tastes of the two users are. The next

step is to generate the recommendation. The top N most liked items have been retrieved

from the target users’ neighborhood based on their popularity, and the recommendation

lists are ranked according to their relevance and popularity. Table 5.1 provides the

similarity matrix acquired from the CF unit.

After computing the cosine similarity between each pair of user embeddings, the results

are stored in a similarity matrix, which is a square matrix where the element at position

(i, j) represents the cosine similarity between the ith and jth user embeddings. It

should be noted that the similarity matrix is symmetric, which means that the element

at position (i, j) is the same as the element at position ( j, i). This is because the

cosine similarity between two vectors is symmetric. The diagonal elements of the

similarity matrix (i.e., the elements where i= j) represent the similarity between a user

and itself. Since the cosine similarity between a vector and itself is always 1, the

diagonal elements of the similarity matrix will all be equal to 1. The off-diagonal

elements of the similarity matrix represent the similarity between two different users.

The values of these elements range from -1 to 1, where a value of 1 indicates that the

two users are identical, and a value of -1 indicates that they are completely dissimilar.
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Table 4.1 Similarity Matrix.

user_id 1 2 3 4 5 6 7 8
1 1 -0.79 0.60 -0.76 0.84 -0.78 0.79 0.57
2 -0.79 1 -0.57 0.88 -0.93 0.93 -0.91 -0.60
3 0.60 -0.57 1 -0.54 0.63 -0.56 0.64 0.68
4 -0.76 0.88 -0.54 1 -0.90 0.93 -0.92 -0.54
5 0.84 -0.93 0.63 -0.90 1 -0.96 0.95 0.66
6 -0.78 0.93 -0.56 0.93 -0.96 1 -0.95 -0.61

4.4 Implementation and experiments

In this section, the proposed model is evaluated against popular baselines on one of

the most popular food data sets, i.e., the Food.com data set which is previously the

GeniusKitchen.com data set.

4.4.1 Data set

The website Food.com is arguably the largest food-oriented website that attracts 1.5

billion visits every year, and the adopted data set is comprised of 180K+ recipes as

well as 700K+ reviews that cover user interactions for 18 years. Each interaction in the

data set consists of a user identifier, a recipe identifier, and the corresponding rating

and date. For better model performance, the explicit feedbacks has been converted to

the implicit feedback.The website allows users to create and share recipes, rate and

review recipes, and interact with other users in a social media-style environment. To

collect the data used in this study, the researchers scraped the food.com website using

web scraping techniques.

Table 5.4 shows some examples of the Food.com data set. The user_id and recipe_id

represent the user identifier and the recipe identifier, respectively. The date indicates

the record time of this entry and the interactions identify that the user has consumed

the item.
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Table 4.2 Food.com data set.

user_id recipe_id date interaction
1 122140 2011.01.04 1
1 77036 2011.01.05 1
1 156817 2011.01.06 1
1 76957 2011.01.07 1
1 68818 2011.01.08 1

4.4.2 Evaluation Metrics

The goal of the experiments is to evaluate the quality and performance of the proposed

approach against various baselines. For each user, the last 20% interactions are held as

the test set and the remaining data are utilized for training. The performance of the

utilized RSs is measured by precision@N, recall@N, mean average precision (MAP),

as well as mean reciprocal rank (MRR). Precision refers to the number of retrieved

items that are relevant, while recall indicates the number of relevant items that are

retrieved. Precision@N and Recall@N are defined as:

Prec@N =

∣∣R⋂ R̂1:N
∣∣

N
(4.9)

Recall@N =

∣∣R⋂ R̂1:N
∣∣

|R|
(4.10)

where R̂1:N denotes a list of top-N predicted items for a user and R denotes the last

20% of actions in the test set. To evaluate the overall performance of the approach, the

MAP and MRR are used. The MAP is widely used in the RS for its ability to provide

general estimation of model performance. The MAP is the average of the average

precision (AP) defined by:

AP =
∑
|R̂|
N=1 Prec@N× rel(N)

|R̂|
(4.11)
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where rel(N) = 1 if the N− th items are in the same ranking order in both prediction

and test sets. The MRR is used to assess the performance of a CF unit and calculated

as the mean of the reciprocal ranks of the items retrieved by the approach. The MRR

is defined as:

MRR =
1
|Q|

|Q|

∑
i=1

1
ranki

. (4.12)

4.4.3 Experiment Setting

In this chapter, three widely used baselines (including the Item k nearest neighbor (Item-

KNN) algorithm [91], the Meta-Prod2vec collaborative filtering (MPCF) algorithm

[162], and the convolutional sequence embedding recommendation (Caser) algorithm

[153]) are selected as the benchmark.

– Item-KNN: Item-KNN recommends items similar to the target item, and similarity

is defined as the cosine similarity between the vectors of the user interaction

history.

– MPCF: The Meta-Prod2vec method computes low-dimensional embeddings of

items based on previous interactions with the items. The representation of a user

is calculated as the mean of the products consumed by the user.

– Caser: A personalized top-N sequential recommendation framework which uses

CNNs for sequence modelling.

The recommended item numbers are set to be 1, 5, and 10 in the experiment to evaluate

the performance of the utilized RSs. The learning rate, the minimum epoch and the

mini-batch size of the MPCF algorithm, the Caser algorithm and the proposed approach

are set to be 0.001, 50 and 128, respectively. The numbers of horizontal filters and

the vertical filters of the Caser algorithm are set to be 16 and 4, respectively. In the

proposed approach, the number of layer and the size of hidden neurons are set to be 1

and 30, respectively.
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4.4.4 Performance Comparison

The evaluation results of the three baselines and the proposed approach are presented

in Table 5.3, where the best performer in each row is highlighted in bold, and the

last column also included the improvement of the proposed approach over the best

baseline in percentages. As shown in Table 5.3, the proposed method outperforms the

Item-KNN method, the MPCF method, and the Caser method in terms of Prec@5,

Prec@10, Recall@5, MAP and MRR. In addition, the proposed method obtains the

second-best results in terms of Prec@1, Recall@1 and Recall@10 comparing to the

other three baseline methods. In general, we can draw the conclusion that the proposed

method outperforms the baseline methods with respect to the four chosen evaluation

metrics. It should also be noted that sequential RSs (e.g., MPCF and Caser) outperform

the Item-KNN method (which is the traditional RS), suggesting that the considered

sequential patterns in user behaviors lead to higher accuracy.

Table 4.3 Performance comparison

max width=
Metric Item-KNN MPCF Caser Proposed Model Improvement

Prec@1 0.0214 0.0257 0.0284 0.0281 -1.05%
Prec@5 0.0188 0.023 0.0244 0.0249 +2.04%

Prec@10 0.0199 0.0203 0.0209 0.0226 +8.13%
Recall@1 0.0428 0.0514 0.0569 0.0562 -1.23%
Recall@5 0.0564 0.0692 0.0732 0.0748 +2.18%
Recall@10 0.0796 0.0814 0.0838 0.0815 -2.74%

MAP 0.06385 0.08398 0.08465 0.08606 +1.66%
MRR 0.06102 0.06962 0.07403 0.08003 +7.49%

In our experiment, the embedding dimension is a key hyper-parameter which is op-

timized through the model selection process. To obtain an optimal solution of the

embedding dimension, we adopt the embedding dimension from 10 to 100, and com-

pare the MAP of two baselines with that of proposed model on different embedding

dimensions, as shown in Fig. 5.3.
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Fig. 4.3 MAP (y-axis) vs. the number of the latent dimension d (x-axis).

Fig. 4.4 Comparing Prec@10 and Recall@10 of the proposed solution against three baselines.

Fig. 4.5 Comparing MAP and MRR of the proposed solution against three baselines.
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Fig. 5.3 shows the MAP of two baseline plus the proposed model based on different

embedding dimensions. Among these baselines, the MPCF, Caser, and the proposed

method achieve their best performance with the embedding dimension of 30. It should

be noted that performance does not improve with the increase of the dimension. Overall,

the proposed model beats the strongest baseline based on the selected range and shows

a rather steady trend compared to other baselines, which verifies the stability of the

approach. Fig. 4.4 and Fig. 4.5 compare the proposed solution against Item-KNN,

MPCF and Caser on four metrics in the form of bar charts.

4.5 Summary

In this chapter, a novel sequence-based recommendation approach has been developed

to solve food recommendation tasks. Specifically, LSTM networks are used to approxi-

mate user-item interactions where CF techniques are adopted to make recommendation.

Experimental results show reasonable performance gains over the popular baseline of

the sequence-based RSs. Some future research directions include 1) the adoption of

additional information (e.g., images, reviews and browsing history); 2) the proposal

of explainable and personalized food recommendation; and 3) the introduction of

more advanced machine learning techniques for cross-domain recommendations, see

e.g. [92, 182, 168, 103, 105, 23, 175, 176, 104, 137, 54, 103, 60].



Chapter 5

A Deep Graph Neural Network-Based

Strategy for Food Recommendation

5.1 Motivation

Graph neural networks (GNNs) have recently been ranked as one of the most advanced

neural networks and has found wide applications in various fields including chip

design, problem reasoning, and traffic flow prediction. In recommendation systems,

GNNs have also been deemed as a promising tool for capturing the complex user-

item interactions. When applying the GNNs to recommendation systems, a common

approach is to generate a bipartite graph to describe the user-item interactions due

to its capabilities of accurately making predictions about unknown connections and

efficiently learning the underlying patterns and relationships between the nodes in

the graph. In this paper, by means of the temporal dependent GNNs and the data

augmentation technique, a new strategy is proposed to convert the recommendation

task into a predicting problem of unknown node connections in the graph. Experimental

results on real-world data sets demonstrate the superiority of the proposed strategy

over the commonly used methods.
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Due to the ever-increasing development of various internet technologies, people are

frequently surrounded by abundant information and encountered with the difficulty of

obtaining interested information. Disseminators of information are always struggling to

communicate their message to intended audience effectively, and an efficient approach

to achieving this goal is to apply the recommendation systems (RSs) that connect

users and information together [24]. Typically, the RSs are capable of helping users

find valuable information from the massive amount of available data and allowing

information to be presented to interested users.

The information overload is widely confronted in a variety of areas including the

food domain [57] where users are presented with an increasing amount of dietary

information as the living standard increases. As a matter of fact, it is a great challenge

to identify the intended food items (beneficial to user health) from the abundant

food choices [35]. To address this challenge, the RSs are widely employed to assist

customers in handling abundant information. Unlike traditional RSs (e.g. the movies

and music RSs), food RSs provide users with a convenient way to guide them towards

favourable foods that are good to their health [44]. As such, the food RSs have

gradually become a vital tool in promoting healthy living habits among individuals.

In the practical application of food RSs, a common approach is to convert the recom-

mendation problem into a matrix completion task which is later solved by different

recommendation algorithms to predict users’ preferences, such as the content-based or

collaborative filtering algorithm [158]. Unfortunately, the content-based or collabo-

rative filtering algorithm often fails to provide adequate recommendation results due

to limited available data and various complex factors (e.g. genetics, geography, and

economic considerations) contributing to the users’ preferences. This makes it difficult

for the RSs to accurately model the users’ preferences, thus resulting in low recom-

mendation accuracy. Instead of converting into a matrix completion task, the food

recommendation task can also be regarded as a graph-structured data analysis problem
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[127], which provides an effective way to 1) analyze user behaviors from streaming

data sources and 2) discover the user-item relationships as well as the relationships

between the connected data points, patterns and trends.

In graph neural network-based food RSs, network connections are constantly changing

over time, and it is essential to predict users’ dynamic behaviours according to different

applications, such as recommending new friends in social networks and suggesting

items to customers in e-commerce networks [11]. In essence, the food recommendation

task can be regarded as a prediction problem of missing links in a connected user-item

graph by taking into account the fact that the user-item interactions are easy to be

interrupted if the user starts to consume a specific type of food or recipe.

To represent food items as nodes in a graph and capture their relationships using edges,

different graph construction strategies are utilized. These strategies focus on various

aspects of food items, including their nutritional content, ingredient similarity, user

behavior, or social networks [33]. To train the model and make accurate recommen-

dations, Graph Neural Network (GNN) architectures are employed, such as Graph

Convolutional Networks (GCNs), Graph Attention Networks (GATs), and Graph Re-

current Neural Networks (GRNNs). Several GNN-based recommendation models

have been developed, including GC-MC [6], PinSage [138], NGCF [132], LightGCN

[59], and KGAT [131], which differ in their approaches to graph construction, node

representation learning, and information propagation. Despite their differences, these

models have a shared objective of enhancing the accuracy and scalability of recommen-

dation systems by utilizing graph structures and exploiting the relationships among

users, items, and their attributes.

So far, various strategies have been developed for graph neural network-based food

RSs to tackle the previously outlined issues in order to acquire accurate network

representation and food recommendation. A main challenge here is the generation

of proper node representation from graph-structured data, and a good solution to this
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challenge is the so-called representation learning method [50]. Nevertheless, such a

method usually generates low-dimensional latent representation in case of complex

high-dimensional data and moreover, can only be applied to fixed networks where

users’ temporal information is not considered.

The main contribution of this chapter can be summarized as follows: 1) better rec-

ommendation results are obtained by transforming the recommendation task into a

graph-based link prediction problem; 2) data diversity and model robustness are im-

proved by introducing the augmentation technique in data processing; and 3) prediction

accuracy is enhanced by considering users’ temporal behaviors into the network.

The rest of the chapter is organized as follows: Section 5.2 presents the related work

on graph neural network for recommendation system. Section 5.3.1 develops a graph

neural network-based strategy for food recommendation. Section 5.4 discusses the

experimental results and the corresponding metrics chosen for algorithm evaluation.

Section 5.5 presents some conclusions.

5.2 Related work

Most of the data in the recommendation system can be regarded as graph-structured

data, for example, the users’ interaction behavior on items (click, browse, purchase,

etc.). By converting user-item interactions into nodes and edges on bipartite graphs,

recommendation tasks can be regarded as prediction problems of missing links in the

graph. With the development of the graph learning (GL) approach, the application

of GL-based methods, particularly the graph neural networks (GNNs), have been

extensively studied for recommendation systems [127].

In comparison to traditional collaborative filtering approaches, Wang et al. [132]

suggested a spatial GNN for recommendation that achieves greater performance [86]

[63]. To solve problems of cold start, scalability, individualization and dynamics
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of recommendation systems, Gao et al. [52] reviewed and summarized the GNN

approach on the recommendation task based on the knowledge graph (KG). For real-

world platforms, Ying et al. applied the GNN-based model to web-scale recommender

systems successfully and quickly [138].

As a sub-domain of the recommendation system, the food recommendation system

focuses on providing users with personalized suggestions for food-related products and

services. Two main approaches have been widely applied in the food recommendation

domain, e.g. the content-based and collaborative filtering approaches [111]. The

content-based approach relies on the information associated with the items (such

as item attributes, ingredients and reviews) to recommend items similar to users’

past preferences. The collaborative filtering approach, on the other hand, uses the

ratings of other users to determine the similarity between presented and recommended

items. However, such approaches are limited in their ability to capture more complex

representations of user-item interactions and contextual information.

Incorporating GNNs into food RSs can enable more accurate prediction of user prefer-

ences and better personalized recommendation as GNNs can effectively capture the

semantic information and structure of the graph [50]. To be more specific, GNN-based

models can capture both structural connection and high-order similarity between users

and objects, and the semantics is expanded that users with comparable interactions

would have similar preferences through repeated instances of information propagation.

5.3 Dynamic GNNs for food recommendation

The proposed model consists mainly of two units: (1) the data augmentation unit and

(2) the link prediction unit. The former unit has enhanced all user data, while the latter

predicts whether two nodes will generate a link at a specific time. The network input is

generated by converting user-item interactions at each time step into one-hot encoded
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vectors. The embedding layer then transforms the vectors into lower-dimensional

dense vectors which are subsequently fed into the link prediction unit to identify the

behaviour pattern of each user.

5.3.1 Data augmentation

Machine learning models often require extensive data sets to precisely estimate various

parameters to achieve the optimal performance. Due to limited amount of available

data and the high cost of collecting additional data, the data augmentation technique is

thus adopted to create artificial data based on the original data set [51].

The data augmentation technique involves a range of strategies such as random crop-

ping, scaling, image inversion and generative adversarial networks [123]. With the

help of this technique, the size and quality of the training data is increased, and the

classification accuracy is improved [129]. By transforming a small amount of data into

a larger set, the range and quantity of training examples are significantly increased,

enabling models to capture more complex patterns in the data. It is worth pointing

out that the potential of the augmentation technique has not yet been fully explored in

food RSs, although it has been widely adopted as a feasible solution for training more

robust models in various fields.

Our strategy starts by applying data augmentation to generate a synthetic time series to

enhance users’ daily food consumption records, and then the dynamic time warping

(DTW) and the DTW barycentric averaging (DBA) are used to augment the users’

daily food consumption records [41].

Definition 1: Time Series A time series T = ⟨t1, . . . , tL⟩ is an ordered set of real values

where L denotes for length. A data set D = {T1, . . . ,TN} is a collection of multivariate

time series.
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By taking a set of time series from the users’ record, e.g., consecutive days of food

consumption, we calculate the weighted average time series T̄ and then use this average

series as a new synthetic one to augment D. In order to be flexible, the identical length

of time series may vary for different users due to their limited size of records, and the

DTW is thus used to compare two temporal sequences of varying lengths. It should be

noted that an important contribution of our strategy is to adjust the weights so that the

recently consumed items contribute more information. In Definition 1, the DTW is

used to calculate the distance between two time series and the DBA is used to obtain

the average series, where T stands for food consumed by users in a certain period and

Definition 2: Dynamic Time Warping Given two sequences Q and C, W =w1,w2, . . . ,wk

stands for the wrapping path, where the k-th element of W (Wk = (i, j)k) is the mapping

elements of the sequence Q and C. By minimizing the equation 5.1, the shortest

wrapping path between two sequences is obtained. The DBA uses an expectation-

maximization to obtain the weighted sequence by iteratively updating T̄ , as defined in

equation 5.2.

DTW (Q,C) = min


√√√√ K

∑
k=1

wk/K (5.1)

Definition 3: DTW Barycentric Averaging (DBA)

argmin T̄ ∈ E
N

∑
i=1

DTW 2 (T̄ ,Ti) (5.2)

5.3.2 Dynamic GNNs

Link prediction is one of the most common tasks in GNNs. The objective is to identify

unknown network connections based on existing network data. The link prediction
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problem is regarded as a supervised learning task, where the past network structure

data is utilized to estimate how users will behave in future periods [125].

Definition 4: Dynamic Graph A dynamic network defined as G =
(
V,ET ,T

)
, where V

is the vertex set, ET is the edge set and T is the time set. In the dynamic graph, et
i, j is

the edge which indicate two vertices i, j generate an edge at time t.

Definition 5: Link Prediction. Let the dynamic network G and edge et0
i, j be given, the

goal of link prediction is to predict whether new edges i, j will be generated for a given

time t > t0.

The temporal dependent graph neural network (TDGNN) [125] is adopted in our

strategy, where a simple framework for learning network representation is formulated

that combines temporal information of user-item interactions with GNNs. The TDGNN

takes a dynamic graph G =
(
V,ET ,T,X

)
as its input, where X = {−→x1 ,

−→x2 . . . ,
−→xn} ,−→xi ∈

RP is the vector representation of the node with n being the number of nodes and P

being the dimension of the node feature. For every two nodes in the graph, connections

are generated at different time points. The TDGNN estimates the unknown link

prediction at future time points by aggregating edge representations.

As shown in Fig. 5.1, the input of the network is the graph data, which consists of a

set of nodes and edges with associated features. The graph can be represented as an

adjacency matrix, and the features can be represented as feature matrices associated

with each node and edge. The next step is to initialize the node embeddings, which

represent the initial state of each node in the graph. The message passing layer is the

core of the GNN model. In this layer, each node in the graph sends messages to its

neighboring nodes and updates its own state based on the messages it receives. This

process is repeated for multiple iterations, allowing each node to aggregate information

from its neighbors and refine its representation. After the message passing layer, the

graph representation is computed by applying a readout function to the final node

embeddings. The readout function aggregates the node embeddings to compute a
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Fig. 5.1 Diagram of TDGNN structure
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graph-level representation. Finally, link prediction is performed by feeding the output

of the TDGNN model through a fully connected layer with a sigmoid activation

function and the output indicate whether or not the link is existed.

In order to acquire edge representations, let us assume that v is the node for which

the representation needs to be calculated, and the initial representation of v can be

represented as
−→
h0

v = −→xv . The new node representation at time t can be calculate by

aggregation function as follows:

h⃗k
v = σ

(
∑

u∈Nt(v)∪v
α

t
vuWh⃗k−1

u

)
(5.3)

In equation 5.3, σ represent the nonlinear activation function, and the set of neighbor

nodes of the target node v at time t is denoted as Nt(v). The the learnable shared weight

matrix is represented as W . The neighbor nodes aggregating weights α t
vu at time t can

be calculated as follows:

α
t
vu =

et−tv,u

∑u∈Nt(v)∪v et−tv,u
(5.4)

where tv,u ∈ T represents the edge generating time between node v and u. Four

EdgeAggs edge aggregation functions have been adopted in this work for experiment

comparison, as shown in Table 5.1.

Table 5.1 Edge Aggregation

EdgeAgg Definition
Average(Ave) hv+hu

2
Hadamard(Had) hv ◦hu

Weighted-L1(W-L1) |hv−hu|
Weighted-L2(W-L2) |hv−hu|2



5.4 Experiments 79

5.4 Experiments

To evaluate the performance of the proposed strategy, we conduct experiments on one

of the most popular food datasets as described below.

5.4.1 Data sets and Experimental setting

MyFitnessPal (MFP), a free mobile application, tracks users’ daily food consumption

and calculates the number of consumed calories. The MFP database contains informa-

tion on 9800 individuals’ meals between September 2014 and April 2015, including

details on 710,000 different food items, with a total of 1.9 million entries.

Table 5.2 MyFitnessPal Data Set

user_id date meal_sequence food_ids
1 2014.10.15 1 1,6,47

57 2014.11.15 1 1,17,6,48,41
87 2015.12.15 1 1,9,69,46,7
115 2015.01.15 1 1,67,6,71,9,75
140 2015.02.15 1 1,68,6,7,41,109

Table 5.4 provides five examples of the MFP data set. The user_id and date repre-

sent the identity of the user and the time required by this entry, respectively. The

meal_sequence number denotes the order of the meals on a given day, for example,

if the meal_sequence is 1, it means that it is the first meal of the day. The food_ids

records food entries that users have consumed.

As shown in Fig. 5.2, the majority of user-item interactions are contributed by the

top 20% of users, a pattern known as the long tail phenomenon.Fig. 5.3 illustrates the

augmented dataset in which each user’s record has been increased twofold.Experiments

is conducted using the dataset both with and without data augmentation.
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Fig. 5.2 Record Frequency of All Users.

Fig. 5.3 Augmented Record of All Users.
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5.4.2 Performance Comparison

First, we evaluate the proposed model using different edge aggregation functions,

which is derived from [125]. The comparison results are listed in Table 5.3.

Table 5.3 Performance comparison

Ave. Had. W-L1 W-L2
Org. 0.7803 0.9106 0.9507 0.9764
Aug. 0.9481 0.9540 0.9853 0.9922

In this set of experiments, we aim to evaluate the effectiveness of the proposed model

in comparison to various baseline models. One of the baselines is the graph convolu-

tional networks (GCNs) model, which is a widely-used technique for learning node

representations in graph data. GCNs leverage a localized, initial estimate of spectral

graph convolution to efficiently learn node representations. Another baseline that we

will be evaluating is Bayesian Personalized Ranking (BPR) from Implicit Feedback.

BPR is a collaborative filtering technique that is commonly used in recommendation

systems. It works by modeling the preferences of users based on the items they have

interacted with in the past. We will compare the performance of the proposed model

against these baselines, both with and without data augmentation.

The Table 5.3 demonstrates that various edge aggregation functions can affect the pre-

cision of the classification.Weighted-L2 achieves better performance when compared

to other aggregation techniques.Additionally, the augmented data set has demonstrated

an overall enhancement to all the aggregation techniques.

In order to evaluate the proposed model more effectively, we compare the proposed

model with graph convolutional networks (GCNs) model, which is the most represen-

tative GNNs-based learning technique. The GCNs leverage a localized, initial estimate

of spectral graph convolution to learn node representation efficiently. We compare the

performance of the two methods with and without data augmentation.
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For the MFP dataset, we first sort the data set in ascending order based on the timestamp

of each record, and then we select the top 80% as the training set and the remaining

20% as the testing set. The Area under ROC curve (AUC) [64] is used to measure the

model’s classification accuracy, and is calculated by measuring the area beneath the

ROC curve and the x-axis.

Table 5.4 Performance comparison

GCN BPR Improv.
Org. 0.7803 0.886 0.7915(+1.12%)
Aug. 0.9481 0.896 0.9351(+1.3%)

Table 5.4 presents a performance comparison of the proposed model against two

baseline models: Graph Convolutional Networks (GCN) and Bayesian Personalized

Ranking (BPR). The table reports the performance of each method in terms of the

Area Under the Receiver Operating Characteristic Curve (AUC score). The results

show that the proposed model outperforms both baselines in both the original and

augmented settings, with statistically significant improvements over both models.

Specifically, the proposed model achieves an AUC score of 0.7803 in the original

setting, compared to 0.886 for BPR and 0.9481 for GCN. In the augmented setting, the

proposed model achieves an AUC score of 0.9351, compared to 0.896 for BPR and

0.9481 for GCN. The table suggests that the proposed model is a promising approach

for the binary classification task at hand, outperforming established techniques and

achieving improvements in AUC score even in the presence of data augmentation.

The evaluation results of the GCN and the proposed approach are presented in Ta-

ble 5.3, where org. in the table represents the original data set and aug. stands for the

augmentation data set. It is seen from the table that our approach exceeds the GCN

method in terms of accuracy, and the data enhancement technology further improves

the accuracy of the proposed approach.
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5.5 Summary

In this chapter we have examined the use of the TDGNN in food recommendation to

improve recommendation accuracy. By means of data augmentation, a new strategy

has been proposed to convert the recommendation task into the predicting problem of

unknown node connections in the graph. The prediction accuracy has been enhanced

by considering users’ temporal behaviors into the network. Experimental results have

shown the superiority of the proposed approach over traditional GNNs.





Chapter 6

Conclusions

Recommendation systems have been widely used in many areas, and have enjoyed

notable success, especially in commercial applications. Research on food recommenda-

tions has become increasingly important over the past decade as it has direct relevance

not only to quality of living but also personal health and wellbeing. In this thesis, our

aim was to develop novel approaches that address the limitations of existing techniques

and provide a balanced, personalized, and accurate way of recommending food to

users. To achieve this aim, we formulated three specific objectives, each addressed in a

separate chapter.

Chapter 3 presents a many-objective optimization-based recommendation approach

that optimizes four objectives simultaneously: user preference, user diet pattern, food

nutritional values, and food diversity. This approach is designed to provide personalized

recommendations that balance the nutritional value and diversity of food items, while

also accommodating individual dietary preferences.

Chapter 4 proposes a sequence-based recommendation model that utilizes long short-

term memory networks and a collaborative filtering unit to consider the dynamically

changing user behavior. This model takes into account the temporal dynamics of user
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preferences and aims to provide accurate recommendations that are tailored to each

user’s current food preferences.

Chapter 5 explores the use of graph neural networks and data augmentation tech-

niques to generate a temporal-dependent graph for predicting unknown connections.

This approach is designed to leverage the underlying structure and dynamics of food

consumption patterns to provide personalized and accurate recommendations.

In this chapter, we summarise the achievements made from the research carried out in

this thesis in Section 6.1 and outline the future work in Section 6.2.

6.1 Summary of achievements

Chapter 3 is devoted to solving the food recommendation problem based on many-

objective optimization (MaOO). Not all food recommendation problems can be best

addressed by such classical recommendation techniques such as the content-based,

collaborative-based and hybrid methods. A novel MaOO-based recommendation

approach has been developed to provide a balanced and systematic way of performing

food recommendation tasks. Four crucial objectives, the user preference, user diet

pattern, food nutritional values and food diversity, have been simultaneously optimised

in the proposed recommendation framework.

Three Pareto-based algorithms have been involved in addressing the challenging rec-

ommendation task, and comprehensive experiments based on real-world data sets

have been conducted to verify the effectiveness of the proposed MaOO-based rec-

ommendation framework. Convergence and diversity are the two most widely-used

to evaluate the performance of MaOO algorithms where convergence evaluates the

approximation of the experiment results to the Pareto optimal front, and diversity

is used to evaluate the distribution over the Pareto front. It is shown that the new
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recommendation approach provides a more balanced way of recommending food than

the classical recommendation methods that only consider individuals food preferences.

In Chapter 4, we consider the sequentially ordered information from user-item interac-

tions in recommendation systems where a sequence-based recommendation model is

put forward with applications to the food recommendation scenario. In many appli-

cation domains, interactions between users and items are more likely to be dynamic

rather than static, and thus dynamic user behaviours need to be taken into account in

order to make more accurate recommendations. In this chapter, the long short-term

memory networks are employed as the building block to establish such a recommen-

dation model, and a collaborative filtering unit is adopted to make personalized food

recommendation.

Extensive experimental results on real-world data sets have demonstrated a remarkable

improvement of the proposed method in food recommendation over some widely used

recommendation approaches, including Item-KNN, Prod2vec, and Caser. Several

metrics such as precision@N, recall@N, mean average precision (MAP), as well as

mean reciprocal rank (MRR) are used to evaluate the performance of the proposed

method against those baseline techniques, showing early promise of the proposed

sequence-based recommendation approach.

In Chapter 5, we explore Graph neural networks (GNNs), one of the most advanced

neural networks that has found wide applications in various fields including chip design,

problem reasoning, and traffic flow prediction for food recommendation systems. When

applying GNNs to recommendation systems, a common approach is to generate a

bipartite graph to describe the user-item interactions due to its capabilities of accurately

making predictions about unknown connections and efficiently learning the underlying

patterns and relationships between the nodes in the graph. In this chapter, we propose a

new strategy using the temporal dependent GNNs and the data augmentation technique
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that converts the recommendation task into a predicting problem of unknown node

connections in the graph.

We have conducted computational experiments to evaluate the proposed model against

graph convolutional networks (GCNs) model, which is the most representative GNNs-

based learning technique. The GCNs leverage a localized, initial estimate of spectral

graph convolution to learn node representation efficiently. We compare the performance

of the two methods with and without data augmentation. Experimental results on real-

world data sets have demonstrated the superiority of the proposed strategy over the

GCNs.

6.2 Future work

There are several lines of investigation for future work.

First, on the use of many objective optimisation for food recommendation it would

be interesting to consider more user related objectives in the proposed MaOO model,

given there have been many more considerations in the literature. More comprehensive

experiments should be conducted on diverse food recommendation data sets. Other

advanced machine learning techniques should be considered when analysing the food

related time series data. Further research topics could include the extension of the

main results reported in this thesis to more comprehensive systems using more the

latest filtering algorithms.

Second, additional information such as images and reviews should be included in

the design of food recommendation systems, which will have direct consequences

on the type of the machine learning techniques to be used. When developing the

sequence-based FSs, it is important to consider how to make the recommendations

more personal and adapt to users particular taste and requirements. Furthermore,
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the proposed approach should be compared with more advanced machine learning

techniques and explored for cross-domain recommendations.

Third, we should make the best use of GNNs to make food recommendations more

robust and explainable. Incorporating GNNs into food RSs have enabled more accurate

prediction of user preferences and better personalized recommendation as GNNs can

effectively capture the semantic information and structure of the graph. To be more

specific, GNN-based models can capture both structural connection and high-order

similarity between users and objects, and the semantics is expanded that users with

comparable interactions would have similar preferences through repeated instances of

information propagation. However, more research is needed to optimise many compet-

ing and potentially conflicting objectives and give accurate, robust and personalised

recommendations at the same time.

Last but not least, it is desirable to conduct a systematic study of food recommendation

by integrating a variety of datasets on food, lifestyle, wellbeing, health, genetics etc

over a long period of time in order to have a deep understanding of the key issues

involved. Innovative machine learning and high-performance computing methods

would be needed to effectively integrate and make sense of these inter-related data

properly to obtain much needed knowledge about the relationship between food,

lifestyle, generics and disease. The work described in the thesis is a step in this

direction.
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