7 research outputs found

    System Description: E 1.8

    Get PDF
    Abstract. E is a theorem prover for full first-order logic with equality. It reduces first-order problems to clause normal form and employs a saturation algorithm based on the equational superposition calculus. E is built on shared terms with cached rewriting, and employs several innovations for efficient clause indexing. Major strengths of the system are automatic problem analysis and highly flexible search heuristics. The prover can provide verifiable proof objects and answer substitutions with very little overhead. E performs well, solving more than 69 % of TPTP-5.4.0 FOF and CNF problems in automatic mode.

    An efficient contradiction separation based automated deduction algorithm for enhancing reasoning capability

    Get PDF
    Automated theorem prover (ATP) for first-order logic (FOL), as a significant inference engine, is one of the hot research areas in the field of knowledge representation and automated reasoning. E prover, as one of the leading ATPs, has made a significant contribution to the development of theorem provers for FOL, particularly equality handling, after more than two decades of development. However, there are still a large number of problems in the TPTP problem library, the benchmark problem library for ATPs, that E has yet to solve. The standard contradiction separation (S-CS) rule is an inference method introduced recently that can handle multiple clauses in a synergized way and has a few distinctive features which complements to the calculus of E. Binary clauses, on the other hand, are widely utilized in the automated deduction process for FOL because they have a minimal number of literals (typically only two literals), few symbols, and high manipulability. As a result, it is feasible to improve a prover's deduction capability by reusing binary clause. In this paper, a binary clause reusing algorithm based on the S-CS rule is firstly proposed, which is then incorporated into E with the objective to enhance E’s performance, resulting in an extended E prover. According to experimental findings, the performance of the extended E prover not only outperforms E itself in a variety of aspects, but also solves 18 problems with rating of 1 in the TPTP library, meaning that none of the existing ATPs are able to resolve them

    Reasoning in description logics using resolution and deductive databases

    Get PDF

    Superposition for Higher-Order Logic

    Get PDF

    THINGS TO KNOW WHEN IMPLEMENTING LPO

    No full text
    corecore