
VU Research Portal

Superposition for Higher-Order Logic

Bentkamp, Alexander

2021

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Bentkamp, A. (2021). Superposition for Higher-Order Logic.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 23. May. 2021

https://research.vu.nl/en/publications/11d90fac-8dda-46c5-b51f-609fd075b253

Superposition for
Higher-Order Logic

Alexander Bentkamp

VRIJE UNIVERSITEIT

Superposition for Higher-Order Logic

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor of Philosophy
aan de Vrije Universiteit Amsterdam,

op gezag van de rector magnificus
prof.dr. V. Subramaniam,

in het openbaar te verdedigen
ten overstaan van de promotiecommissie
van de Faculteit der Bètawetenschappen
op maandag 10 mei 2021 om 11.45 uur

in de online bijeenkomst van de universiteit,
De Boelelaan 1105

door

Alexander Bentkamp

geboren te Hannover, Duitsland

promotor: prof.dr. W. J. Fokkink
copromotoren: dr. J. C. Blanchette

dr. U. Waldmann

Contents

Summary vii

Samenvatting ix

Acknowledgements xi

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 3
1.3 Related Work . 4
1.4 Implementations. 5
1.5 Publications . 6
1.6 Structure of This Thesis . 7

2 Preliminaries 9
2.1 First-Order Logic . 10
2.2 The Superposition Calculus . 11

2.2.1 Clausal Normal Form . 12
2.2.2 The Term Order . 12
2.2.3 The Inference Rules . 14
2.2.4 Redundancy and Simplification 16

2.3 Term Rewriting . 16

3 Superposition for Lambda-Free Higher-Order Logic 19
3.1 Introduction . 20
3.2 Logic . 21

3.2.1 Syntax . 22
3.2.2 Semantics . 23

3.3 The Calculi. 23
3.3.1 The Inference Rules . 23
3.3.2 Rationale for the Inference Rules 28
3.3.3 Soundness . 31
3.3.4 The Redundancy Criterion . 33
3.3.5 Simplification Rules . 36

3.4 Refutational Completeness . 37
3.4.1 Outline of the Proof . 38
3.4.2 The Ground First-Order Level 39
3.4.3 The Ground Higher-Order Level 40
3.4.4 The Nonground Higher-Order Level 43

iii

iv Contents

3.5 Implementation . 51
3.6 Evaluation . 52
3.7 Discussion and Related Work . 56
3.8 Conclusion . 56

4 The Embedding Path Order for Lambda-Free Higher-Order Terms 57
4.1 Introduction . 58
4.2 Preliminaries . 59
4.3 Extension Operators . 59
4.4 The Order . 60
4.5 Properties of the Order . 62
4.6 Examples . 67
4.7 Implementation . 68
4.8 Evaluation . 71
4.9 Conclusion . 73

5 Superposition with Lambdas 75
5.1 Introduction . 76
5.2 Logic . 77
5.3 The Calculus . 80

5.3.1 The Core Inference Rules . 81
5.3.2 Rationale for the Rules. 83
5.3.3 Soundness . 86
5.3.4 The Redundancy Criterion . 87
5.3.5 A Derived Term Order . 91

5.4 Refutational Completeness . 92
5.4.1 Outline of the Proof . 93
5.4.2 The Ground Higher-Order Level 94
5.4.3 The Nonground Higher-Order Level 101

5.5 Extensions . 107
5.6 Implementation . 112
5.7 Evaluation . 114
5.8 Conclusion . 117

6 Superposition with Interpreted Booleans 119
6.1 Introduction . 120
6.2 Logic . 121
6.3 The Calculus . 123

6.3.1 Parameters of Our Calculus 123
6.3.2 The Inference Rules . 124

6.4 Refutational Completeness . 126
6.4.1 Viewing Term Rewriting Systems as Interpretations 126
6.4.2 Construction of the Candidate Model 129
6.4.3 Reduction of Counterexamples. 131

6.5 Conclusion . 137

Contents v

7 Superposition for Full Higher-Order Logic 139
7.1 Introduction . 140
7.2 Logic . 141
7.3 The Calculus . 144

7.3.1 Preprocessing. 144
7.3.2 Term Orders and Selection Functions 148
7.3.3 The Core Inference Rules . 149
7.3.4 Rationale for the Rules. 152
7.3.5 Soundness . 155
7.3.6 The Redundancy Criterion . 156
7.3.7 Simplification Rules . 161
7.3.8 A Concrete Term Order . 161

7.4 Refutational Completeness . 165
7.4.1 Outline of the Proof . 165
7.4.2 The Ground First-Order Level 165
7.4.3 The Ground Higher-Order Level 166
7.4.4 The Nonground Higher-Order Level 174

7.5 Clausification . 183
7.6 Implementation . 185
7.7 Evaluation . 186
7.8 Conclusion . 188

8 Conclusion 189
8.1 Results and Impact . 190
8.2 Future Work . 191

References 193

Summary

This thesis presents an extension of the superposition calculus to higher-order logic
(also called simple type theory) and its implementation and empirical evaluation in
an automated theorem prover. The standard first-order superposition calculus is
extended step by step to richer logics in three major milestones, culminating with
full higher-order logic.

The first milestone takes the form of four calculi for λ-free higher-order logic.
They closely resemble Bachmair and Ganzinger’s first-order superposition calculus,
but support partial applications and applied variables. Crucially, they also support
nonmonotone term orders, an essential feature in preparation for higher-order logic.

The second milestone extends one of these calculi further to a clausal fragment
of higher-order logic that includes anonymous functions but excludes Booleans. It
uses higher-order unification and can cope with βη-conversion of λ-terms.

The third milestone is the calculus for full higher-order logic. It adds support for
an interpreted Boolean type with the familiar connectives and quantifiers, as well as
a choice operator.

As a secondary contribution, the thesis introduces the embedding path order, a
term order for λ-free higher order terms that resembles the first-order recursive
path order. It is a ground-total simplification order; in particular it is monotone and
thus avoids the complications dealt with in our first milestone, at the cost of being
less efficiently computable.

Each milestone has been implemented in the Zipperposition prover and eval-
uated on TPTP and Sledgehammer benchmarks. Based on this implementation,
Zipperposition outperformed all other provers in the higher-order category of the
2020 edition of the CASC prover competition.

vii

Samenvatting

Dit proefschrift presenteert een uitbreiding van de superpositie-calculus naar hogere-
orde logica (ook wel eenvoudige typentheorie genoemd) en de implementatie en
empirische evaluatie ervan in een automatische stellingbewijzer. De standaard
eerste-orde superpositie-calculus wordt stap voor stap uitgebreid naar rijkere logica
in drie mijlpalen, aan het eind waarvan er een calculus is voor hogere-orde logica.

De eerste mijlpaal bestaat uit vier calculi voor λ-vrije hogere-orde logica. Ze
lijken sterk op Bachmair en Ganzingers eerste-orde superpositie-calculus, maar
ondersteunen partiële toepassingen en toegepaste variabelen. Cruciaal is dat ze ook
niet-monotone termordes ondersteunen, een essentiële eigenschap ter voorbereiding
op hogere-orde logica.

De tweede mijlpaal breidt een van deze calculi verder uit naar een fragment van
hogere-orde logica die anonieme functies bevat, maar Booleans voorbij de clausules
uitsluit. Het maakt gebruik van hogere-orde unificatie en kan omgaan met de
βη-conversie van λ-termen.

De derde mijlpaal is de calculus voor volledige hogere-orde logica. Het voegt
ondersteuning toe voor een geïnterpreteerd Bools type met de bekende connectieven
en kwantoren, evenals een keuzeoperator.

Als secundaire bijdrage introduceert het proefschrift de embedding path order,
een termorde voor λ-vrije termen van een hogere orde die lijkt op de recursive path
order voor de eerste orde. Het is een simplification order; in het bijzonder is het
monotoon en vermijdt zo de complicaties die in onze eerste mijlpaal opdoemen, ten
koste van een minder efficiënte berekenbaarheid.

Elke mijlpaal is geïmplementeerd in de Zipperposition prover en geëvalueerd op
TPTP en Sledgehammer benchmarks. Gebaseerd op deze implementatie, presteerde
Zipperposition beter dan alle andere provers in de hogere-orde categorie van de
2020-editie van de CASC bewijzerscompetitie.

ix

Acknowledgements

I want to thank my supervisors Jasmin Blanchette, Uwe Waldmann, and Wan
Fokkink for the time and effort they invested in guiding and supporting me. Jasmin
came up with the plan for this project and it has worked out perfectly. Uwe’s deep
understanding of the superposition calculus and his profound knowledge of the
associated literature has been invaluable. Wan has not been involved in the research
itself but has been extremely supportive in organizational, social, and career matters.
I am also grateful to my other coauthors Simon Cruanes, Sophie Tourret, Petar
Vukmirović, and Visa Nummelin for the excellent work. Without them, I would not
have been able to complete this endeavor.

I would like to thank Herman Geuvers, Laura Kovács, Nicolas Peltier, Giles
Reger, and Stefan Schlobach for being on the doctorate board and for their comments
on my manuscript. I would like to thank Jaap Heringa for agreeing to be the chair
of my defense. I thank Ahmed Bhayat and Alexander Steen for the interesting
discussions on higher-order logic reasoning and the insights they shared with me.
I am grateful to the maintainers of StarExec for letting us use their service and
especially to Geoff Sutcliffe for his help with StarExec and the TPTP.

I also want to thank: Haniel Barbosa, Christoph Benzmüller, Maria Paola
Bonacina, Sander Dahmen, Martin Desharnais, Daniel El Ouraoui, Mathias Fleury,
Pascal Fontaine, Carsten Fuhs, Jürgen Giesl, Johannes Hölzl, Rob Lewis, Tomer
Libal, Andrei Popescu, Femke van Raamsdonk, Anders Schlichtkrull, Stephan
Schulz, Hans-Jörg Schurr, Mark Summerfield, Enrico Tassi, Dmitriy Traytel, Andrei
Voronkov, Daniel Wand, Christoph Weidenbach, and anonymous reviewers of the
papers I submitted.

The research presented in this thesis has benefited from funding from the Euro-
pean Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreement No. 713999, Matryoshka), from the
Netherlands Organization for Scientific Research (NWO) Incidental Financial Sup-
port scheme, and from the NWO Vidi program (project No. 016.Vidi.189.037, Lean
Forward).

The work in the thesis has been carried out under the auspices of the research
school IPA (Institute for Programming research and Algorithmics).

xi

1
Introduction

The field of automated theorem proving studies automatic procedures to find math-
ematical proofs. These accept a mathematical conjecture as input and—if they
terminate—determine either that the conjecture is a theorem or that a counter-
example exists. The conjecture is stated in a formal logic. Since the 1960s, first-
order logic (initially without, later with equality) has established itself as the most
widely used input logic because it strikes a good balance between simplicity and
expressiveness. Higher-order logic (also called simple type theory) offers a richer
language to state mathematical conjectures, providing quantification over functions,
λ-expressions, and a first-class Boolean type, allowing to naturally express concepts
such as summations, integrals, and induction principles. However, this comes at the
cost of more complex syntax and semantics, which is why the research community
has mostly focussed on first-order logic in the past.

Superposition [9] is widely regarded as the calculus par excellence for first-order
logic with equality. It emerged in the early 1990s from the resolution calculus
and ideas from Knuth–Bendix completion. Given a set of axioms and a conjecture,
superposition provers negate the conjecture and compute a clausal normal form of
the formulas, on which the core calculus can operate. From the resulting initial
set of clauses, the core calculus incrementally derives more clauses according to a
small set of inference rules. To curb the explosive derivation of new clauses, a term
order restricts the inferences that must be applied. If the conjecture is true, given
enough time and resources, the procedure will eventually derive the false clause ⊥,
refuting the negated conjecture and thus proving the conjecture. Since the yearly
CASC prover competition was established in 1996, the winner in the first-order
category has always been based on superposition. Provers based on superposition
are successfully used as a backend in proof assistants [5], software verifiers [57], and
higher-order provers [126], demonstrating the efficiency of this calculus.

This thesis presents an extension of the superposition calculus to higher-order logic
and to intermediate logics between first-order and higher-order logic.

1

1

2 1. Introduction

1.1. Motivation
Our main motivation to extend the superposition calculus to higher-order logic is to
provide better automation to proof assistants. In contrast to automated provers, proof
assistants require interaction with a user to prove theorems but allow the user to
prove sophisticated mathematical theorems that are out of reach for fully automated
systems. Proof assistants are used to verify hardware and software and to formalize
mathematics. Some of the biggest success stories in formalization of mathematics
are the formalization of the four color theorem [65], the odd order theorem [66], and
the Kepler conjecture [70]. In software verification, major achievements include the
formally verified C compiler CompCert [98] and the seL4 microkernel [86].

However, much time and effort was necessary to achieve these successes. For
instance, the development of the microkernel seL4 itself took about two person-years,
whereas the formal verification of it took 20 person-years. Good automation within
proof assistants is crucial to speed up the formalization process. For many projects,
users even develop automation procedures for tasks specific to their project to avoid
repeating the same proof steps over and over.

For general purpose automation, hammers such as Sledgehammer [111] and
HOLyHammer [80] are an enormous time saver. Hammers are tools in proof assis-
tants that allow the user to find proofs automatically by invoking external automated
provers. Thomas Hales [69], who led the Flyspeck project formalizing the Kepler
conjecture, writes:

Sledgehammers and machine learning algorithms have led to visible
success. Fully automated procedures can prove 40% of the theorems
in the Mizar math library, 47% of the HOL Light/Flyspeck libraries,
with comparable rates in Isabelle. These automation rates represent an
enormous savings in human labor.

In spite of the success of hammers, they have the potential to achieve even more
because the translation between different logics suppresses their true capabilities.
The idea behind hammers is to send a conjecture from the proof assistant to external
automated provers and—if a proof is found—reconstruct the proof in a language the
proof assistant can verify. Since automated provers typically operate on first-order
logic and proof assistants typically operate on some higher-order logic, the problem
needs to be encoded into first-order logic before it can be handed to the automated
prover [84, 115]. Such encodings are incomplete, bloat the problem, or both. For
instance,

– to support partial applications and applied variables, applications f a are
encoded as app(f,a);

– to support λ-expressions, they must be encoded using SK combinators—e.g.,
λx. x as S K K;

– to support reasoning with Boolean terms, Boolean operators must be axioma-
tized.

Due to these encodings, a seemingly simple higher-order problem can become a
surprisingly hard first-order problem.

1.2. Contributions

1

3

This issue can be avoided by using automated provers operating on higher-order
logic, such as Satallax [42], which is based on tableau calculus, and Leo-III [126],
which is based on paramodulation. However, while these provers work well on
small problems that require sophisticated higher-order reasoning, they easily fail
on problems coming from proof assistants, which are large and often require only
shallow higher-order reasoning [128].

This is our motivation to extend superposition, which is extremely successful
on first-order problems, to operate on higher-order problems directly. Eliminating
the need for encodings allows us to develop more powerful and targeted heuristics
because the automated prover can assess the problem in its original form.

One of our primary design goals is a graceful generalization, meaning that the
higher-order calculus should essentially behave as first-order superposition when
given a first-order problem and smoothly generalize to problems with increasing
amounts of higher-order components. This matters because problems originating
from proof assistants are typically of a mostly first-order nature with only minor
higher-order elements.

A second design goal is refutational completeness. Intuitively, this is the property
that given a provable conjecture, with enough resources, a prover implementing
the calculus will eventually find a proof. Even though it is possible to achieve high
success rates with incomplete provers, refutational completeness can act as a guide
to specific side conditions of calculus rules that yield an efficient procedure.

1.2. Contributions
The main contribution of this thesis is the development of a sound and refutationally
complete superposition calculus for higher-order logic, implemented and evaluated
in the Zipperposition prover.

To face the different challenges of higher-order logic one by one, we partitioned
the task in three major milestones. Each milestone is a sound and refutationally
complete calculus for some logic that lies between first-order and higher-order logic.

– The first milestone operates on λ-free higher-order logic—a logic that is essen-
tially first-order logic, but allows for applied variables and partial applications.
We designed four different calculi and compared them empirically. The main
challenge of this milestone was to cope with term orders that are not en-
tirely monotone. In particular, we aimed to support a λ-free higher-order
variant of the recursive path order (RPO) that has previously been designed
by Blanchette et al. [34].

– The second milestone operates on clausal higher-order logic—a logic that
additionally allows for λ-expressions, but does not have an interpreted Boolean
type. The main challenges were to deal with higher-order unification and
with βη-conversion of λ-terms. Although we could not reuse the completeness
theorem of the first milestone directly, many of its proof ideas reappear.

– The third milestone finally operates on full higher-order logic. The main
challenge was to add support for an interpreted Boolean type, including the
familiar connectives and quantifiers, as well as a choice operator. This last

1

4 1. Introduction

milestone is based on the second milestone, but also on an ongoing project of
Nummelin, Tourret, Vukmirović, and myself, in which we are developing a
calculus for first-order logic with an interpreted Boolean type. This project
in turn is based on Ganzinger and Stuber’s work on delayed clausification for
first-order superposition [61].

The order in which we add new features to the intermediate logics is arbitrary,
but it seemed convenient to us. The partition into these intermediate logics not only
keeps each milestone manageable, but also allows to backtrack and explore different
design decisions. For instance, Bhayat and Reger [28] used our first milestone as a
basis for a calculus for clausal higher-order logic based on SK combinators.

Overall, the pedigree of the family of higher-order superposition calculi is as
follows:

Standard superposition
Bachmair and Ganzinger [9]

Superposition with ←→
and delayed CNF

Ganzinger and Stuber [61]

Superposition
with Booleans

Nummelin et al. [109]

λ-free superposition
First milestone

Superposition
with combinators

Bhayat and Reger [28]

Boolean-free
λ-superposition

Second milestone

Full λ-superposition
Third milestone

We have implemented each of the milestones in the Zipperposition prover and
evaluated them on TPTP [130] and Sledgehammer benchmarks. The evaluation
results have been promising. As further confirmation, Zipperposition won in the
higher-order category at the CASC-J10 prover competition in 2020, by a large
margin.

As an additional contribution, I have developed the embedding path order (EPO),
a term order that resembles the recursive path order (RPO) but is a ground-total
simplification order on lambda-free higher-order terms. Unlike the Knuth–Bendix
order (KBO), the natural generalization of RPO to lambda-free higher-order terms
is not monotone [34], causing the complications investigated in our first milestone.
EPO is monotone and thus answers a research question that emerged from our work
on the first milestone.

1.3. Related Work
Our calculi join the family of proof systems for higher-order logic. It is related to
Andrews’s higher-order resolution [1], Huet’s constrained resolution [73], Jensen and

1.4. Implementations

1

5

Pietrzykowski’s ω-resolution [76], Snyder’s higher-order E-resolution [122], Benz-
müller and Kohlhase’s extensional higher-order resolution [20], Benzmüller’s higher-
order unordered paramodulation and RUE resolution [19], and Bhayat and Reger’s
combinatory superposition [28]. A noteworthy variant of higher-order unordered
paramodulation is Steen and Benzmüller’s higher-order ordered paramodulation
[126], whose order restrictions undermine refutational completeness but yield better
empirical results. Other approaches are based on analytic tableaux [12, 88, 89,
114], connections [2], sequents [101], and satisfiability modulo theories (SMT) [13].
Andrews [3] and Benzmüller and Miller [21] provide excellent surveys of higher-order
automation.

Our implementation in Zipperposition joins the league of automated provers for
higher-order logic. Its rivals are—among others—the following provers. TPS [4]
is based on the connection method and expansion proofs. LEO [20] and LEO-II
[24] implement variants of RUE resolution. Leo-III [126] is based on higher-order
paramodulation. Satallax [42] implements a higher-order tableau calculus guided
by a SAT solver. LEO-II, Leo-III, and Satallax integrate first-order provers as
terminal procedures. AgsyHOL [101] is based on a focused sequent calculus guided
by narrowing. The Isabelle proof assistant [108] (which includes a tableau reasoner
and a rewriting engine) and its Sledgehammer subsystem also participate in the
higher-order division of the CADE ATP System Competition [129]. The SMT solvers
CVC4 and veriT have recently been extended to higher-order logic [13]. Vampire now
implements both combinatory superposition and a version of standard superposition
with first-order unification replaced by restricted combinatory unification [27].

Many researchers have proposed or used encodings of higher-order logic con-
structs into first-order logic, including Robinson [115], Kerber [84], Dougherty [52],
Dowek et al. [54], Hurd [75], Meng and Paulson [106], Obermeyer [110], and
Czajka [48]. Encodings of types, such as those by Bobot and Paskevich [37] and
Blanchette et al. [30], are also crucial to obtain a sound encoding of higher-order
logic. These ideas are implemented in proof assistant in the form of hammers such
as Sledgehammer [111], MizAR [134], HOLyHammer [81], and CoqHammer [49].
The translation must eliminate the λ-expressions, typically using SK combinators or
λ-lifting, and encode typing information.

1.4. Implementations
For our empirical evaluations of the various calculi and the term order EPO, we
have implemented them in the Zipperposition prover. Zipperposition [46,47] is an
open source superposition prover written in OCaml.1 In contrast to highly-optimized
C or C++ provers such as E, Zipperposition allows us to prototype quickly and to
experiment with rules and heuristics more flexibly.

Zipperposition’s architecture is a modular saturation loop with an extensible set
of rules for inferences and simplifications. Based on a unit superposition prover
used in the proof assistant Matita [6], its calculus and main loop where inspired by
the E prover [117]. It was initially designed for polymorphic first-order logic with

1https://github.com/sneeuwballen/zipperposition

https://github.com/sneeuwballen/zipperposition

1

6 1. Introduction

equality, as embodied by TPTP TF1 [32]. Later, Cruanes extended the prover with
a pragmatic higher-order mode with support for λ-abstractions and extensionality,
without any completeness guarantees. Our implementations builds on Cruanes’s
work.

We have been developing and extending Zipperposition continuously. Each evalu-
ation section of this thesis points to supplementary material containing the relevant
development version of Zipperposition, the benchmarks, and the raw evaluation
results.

1.5. Publications
This is a cumulative thesis, meaning that its contents are a compilation of publica-
tions and publication drafts that have been or are to be published at conferences
and in journals. The thesis contains contents from the following publications and
publication drafts, with the consent of my coauthors:

1. A. Bentkamp, J. C. Blanchette, S. Cruanes, and U. Waldmann. Superposition
for Lambda-Free Higher-Order Logic. In D. Galmiche, S. Schulz, R. Sebastiani
(eds.) International Joint Conference on Automated Reasoning (IJCAR 2018),
LNCS 10900, pp. 28–46, Springer, 2018.

2. A. Bentkamp, J. Blanchette, S. Cruanes, and U. Waldmann. Superposition for
Lambda-Free Higher-Order Logic. Accepted in Logical Methods in Computer
Science.

3. A. Bentkamp. The Embedding Path Order for Lambda-Free Higher-Order
Terms. To be submitted.

4. A. Bentkamp, J. Blanchette, S. Tourret, P. Vukmirović, and U. Waldmann. Super-
position with Lambdas. In P. Fontaine (ed.) Conference on Automated Deduc-
tion (CADE-27), LNCS 11716, pp. 55–73, Springer, 2019.

5. A. Bentkamp, J. Blanchette, S. Tourret, P. Vukmirović, and U. Waldmann. Super-
position with Lambdas. Accepted in Journal of Automated Reasoning.

6. V. Nummelin, A. Bentkamp, S. Tourret, and P. Vukmirović. Superposition with
First-Class Booleans and Inprocessing Clausification. Submitted.

7. A. Bentkamp, J. Blanchette, S. Tourret, and P. Vukmirović. Superposition for
Full Higher-Order Logic. Submitted.

During my time as a PhD candidate, I have also worked on the following papers,
which are not covered in this thesis:

8. A. Bentkamp, J. Blanchette, and D. Klakow. An Isabelle Formalization of
the Expressiveness of Deep Learning (Extended Abstract). In T. C. Hales,
C. Kaliszyk, S. Schulz, J. Urban (eds.) Conference on Artificial Intelligence and
Theorem Proving (AITP 2017), pp. 22–23.

9. A. Bentkamp, J. C. Blanchette, and D. Klakow. A Formal Proof of the Expres-
siveness of Deep Learning. In M. Ayala-Rincón, C. A. Muños (eds.) Conference
on Interactive Theorem Proving (ITP 2017), LNCS 10499, pp. 46–64, Springer,

1.6. Structure of This Thesis

1

7

2017.

10. A. Bentkamp, J. C. Blanchette, and D. Klakow. A Formal Proof of the Expres-
siveness of Deep Learning. Journal of Automated Reasoning 63(2), pp. 347-368,
2019.

11. P. Vukmirović, A. Bentkamp, and V. Nummelin. Efficient Full Higher-Order
Unification. In Z. M. Ariola (ed.), International Conference on Formal Struc-
tures for Computation and Deduction (FSCD 2020), LIPIcs 167, pp. 5:1–5:17,
Schloss Dagstuhl—Leibniz-Zentrum für Informatik, 2020.

12. P. Vukmirović, A. Bentkamp, and V. Nummelin. Efficient Full Higher-Order
Unification. Extended journal version submitted.

13. P. Vukmirović, A. Bentkamp, J. Blanchette, S. Cruanes, S. Tourret, and V. Num-
melin. Making Higher-Order Superposition Work. Submitted.

1.6. Structure of This Thesis
This thesis is composed of one chapter for each of the three milestones, interspersed
with a chapter on the embedding path order and a chapter introducing parts of my
ongoing work with Nummelin and other colleagues. I present them in the following
order:

– Chapter 3 describes our calculi for lambda-free higher-order logic, our first
milestone.

– Chapter 4 describes the term order EPO, which can be used as an replacement
for RPO that avoids the complications described in the previous chapter.

– Chapter 5 describes our calculus for clausal higher-order logic, our second
milestone.

– Chapter 6 describes a calculus for first-order logic with interpreted Booleans,
which serves as a basis for the following chapter.

– Chapter 7 describes our calculus for full higher-order logic, the final milestone
and main contribution of this thesis.

– Chapter 8 summarizes our results and plans for future work.

2
Preliminaries

This chapter introduces basic concepts that are a prerequisite for the rest of the
thesis. I discuss the syntax and semantics of monomorphic first-order logic. I
introduce the two most commonly used term orders used for superposition, the
lexicographic path order and the Knuth–Bendix order. I present the first-order
superposition calculus and illustrate it with an example derivation. Finally, I go over
basic concepts of term rewriting.

9

2

10 2. Preliminaries

2.1. First-Order Logic
Bachmair and Ganzinger’s original version of superposition operates on untyped
first-order logic with equality. However, the calculus and completeness proof apply
essentially verbatim on the monomorphic variant of the logic as well. This is the
variant that we introduce below.

Throughout the thesis, we use the following notation for tuples: We write ān or ā
for a tuple (a1, . . . ,an) or a product a1 ×·· ·×an, where n ≥ 0. Abusing notation, we
sometimes write f (ā) for the tuple (f (a1), . . . , f (an)). We write () or ε for the empty
tuple, t for the singleton tuple (t), and s̄ · t̄ for the concatenation of the tuples s̄ and t̄.

Syntax We fix a set Σty of type constructors with associated arities. A first-order
type is inductively defined to be of the form κ(τ̄n) for an n-ary type constructor κ ∈Σty
and types τ̄n. We write κ for κ(). A type declaration is an expression of the form
τ̄n ⇒ υ for types τ̄n and υ. We call τ̄n the argument types and υ the return type. If
n = 0, we simply write υ for ()⇒ υ.

We fix a set Ω of (function) symbols f, each associated with a type declaration
τ̄n ⇒ υ, written as f : τ̄n ⇒ υ or f. We fix a set Π of predicates p, each associated with
a tuple of argument types τ̄n, written as p : τ̄n or p. We require that Π contains an
equality predicate ≈τ : τ×τ for each type τ. We usually write ≈ for ≈τ. Moreover, we
fix a countably infinite set V of variables with associated types, written as x : τ or x.
The notation t : τ will also be used to indicate the type of arbitrary terms t.

The sets Ω and Π form the term signature Σ= (Ω,Π). The term signature and
the type signature form the signature (Σty,Σ) of first-order logic. The set of first-
order terms is inductively defined as follows. Every x :τ ∈V is a term of type τ. If
f : τ̄n ⇒ υ ∈Ω and t̄n : τ̄n is a tuple of terms, then the application f(t̄n) (or simply f if
n = 0) is a term of type υ. A term is ground if it contains no variables.

The set of first-order formulas is inductively defined as follows. If p ∈ Π has
argument types τ̄n and t̄n : τ̄n is a tuple of terms, then the p(t̄n) is a formula. For
the case of p=≈, we write t ≈ s for ≈(t, s). Moreover, the expressions >, ⊥, ¬φ, φ∧ψ,
φ∨ψ, φ→ψ, φ↔ψ, ∀x.φ, and ∃x.φ are formulas if φ and ψ are formulas.

Subterms and positions are inductively defined as follows. A position in a term is
a tuple of natural numbers. For any term t, the empty tuple ε is a position of t, and t
is the subterm of t at position ε. If t is the subterm of ui at position p, then i.p is a
position of f(ū), and t is the subterm of f(ū) at position i.p. We write s|p to denote
the subterm at position p in s. We write s[u]p to denote a term s with the subterm u
at position p and call s[]p a context; the position p may be omitted in this notation.

A substitution σ,ρ,θ is a map from variables to terms that maps all but finitely
many variables to themselves. Each variable must be mapped to a term of the same
type. The image of a variable x under a substitution ρ is denoted xρ. We write a
substitution as {x1 7→ t1, . . . , xn 7→ tn} with the convention that the substitution maps
all variables that are not listed to themselves. The application of a substitution ρ to
a term t results in a term tρ, recursively defined as tρ = xρ if t is a variable x and
tρ = f(t̄ρ) if t = f(t̄). We write ρσ for the concatenation x 7→ (xρ)σ of two substitutions.
We write ρ[x 7→ t] for the substitution that maps x to t and behaves like ρ on all
other variables. A substitution θ is grounding for a term t if tθ is ground.

2.2. The Superposition Calculus

2

11

A substitution ρ is a unifier of two terms s and t if sρ = tρ. A most general unifier
mgu(s, t) is a unifier σ of s and t such that for any other unifier θ, there exists a ρ

such that σρ = θ. If two terms are unifiable, a most general unifier exists and is
unique up to variable renaming.

Semantics A first-order interpretation I= (U,J) is a pair, consisting of a universe
Uτ for each type τ and an interpretation function J, which associates with each
symbol f : τ̄⇒ υ and universe elements ā ∈Uτ̄ a universe element J(f)(ā) ∈Uυ and
which associates with each predicate p : τ̄ and universe elements ā ∈Uτ̄ a number
J(p)(ā) ∈ {0,1}. We require that J(≈)(a,b)= 1 if a = b and 0 otherwise.

A valuation is a function assigning an element ξ(x) ∈Uτ to each variable x : τ.
For an interpretation I and a valuation ξ, the denotation of a term is inductively
defined as JxKξI = ξ(x) for a variable x ∈V and Jf(t̄)KξI = J(f)(Jt̄KξI) for a symbol f ∈Ω
and appropriately typed terms t̄.

Given an interpretation I and a valuation ξ, the denotation of a formula is
inductively defined as

J>KξI = 1 Jp(t̄)KξI = J(p)(ā)

J⊥KξI = 0 Jφ→ψKξI =max(1− JφKξI,JψKξI)

J¬φKξI = 1− JφKξI Jφ↔ψKξI = if JφKξI = JφKξI then 1 else 0

Jφ∧ψKξI =min(JφKξI,JψKξI) J∀x.φKξI =min{JφKξ[x 7→a]
I | a ∈Uτ}

Jφ∨ψKξI =max(JφKξI,JψKξI) J∃x.φKξI =max{JφKξ[x 7→a]
I | a ∈Uτ}

for predicates p : τ̄n ∈Π, terms t̄n : τ̄n, formulas φ and ψ, and variables x : τ.
A formula φ is true in an interpretation I under a valuation ξ if JφKξI = 1. An

interpretation I is a model of φ, written I |=φ, if φ is true in I under all valuations ξ.
A set of formulas N entails a set of formulas M, written N |= M, if every model of all
formulas in N is also a model of all formulas in M.

2.2. The Superposition Calculus
Superposition is a procedure to determine whether a given set of formulas is con-
tradictory. By contradictory, we mean that these formulas entail ⊥, i.e., that there
exists no model for these formulas. First-order logic is undecidable, meaning that
there exists no procedure to decide (in finite time) whether a set of formulas is con-
tradictory. It is, however, semi-decidable, meaning that there exist procedures such
as superposition that can find a contradiction for any formula set that is actually
contradictory but do not always terminate for other formula sets that are not. This
property of a procedure is refutational completeness.

Superposition can also be used to prove entailments—i.e, to determine whether a
given set of formulas, which we call the assumptions, entails another formula, which
we call the conjecture. We negate the conjecture and let superposition determine
whether the assumptions together with the negated conjecture are contradictory. If
they are, this implies that that the conjecture is entailed by the assumptions.

Superposition is a saturation-based procedure. The core idea is that, starting
from an initial set of formulas, a set of inference rules derives more and more

2

12 2. Preliminaries

formulas until it derives ⊥, indicating a contradiction, or runs out of new formulas to
derive, indicating that a model exists. Due to the undecidability of first-order logic, a
third possibility is that the procedure does not terminate.

In the following, we assume that the equality predicates ≈ are the only predicates.
This assumption simplifies both theory and implementation, but does not limit
generality because predicates p(t̄) can be encoded as fp(t̄)≈>>>>>>>>>>>>>>>>>>>>>>>>> where fp is a function
symbol with an auxiliary return type o and >>>>>>>>>>>>>>>>>>>>>>>>> : o is an auxiliary constant symbol. For
this reason, in the remainder of the thesis, our logics will not even include a set of
predicates.

2.2.1. Clausal Normal Form
The superposition calculus operates on a normal form of first-order formulas, the
clausal normal form (CNF). A formula is in CNF, if it is of the form ∀x1. · · · ∀xk.C1 ∧
·· ·∧Cm where each Ci is of the form L i,1 ∨·· ·∨L i,n and each L i, j is either of the
form si, j ≈ ti, j or of the form ¬ si, j ≈ ti, j, which we abbreviate as si, j 6≈ ti, j. The Ci
are called clauses and the L i, j are called literals. Since all variables are universally
quantified at the top level, the quantifiers are usually left implicit. Since the order of
clauses, of literals, and of sides of a literal does not influence the truth of the formula,
we view literals as unordered term pairs with a sign (positive or negative), clauses as
multisets of literals, and the entire CNF formula as a set of clauses. Every formula
can be converted into an equisatisfiable CNF formula, meaning that the original
formula has a model if and only if the CNF formula has a model.

2.2.2. The Term Order
Superposition is parameterized by a term order Â that allows us to restrict the search
space. A major issue with resolution, paramodulation, and other similar calculi that
predate superposition is that any symmetries in the given formulas exponentially
increase the search space. The term order breaks many of such symmetries by
determining on which part of a clause the calculus should work first.

The completeness proof of superposition requires the term order to be a ground-
total and well-founded simplification order. Given a binary relation >, we write < for
its converse (i.e., a < b ⇔ b > a) and ≥ for its reflexive closure (i.e., b ≥ a ⇔ b > a ∨
b = a). A binary relation > on terms is a simplification order if it is irreflexive (i.e.,
t 6> t), is transitive (i.e., u > t > s ⇒ u > s), is compatible with contexts (i.e., if ti > si
for all i, then f(t̄)> f(s̄)), is stable under substitutions (i.e., t > s implies tσ> sσ), and
has the subterm property (i.e., t ≥ s if s is a subterm of t). It is ground-total if for
all distinct ground terms s and t either t > s or t < s. It is well founded if there is no
infinite descending chain t1 > t2 > ·· · .

To extend the term order to literals and clauses, we employ the multiset order [50].
Given a partial order > on a set S, the multiset order induced by > is a partial order
on multisets of elements from N, defined as follows. A multiset M is larger than a
multiset N if there exist multisets X and Y such that ; 6= X ⊆ M, N = (M− X)∪Y ,
and for every y ∈Y there exists an x ∈ X with x > y. Using this definition, we extend
the term order to a literal order, viewing a positive literal s ≈ t as the multiset {s, t}
and a negative literal s 6≈ t as the multiset {s, s, t, t}. This order is then extended from

2.2. The Superposition Calculus

2

13

literals to clauses, again using the multiset order. We reuse the symbol Â for the
literal and clause order induced by Â.

Lexicographic Path Order The lexicographic path order [8, 82] is commonly
used for superposition. It is defined as follows:

Definition 2.1 (Lexicographic path order). Let the precedence > be a well-founded
strict order on the signature Σ. The lexicographic path order >lp on first-order terms
induced by > is recursively defined as follows: Let t >lp s if

1. s is a variable occurring in t and t 6= s; or
2. t = g(t̄n), s = f(s̄m), and one of the following conditions holds:

(a) t j ≥lp s for some j;
(b) g > f and t >lp si for all i; or
(c) g = f, t >lp si for all i, and t̄ j−1 = s̄ j−1, s j >lp t j for some j.

The main idea behind this term order is to compare the heads of terms, i.e., the
leftmost function symbols (condition 2b). If they are equal, the order recursively
compares the arguments (condition 2c). Condition 2a ensures the subterm property.
Accordingly, conditions 2b and 2c must check that condition 2a cannot be applied
in the opposite direction. Nonground terms are rarely comparable, but condition 1
allows us to compare some of them while preserving stability under substitutions.

For example, given the precedence h> g > f > b> a, we have

g(a)>lp f(b) h(a,b,a)>lp h(a,a,b) f(g(b))>lp g(a) h(x, f(y), z)>lp h(x, y, z)

The terms h(x, f(y), z) and h(z, y, x), however, are incomparable.
The name of the lexicographic path order stems from condition 2c, which com-

pares the arguments lexicographically. The recursive path order generalizes this
condition and allows for various ways to compare the arguments recursively.

Knuth–Bendix Order The Knuth–Bendix order [8,87] is another term order that
fulfills the requirements imposed by superposition.

In addition to a precedence > on the signature Σ, the Knuth–Bendix order is
parameterized by a weight function W :Σ→R>0. The weight function is extended to
variables x by assigning all of them the same weight W (x) = w0. It is extended to
terms t = f(t̄) via the recursive equation

W (t)=W (f)+∑
i

W (ti)

Definition 2.2. Given a precedence > and a weight function W , the Knuth–Bendix
order >kb on first-order terms induced by > and W is defined as follows: Let t >kb s
if

1. |t|x ≥ |s|x for all x ∈V and W (t)>W (s); or
2. |t|x ≥ |s|x for all x ∈V, W (t)=W (s), and one of the following conditions holds:

(a) t = g(t̄n), s = f(s̄m), and g > f; or
(b) t = g(t̄n), s = g(s̄n), and t̄ j−1 = s̄ j−1, s j >kb t j for some j.

2

14 2. Preliminaries

Here, |t|x denotes the number of times a variable x occurs in t.

For example, given the precedence h > g > f > c > b > a, where all weights are 1
except for W (a)= 5, we have

a>kb g(f(b)) g(h(b,b,b))>kb a h(a,b,c)>kb h(c,b,a) h(x, f(y), z)>kb h(z, y, x)

whereas a and g(f(x)) are incomparable.

2.2.3. The Inference Rules
The core of superposition is an inference system—i.e, rules stating how to derive
new clauses from existing clauses. These rules are superposition (SUP), equality
resolution (ERES), and equality factoring (EFACT), as stated below.

Besides the term order, superposition is parameterized by a literal selection
function that restricts the search space even further. This selection function maps
each clause C to a subclause of C consisting of negative literals. These literals are
called selected in C. A literal is maximal in a clause C if it is greater than or equal
to every literal in C. It is strictly maximal if it is maximal and occurs only once in
C. A literal L is (strictly) eligible w.r.t. a substitution σ in C if it is selected in C or
there are no selected literals in C and Lσ is (strictly) maximal in Cσ.

We write inference rules using the standard notation placing the premises above
and the conclusion below a horizontal bar. As a general convention, we assume
variables from different clauses to be different. In implementations, this is usually
achieved by renaming them apart before performing an inference.

D︷ ︸︸ ︷
D′ ∨ t ≈ t′

C︷ ︸︸ ︷
C′ ∨ s[u] ≈̇ s′

SUP
(D′ ∨ C′ ∨ s[t′] ≈̇ s′)σ

where ≈̇ denotes ≈ or 6≈ and the following conditions hold:
1. σ=mgu(t,u); 2. tσ 6¹ t′σ; 3. s[u]σ 6¹ s′σ ;
4. t ≈ t′ is strictly eligible w.r.t. σ in D; 5. Cσ 6¹ Dσ;
6. s[u] ≈̇ s′ is eligible w.r.t. σ in C and, if positive, even strictly eligible; and
7. u 6∈V.

Some authors distinguish between a positive SUP rule where s[u] ≈̇ s′ is positive and
a negative SUP rule where s[u] ≈̇ s′ is negative.

C︷ ︸︸ ︷
C′ ∨ s 6≈ s′

ERES
C′σ

where
1. σ=mgu(s, s′); 2. s 6≈ s′ is eligible w.r.t. σ in C.

C︷ ︸︸ ︷
C′ ∨ s′ ≈ t′ ∨ s ≈ t

EFACT
(C′ ∨ t 6≈ t′ ∨ s ≈ t′)σ

2.2. The Superposition Calculus

2

15

where
1. σ=mgu(s, s′); 2. sσ 6¹ tσ; 3. s ≈ t is eligible w.r.t. σ in C.

These inference rules must be applied to the CNF of the assumptions, the CNF
of the negated conjecture, and all clauses emerging in this way until either the
empty clause, written as ⊥, is derived or the clause set is saturated—i.e., all possible
inferences have been performed. Refutational completeness guarantees that super-
position will eventually derive ⊥ if the conjecture is entailed by the assumptions. If
it is not entailed, the process either saturates after finitely many inference steps or
does not terminate at all.

Example 2.3. The following example illustrates the calculus. Given some properties
about real numbers, we want to show that

x
y
+1= x+ y

y
if y 6= 0

In first-order logic, we can express this conjecture as

∀x.∀y. y 6≈ 0→ add(div(x, y),1)≈ div(add(x, y), y)

where add, div, 0, and 1 are uninterpreted symbols. Negating this conjecture and
bringing it into CNF yields the two clauses sky 6≈ 0 and Cconj = add(div(skx,sky),1) 6≈
div(add(skx,sky),sky) where skx and sky are fresh constants, known as Skolem con-
stants. To make the conjecture provable, we assume that we are given some
properties of the real numbers that can be clausified into the following clauses:
Cinv = mul(x, inv(x)) ≈ 1 ∨ x ≈ 0, Cdiv = mul(x, inv(y)) ≈ div(x, y) ∨ y ≈ 0, and Cdistr =
add(mul(x, z),mul(y, z))=mul(add(x, y), z).

Applying the inference rules above, we can then derive the empty clause ⊥ as
follows, using a selection function that selects all negative literals of a clause and
using the Knuth–Bendix order with weights W (c)=W (x)= 1 for all c ∈Σ, x ∈V and
with a precedence such that add> div and sky > 0.

sky 6≈ 0

sky 6≈ 0

sky 6≈ 0

Cconj

Cdiv

Cinv

Cdiv Cdistr SUP
add(div(x,w),mul(y, inv(w)))≈mul(add(x, y), inv(w))∨ w ≈ 0

SUP
add(div(x, y),1)≈mul(add(x, y), inv(y))∨ y≈ 0∨ y≈ 0

SUP
add(div(x, y),1)≈ div(add(x, y), y)∨ y≈ 0∨ y≈ 0∨ y≈ 0

SUP
div(add(skx,sky),sky) 6≈ div(add(skx,sky),sky)

∨ sky ≈ 0∨ sky ≈ 0∨ sky ≈ 0
ERES

sky ≈ 0∨ sky ≈ 0∨ sky ≈ 0
SUP

0 6≈ 0∨ sky ≈ 0∨ sky ≈ 0
ERES

sky ≈ 0∨ sky ≈ 0
SUP

0 6≈ 0∨ sky ≈ 0
ERES

sky ≈ 0
SUP

0 6≈ 0
ERES⊥

Only the part of the derivation here that eventually leads to the empty clause is
displayed here. In practice, many more clauses would be derived.

2

16 2. Preliminaries

2.2.4. Redundancy and Simplification
In addition to these core inference rules, superposition has a redundancy criterion
that allows us to add simplification rules that preserve refutational completeness.
Simplification rules are crucial for the performance of superposition provers because
they replace undirected proof search by computation.

A ground clause C is redundant w.r.t. a set of ground clauses N if it is entailed
by the clauses in N that are smaller than C. A (possibly nonground) clause C is
redundant w.r.t. a set of clauses N if all of its ground instances are redundant w.r.t.
the ground instances of clauses in N. By ground instance of a clause C, we mean a
ground clause of the form Cθ for some substitution θ.

Some basic examples of simplification rules are deletion of duplicated literals
DD and deletion of resolved literals DR [117]:

s ≈̇ t ∨ s ≈̇ t ∨ C
DD

s ≈̇ t ∨ C

s 6≈ s ∨ C
DR

C

The double bar indicates that these are simplification rules—i.e., that the conclusion
makes the premise redundant and can replace them. Clearly, these rules can
substantially shorten the bottom part of the derivation in Example 2.3.

2.3. Term Rewriting
Term rewriting systems [8,133] are a core component of the refutational completeness
proof of superposition. They are an instance of the more general concept of abstract
reduction systems.

Abstract Reduction Systems An abstract reduction system is a pair (A,−■→),
where A is an arbitrary set and the reduction relation −■→ is a binary relation on A.
Formally, we view a binary relation on A as a subset of A×A, but we write a −■→ b for
(a,b) ∈−■→. The converse ←■− of a relation −■→ is the relation such that b ←■− a if a −■→ b.
The symmetric closure of a relation −■→ is defined as ←→= (−■→∪←■−). The reflexive
transitive closure −■→∗ of a relation −■→ is the relation such that a −■→∗ b if there exists
a tuple c̄n with n > 0 such that a = c1, b = cn, and ci −■→ ci+1 for all i. The transitive
closure −■→+ additionally requires that n > 1. We write ←→∗ for the reflexive transitive
symmetric closure (←→)∗ and ←→+ for the transitive symmetric closure (←→)+. We write
chained reductions a −■→1 b −■→2 c to stand for a −■→1 b and b −■→2 c. We define the
composition of two relations −■→1 and −■→2 as −■→1 ◦ −■→2= {(a, c) ∈ A× A | a −■→1 b −■→2
c for some b}.

We call an element a reducible if there exists a b such that a −■→ b. It is in normal
form (or irreducible) otherwise. An element b is a normal form of a if a −■→∗ b and
b is in normal form. If the normal form of a is unique, we write a↓ for that normal
form. A reduction relation −■→ is terminating if there exists no infinite descending
chain a1 −■→ a2 −■→ ·· · . A reduction relation −■→ is confluent if for all a, b, and b′ such
that b ←■−∗ a −■→∗ b′, there exists a c such that b −■→∗ c ←■−∗ b.

An important property of abstract reduction systems is the following: If −■→ is

2.3. Term Rewriting

2

17

terminating and confluent, then every element a has a unique normal form a↓ and
moreover a ←→∗ b if and only if a↓ = b↓ [8, Section 2.1.2].

Term Rewriting Systems Term rewriting systems are a type of reduction system
that operates on (first-order) terms. A term rewriting system is a set of rewrite rules.
A rewrite rule is a pair of terms t and s, which we write as t −■→ s, such that t is not a
variable and all variables in s also occur in t.

Given a term rewriting system R, we define the reduction relation −■→R as follows:
Let s −■→R t if there exist a rule u −■→ v ∈ R, a position p in s, and a substitution ρ

such that s|p = uρ and t = s[vρ]p. We say that R is terminating, confluent, etc. when
−■→R is.

A critical pair of a term rewriting system R is a pair of two terms s and t such
that there exist rules u −■→ v ∈ R and u′ −■→ v′ ∈ R, a position p in u, and a unifier
σ=mgu(u|p,u′) where u|p is not a variable, s = vσ, and t = (uσ)[v′σ]p.

The critical pair theorem for terminating term rewriting systems [8, Corol-
lary 6.2.5] states that a terminating term rewriting system R is confluent if for each
critical pair s and t, there exists a term u such that s −■→∗ u ←■−∗ t. In particular, if
there are no critical pairs, R is confluent.

3
Superposition for

Lambda-Free
Higher-Order Logic

Joint work with
Jasmin Blanchette, Simon Cruanes, and Uwe Waldmann

We introduce refutationally complete superposition calculi for intentional and exten-
sional clausal λ-free higher-order logic, two formalisms that allow partial application
and applied variables. The calculi are parameterized by a term order that need not
be fully monotonic, making it possible to employ the λ-free higher-order lexicographic
path and Knuth–Bendix orders. We implemented the calculi in the Zipperposition
prover and evaluated them on Isabelle/HOL and TPTP benchmarks.

My contributions to this chapter are the design of the four calculi, the redundancy criterion, the complete-
ness proof, the implementation, and the evaluation.
Parts of this chapter have been published at the International Joint Conference on Automated Reasoning
(IJCAR 2018), LNCS 10900, pp. 28–46, Springer, 2018. This chapter has been accepted to be published in
the journal Logical Methods in Computer Science.

19

3

20 3. Superposition for Lambda-Free Higher-Order Logic

3.1. Introduction
As a first milestone towards full higher-order logic, in this chapter we restrict our
attention to a clausal λ-free fragment of polymorphic higher-order logic that supports
partial application and application of variables (Section 3.2). This formalism is
expressive enough to permit the axiomatization of higher-order combinators such as
pow :Πα. nat→ (α→α)→α→α (intended to denote the iterated application hn x):

pow〈α〉Zero h ≈ id〈α〉 pow〈α〉 (Succ n) h x ≈ h (pow〈α〉n h x)

Conventionally, functions are applied without parentheses and commas, and vari-
ables are italicized. Notice the variable number of arguments to pow〈α〉 and the
application of h. The expressiveness of full higher-order logic can be recovered by
introducing SK combinators to represent λ-abstractions and proxies for the logical
symbols [84,115].

A widespread technique to support partial application and application of vari-
ables in first-order logic is to make all symbols nullary and to represent applica-
tion of functions by a distinguished binary symbol app : Πα,β. fun(α,β)×α → β,
where fun is an uninterpreted binary type constructor. Following this scheme, the
higher-order term f (h f), where f : κ→ κ′, is translated to app(f,app(h, f))—or rather
app〈κ,κ′〉(f,app〈fun(κ,κ′),κ〉(h, f)) if we specify the type arguments. We call this the
applicative encoding. The existence of such a reduction to first-order logic explains
why λ-free higher-order terms are also called “applicative first-order terms.” Unlike
for full higher-order logic, most general unifiers are unique for our λ-free fragment,
just as they are for applicatively encoded first-order terms.

Although the applicative encoding is complete [84] and is employed fruitfully in
tools such as HOLyHammer and Sledgehammer [31], it suffers from a number of
weaknesses, all related to its gracelessness. Transforming all the function symbols
into constants considerably restricts what can be achieved with term orders; for
example, argument tuples cannot easily be compared using different methods for
different symbols [90, Section 2.3.1]. In a prover, the encoding also clutters the
data structures, slows down the algorithms, and neutralizes the heuristics that
look at the terms’ root symbols. But our chief objection is the sheer clumsiness of
encodings and their poor integration with interpreted symbols. And they quickly
accumulate; for example, using the traditional encoding of polymorphism relying
on a distinguished binary function symbol t [30, Section 3.3] in conjunction with
the applicative encoding, the term Succ x becomes t(nat,app(t(fun(nat,nat),Succ),
t(nat, x))). The term’s simple structure is lost in translation.

Hybrid schemes have been proposed to strengthen the applicative encoding:
If a given symbol always occurs with at least k arguments, these can be passed
directly [106]. However, this relies on a closed-world assumption: that all terms that
will ever be compared arise in the initial problem. This noncompositionality conflicts
with the need for complete higher-order calculi to synthesize arbitrary terms during
proof search [21]. As a result, hybrid encodings are not an ideal basis for higher-order
automated reasoning.

Instead, we propose to generalize the superposition calculus to intensional and
extensional clausal λ-free higher-order logic. For the extensional version of the logic,

3.2. Logic

3

21

the property (∀x. h x ≈ k x)−■→ h ≈ k holds for all functions h, k of the same type. For
each logic, we present two calculi (Section 3.3). The intentional calculi perfectly
coincide with standard superposition on first-order clauses; the extensional calculi
depend on an extra axiom.

Superposition is parameterized by a term order, which is used to prune the search
space. If we assume that the term order is a simplification order enjoying totality
on ground terms (i.e., terms containing no term or type variables), the standard
calculus rules and completeness proof can be lifted verbatim. The only necessary
changes concern the basic definitions of terms and substitutions. However, there
is one monotonicity property that is hard to obtain unconditionally: compatibility
with arguments. It states that s′ Â s implies s′ t Â s t for all terms s, s′, t such that s t
and s′ t are well typed. Blanchette, Waldmann, and colleagues recently introduced
graceful generalizations of the lexicographic path order (LPO) [34] and the Knuth–
Bendix order (KBO) [16] with argument coefficients, but they both lack this property.
For example, given a KBO with g Â f, it may well be that g a ≺ f a if f has a large
enough multiplier on its argument. This lack of compatibility with arguments makes
the standard superposition rules incomplete—e.g., no inferences are applicable to
the unsatisfiable clause set {g ≈ f, g a 6≈ f a} [26, Example 3].

Although there exist fully monotonic orders for λ-free higher-order terms, such as
KBO without argument coefficients, we study nonmonotonic orders in anticipation
of λ-expressions and β-reduction in subsequent chapters where compatibility with
arguments is impossible in conjunction with totality on ground (i.e., closed) terms. If,
for instance, λxy. yÂλxy.x and bÂ a then (λxy. y)ba=β a≺ b=β (λxy.x)ba, violating
compatibility with arguments. If instead λxy. y ≺ λxy. x, then compatibility with
arguments is violated by (λxy. y)a b=β bÂ a=β (λxy. x)a b.

Our superposition calculi are designed to be refutationally complete for orders
lacking compatibility with arguments (Section 3.4). To achieve this, they include an
inference rule for argument congruence, which derives C ∨ s x ≈ t x from C ∨ s ≈ t.
The redundancy criterion is defined in such a way that the larger, derived clause
is not subsumed by the premise. In the completeness proof, the most difficult case
is the one that normally excludes superposition at or below variables using the
induction hypothesis. With nonmonotonicity, this approach no longer works, and
we propose two alternatives: Either perform some superposition inferences into
higher-order variables or “purify” the clauses to circumvent the issue. We refer to
the corresponding calculi as nonpurifying and purifying.

The calculi are implemented in the Zipperposition prover [47] (Section 3.5). We
evaluate them on first- and higher-order Isabelle/HOL [40] and TPTP benchmarks
[131, 132] and compare them with the applicative encoding (Section 3.6). We find
that there is a substantial cost associated with the applicative encoding, that the
nonmonotonicity is not particularly expensive, and that the nonpurifying calculi
outperform the purifying calculi.

3.2. Logic
Our logic is intended as an intermediate step on the way towards full higher-order
logic [45,67]. Refutational completeness of calculi for higher-order logic is usually

3

22 3. Superposition for Lambda-Free Higher-Order Logic

stated in terms of Henkin semantics [21,71], in which the universes used to interpret
functions need only contain the functions that can be expressed as terms. Since
the terms of λ-free higher-order logic exclude λ-abstractions, in “λ-free Henkin
semantics” the universes interpreting functions can be even smaller. In that sense,
our semantics resemble Henkin prestructures [97, Section 5.4]. In contrast to other
higher-order logics [135], there are no comprehension principles, and we disallow
nesting of Boolean formulas inside terms.

3.2.1. Syntax

We fix a set Σty of type constructors with arities and a set Vty of type variables. We
require at least one nullary type constructor and a binary type constructor → to be
present in Σty. We inductively define a λ-free higher-order type to be either a type
variable α ∈Vty or of the form κ(τ̄n) for an n-ary type constructor κ ∈Σty and types
τ̄n. We write κ for κ() and τ→ υ for →(τ,υ). A type declaration is an expression of
the form Πᾱm. τ (or simply τ if m = 0), where all type variables occurring in τ belong
to ᾱm.

We fix a set Σ of symbols with type declarations, written as f : Πᾱm. τ or f,
and a set V of typed variables, written as x : τ or x. We require Σ to contain
a symbol with type declaration Πα. α, to ensure that the (Herbrand) domain of
every type is nonempty. The sets (Σty,Σ) form the logic’s signature. We reserve
the letters s, t,u,v,w for terms and x, y, z for variables and write : τ to indicate
their type. The set of λ-free higher-order terms is defined inductively as follows.
Every variable x : τ ∈V is a term. If f :Πᾱm. τ is a symbol and ῡm are types, then
f〈ῡm〉 : τ{ᾱm 7→ ῡm} is a term. If t : τ→ υ and u : τ, then t u : υ is a term, called an
application. Nonapplication terms are called heads. Application is left-associative,
and correspondingly the function type constructor → is right-associative. Using the
spine notation [44], terms can be decomposed in a unique way as a head t applied to
zero or more arguments: t s1 . . . sn or t s̄n (abusing notation). A term is ground if it is
built without using type or term variables.

Substitution and unification are generalized in the obvious way, without the
difficulties caused by λ-abstractions. A substitution has the form {ᾱm, x̄n 7→ ῡm, s̄n},
where each xj has type τj and each sj has type τj{ᾱm 7→ ῡm}, mapping m type
variables to m types and n term variables to n terms. A unifier of two terms s and t
is a substitution ρ such that sρ = tρ. A most general unifier mgu(s, t) of two terms
s and t is a unifier σ of s and t such that for every other unifier θ, there exists a
substitution ρ such that αθ =ασρ and xθ = xσρ for all α ∈Vty and all x ∈V. As in
first-order logic, the most general unifier is unique up to variable renaming. For
example, mgu(x b z, f a y c) = {x 7→ f a, y 7→ b, z 7→ c}, and mgu(y (f a), f (y a)) = {y 7→ f},
assuming that the types of the unified subterms are equal.

An equation s ≈ t is formally an unordered pair of terms s and t of the same type.
A literal is an equation or a negated equation, written s 6≈ t. A clause L1 ∨·· ·∨Ln is
a finite multiset of literals L j. The empty clause is written as ⊥.

3.3. The Calculi

3

23

3.2.2. Semantics
A type interpretation Ity = (U,Jty) is defined as follows. The set U is a nonempty
collection of nonempty sets, called universes. The function Jty associates a func-
tion Jty(κ) : Un → U with each n-ary type constructor κ. A type valuation ξ is a
function that maps every type variable to a universe. The denotation of a type
for a type interpretation Ity and a type valuation ξ is defined by JαKξIty = ξ(α) and
Jκ(τ̄)KξIty = Jty(κ)(Jτ̄KξIty). Here and elsewhere, we abuse notation by applying an
operation on a tuple when it must be applied elementwise; thus, Jτ̄nKξIty stands for
Jτ1KξIty , . . . ,JτnKξIty .

A type valuation ξ can be extended to be a valuation by additionally assigning
an element ξ(x) ∈ JτKξIty to each variable x : τ. An interpretation function J for a
type interpretation Ity associates with each symbol f :Πᾱm. τ and universe tuple
Ūm ∈Um a value J(f,Ūm) ∈ JτKξIty , where ξ is the type valuation that maps each αi
to Ui. Loosely following Fitting [59, Section 2.5], an extension function E associates
to any pair of universes U1,U2 ∈ U a function EU1,U2 : Jty(→)(U1,U2) → (U1 → U2).
Together, a type interpretation, an interpretation function, and an extension function
form an interpretation I= (U,Jty,J,E).

An interpretation is extensional if EU1,U2 is injective for all U1,U2. Both inten-
sional and extensional logics are widely used for interactive theorem proving; for
example, Coq’s calculus of inductive constructions is intensional [25], whereas Isa-
belle/HOL is extensional [108]. The semantics is standard if EU1,U2 is bijective for
all U1,U2.

For an interpretation I = (U,Jty,J,E) and a valuation ξ, let the denotation of
a term be defined as follows: For variables x, let JxKξI = ξ(x). For symbols f, let
Jf〈τ̄〉KξI = J(f,Jτ̄KξIty). For applications s t of a term s : τ → υ to a term t : τ, let
U1 = JτKξIty , U2 = JυKξIty , and Js tKξI =EU1,U2 (JsKξI)(JtKξI). If t is a ground term, we also
write JtKI for the denotation of t because it does not depend on the valuation.

An equation s ≈ t is true in I for ξ if JsKξI = JtKξI; otherwise, it is false. A disequa-
tion s 6≈ t is true if s ≈ t is false. A clause is true if at least one of its literals is true.
The interpretation I is a model of a clause C, written I |= C, if C is true in I for all
valuations ξ. It is a model of a set of clauses if it is a model of all contained clauses.

For example, given the signature ({κ,→}, {a : κ}) and a variable h : κ→ κ, the
clause h a 6≈ a has an extensional model with U= {U1,U2}, U1 = {a,b} (a 6= b), U2 = { f },
Jty(κ)=U1, Jty(→)(U1,U1)=U2, J(a)= a, EU1,U1 (f)(a)=EU1,U1 (f)(b)= b.

3.3. The Calculi
We introduce four versions of the Boolean-free λ-free higher-order superposition cal-
culus, articulated along two axes: intentional versus extensional, and nonpurifying
versus purifying. To avoid repetitions, our presentation unifies them into a single
framework.

3.3.1. The Inference Rules
To support nonmonotonic term orders, we restrict superposition inferences to green
subterms, which are defined inductively as follows:

3

24 3. Superposition for Lambda-Free Higher-Order Logic

Definition 3.1 (Green subterms and contexts). A term t′ is a green subterm of t if
t = t′ or if t = s ū and t′ is a green subterm of ui for some i. We write s u to indicate
that the subterm u of s[u] is a green subterm. Correspondingly, we call the context
s around a green subterm a green context.

By this definition, f and f a are subterms of f a b, but not green subterms. The
green subterms of f a b are a, b, and f a b. Thus, [] a b and [] b are not green contexts,
but f [] b, f a [], and [] are.

The calculi are parameterized by a partial order Â on terms that

– is well founded on ground terms;
– is total on ground terms;
– has the subterm property on ground terms;
– is compatible with green contexts on ground terms: t′ Â t implies s t′ Â s t ;
– is stable under grounding substitutions: t Â s implies tθ Â sθ for all substitu-

tions θ grounding t and s.

The order need not be compatible with arguments: s′ Â s need not imply s′ t Â s t,
even on ground terms. The literal and clause orders are defined from Â as multiset
extensions in the standard way [9]. Despite their names, the term, literal, and clause
orders need not be transitive on nonground entities.

The λ-free higher-order generalizations of LPO [34] and KBO [16] as well as
EPO [18] fulfill these requirements, with the caveat that they are defined on untyped
terms. To use them on polymorphic terms, we can encode type arguments as term
arguments and ignore the remaining type information.

Literal selection is supported. The selection function maps each clause C to a
subclause of C consisting of negative literals. A literal L is (strictly) eligible w.r.t. a
substitution σ in C if it is selected in C or there are no selected literals in C and Lσ
is (strictly) maximal in Cσ. If σ is the identity substitution, we leave it implicit.

The following four rules are common to all four calculi. We regard positive and
negative superposition as two cases of the same rule

D︷ ︸︸ ︷
D′ ∨ t ≈ t′

C︷ ︸︸ ︷
C′ ∨ s u ≈̇ s′

SUP
(D′ ∨ C′ ∨ s t′ ≈̇ s′)σ

where ≈̇ denotes ≈ or 6≈ and the following conditions are fulfilled:

1. σ=mgu(t,u); 2. tσ 6¹ t′σ; 3. s u σ 6¹ s′σ ;
4. t ≈ t′ is strictly eligible w.r.t. σ in D; 5. Cσ 6¹ Dσ;
6. s u ≈̇ s′ is eligible w.r.t. σ in C and, if positive, even strictly eligible;
7. the variable condition must hold, which is specified individually for each

calculus below.

In each calculus, we will define the variable condition to coincide with the condition
“u 6∈V” if the premises are first-order.

The equality resolution and equality factoring rules are almost identical to their

3.3. The Calculi

3

25

standard counterparts:
C︷ ︸︸ ︷

C′ ∨ s 6≈ s′
ERES

C′σ

where
1. σ=mgu(s, s′); 2. s 6≈ s′ is eligible w.r.t. σ in C.

C︷ ︸︸ ︷
C′ ∨ s′ ≈ t′ ∨ s ≈ t

EFACT
(C′ ∨ t 6≈ t′ ∨ s ≈ t′)σ

where
1. σ=mgu(s, s′); 2. sσ 6¹ tσ; 3. s ≈ t is eligible w.r.t. σ in C.

The following argument congruence rule compensates for the limitation that the
superposition rule applies only to green subterms:

C︷ ︸︸ ︷
C′ ∨ s ≈ s′

ARGCONG
C′σ∨ sσ x̄ ≈ s′σ x̄

where
1. s ≈ s′ is strictly eligible w.r.t. σ in C;
2. x̄ is a nonempty tuple of distinct fresh variables;
3. σ is the most general type substitution that ensures well-typedness of the

conclusion.
In particular, if s takes m arguments, there are m ARGCONG conclusions for this
literal, for which σ is the identity and x̄ is a tuple of 1, . . . , m−1, or m variables. If
the result type of s is a type variable, we have in addition infinitely many ARGCONG

conclusions, for which σ instantiates the type variable in the result type of s with
ᾱk →β for some k > 0 and fresh type variables ᾱk and β and for which x̄ is a tuple
of m+k variables. In practice, the enumeration of the infinitely many conclusions
must be interleaved with other inferences via some form of dovetailing.

For the intensional nonpurifying calculus, the variable condition of the SUP

rule is as follows:

Either u ∉V or there exists a grounding substitution θ with tσθ Â t′σθ
and Cσθ ≺ C{u 7→ t′}σθ.

This condition generalizes the standard condition that u ∉V. The two coincide if C is
first-order or if the term order is monotonic. In some cases involving nonmonotonicity,
the variable condition effectively mandates SUP inferences at variable positions of
the right premise, but never below. We will call theses inferences at variables.

For the extensional nonpurifying calculus, the variable condition uses the
following definition.

3

26 3. Superposition for Lambda-Free Higher-Order Logic

Definition 3.2. A term of the form x s̄n, for n ≥ 0, jells with a literal t ≈ t′ ∈ D if
t = t̃ ȳn and t′ = t̃ ′ ȳn for some terms t̃, t̃ ′ and distinct variables ȳn that do not occur
elsewhere in D.

Using the naming convention from Definition 3.2 for t̃ ′, the variable condition can
be stated as follows:

If u has a variable head x and jells with the literal t ≈ t′ ∈ D, there must
exist a grounding substitution θ with tσθ Â t′σθ and Cσθ ≺ C′′σθ, where
C′′ = C{x 7→ t̃ ′}.

If C is first-order, this amounts to u ∉V. Since the order is compatible with green
contexts, the substitution θ can exist only if x occurs applied in C.

Moreover, the extensional nonpurifying calculus has one additional rule, the
positive extensionality rule, and one axiom, the extensionality axiom. The rule is

C′ ∨ s x̄ ≈ s′ x̄
POSEXT

C′ ∨ s ≈ s′

where
1. x̄ is a tuple of distinct variables that do not occur in C′, s, or s′
2. s x̄ ≈ s′ x̄ is strictly eligible in the premise.
The extensionality axiom uses a Skolem symbol diff :Πα,β. (α→β)2 →α charac-

terized by the axiom

x (diff〈α,β〉x y) 6≈ y (diff〈α,β〉x y)∨ x ≈ y (EXT)

Unlike the nonpurifying calculi, the purifying calculi never perform superposi-
tion at variables. Instead, they rely on purification [41, 51, 116, 124] (also called
abstraction) to circumvent nonmonotonicity. The idea is to rename apart problematic
occurrences of a variable x in a clause to x1, . . . , xn and to add purification literals
x1 6≈ x, . . . , xn 6≈ x to connect the new variables to x. We must then ensure that all
clauses are purified, by processing the initial clause set and the conclusion of every
inference or simplification.

In the intensional purifying calculus, the purification pure(C) of clause C is
defined as the result of the following procedure. Choose a variable x that occurs
applied in C and also unapplied in a literal of C that is not of the form x 6≈ y. If
no such variable exists, terminate. Otherwise, replace all unapplied occurrences
of x in C by a fresh variable x′ and add the purification literal x′ 6≈ x. Then repeat
these steps with another variable. The procedure terminates because the number of
variables that can be chosen reduces with each step. For example,

pure(x a≈ x b∨ f x ≈ g x) = x a≈ x b∨ f x′ ≈ g x′ ∨ x 6≈ x′

The variable condition is standard:

The term u is not a variable.

3.3. The Calculi

3

27

The conclusion C of ARGCONG is changed to pure(C); the other rules preserve purity
of their premises.

In the extensional purifying calculus, pure(C) is defined as follows. Choose a
variable x occurring in green subterms x ū and x v̄ in literals of C that are not of
the form x 6≈ y, where ū and v̄ are distinct (possibly empty) term tuples. If no such
variable exists, terminate. Otherwise, replace all green subterms x v̄ with x′ v̄, where
x′ is fresh, and add the purification literal x′ 6≈ x. Then repeat the procedure until no
variable fulfilling the requirements is left. The procedure terminates because the
number of variables fulfilling the requirements does not increase and with each step,
the number of distinct tuples ū and v̄ fulfilling the requirements decreases for the
chosen variable x. For example,

pure(x a≈ x b∨ f x ≈ g x) = x a≈ x′ b∨ f x′′ ≈ g x′′ ∨ x′ 6≈ x ∨ x′′ 6≈ x

Like the extensional nonpurifying calculus, this calculus also contains the POSEXT

rule and axiom (EXT) introduced above. The variable condition is as follows:

Either u has a nonvariable head or u does not jell with the literal t ≈ t′ ∈
D.

The conclusion E of each rule is changed to pure(E), except for POSEXT, which
preserves purity.

Finally, we impose further restrictions on literal selection. In the nonpurifying
calculi, a literal must not be selected if x ū is a maximal term of the clause and the
literal contains a green subterm x v̄ with v̄ 6= ū. In the purifying calculi, a literal
must not be selected if it contains a variable of functional type. These restrictions
are needed in our completeness proof to show that superposition inferences below
variables are redundant. For the purifying calculi, the restriction is also needed to
avoid inferences whose conclusion is identical to their premise, such as

z a≈ b∨ z 6≈ x ∨ f 6≈ x
ERES

z a≈ b∨ z′ 6≈ f ∨ z′ 6≈ z

where f 6≈ x is selected. For the nonpurifying calculi, it might be possible to avoid the
restriction at the cost of a more elaborate argument.

Example 3.3. We illustrate the different variable condition with a few examples.
Consider a left-to-right LPO [34] instance with precedence hÂ g Â f Â cÂ bÂ a. Given
the clauses D and C of a superposition inference in which the grayed subterms are
unified, we list below whether each calculus’s variable condition is fulfilled (X) or
not.

D C
intensional
nonpurif.

extensional
nonpurif.

intensional
purifying

extensional
purifying

h ≈ g f y ≈ c

f (h a) ≈ h g y ≈ y b X X

h x ≈ f x g (y b) y≈ a X X

x ≈ c∨ h x ≈ f x g (y b) y≈ a X X X X

3

28 3. Superposition for Lambda-Free Higher-Order Logic

For the purifying calculi, the clauses would actually undergo purification first, but
this has no impact on the variable conditions. In the last row, the term yb does not
jell with h x ≈ f x ∈ D because x occurs also in the first literal of D.

Remark 3.4. In descriptions of first-order logic with equality, the property y≈ y′ −■→
f(x̄, y, z̄) ≈ f(x̄, y′, z̄) is often referred to as “function congruence.” It seems natural
to use the same label for the higher-order version t ≈ t′ −■→ s t ≈ s t′ and to call the
companion property s ≈ s′ −■→ s t ≈ s′ t “argument congruence,” whence the name
ARGCONG for our inference rule. This nomenclature is far from universal; for
example, the Isabelle/HOL theorem fun_cong captures argument congruence and
arg_cong captures function congruence.

3.3.2. Rationale for the Inference Rules
A key restriction of all four calculi is that they superpose only at green subterms,
mirroring the term order’s compatibility with green contexts. The ARGCONG rule
then makes it possible to simulate superposition at nongreen subterms:

Example 3.5. The clause g ≈ f cannot superpose into g a b 6≈ f a b because g occurs in
a nongreen context. Instead, we refute these two clauses as follows:

g ≈ f
ARGCONG

g x1 x2 ≈ f x1 x2 g a b 6≈ f a b
SUP

f a b 6≈ f a b
ERES ⊥

The ARGCONG inference adds two arguments to g, yielding the term g x1 x2, which
is unifiable with the green subterm g a b. Thus we can apply SUP to the resulting
clause.

However, in conjunction with the SUP rules, ARGCONG can exhibit an unpleasant
behavior, which we call argument congruence explosion:

g ≈ f
ARGCONG

g x ≈ f x h a 6≈ b
SUP

f a 6≈ b

g ≈ f
ARGCONG

g x y z ≈ f x y z h a 6≈ b
SUP

f x y a 6≈ b

In both derivation trees, the higher-order variable h is effectively the target of a SUP

inference. Such derivations essentially amount to superposition at variable positions
(as shown on the left) or even superposition below variable positions (as shown on
the right), both of which can be extremely prolific. In standard superposition, the
explosion is averted by the condition on the SUP rule that u ∉V. In the extensional
purifying calculus, the variable condition tests that either u has a nonvariable head
or u does not jell with the literal t ≈ t′ ∈ D, which prevents derivations such as the
above. In the corresponding nonpurifying calculus, some such derivations may need
to be performed when the term order exhibits nonmonotonicity for the terms of
interest.

3.3. The Calculi

3

29

In the intensional calculi, the explosion can arise because the variable conditions
are weaker. The following example shows that the intensional nonpurifying calculus
would be incomplete if we used the variable condition of the extensional nonpurifying
calculus.

Example 3.6. Consider a left-to-right LPO [34] instance with precedence hÂ g Â f Â
bÂ a, and consider the following unsatisfiable clause set:

h x ≈ f x g (x b) x ≈ a g (f b) h 6≈ a

The only possible inference is a SUP inference of the first into the second clause,
allowing the intensional nonpurifying calculus to refute the clause set as follows:

h x ≈ f x g (x b) x ≈ a
SUP

g (f b) h≈ a g (f b) h 6≈ a
SUP

a 6≈ a
ERES ⊥

The variable condition of the extensional nonpurifying calculus, however, is not met
for the first SUP inference because x b jells with h x ≈ f x.

It is unclear whether the variable condition of the intensional purifying calculus
could be strengthened, but our completeness proof suggests that it cannot.

The variable conditions in the extensional calculi are designed to prevent the
argument congruence explosion shown above, but since they consider only the shape
of the clauses, they might also block SUP inferences whose side premises do not
originate from ARGCONG. This is why we need the POSEXT rule.

Example 3.7. In the following unsatisfiable clause set, the only possible inference
from these clauses in the extensional nonpurifying calculus is POSEXT, showing its
necessity:

g x ≈ f x g 6≈ f x (diff〈α,β〉x y) 6≈ y (diff〈α,β〉x y)∨ x ≈ y

The same argument applies for the purifying calculus with the difference that the
third clause must be purified.

Due to nonmonotonicity, for refutational completeness we need either to purify
the clauses or to allow some superposition at variable positions, as mandated by
the respective variable conditions. Without either of these measures, at least the
extensional calculi and presumably also the intensional calculi would be incomplete,
as the next example demonstrates.

Example 3.8. Consider the following clause set:

k (g x)≈ k (x b) k (f (h a) b) 6≈ k (g h) f (h a)≈ h f (h a) x ≈ h x
x (diff〈α,β〉x y) 6≈ y (diff〈α,β〉x y)∨ x ≈ y

3

30 3. Superposition for Lambda-Free Higher-Order Logic

Using a left-to-right LPO [34] instance with precedence k Â h Â g Â f Â b Â a, this
clause set is saturated w.r.t. the extensional purifying calculus when omitting purifi-
cation. It also quickly saturates using the extensional nonpurifying calculus when
omitting SUP inferences at variables. By contrast, the intensional calculi derive ⊥,
even without purification and without SUP inferences at variables, because of the
less restrictive variable conditions.

This raises the question as to whether the intensional calculi actually need to
purify or to perform SUP inferences at variables. We conjecture that omitting
purification and SUP inferences at variables in the intensional calculi is complete
when redundant clauses are kept but that it is incomplete in general.

We initially considered inference rules instead of axiom (EXT). However, we did
not find a set of inference rules that is complete and leads to fewer inferences than
(EXT). We considered the POSEXT rule described above in combination with the
following rule:

C ∨ s 6≈ t
NEGEXT

C ∨ s (sk〈ᾱ〉 x̄n) 6≈ t (sk〈ᾱ〉 x̄n)

where sk is a fresh Skolem symbol and ᾱ and x̄n are the type and term variables
occurring free in the literal s 6≈ t. However, these two rules do not suffice for a
refutationally complete calculus, as the following example demonstrates:

Example 3.9. Consider the clause set

f x ≈ a g x ≈ a h f ≈ b h g 6≈ b

Assuming that all four equations are oriented from left to right, this set is saturated
w.r.t. the extensional calculi if (EXT) is replaced by NEGEXT; yet it is unsatisfiable
in an extensional logic.

Example 3.10. A significant advantage of our calculi over the use of standard super-
position on applicatively encoded problems is the flexibility they offer in orienting
equations. The following equations provide two definitions of addition on Peano
numbers:

addLZero y≈ y addR x Zero≈ x
addL (Succ x) y≈ addL x (Succ y) addR x (Succ y)≈ addR (Succ x) y

Let addL (Succ100 Zero) n 6≈ addR n (Succ100 Zero) be the negated conjecture. With
LPO, we can use a left-to-right comparison for addL’s arguments and a right-to-left
comparison for addR’s arguments to orient all four equations from left to right. Then
the negated conjecture can be simplified to Succ100 n 6≈ Succ100 n by simplification
(demodulation), and ⊥ can be derived with a single inference. If we use the ap-
plicative encoding instead, there is no instance of LPO or KBO that can orient both
recursive equations from left to right. For at least one of the two sides of the negated
conjecture, simplification is replaced by 100 SUP inferences, which is much less
efficient, especially in the presence of additional axioms.

3.3. The Calculi

3

31

3.3.3. Soundness
To show the inferences’ soundness, we need the substitution lemma for our logic:

Lemma 3.11 (Substitution lemma). Let I = (U,Jty,J,E) be a λ-free higher-order
interpretation. Then

JτρKξIty = JτKξ
′
Ity

and JtρKξI = JtKξ
′
I

for all terms t, all types τ, and all substitutions ρ, where ξ′(α)= JαρKξIty for all type
variables α and ξ′(x)= JxρKξI for all term variables x.

Proof. First, we prove that JτρKξIty = JτKξ
′
Ity

by induction on the structure of τ. If τ=α
is a type variable,

JαρKξIty = ξ′(α)= JαKξ
′
Ity

If τ= κ(ῡ) for some type constructor κ and types ῡ,

Jκ(ῡ)ρKξIty = Jty(κ)(JῡρKξIty) IH= Jty(κ)(JῡKξ
′
Ity

)= Jκ(ῡ)Kξ
′
Ity

Next, we prove JtρKξI = JtKξ
′
I by structural induction on t. If t = y, then by the

definition of the denotation of a variable

JyρKξI = ξ′(y)= JyKξ
′
I

If t = f〈τ̄〉, then by the definition of the term denotation

Jf〈τ̄〉ρKξI = J(f,Jτ̄ρKξIty)= J(f,Jτ̄Kξ
′
Ity

)= Jf〈τ̄〉Kξ′I
If t = u v, then by the definition of the term denotation

J(u v)ρKξI =EU1,U2 (JuρKξI)(JvρKξI) IH= EU1,U2 (JuKξ
′
I)(JvKξ

′
I)= Ju vKξ

′
I

where u is of type τ→ υ, U1 = JτρKξIty = JτKξ
′
Ity

, and U2 = JυρKξIty = JυKξ
′
Ity

.

Lemma 3.12. If I |= C for some interpretation I and some clause C, then I |= Cρ for
all substitutions ρ.

Proof. We need to show that Cρ is true in I for all valuations ξ. Given a valuation ξ,
define ξ′ as in Lemma 3.11. Then, by Lemma 3.11, a literal in Cρ is true in I for ξ if
and only if the corresponding literal in C is true in I for ξ′. There must be at least
one such literal because I |= C and hence C is in particular true in I for ξ′. Therefore,
Cρ is true in I for ξ.

Theorem 3.13 (Soundness of the intensional calculi). The inference rules SUP,
ERES, EFACT, and ARGCONG are sound (even without the variable condition and
the side conditions on order and eligibility).

Proof. We fix an inference and an interpretation I that is a model of the premises.
We need to show that it is also a model of the conclusion.

From the definition of the denotation of a term, it is obvious that congruence
holds at all subterms in our logic. By Lemma 3.12, I is a model of the σ-instances
of the premises as well, where σ is the substitution used for the inference. Fix a
valuation ξ. By making case distinctions on the truth in I under ξ of the literals of
the σ-instances of the premises, using the conditions that σ is a unifier, and applying
congruence, it follows that the conclusion is also true in I under ξ.

3

32 3. Superposition for Lambda-Free Higher-Order Logic

Theorem 3.14 (Soundness of the extensional calculi). The inference rules SUP,
ERES, EFACT, ARGCONG, and POSEXT are sound w.r.t. extensional interpretations
(even without the variable condition and the side conditions on order and eligibility).

Proof. We only need to prove POSEXT sound. For the other rules, we can proceed
as in Theorem 3.13. By induction on the length of x̄, it suffices to prove POSEXT

sound for one variable x instead of a tuple x̄. We fix an inference and an extensional
interpretation I that is a model of the premise C′ ∨ s x ≈ s′ x. We need to show that it
is also a model of the conclusion C′ ∨ s ≈ s′.

Let ξ be a valuation. If C′ is true in I under ξ, the conclusion is clearly true as
well. Otherwise C′ is false in I under ξ, and also under ξ[x 7→ a] for all a because x
does not occur in C′. Since the premise is true in I, s x = s′ x must be true in I under
ξ[x 7→ a] for all a. Hence, for appropriate universes U1,U2, we have

EU1,U2 (JsKξ[x 7→a]
I)(a)= Js xKξ[x 7→a]

I = Js′ xKξ[x 7→a]
I =EU1,U2 (Js′Kξ[x 7→a]

I)(a)

Since s and s′ do not contain x, JsKξ[x 7→a]
I and Js′Kξ[x 7→a]

I do not depend on a. Thus,
EU1,U2 (JsKξI)=EU1,U2 (Js′KξI). Since I is extensional, EU1,U2 is injective and it follows
that JsKξI = Js′KξI. It follows that s ≈ s′ is true in I under ξ, and so is the entire
conclusion of the inference.

A problem expressed in higher-order logic must be transformed into clausal
normal form before the calculi can be applied. This process works as in the first-
order case, except for skolemization. The issue is that skolemization, when performed
naively, is unsound for higher-order logic with a Henkin semantics [107, Section 6],
because it introduces new functions that can be used to instantiate variables.

The core of this chapter is not affected by this because the problems are given in
clausal form. For the implementation, we claim soundness only w.r.t. models that
satisfy the axiom of choice, which is the semantics mandated by the TPTP THF
format [131]. By contrast, refutational completeness holds w.r.t. arbitrary models
as defined above. Alternatively, skolemization can be made sound by introducing
mandatory arguments as described by Miller [107, Section 6].

This issue also affects axiom (EXT) because it contains the Skolem symbol diff. As
a consequence, (EXT) does not hold in all extensional interpretations. The extensional
calculi are thus only sound w.r.t. interpretations in which (EXT) holds. However, we
can prove that (EXT) is compatible with our logic:

Theorem 3.15. Axiom (EXT) is satisfiable.

Proof. For a given signature, let (U,Jty,J,E) be an Herbrand interpretation. That
is, we define U to contain the set Uτ of all terms of type τ for each ground type τ,
we define Jty by Jty(κ)(τ̄) = κ(τ̄), we define J by J(f,Uτ̄) = f〈τ̄〉, and we define E by
EUτ,Uυ (f)(a)= f a. Then EUτ,Uυ is clearly injective and hence I is extensional. To show
that I |= (EXT), we need to show that (EXT) is true under all valuations. Let ξ be a
valuation. If x ≈ y is true under ξ, (EXT) is also true. Otherwise x ≈ y is false under
ξ, and hence ξ(x) 6= ξ(y). Then we have

Jx (diff〈α,β〉x y)KξI = (ξ(x)) (diff〈α,β〉 (ξ(x)) (ξ(y)))

6= (ξ(y)) (diff〈α,β〉 (ξ(x)) (ξ(y)))= Jy (diff〈α,β〉x y)KξI

3.3. The Calculi

3

33

Therefore, x (diff〈α,β〉x y) 6≈ y (diff〈α,β〉x y) is true in I under ξ and so is (EXT).

3.3.4. The Redundancy Criterion
For our calculi, a redundant clause cannot simply be defined as a clause whose
ground instances are entailed by smaller (≺) ground instances of existing clauses,
because this would make all ARGCONG inferences redundant. Our solution is to base
the redundancy criterion on a weaker ground logic—ground monomorphic first-order
logic—in which argument congruence does not hold. This logic also plays a central
role in our refutational completeness proof.

We employ an encoding F to translate ground λ-free higher-order terms into
ground first-order terms. It indexes each symbol occurrence with its type arguments
and its term argument count. Thus, F (f)= f0, F (f a)= f1(a0), and F (g〈κ〉)= gκ0 . This is
enough to disable argument congruence; for example, {f ≈ h, f a 6≈ h a} is unsatisfiable,
whereas its encoding {f0 ≈ h0, f1(a0) 6≈ h1(a0)} is satisfiable. For clauses built from
fully applied ground terms, the two logics are isomorphic, as we would expect from a
graceful generalization.

Given a λ-free higher-order signature (Σty,Σ), we define a first-order signature
(Σty,ΣGF) as follows. The type constructors Σty are the same in both signatures, but
→ is uninterpreted in first-order logic. For each symbol f :Πᾱm. τ1 →···→ τn → τ in
Σ, where τ is not functional, we introduce symbols f ῡm

l ∈ΣGF with argument types
τ̄lσ and return type (τl+1 → ···→ τn → τ)σ, where σ= {ᾱm 7→ ῡm}, for each tuple of
ground types ῡm and each l ∈ {0, . . . ,n}.

For example, let Σ= {a : κ, g : κ→ κ→ κ}. The corresponding first-order signature
is ΣGF = {a0 : κ, g0 : κ→ κ→ κ, g1 : κ⇒ κ→ κ, g2 : κ2 ⇒ κ} where f : τ̄⇒ υ denotes a
first-order function symbol f with argument types τ̄ and return type υ, and → is an
uninterpreted binary type constructor. The term F (g a a)= g2(a0,a0) has type κ, and
F (g a)= g1(a0) has type κ→ κ.

Thus, we consider three levels of logics: the λ-free higher-order level H over a
given signature (Σty,Σ), the ground λ-free higher-order level GH, corresponding to
H’s ground fragment, and the ground monomorphic first-order level GF over the
signature (Σty,ΣGF) defined above. We use TH, TGH, and TGF to denote the respective
sets of terms, TyH, TyGH, and TyGF to denote the respective sets of types, and CH,
CGH, and CGF to denote the respective sets of clauses. In the purifying calculi, we
exceptionally let CH denote the set of purified clauses. Each of the three levels has
an entailment relation |=. A clause set N1 entails a clause set N2, denoted N1 |= N2,
if any model of N1 is also a model of N2. On H and GH, we use λ-free higher-order
models for the intensional calculi and extensional λ-free higher-order models for the
extensional calculi; on GF, we use first-order models. This machinery may seem
excessive, but it is essential to define redundancy of clauses and inferences properly,
and it will play an important role in the refutational completeness proof (Section 3.4).

The three levels are connected by two functions, G and F :

Definition 3.16 (Grounding function G on terms and clauses). The grounding
function G maps terms t ∈ TH to the set of their ground instances—i.e., the set of all
tθ ∈ TGH where θ is a substitution. It also maps clauses C ∈ CH to the set of their
ground instances—i.e., the set of all Cθ ∈CGH where θ is a substitution.

3

34 3. Superposition for Lambda-Free Higher-Order Logic

Definition 3.17 (Encoding F on terms and clauses). The encoding F : TGH → TGF
is recursively defined as F (f〈ῡm〉 ūl) = f ῡm

l (F (ūl)). The encoding F is extended to
map from CGH to CGF by mapping each literal and each side of a literal individually.

The encoding F is bijective with inverse F −1 . Using F −1 , the clause order Â
on TGH can be transferred to TGF by defining t Â s as equivalent to F −1(t)ÂF −1(s).
The property that Â on clauses is the multiset extension of Â on literals, which in
turn is the multiset extension of Â on terms, is maintained because F −1 maps the
multiset representations elementwise.

Schematically, the three levels are connected as follows:

H
higher-order

GH
ground higher-order

GF
ground first-order

FG

Crucially, green subterms in TGH correspond to subterms in TGF (Lemma 3.18),
whereas nongreen subterms in TGH are not subterms at all in TGF. For example, a is
a green subterm of f a, and correspondingly F (a)= a0 is a subterm of F (f a)= f1(a0).
On the other hand, f is not a green subterm of f a, and correspondingly F (f)= f0 is
not a subterm of F (f a)= f1(a0).

To state the correspondence between green subterms in TGH and subterms in
TGF explicitly, we define positions of green subterms as follows. A term s ∈ TH is a
green subterm at position ε of s. If a term s ∈ TH is a green subterm at position p of
ui for some 1≤ i ≤ n, then s is a green subterm at position i.p of f〈τ̄〉 ūn and of x ūn.
For TGF, positions are defined as usual in first-order logic.

Lemma 3.18. Let s, t ∈ TGH. We have F (t s p)=F (t)[F (s)]p. In other words, s is a
green subterm of t at position p if and only if F (s) is a subterm of F (t) at position p.

Proof. By induction on p. If p = ε, then s = t[s]p. Hence F (t[s]p) = F (s) =
F (t) F (s) p. If p = i.p′, then t[s]p = f〈τ̄〉 ūn with ui = ui[s]p′ . Applying F ,
we obtain by the induction hypothesis that F (ui) = F (ui) F (s) p′ . Therefore,
F (t[s]p) = f τ̄n(F (u1), . . . ,F (ui−1),F (ui) F (s) p′ ,F (ui+1), . . . ,F (un)). It follows that
F (t[s]p)=F (t) F (s) p.

Corollary 3.19. Given s, t ∈ TGF, we have F −1(t[s]p)=F −1(t) F −1(s) p.

Lemma 3.20. Well-foundedness, totality, compatibility with contexts, and the sub-
term property hold for Â on TGF.

Proof. COMPATIBILITY WITH CONTEXTS: We must show that s Â s′ implies t[s]p Â
t[s′]p for terms t, s, s′ ∈ TGF. Assuming s Â s′, we have F −1(s)ÂF −1(s′). By compat-
ibility with green contexts on TGH, we have F −1(t) F −1(s) p Â F −1(t) F −1(s′) p.
By Corollary 3.19, we have t[s]p Â t[s′]p.

WELL-FOUNDEDNESS: Assume that there exists an infinite descending chain t1 Â
t2 Â ·· · in TGF. By applying F −1 , we then obtain the chain F −1(t1)ÂF −1(t2)Â ·· · in
TGH, contradicting well-foundedness on TGH.

TOTALITY: Let s, t ∈ TGF. Then F −1(t) and F −1(s) must be comparable by totality in
TGH. Hence, t and s are comparable.

3.3. The Calculi

3

35

SUBTERM PROPERTY: By Corollary 3.19 and the subterm property on TGH, we have
F −1(t[s]p)=F −1(t) F −1(s) p ÂF −1(s). Hence, t[s]p Â s.

In standard superposition, redundancy relies on the entailment relation |= on
ground clauses. We will define redundancy on GH and H in the same way, but
using GF’s entailment relation. This notion of redundancy gracefully generalizes the
first-order notion, without making all ARGCONG inferences redundant.

The standard redundancy criterion for standard superposition cannot justify
subsumption deletion. Following Waldmann et al. [140], we incorporate subsumption
into the redundancy criterion. A clause C subsumes D if there exists a substitution
σ such that Cσ⊆ D. A clause C strictly subsumes D if C subsumes D but D does
not subsume C. Let = stand for “is strictly subsumed by”. Using the applicative
encoding, it is easy to show that = is well founded because strict subsumption is
well founded in first-order logic.

We define the sets of redundant clauses w.r.t. a given clause set as follows:
– Given C ∈CGF and N ⊆CGF, let C ∈GFRedC(N) if {D ∈ N | D ≺ C} |= C.
– Given C ∈CGH and N ⊆CGH, let C ∈GHRedC(N) if F (C) ∈GFRedC(F (N)).
– Given C ∈ CH and N ⊆ CH, let C ∈ HRedC(N) if for every D ∈ G (C), we have

D ∈GHRedC(G (N)) or there exists C′ ∈ N such that C=C′ and D ∈G (C′).
For example, x (h a) ≈ x (g a) is redundant w.r.t. {h a ≈ g a}, but not redundant w.r.t.
{h≈ g} because F encodes the unapplied occurrences of h and g as h0 and g0 and the
applied occurrences as h1 and g1.

Along with the three levels of logics, we consider three inference systems: HInf ,
GHInf and GFInf . HInf is one of the four variants of the inference system described
in Section 3.3.1. For uniformity, we regard axiom (EXT) as a premise-free inference
rule EXT whose conclusion is (EXT). In the purifying calculi, the conclusion of EXT

must be purified. GHInf consists of all SUP, ERES, and EFACT inferences from
HInf whose premises and conclusion are ground, a premise-free rule GEXT whose
infinitely many conclusions are the ground instances of (EXT), and the following
ground variant of ARGCONG:

C′ ∨ s ≈ s′
GARGCONG

C′ ∨ s ūn ≈ s′ ūn

where s ≈ s′ is strictly eligible in the premise and ūn is a nonempty tuple of ground
terms. GFInf contains all SUP, ERES, and EFACT inferences from GHInf translated
by F . It coincides exactly with standard first-order superposition. Given a SUP,
ERES, or EFACT inference ι ∈GHInf , let F (ι) denote the corresponding inference in
GFInf .

Each of the three inference systems is parameterized by a selection function. For
HInf , we globally fix a selection function HSel. For GHInf and GFInf , we need to
consider different selection functions GHSel and GFSel. We write GHInf GHSel for
GHInf and GFInf GFSel for GFInf to make the dependency on the respective selection
functions explicit. Let G (HSel) denote the set of all selection functions on CGH such
that for each clause in C ∈ CGH, there exists a clause D ∈ CH with C ∈ G (D) and
corresponding selected literals. For each selection function GHSel on CGH, via the

3

36 3. Superposition for Lambda-Free Higher-Order Logic

bijection F , we obtain a corresponding selection function on CGF, which we denote
by F (GHSel).

Notation 3.21. Given an inference ι, we write prems(ι) for the tuple of premises,
mprem(ι) for the main (i.e., rightmost) premise, preconcl(ι) for the conclusion before
purification, and concl(ι) for the conclusion after purification. For the nonpurifying
calculi, preconcl(ι)= concl(ι) simply denotes the conclusion.

Definition 3.22 (Encoding F on inferences). Given a SUP, ERES, or EFACT

inference ι ∈GHInf , let F (ι) ∈GFInf denote the inference defined by prems(F (ι))=
F (prems(ι)) and concl(F (ι))=F (concl(ι)).

Definition 3.23 (Grounding function G on inferences). Given a selection function
GHSel ∈G (HSel), and a non-POSEXT inference ι ∈HInf , we define the set GGHSel(ι)
of ground instances of ι to be all inferences ι′ ∈ GHInf GHSel such that prems(ι′) =
prems(ι)θ and concl(ι′)= preconcl(ι)θ for some grounding substitution θ. For POSEXT

inferences ι, which cannot be grounded, we let GGHSel(ι)= undef .

This will map SUP to SUP, EFACT to EFACT, ERES to ERES, EXT to GEXT,
and ARGCONG to GARGCONG inferences, but it is also possible that GGHSel(ι) is the
empty set for some inferences ι.

We define the sets of redundant inferences w.r.t. a given clause set as follows:
– Given ι ∈GFInf GFSel and N ⊆CGF, let ι ∈GFRedGFSel

I (N) if we have prems(ι)∩
GFRedC(N) 6=∅ or {D ∈ N | D ≺mprem(ι)} |= concl(ι).

– Given ι ∈GHInf GHSel and N ⊆CGH, let ι ∈GHRedGHSel
I (N) if

– ι is not a GARGCONG or GEXT inference and F (ι) ∈GFRedF (GHSel)
I (F (N));

or
– the calculus is nonpurifying and ι is a GARGCONG or GEXT inference

and concl(ι) ∈ N ∪GHRedC(N); or
– the calculus is purifying and ι is a GARGCONG or GEXT inference and

F (N) |=F (concl(ι)).
– Given ι ∈HInf and N ⊆CH, let ι ∈HRedI(N) if

– ι is not a POSEXT inference and GGHSel(ι)⊆GHRedI(G (N)) for all GHSel ∈
G (HSel); or

– ι is a POSEXT inference and G (concl(ι))⊆G (N)∪GHRedC(G (N)).
Occasionally, we omit the selection function in the notation when it is irrelevant.

A clause set N is saturated w.r.t. an inference system and a redundancy criterion
(RedI,RedC) if every inference from clauses in N is in RedI(N). The most straight-
forward way to saturate a given clause set is to repeatedly add all conclusions of
inferences from the given clause set. By the above definition, every inference is
redundant w.r.t. its own conclusion, and hence the limit of this process is a saturated
clause set.

3.3.5. Simplification Rules
The redundancy criterion (HRedI,HRedC) is strong enough to support most of the
simplification rules implemented in Schulz’s first-order prover E [117, Sections
2.3.1 and 2.3.2], some only with minor adaptions. Deletion of duplicated literals,

3.4. Refutational Completeness

3

37

deletion of resolved literals, syntactic tautology deletion, negative simplify-reflect,
and clause subsumption adhere to our redundancy criterion.

Positive simplify-reflect and equality subsumption are supported by our criterion
if they are applied in green contexts. Semantic tautology deletion can be applied as
well, but we must use the entailment relation of the GF level—i.e., only rewriting
in green contexts can be used to establish the entailment. Similarly, rewriting
of positive and negative literals (demodulation) can only be applied in green con-
texts. Moreover, for positive literals, the rewriting clause must be smaller than the
rewritten clause—a condition that is also necessary with the standard first-order
redundancy criterion but not always fulfilled by Schulz’s rule. As for destructive
equality resolution, even in first-order logic the rule cannot be justified with the
standard redundancy criterion, and it is unclear whether it preserves refutational
completeness.

As a representative example, we show how demodulation into green contexts can
be justified. The other simplification rules can be justified similarly.

Lemma 3.24. Demodulation into green contexts is a simplification:

t ≈ t′
C︷ ︸︸ ︷

s tσ ≈̇ s′∨C′
DEMOD

t ≈ t′ s t′σ ≈̇ s′∨C′

where tσ Â t′σ and C Â (t ≈ t′)σ. It adheres to our redundancy criterion—i.e., the
deleted premise C is redundant w.r.t. the conclusions.

Proof. Let N be the set consisting of the two conclusions. We must show that
C ∈HRedC(N). Let Cθ be a ground instance of C. By definition of HRedC, it suffices
to show that Cθ ∈GHRedC(G (N)). By definition of GHRedC, we must thus show that
F (Cθ) ∈ GFRedC(F (G (N))). By definition of GFRedC, this is equivalent to proving
that the clauses in F (G (N)) that are smaller than F (Cθ) entail F (Cθ).

By compatibility with green contexts and stability under substitutions of Â, the
condition tσ Â t′σ implies that D = F ((s t′σ ≈̇ s′ ∨C′)θ) is a clause in F (G (N))
that is smaller than F (Cθ). By stability under substitutions, C Â (t ≈ t′)σ implies
that E = F ((t ≈ t′)σθ) is another clause in F (G (N)) that is smaller than F (Cθ). By
Lemma 3.18, green subterms on the GH level correspond to subterms on the GF
level. Thus, {D,E} |=F (Cθ) by congruence.

3.4. Refutational Completeness
Besides soundness, the most important property of the four calculi introduced in
Section 3.3.1 is refutational completeness. We will prove the static and dynamic
refutational completeness of HInf w.r.t. (HRedI,HRedC), which is defined as follows:

Definition 3.25 (Static refutational completeness). Let Inf be an inference system
and let (RedI,RedC) be a redundancy criterion. The inference system Inf is called
statically refutationally complete w.r.t. (RedI,RedC) if we have N |=⊥ if and only if
⊥∈ N for every clause set N that is saturated w.r.t. Inf and RedI.

3

38 3. Superposition for Lambda-Free Higher-Order Logic

Definition 3.26 (Dynamic refutational completeness). Let Inf be an inference
system and let (RedI,RedC) be a redundancy criterion. Let (Ni)i be a finite or
infinite sequence over sets of clauses. Such a sequence is called a derivation if
Ni \ Ni+1 ⊆ RedC(Ni+1) for all i. It is called fair if all Inf -inferences from clauses
in the limit inferior

⋃
i
⋂

j≥i Nj are contained in
⋃

i RedI(Ni). The inference system
Inf is called dynamically refutationally complete w.r.t. (RedC,RedI) if for every fair
derivation (Ni)i such that N0 |=⊥, we have ⊥∈ Ni for some i.

3.4.1. Outline of the Proof
To circumvent the term order’s potential nonmonotonicity, our SUP inference rule
only considers green subterms. This is reflected in our proof by the reliance on the GF
level introduced in Section 3.3.4. The equation g0 ≈ f0 ∈CGF, which corresponds to
the equation g ≈ f ∈CGH, cannot be used directly to rewrite the clause g1(a0) 6≈ f1(a0) ∈
CGF, which corresponds to g a 6≈ f a ∈CGH. Instead, we first need to apply ARGCONG

to derive g x ≈ f x, which after grounding and transfer to GF yields g1(a0) ≈ f1(a0).
The GF level is a device that enables us to reuse the refutational completeness result
for standard (first-order) superposition.

The proof proceeds in three steps, corresponding to the three levels GF, GH, and
H introduced in Section 3.3.4:

1. We use Bachmair and Ganzinger’s work on the refutational completeness of
standard superposition [9] to prove the static refutational completeness of
GFInf .

2. From the first-order model constructed in Bachmair and Ganzinger’s proof, we
derive a λ-free higher-order model to prove the static refutational completeness
of GHInf .

3. We use the saturation framework of Waldmann et al. [140] to lift the static
refutational completeness of GHInf to static and dynamic refutational com-
pleteness of HInf .

In the first step, since the inference system GFInf is standard ground super-
position, we only need to work around minor differences between Bachmair and
Ganzinger’s definitions and ours. Given a saturated clause set N ⊆CGF with ⊥ 6∈ N,
Bachmair and Ganzinger prove refutational completeness by constructing a term
rewriting system RN and showing that it can be viewed as an interpretation that is
a model of N. This step is exclusively concerned with ground first-order clauses.

In the second step, we derive refutational completeness of GHInf . Given a
saturated clause set N ⊆CGH with ⊥ 6∈ N, we use the first-order model RF (N) of F (N)
constructed in step (1) to derive a clausal higher-order interpretation that is a model
of N. Thanks to saturation w.r.t. GARGCONG, the higher-order interpretation can
conflate the interpretations of the members f ῡ0 , . . . , f ῡn of a same symbol family. In the
extensional calculi, saturation w.r.t. GEXT can be used to show that the constructed
interpretation is extensional.

In the third step, we employ the saturation framework by Waldmann et al. [140],
which is largely based on Bachmair and Ganzinger’s [10], to prove HInf refutationally
complete. Like Bachmair and Ganzinger’s, the saturation framework allows us
to prove the static and dynamic refutational completeness of our calculus on the

3.4. Refutational Completeness

3

39

nonground level. On top of that, it allows us to use the redundancy criterion defined
in Section 3.3.4, which supports deletion of subsumed formulas. Moreover, the
saturation framework provides completeness theorems for prover architectures,
such as the DISCOUNT loop. The main proof obligation the saturation framework
leaves to us is that there exist inferences in HInf corresponding to all nonredundant
inferences in GHInf . For monotone term orders, we can avoid SUP inferences into
variables x by exploiting the clause order’s compatibility with contexts: If t′ ≺ t,
we have C{x 7→ t′} ≺ C{x 7→ t}, which allows us to show that SUP inferences into
variables are redundant. This technique fails for variables x that occur applied in C,
because the order lacks compatibility with arguments. This is why the calculi must
either purify clauses to make this line of reasoning work again or perform some SUP

inferences into variables.

3.4.2. The Ground First-Order Level
We use Bachmair and Ganzinger’s results on standard superposition [9] to prove GF
refutationally complete. In the subsequent steps, we will also make use of specific
properties of Bachmair and Ganzinger’s model.

Bachmair and Ganzinger’s logic and inference system differ in some details
from GF:

– Bachmair and Ganzinger use untyped first-order logic, whereas GF’s logic is
typed. Bachmair and Ganzinger’s proof works verbatim for monomorphic first-
order logic as well, but we need to require that the order Â has the subterm
property to show that there exist no critical pairs in the term rewriting system,
as observed by Wand [141, Section 3.2.1].

– In their redundancy criterion for clauses, Bachmair and Ganzinger require
that a finite subset of {D ∈ N | D ≺ C} entails C, whereas we require that
{D ∈ N | D ≺ C} entails C. By compactness of first-order logic, the two criteria
are equivalent.

Bachmair and Ganzinger prove refutational completeness for nonground clause sets,
but we only require the ground result here.

The basis of Bachmair and Ganzinger’s proof is that a term rewriting system R
defines an interpretation TGF/R such that for every ground equation s ≈ t, we have
TGF/R |= s ≈ t if and only if s ←→∗

R t. Formally, TGF/R denotes the monomorphic first-
order interpretation whose universes Uτ consist of the R-equivalence classes over
TGF containing terms of type τ. The interpretation TGF/R is term-generated—that
is, for every element a of the universe of this interpretation and for any valuation
ξ, there exists a ground term t such that JtKξTGF/R = a. To lighten notation, we will
write R to refer to both the term rewriting system R and the interpretation TGF/R.

The term rewriting system is constructed as follows. Let N ⊆ CGF. We first
define sets of rewrite rules EC

N and RC
N for all C ∈ N by induction on the clause

order. Assume that ED
N has already been defined for all D ∈ N such that D ≺ C. Then

RC
N =⋃

D≺C ED
N . Let EC

N = {s −■→ t} if the following conditions are met:
(a) C = C′∨ s ≈ t;
(b) s ≈ t is strictly maximal in C;
(c) s Â t;

3

40 3. Superposition for Lambda-Free Higher-Order Logic

(d) C′ is false in RC
N ;

(e) s is irreducible w.r.t. RC
N .

Then C is said to produce s −■→ t or to be productive. Otherwise, EC
N = ;. Finally,

RN =⋃
D ED

N .
We call an inference ι ∈GFInf B&G-redundant if some C ∈ prems(ι) is true in RC

N
or concl(ι) is true in Rmprem(ι)

N . We call a set N ⊆CGF B&G-saturated if all inferences
from N are B&G-redundant.

Lemma 3.27. If ⊥ 6∈ N and N ⊆ CGF is saturated w.r.t. GFInf and GFRedI, then N
is B&G-saturated.

Proof. Let N ⊆CGF be saturated w.r.t. GFInf and GFRedI. To show that N is B&G-
saturated, let ι be an inference from N. We need to show that ι is B&G-redundant
w.r.t. N. We proceed by well-founded induction on mprem(ι) w.r.t. Â. By the induction
hypothesis, for all inferences ι′ with concl(ι′)≺mprem(ι), ι′ is B&G-redundant w.r.t.
N. By Lemma 5.5 of Bachmair and Ganzinger, ι is B&G-redundant w.r.t. N.

Lemma 3.28. Let ⊥ 6∈ N and N ⊆ CGF be saturated w.r.t. GFInf and GFRedI. If
C = C′∨ s ≈ t ∈ N produces s −■→ t, then s ≈ t is strictly eligible in C and C′ is false in
RN .

Proof. By Lemma 3.27, N is also B&G-saturated. By condition (d), C′ is false in RC
N .

Since s Â t by condition (c) and s is irreducible w.r.t. RC
N by condition (e), s ≈ t is also

false in RC
N . Hence, C is false in RC

N . Using this and conditions (a), (b), (c), and (e),
we can apply Lemma 4.11 of Bachmair and Ganzinger using N for N and for N ′, C
for C and for D, s for s, and t for t. Part (ii) of that lemma shows that s ≈ t is strictly
eligible in C, and part (iv) shows that C′ is false in RN .

Theorem 3.29 (Ground first-order static refutational completeness). The inference
system GFInf is statically refutationally complete w.r.t. (GFRedI,GFRedC). More
precisely, if N ⊆ CGF is a clause set saturated w.r.t. GFInf and GFRedI such that
⊥ 6∈ N, then RN is a model of N.

Proof. By Lemma 3.27, N is also B&G-saturated. It follows that RN is a model of N,
as shown in the proof of Theorem 4.14 of Bachmair and Ganzinger.

3.4.3. The Ground Higher-Order Level
In this subsection, let GHSel be a selection function on CGH, and let N ⊆CGH with
⊥ 6∈ N be a clause set saturated w.r.t. GHInf GHSel and GHRedGHSel

I . Clearly, F (N) is
then saturated w.r.t. GFInf F (GHSel) and GFRedF (GHSel)

I .
We abbreviate RF (N) as R. From R, we construct a model IGH of N. The key

properties enabling us to perform this construction are that R is term-generated and
that the interpretations of the members f ῡ0 , . . . , f ῡn of a same symbol family behave in
the same way thanks to the ARGCONG rule.

Lemma 3.30 (Argument congruence). For terms s, t,u ∈ TGH, if JF (s)KR = JF (t)KR ,
then JF (s u)KR = JF (t u)KR .

3.4. Refutational Completeness

3

41

Proof. What we want to show is equivalent to

F (s)←→∗
R F (t) implies F (s u)←→∗

R F (t u)

By induction on the number of rewrite steps and due to symmetry, it suffices to show
that

F (s)−■→R F (t) implies F (s u)←→∗
R F (t u)

If the rewrite step from F (s) is below the top level, this is obvious because there
is a corresponding rewrite step from F (s u). If it is at the top level, F (s) −■→ F (t)
must be rule of R. This rule must originate from a productive clause of the form
F (C) = F (C′ ∨ s ≈ t). By Lemma 3.28, F (s ≈ t) is strictly eligible in F (C) w.r.t.
F (GHSel), and hence s ≈ t is strictly eligible in C w.r.t. GHSel. Moreover, s and t
have functional type. Thus, the following GARGCONG inference ι is applicable:

C′ ∨ s ≈ t
GARGCONG

C′ ∨ s u ≈ t u

By saturation, ι is redundant w.r.t. N—i.e., we have concl(ι) ∈ N ∪GHRedC(N) (for
the nonpurifying calculi) or F (N) |= concl(ι) (for the purifying calculi). In both cases,
by Theorem 3.29, F (concl(ι)) is then true in R. By Lemma 3.28, F (C′) is false in R.
Therefore, F (s u ≈ t u) must be true in R.

Lemma 3.31. For terms s, t,u,v ∈ TGH, if JF (s)KR = JF (t)KR and JF (u)KR = JF (v)KR ,
then JF (s u)KR = JF (t v)KR .

Proof. By Lemma 3.30, we have JF (s u)KR = JF (t u)KR . It remains to show that
JF (t u)KR = JF (t v)KR . Since t is ground, it must be of the form f〈ῡm〉 t̄n. The interpre-
tation R defined above is an interpretation (U ,J) in monomorphic first-order logic.
Then

JF (t u)KR = J(f ῡm
n+1)(JF (t̄n)KR ,JF (u)KR)= J(f ῡm

n+1)(JF (t̄n)KR ,JF (v)KR)= JF (t v)KR

Definition 3.32. Define a higher-order interpretation IGH = (UGH,JGH
ty ,JGH,EGH) as

follows. The interpretation R defined above is an interpretation (U ,J) in monomor-
phic first-order logic, where Uτ is its universe for type τ, and J is its interpretation
function. Let UGH = {Uτ | τ is a ground type}. Let JGH

ty (κ)(Uτ̄) = Uκ(τ̄) for all type
constructors κ and type tuples τ̄. Let JGH(f,Uτ̄)= J(f τ̄0).

Since R is term-generated, for every a ∈ Uτ→υ and b ∈ Uτ, there exist ground
terms s : τ→ υ and u : τ such that JF (s)KR = a and JF (u)KR = b. We define EGH by
EGH

Uτ,Uυ
(a)(b)= JF (s u)KR for any term u. By Lemma 3.31, this definition is indepen-

dent of the choice of s and u.

Lemma 3.33 (Model transfer to GH). IGH is a model of N. In the extensional calculi,
IGH is an extensional model of N.

Proof. We first prove by induction on terms t ∈ TGH that JtKIGH = JF (t)KR . Let t ∈ TGH,
and assume as the induction hypothesis that JuKIGH = JF (u)KR for all subterms u
of t. If t is of the form f〈ῡ〉, then

JtKIGH = JGH(f,Uῡ)= J(f ῡ0)= Jf ῡ0KR = JF (f〈ῡ〉)KR = JF (t)KR

3

42 3. Superposition for Lambda-Free Higher-Order Logic

If t is an application t = t1 t2, where t1 is of type τ→ υ, then, using the definition of
the term denotation and of EGH, we have

Jt1 t2KIGH =EGH
Uτ,Uυ

(Jt1KIGH)(Jt2KIGH) IH= EGH
Uτ,Uυ

(JF (t1)KR)(JF (t2)KR)= JF (t1 t2)KR

So we have shown that JtKIGH = JF (t)KR for all terms t. It follows that a ground
equation s ≈ t is true in IGH if and only if F (s ≈ t) is true in R. Hence a ground clause
C is true in IGH if and only if F (C) is true in R. By Theorem 3.29, R is a model of
F (N). Thus, IGH is a model of N.

For the extensional calculi, it remains to show that IGH is extensional—i.e., we
have to show that for all τ and υ and all a,b ∈Uτ→υ, if a 6= b, then EGH(a) 6=EGH(b).
Since R is term-generated, there are terms s, t ∈ TGF such that JsKR = a and JtKR = b.
By what we have shown above, it follows that Js′KIGH = a and Jt′KIGH = b for s′ =
F −1(s) and t′ =F −1(t).

Since N is saturated, the GEXT inference that generates the clause

C = s′ (diff〈τ,υ〉s′ t′) 6≈ t′ (diff〈τ,υ〉s′ t′)∨ s′ ≈ t′

is redundant—i.e., C ∈ N ∪GHRedC(N) (in the nonpurifying calculi) or F (N) |=F (C)
(in the purifying calculi). In both cases, it follows that R |= F (C) by Theorem 3.29
and thus IGH |= C by what we have shown above. The second literal of C is false in
IGH because Js′KIGH = a 6= b = Jt′KIGH . So the first literal of C must be true in IGH

and thus

EGH(a)(Jdiff〈τ,υ〉s′ t′KIGH)= Js′ (diff〈τ,υ〉s′ t′)KIGH

6= Jt′ (diff〈τ,υ〉s′ t′)KIGH =EGH(b)(Jdiff〈τ,υ〉s′ t′KIGH)

It follows that EGH(a) 6=EGH(b).

We summarize the results of this subsection in the following theorem:

Theorem 3.34 (Ground static refutational completeness). Let GHSel be a selection
function on CGH. Then the inference system GHInf GHSel is statically refutation-
ally complete w.r.t. (GHRedI,GHRedC). That means, if N ⊆ CGH is saturated w.r.t.
GHInf GHSel and GHRedGHSel

I , then N |=⊥ if and only if ⊥∈ N.

The construction of IGH relies on the specific properties of R. It would not work
with an arbitrary first-order interpretation. Transforming a λ-free higher-order
interpretation into a first-order interpretation is easier:

Lemma 3.35. Given an interpretation I on GH, there exists an interpretation IGF on
GF such that for any clause C ∈ CGH the truth values of C in I and of F (C) in IGF

coincide.

Proof. Let I= (U,Jty,J,E) be a λ-free higher-order interpretation. Let UGF
τ = JτKIty

be the first-order type universe for the ground type τ. For a symbol f ῡm
l ∈ΣGF and uni-

verse elements āl , let JGF(f ῡm
l)(āl)= Jf〈ῡm〉 x̄lK

{x̄l 7→ā}
I . This defines an interpretation

IGF = (UGF,JGF) on GF.

3.4. Refutational Completeness

3

43

We need to show that for any C ∈CGH, I |= C if and only if IGF |=F (C). It suffices
to show that JtKI = JF (t)KIGF for all terms t ∈ TGH. We prove this by induction on t.
Since t is ground, it must be of the form f〈ῡm〉 s̄l . Then F (t)= f ῡm

l (F (s̄l)) and hence

JF (t)KIGF = JGF(f ῡm
l)(JF (s̄l)KIGF) IH= JGF(f ῡm

l)(Js̄lKI)= Jf〈ῡm〉 s̄lKI = JtKI

using the definition of JGF and Lemma 3.11 for the third step.

3.4.4. The Nonground Higher-Order Level
To lift the result to the nonground level, we employ the saturation framework of
Waldmann et al. [140]. It is easy to see that the entailment relation |= on GH is a
consequence relation in the sense of the framework. It remains to show that our
redundancy criterion on GH is a redundancy criterion in the sense of the framework
and that G is a grounding function in the sense of the framework:

Lemma 3.36. The redundancy criterion for GH is a redundancy criterion in the
sense of the framework.

Proof. We must prove the conditions (R1) to (R4) defined by Waldmann et al., which,
adapted to our context, state the following for all clause sets N, N ′ ⊆CGH:
(R1) if N |=⊥, then N \GHRedC(N) |=⊥;
(R2) if N ⊆ N ′, then GHRedC(N)⊆GHRedC(N ′) and GHRedI(N)⊆GHRedI(N ′);
(R3) if N ′ ⊆ GHRedC(N), then GHRedC(N) ⊆ GHRedC(N \ N ′) and GHRedI(N) ⊆

GHRedI(N \ N ′);
(R4) if ι ∈GHInf and concl(ι) ∈ N, then ι ∈GHRedI(N).

(R1) It suffices to show that N \ GHRedC(N) |= N for N ⊆ CGH. Let I be a model
of N \ GHRedC(N). In the extensional calculi, let I be extensional. Then by
Lemma 3.35, there exists a model IGF of F (N\GHRedC(N))=F (N)\GFRedC(F (N)).
By Lemma 5.2 of Bachmair and Ganzinger, this is also a model of F (N). By
Lemma 3.35, it follows that I |= N.

(R2) By Lemma 5.6(i) of Bachmair and Ganzinger, this holds on GF. For clauses
and all inferences except GARGCONG and GEXT, this implies that it holds on GH
as well because F is a redundancy-preserving bijection between CGH and CGF and
between these inferences. For GARGCONG and GEXT inferences, it holds because it
holds on clauses.

(R3) The proof is analogous to (R2), with Lemma 5.6(ii) of Bachmair and Ganzinger
instead of Lemma 5.6(i).

(R4) We must show that for all inferences with concl(ι) ∈ N, we have ι ∈GHRedI(N).
Since concl(ι)≺mprem(ι) for all ι ∈GFInf , this holds on GF. For all inferences except
GARGCONG and GEXT, since F is a bijection preserving redundancy, it follows
that it also holds also on GH. For GARGCONG and GEXT inferences, it holds by
definition.

Lemma 3.37. The grounding functions GGHSel for GHSel ∈G (HSel) are grounding
functions in the sense of the framework.

3

44 3. Superposition for Lambda-Free Higher-Order Logic

Proof. We must prove the conditions (G1) to (G3) defined by Waldmann et al., which,
adapted to our context, state the following:
(G1) G (⊥)= {⊥};
(G2) for every C ∈CGH, if ⊥∈G (C), then C =⊥;
(G3) for every inference ι ∈ HInf , if GGHSel(ι) 6= undef , then we have GGHSel(ι)

⊆GHRedGHSel
I (G (concl(ι))).

Clearly, C = ⊥ if and only if ⊥ ∈ G (C) if and only if G (C) = {⊥}, proving (G1)
and (G2). For (G3), we have to show for all non-POSEXT inferences ι ∈ HInf that
GGHSel(ι)⊆GHRedGHSel

I (G (concl(ι))). Let ι ∈HInf and ι′ ∈GGHSel(ι). By the definition
of GGHSel, there exists a grounding substitution θ such that prems(ι′) = prems(ι)θ
and concl(ι′)= preconcl(ι)θ. We want to show that ι′ ∈GHRedGHSel

I (G (concl(ι))).
If ι′ is not an GARGCONG or GEXT inference, by the definition of inference redun-

dancy, it suffices to show that {D ∈ F (G (concl(ι))) | D ≺ mprem(F (ι′))} |= concl(F (ι′)).
We define a substitution θ′ that extends θ to all variables in concl(ι). Due to pu-
rification, the clause concl(ι) may contain variables not present in preconcl(ι). For
each such variable x′, let x be the variable in preconcl(ι) that x′ stems from and
define x′θ′ = xθ. Then the clause F (concl(ι)θ′) differs from the clause F (concl(ι′))=
F (preconcl(ι)θ′) only in some additional grounded purification literals, which all
have the form t 6≈ t and are thus trivially false in any interpretation. Hence,
F (concl(ι)θ′) |= F (concl(ι′)). Since one of the variables of a purification literal must
appear applied in the clause, for each grounded purification literal t 6≈ t the term t
must be smaller than the maximal term of the clause F (concl(ι′)).

If no literals are selected in mprem(F (ι′)), inspection of the rules in GFInf shows
that F (concl(ι)θ′) ≺ mprem(F (ι′)). Otherwise, ι′ can only be an ERES inference or
a SUP inference into a negative literal. If it is an ERES inference, due to the
selection restrictions, the substitution σ used in ι is the identity for all variables of
functional type. Therefore, applying σ cannot trigger any purification and hence
F (concl(ι)θ′)=F (preconcl(ι)θ′)≺mprem(F (ι′)). If ι′ is a SUP inference into a negative
literal, due to the selection restrictions, the substitution σ= mgu(t,u) used in ι is
the identity for all variables of functional type that stem from the main premise.
Therefore the variables from the main premise C need not be purified. The variables
from the side premise D might need to be purified, yielding purification literals of
the form x 6≈ y where xθ′ = yθ′. Then x or y must appear applied in D and hence xθ′
is smaller than tθ′. Again, it follows that F (concl(ι)θ′)≺mprem(F (ι′)).

This proves {D ∈F (G (concl(ι))) | D ≺mprem(F (ι′))} |= concl(F (ι′)).
In the nonpurifying calculi, if ι′ is an GARGCONG or GEXT inference, it suffices to

show that concl(ι′) ∈G (concl(ι)). This holds because concl(ι′)= preconcl(ι)θ = concl(ι)θ.
In the purifying calculi, if ι′ is an GARGCONG or GEXT inference, we must show
that F (G (concl(ι))) |= F (concl(ι′)). Defining θ′ as above, we have F (concl(ι)θ′) |=
F (concl(ι′)), as desired.

To lift the completeness result of the previous section to the nonground calculus
HInf , we employ Theorem 14 of Waldmann et al., which, adapted to our context,
is stated as follows. The theorem uses the notation Inf (N) to denote the set of
Inf -inferences whose premises are in N, for an inference system Inf and a clause
set N. Moreover, it uses the Herbrand entailment |=G on CH, which is defined as

3.4. Refutational Completeness

3

45

N1 |=G N2 if G (N1) |=G (N2).

Theorem 3.38 (Lifting theorem). If GHInf GHSel is statically refutationally complete
w.r.t. (GHRedGHSel

I ,GHRedC) for every GHSel ∈ G (HSel), and if for every N ⊆ CH
that is saturated w.r.t. HInf and HRedI there exists a GHSel ∈ G (HSel) such that
GHInf GHSel(G (N))⊆GGHSel(HInf (N))∪GHRedGHSel

I (G (N)), then HInf is statically
refutationally complete w.r.t. (HRedI,HRedC) and |=G .

Proof. This is essentially Theorem 14 of Waldmann et al. We take H for F, GH
for G, and G (HSel) for Q. It is easy to see that the entailment relation |= on
GH is a consequence relation in the sense of the framework. By Lemma 3.36
and 3.37, (GHRedGHSel

I ,GHRedC) is a redundancy criterion in the sense of the
framework, and GGHSel are grounding functions in the sense of the framework,
for all GHSel ∈G (HSel). The redundancy criterion (HRedI,HRedC) matches exactly
the intersected lifted redundancy criterion Red∩G ,= of Waldmann et al. Theorem 14
of Waldmann et al. states the theorem only for ==∅. By Lemma 16 of Waldmann
et al., it also holds if = 6=∅.

Let N ⊆CH be a clause set saturated w.r.t. HInf and HRedI. We assume that HSel
fulfills the selection restrictions introduced in Section 3.3.1. For the above theorem
to apply, we need to show that there exists a selection function GHSel ∈G (HSel) such
that all inferences ι ∈ GHInf GHSel with prems(ι) ∈ G (N) are liftable or redundant.
Here, by liftable, we mean that ι is a GGHSel-ground instance of a HInf -inference
from N; by redundant, we mean that ι ∈GHRedGHSel

I (G (N)).
To choose the right selection function GHSel ∈ G (HSel), we observe that each

ground clause C ∈ G (N) must have at least one corresponding clause D ∈ N such
that C is a ground instance of D. We choose one of them for each C ∈ G (N), which
we denote by G−1(C). Then let GHSel select those literals in C that correspond to
the literals selected by HSel in G−1(C). Given this selection function GHSel, we can
show that all inferences from G (N) are liftable or redundant.

All non-SUP inferences in GHInf are liftable (Lemma 3.40). For SUP, some
inferences are liftable (Lemma 3.41) and some are redundant (Lemma 3.42). As in
standard superposition, SUP inferences into positions below variables are redundant.
The variable condition of each of the four calculi is designed to cover the nonredun-
dant SUP inferences into positions of variable-headed terms, which makes these
inferences liftable.

Lemma 3.39. Let σ be the most general unifier of s and s′. Let θ be an arbitrary
unifier of s and s′. Then σθ = θ.

Proof. Like in first-order logic, we can assume that σ is idempotent without loss of
generality [58, Corollary 7.2.11]. Since σ is most general, there exists a substitution
ρ such that σρ = θ. Therefore, by idempotence, σθ =σσρ =σρ = θ.

Lemma 3.40 (Lifting of ERES, EFACT, GARGCONG, and GEXT). All ERES, EFACT,
GARGCONG, and GEXT inferences are liftable.

3

46 3. Superposition for Lambda-Free Higher-Order Logic

Proof. ERES: Let ι ∈GHInf GHSel be an ERES inference with prems(ι) ∈G (N). Then
ι is of the form

Cθ = C′θ ∨ sθ 6≈ s′θ
ERES

C′θ

where G−1(Cθ)= C = C′ ∨ s 6≈ s′ and the literal sθ 6≈ s′θ is eligible w.r.t. GHSel. Let
σ = mgu(s, s′). It follows that s 6≈ s′ is eligible in C w.r.t. σ and HSel. Moreover,
sθ and s′θ are unifiable and ground, and therefore sθ = s′θ. Thus, the following
inference ι′ ∈HInf is applicable:

C′ ∨ s 6≈ s′
ERES

pure(C′σ)

(where pure is the identity in the nonpurifying calculi). By Lemma 3.39, we have
C′σθ = C′θ. Therefore, ι is the θ-ground instance of ι′ and is therefore liftable.

EFACT: Analogously, if ι ∈GHInf GHSel is an EFACT inference with prems(ι) ∈G (N),
then ι is of the form

Cθ = C′θ ∨ s′θ ≈ t′θ ∨ sθ ≈ tθ
EFACT

C′θ ∨ tθ 6≈ t′θ ∨ sθ ≈ t′θ

where G−1(Cθ) = C = C′ ∨ s′ ≈ t′ ∨ s ≈ t, the literal sθ ≈ tθ is eligible in C w.r.t.
GHSel, and sθ 6≺ tθ. Let σ=mgu(s, s′). Hence, s ≈ t is eligible in C w.r.t. σ and HSel.
We have s 6≺ t. Moreover, sθ and s′θ are unifiable and ground. Hence, sθ = s′θ. Thus,
the following inference ι′ ∈HInf is applicable:

C′ ∨ s′ ≈ t′ ∨ s ≈ t
EFACT

pure((C′ ∨ t 6≈ t′ ∨ s ≈ t′)σ)

By Lemma 3.39, we have preconcl(ι′)θ = concl(ι). Hence, ι is the θ-ground instance of
ι′ and is therefore liftable.

GARGCONG: Let ι ∈ GHInf GHSel be a GARGCONG inference with prems(ι) ∈ G (N).
Then ι is of the form

Cθ = C′θ ∨ sθ ≈ s′θ
GARGCONG

C′θ ∨ sθ ūn ≈ s′θ ūn

where G−1(Cθ) = C = C′ ∨ s ≈ s′, the literal sθ ≈ s′θ is strictly eligible w.r.t. GHSel,
and sθ and s′θ are of functional type. It follows that s and s′ have either a functional
or a polymorphic type. Let σ be the most general substitution such that sσ and s′σ
take n arguments. Then s 6≈ s′ is eligible in C w.r.t. σ and HSel. Hence the following
inference ι′ ∈HInf is applicable:

C′ ∨ s ≈ s′
ARGCONG

pure(C′σ∨ sσ x̄n ≈ s′σ x̄n)

3.4. Refutational Completeness

3

47

Then ι is a ground instance of ι′ and is therefore liftable.

GEXT: The conclusion of a GEXT inference in GHInf is by definition a ground
instance of the conclusion of the EXT inference in HInf before purification. Hence,
the GEXT inference is a ground instance of the EXT inference. Therefore it is
liftable.

Lemma 3.41 (Lifting of SUP). Let ι ∈GHInf GHSel be a SUP inference

D′θ ∨ tθ ≈ t′θ C′θ ∨ sθ tθ p ≈̇ s′θ
SUP

D′θ ∨ C′θ ∨ sθ t′θ p ≈̇ s′θ

where G−1(Dθ) = D = D′ ∨ t ≈ t′ and G−1(Cθ) = C = C′ ∨ s ≈̇ s′. Suppose that the
position p exists as a green subterm in s. Let u be the green subterm of s at that
position and σ=mgu(t,u) (which exists since θ is a unifier). If the variable condition
holds for C, t, t′, u, and σ, then ι is liftable.

Proof. The inference conditions of ι can be lifted to D and C. That tθ ≈ t′θ is strictly
eligible in Dθ w.r.t. GHSel implies that t ≈ t′ is strictly eligible in D w.r.t. σ and HSel.
If sθ ≈̇ s′θ is (strictly) eligible in Cθ w.r.t. GHSel, then s ≈̇ s′ is (strictly) eligible in
C w.r.t. σ and HSel. Moreover, Dθ 6º Cθ implies D 6º C, tθ 6≺ t′θ implies t 6≺ t′, and
sθ 6≺ s′θ implies s 6≺ s′.

By assumption, p is a position of s and the variable condition holds. Thus, the
following inference ι′ ∈HInf is applicable:

D′ ∨ t ≈ t′ C′ ∨ s u p ≈̇ s′
SUP

pure((D′ ∨ C′ ∨ s t′ p ≈̇ s′)σ)

By Lemma 3.39, we have (preconcl(ι′))θ = concl(ι). Hence, ι is the θ-ground instance
of ι′ and is therefore liftable.

The other SUP inferences might not be liftable, but they are redundant:

Lemma 3.42. Let ι ∈GHInf GHSel be a SUP inference

D′θ ∨ tθ ≈ t′θ C′θ ∨ sθ tθ p ≈̇ s′θ
SUP

D′θ ∨ C′θ ∨ sθ t′θ p ≈̇ s′θ

where G−1(Dθ) = D = D′ ∨ t ≈ t′ and G−1(Cθ) = C = C′ ∨ s ≈̇ s′. Suppose that
Lemma 3.41 does not apply. This could be either because the position p is below a vari-
able in s or because the variable condition does not hold. Then ι ∈GHRedGHSel

I (G (N)).

Proof. By the definition of GHRedI, to show ι ∈ GHRedGHSel
I (G (N)), it suffices to

prove that {E ∈ F (G (N)) | E ≺ F (Cθ)} |= F (concl(ι)). Let I be a first-order model of
all E ∈ F (G (N)) with E ≺ F (Cθ). We must show that I |= F (concl(ι)). If I |= F (D′θ),
this is obvious. So we further assume that I 6|= F (D′θ). Since Dθ ≺ Cθ by the SUP

inference conditions, it follows that I |= F (tθ ≈ t′θ). By congruence, it suffices to
show I |=F (Cθ). We proceed by a case distinction on the two possible reasons why
Lemma 3.41 does not apply:

3

48 3. Superposition for Lambda-Free Higher-Order Logic

CASE 1: The position p is below a variable in s. Then tθ is a proper green subterm
of xθ and hence a green subterm of xθ w̄ for any arguments w̄. Let v be the term that
we obtain by replacing tθ by t′θ in xθ at the relevant position. It follows from our
assumptions about I that I |= F (tθ ≈ t′θ), and by congruence, I |= F (xθ w̄ ≈ v w̄) for
any arguments w̄. Hence, I |=F (Cθ) if and only if I |=F (C{x 7→ v}θ). By the inference
conditions we have tθ Â t′θ, which implies F (Cθ) Â F (C{x 7→ v}θ) by compatibility
with green contexts. Therefore, we have I |=F (C{x 7→ v}θ) and hence I |=F (Cθ).

CASE 2: The variable condition does not hold. In the extensional calculi, it follows
that u has a variable head and jells with t ≈ t′. By Definition 3.2, this means that u,
t, and t′ have the following form: u = x v̄n for some variable x and a tuple of terms
v̄n of length n ≥ 0; t = t̃ x̄n and t′ = t̃ ′ x̄n, where x̄n are variables that do not occur
elsewhere in D.

For the intensional calculi, we have u ∈V. Thus, u, t, and t′ can be written in the
same form as described above for the extensional calculi, with n = 0.

CASE 2.1 (PURIFYING CALCULI): First, we assume that x occurs only with argu-
ments v̄n in C. For the intensional calculus, this must be the case because n = 0 and
hence x can only occur without arguments by the definition of pure and the literal
selection restriction. Define a substitution θ′ by xθ′ = t̃ ′θ and yθ′ = yθ for other
variables y. Since tθ Â t′θ by the inference conditions, we have Cθ Â Cθ′. Moreover,
Cθ′ ∈G (N). Then I |=F (Cθ) by congruence, because I |=F (Cθ′) and I |=F (tθ ≈ t′θ).

Now we assume that x occurs with arguments other than v̄n in C. This can only
happen in the extensional calculus and by the selection restrictions, sθ ≈̇ s′θ must
not be selected in Cθ. Therefore, sθ is the maximal term in Cθ. Then s 6= x and hence
v̄n 6= ε because otherwise sθ = xθ would be smaller than the applied occurrence of xθ
in Cθ.

Define a substitution θ′′ such that xθ′′ = t̃ ′θ, yθ′′ = t̃ ′θ for other variables y if
yθ = sθ and C contains the literal x 6≈ y, and yθ′′ = yθ otherwise.

We show that Cθ Â Cθ′′ by proving that no literal of Cθ′′ is larger than the
maximal literal sθ ≈̇ s′θ of Cθ and that sθ ≈̇ s′θ appears more often in Cθ than in
Cθ′′.

For a literal of the form x 6≈ y, we have xθ′′ ≺ sθ and yθ′′ ≺ sθ. For literals that
are not of this form, by the definition of pure in the extensional calculus, x occurs
always with arguments v̄n. Hence these literals are equal or smaller in Cθ′′ than in
Cθ, because xθ′′ v̄n ≺ xθ v̄n and yθ′′ ¹ yθ. Therefore, no literal of Cθ′′ is larger than
the maximal literal sθ ≈̇ s′θ of Cθ. Moreover, these inequalities show that every
occurrence of sθ ≈̇ s′θ in Cθ′′ corresponds to an occurrence of sθ ≈̇ s′θ in Cθ that
corresponds to a literal in C without the variable x. Since at least one occurrence
of sθ ≈̇ s′θ in Cθ corresponds to a literal in C containing x, sθ ≈̇ s′θ appears more
often in Cθ than in Cθ′′. This concludes the argument that Cθ Â Cθ′′. It follows that
I |=F (Cθ′′).

We need to show that I |= F (Cθ). There is a POSEXT inference from D to
D′ ∨ t̃ ≈ t̃ ′. This inference is in HRedI(N) because N is saturated. Therefore,
D′θ ∨ t̃θ ≈ t̃ ′θ is in G (N) ∪ GHRedC(G (N)). It follows that I |= F (D′θ ∨ t̃θ ≈ t̃ ′θ)
because this clause is smaller than F (D′θ) and hence smaller than F (Cθ). Since
F (D′θ) is false in I, we have I |=F (t̃θ ≈ t̃ ′θ).

3.4. Refutational Completeness

3

49

For every literal of the form x 6≈ y, where yθ = sθ, the variable y can only occur
without arguments in C because of the maximality of sθ. We distinguish two cases.
If for every literal of the form x 6≈ y where yθ = sθ, we have I |= F (yθ′′ ≈ yθ), then
I |=F (Cθ) by congruence. If for some literal of the form x 6≈ y where yθ = sθ, we have
I |= F (yθ′′ 6≈ yθ), then I |= F (yθ 6≈ xθ) because yθ′′ = t̃ ′θ, I |= F (t̃ ′θ ≈ t̃θ), and t̃θ = xθ.
Hence a literal of F (Cθ) is true in I and therefore I |= Cθ.

CASE 2.2 (NONPURIFYING CALCULI): Since the variable condition does not hold, we
have Cθ º C′′θ, where C′′ = C{x 7→ t̃ ′}. We cannot have Cθ = C′′θ because xθ = t̃θ 6= t̃ ′θ
and x occurs in C. Hence, we have Cθ Â C′′θ.

By the definition of I, Cθ Â C′′θ implies I |=F (C′′θ). We will use equalities that
are true in I to rewrite F (Cθ) into F (C′′θ), which implies I |=F (Cθ) by congruence.

By saturation of N, for any well-typed m-tuple of fresh variables z̄, we can use a
POSEXT with premise D (if n > m) or ARGCONG inference with premise D (if n < m)
or using D itself (if n = m) to show that G (D′∨ t̃ z̄ ≈ t̃ ′ z̄) ⊆ G (N)∪GHRedC(G (N)).
Hence, D′θ ∨ t̃θ ū ≈ t̃ ′θ ū is in G (N)∪GHRedC(G (N)) for any ground arguments ū.

We observe that whenever t̃θ ū and t̃ ′θ ū are smaller than the maximal term of
Cθ for some arguments ū, we have

I |=F (t̃θ ū)≈F (t̃ ′θ ū) (†)

To show this, we assume that t̃θ ū and t̃ ′θ ū are smaller than the maximal term
of Cθ and we distinguish two cases: If tθ is smaller than the maximal term of Cθ, all
terms in D′θ are smaller than the maximal term of Cθ and hence D′θ∨ t̃θ ū ≈ t̃ ′θ ū ≺
Cθ. If, on the other hand, tθ is equal to the maximal term of Cθ, t̃θ ū and t̃ ′θ ū are
smaller than tθ. Hence t̃θ ū ≈ t̃ ′θ ū ≺ tθ ≈ t′θ and D′θ∨ t̃θ ū ≈ t̃ ′θ ū ≺ Dθ ≺ Cθ. In
both cases, since F (D′θ) is false in I by assumption, I |=F (t̃θ ū)≈F (t̃ ′θ ū).

We proceed by a case distinction on whether sθ appears in a selected or in a
maximal literal of Cθ. In both cases we provide an algorithm that establishes the
equivalence of Cθ and C′′θ via rewriting using (†). This might seem trivial at first
sight, but we can only use the equations (†) if t̃θ ū and t̃ ′θ ū are smaller than the
maximal term of Cθ. Moreover, ū might itself contain positions where we want to
rewrite, so the order of rewriting matters.

CASE 2.2.1: sθ is the maximal side of a maximal literal of Cθ. Then, since Cθ Â C′′θ,
every term in Cθ and in C′′θ is smaller than or equal to sθ. Let C0 and C̃0 be the
clauses resulting from rewriting F (tθ) −■→ F (t′θ) wherever possible in F (Cθ) and
F (C′′θ), respectively. Since F (tθ) is a subterm of F (sθ), now every term in C0 and
C̃0 is strictly smaller than F (sθ).

We define C1,C2, . . . inductively as follows: Given Ci, choose a subterm of the
form F (t̃θ ū) where t̃θ ū Â t̃ ′θ ū or of the form F (t̃ ′θ ū) where t̃ ′θ ū Â t̃θ ū. Let Ci+1 be
the clause resulting from rewriting that subterm F (t̃θ ū) to F (t̃ ′θ ū) or that subterm
F (t̃ ′θ ū) to F (t̃θ ū) in Ci, depending on which term was chosen. Analogously, we
define C̃1, C̃2, . . . by applying the same algorithm to C̃0. In both cases, the process
terminates because Â is compatible with green contexts and well founded. Let C∗
and C̃∗ be the respective final clauses.

The algorithm preserves the invariant that every term in Ci and C̃i is strictly
smaller than sθ. By congruence via (†), applied at every step of the algorithm, we

3

50 3. Superposition for Lambda-Free Higher-Order Logic

know that C∗ and F (Cθ) are equivalent in I and that C̃∗ and F (C′′θ) are equivalent
in I as well.

We show that C∗ = C̃∗. Assume that C∗ 6= C̃∗. The algorithm preserves a second
invariant, namely that F −1(Ci) and F −1(C̃ j) are equal except for positions where
one contains t̃θ and the other one contains t̃ ′θ. Consider a deepest position where
F −1(C∗) and F −1(C̃∗) are different. The respective position in C∗ and C̃∗ then con-
tains F (t̃θ ū) and F (t̃ ′θ ū) or vice versa. The arguments ū must be equal because we
consider a deepest position. But then t̃θ ū Â t̃ ′θ ū or t̃θ ū ≺ t̃ ′θ ū, which is impossible
since the algorithm terminated in C∗ and C̃∗. This shows that C∗ = C̃∗. Hence
F (Cθ) and F (C′′θ) are equivalent, which proves I |=F (Cθ).

CASE 2.2.2: sθ is the maximal side of a selected literal of Cθ. Then, by the selection
restrictions, x cannot be the head of a maximal literal of C.

At every position where x ū occurs in C with some (or no) arguments ū, we
rewrite (t̃ ū)θ to (t̃ ′ ū)θ in Cθ if (t̃ ū)θ Â (t̃ ′ ū)θ. We start with the innermost occur-
rences of x, so that the order of the two terms at one step does not change by later
rewriting. Analogously, at every position where x ū occurs in C with some (or no)
arguments ū, we rewrite (t̃ ′ ū)θ to (t̃ ū)θ in C′′θ if (t̃ ′ ū)θ Â (t̃ ū)θ, again starting with
the innermost occurrences.

We never rewrite at the top level of the maximal term of Cθ or C′′θ because x
cannot be the head of a maximal literal of C. The two resulting clauses are identical
because Cθ and C′′θ only differ at positions where x occurs in C. The rewritten terms
are all smaller than the maximal term of Cθ. With (†), this implies that I |=F (Cθ)
by congruence.

With these properties of our inference systems in place, the saturation frame-
work’s lifting theorem (Theorem 3.38) guarantees static and dynamic refutational
completeness of HInf w.r.t. HRedI. However, this theorem gives us refutational com-
pleteness w.r.t. the Herbrand entailment |=G , defined as N1 |=G N2 if G (N1) |=G (N2),
whereas our semantics is Tarski entailment |=, defined as N1 |= N2 if any model of
N1 is a model of N2. The following lemma repairs this mismatch:

Lemma 3.43. For N ⊆CH, we have N |=G ⊥ if and only if N |=⊥.

Proof. By Lemma 3.12, any model of N is also a model of G (N)—i.e., N 6|= ⊥ implies
N 6|=G ⊥. For the other direction, we need to show that N 6|=G ⊥ implies N 6|= ⊥.
Assume that N 6|=G ⊥—i.e., G (N) 6|= ⊥. Then there is a model I of G (N). We must
show that there exists a model of N—i.e., N 6|= ⊥. Let I′ be an interpretation derived
from I by removing all universes that are not the denotation of a type in TyGH and
removing all domain elements that are not the denotation of a term in TGH, making
I′ term-generated. Clearly, in our clausal logic, this leaves the denotations of terms
and the truth of ground clauses unchanged. Thus, I′ |= G (N). We will show that
I′ |= N. Let C ∈ N. We want to show that C is true in I′ for all valuations ξ. Fix
a valuation ξ. By construction, for each variable x, there exists a ground term sx
such that JsxKI′ = ξ(x). Let ρ be the substitution that maps every free variable x
in C to sx. Then ξ(x) = JsxKI′ = JxρKI′ for all x. By treating the type variables of C
in the same way, we can also achieve that ξ(α) = JαρKI′ for all x. By Lemma 3.11,
JtρKI′ = JtKξI′ for all terms t and JτρKI′ = JτKξI′ for all types τ. Hence, Cρ and C have

3.5. Implementation

3

51

the same truth value in I′ for ξ. Since I′ |=G (N), Cρ is true in I′ and thus C is true
in I′ as well.

Theorem 3.44 (Static refutational completeness). The inference system HInf is
statically refutationally complete w.r.t. (HRedI,HRedC). That means, if N ⊆CH is a
clause set saturated w.r.t. HInf and HRedI, then we have N |=⊥ if and only if ⊥∈ N.

Proof. We apply Theorem 3.38. By Theorem 3.34, GHInf GHSel is statically refuta-
tionally complete for all GHSel ∈G (HSel). By Lemmas 3.40, 3.41, and 3.42, for every
saturated N ⊆ CH, there exists a selection function GHSel ∈ G (HSel) such that all
inferences ι ∈GHInf GHSel with prems(ι) ∈G (N) either are GGHSel-ground instances
of HInf -inferences from N or belong to GHRedGHSel

I (G (N)).
Theorem 3.38 implies that if N ⊆ CH is a clause set saturated w.r.t. HInf and

HRedI, then N |=G ⊥ if and only if ⊥ ∈ N. By Lemma 3.43, this also holds for the
Tarski entailment |=. That is, if N ⊆ CH is a clause set saturated w.r.t. HInf and
HRedI, then N |=⊥ if and only if ⊥∈ N.

From static refutational completeness, we can easily derive dynamic refutational
completeness.

Theorem 3.45 (Dynamic refutational completeness). The inference system HInf
is dynamically refutationally complete w.r.t. (HRedI,HRedC), as defined in Defini-
tion 3.26.

Proof. By Theorem 17 of Waldmann et al., this follows from Theorem 3.44 and
Lemma 3.43.

3.5. Implementation
We have implemented our four calculi in the Zipperposition prover. In previous
work, Cruanes had already implemented a mode for first-order logic and a pragmatic
higher-order mode with support for λ-abstractions and extensionality, but without
any completeness guarantees.

The pragmatic higher-order mode provided a convenient basis to implement
our calculi. It employs higher-order term and type representations and orders. Its
ad hoc calculus extensions are similar to our calculi. They include an ARGCONG-
like rule and a POSEXT-like rule, and SUP inferences are performed only at green
subterms. One of the bugs we found during our implementation work occurred
because argument positions shift when applied variables are instantiated. We
resolved this by numbering argument positions in terms from right to left.

To implement the λ-free higher-order mode, we restricted the unification al-
gorithm to non-λ-abstractions. To satisfy the requirements on selection, we avoid
selecting literals that contain higher-order variables. To comply with our redundancy
notion, we disabled rewriting of nongreen subterms. To improve term indexing of
higher-order terms, we replaced the imperfect discrimination trees by fingerprint
indices [118]. To speed up the computation of the SUP conditions, we omit the
condition Cσ 6¹ Dσ in the implementation, at the cost of performing some additional
inferences.

3

52 3. Superposition for Lambda-Free Higher-Order Logic

For the purifying calculi, we implemented purification as a simplification rule.
This ensures that it is applied aggressively on all clauses, whether initial clauses
from the problem or clauses produced during saturation, before any inferences are
performed.

For the nonpurifying calculi, we added the possibility to perform SUP inferences
at variable positions. This means that variables must be indexed as well. In
addition, we modified the variable condition. Depending on the term ordering, it
may be expensive or even impossible to decide whether there exists a grounding
substitution θ with tσθ Â t′σθ and Cσθ ≺ C′′σθ. We overapproximate the condition
as follows: (1) check whether x appears with different arguments in the clause C;
(2) use a term-order-specific algorithm to determine whether there might exist a
grounding substitution θ and terms ū such that tσθ Â t′σθ and tσθ ū ≺ t′σθ ū; and
(3) check whether Cσ 6º C′′σ. If these three conditions apply, we conclude that there
might exist a ground substitution θ witnessing nonmonotonicity.

For the extensional calculi, we add axiom (EXT) to the clause set. To curb the
explosion associated with extensionality, this axiom and all clauses derived from
it are penalized by the clause selection heuristic. We also added the NEGEXT rule
described in Section 3.3.2, which resembles Vampire’s extensionality resolution
rule [68].

The ARGCONG rule can have infinitely many conclusions on polymorphic clauses.
To capture this in the implementation, we store these infinite sequences of conclu-
sions in the form of finite instructions of how to obtain the actual clauses. In addition
to the usual active and passive set of the DISCOUNT loop architecture [7], we use
a set of scheduled inferences that stores these instructions. We visit the scheduled
inferences in this additional set and the clauses in the passive set fairly to achieve
dynamic completeness of our prover architecture. Waldmann et al. [140, Example 34]
describe this architecture in more detail.

Using Zipperposition, we can quantify the disadvantage of the applicative encod-
ing on Example 3.10. A well-chosen KBO instance with argument coefficients allows
Zipperposition to derive ⊥ in 4 iterations of the prover’s main loop and 0.03 s. KBO
or LPO with default settings needs 203 iterations and 0.4 s, whereas KBO or LPO on
the applicatively encoded problem needs 203 iterations and more than 1 s due to the
larger terms.

3.6. Evaluation
We evaluated Zipperposition’s implementation of our calculi on Sledgehammer-
generated Isabelle/HOL benchmarks [40] and on benchmarks from the TPTP library
[131,132]. Our experimental data is available online.1

The Sledgehammer benchmarks, corresponding to Isabelle’s Judgment Day suite,
were regenerated to target clausal λ-free higher-order logic. They comprise 2506
problems in total, divided in two groups based on the number of Isabelle facts
(lemmas, definitions, etc.) selected for inclusion in each problem: either 16 facts
(SH16) or 256 facts (SH256). The problems were generated by encoding λ-expressions

1https://doi.org/10.5281/zenodo.3992618

https://doi.org/10.5281/zenodo.3992618

3.6. Evaluation

3

53

as λ-lifted supercombinators [106].
From the TPTP library, we collected 708 first-order problems in TFF format and

717 higher-order problems in THF format, both groups containing both monomorphic
and polymorphic problems. We excluded all problems that contain interpreted
arithmetic symbols, the symbols (@@+), (@@-), (@+), (@-), (&), or tuples, as well
as the SYN000 problems, which are only intended to test the parser, and problems
whose clausal normal form takes longer than 15 s to compute or falls outside the
λ-free fragment described in Section 3.2.

We want to answer the following questions:
1. What is the overhead of our calculi on first-order benchmarks?
2. Do the calculi outperform the applicative encoding?
3. Do the purifying or the nonpurifying calculi achieve better results?
4. What is the cost of nonmonotonicity?

Since the calculus described in this chapter is only a stepping stone towards a prover
for full higher-order logic, it would be misleading to compare this prototype with
state-of-the-art higher-order provers that support a stronger logic. Many of the
higher-order problems in the TPTP library are in fact satisfiable for our λ-free logic,
even though they may be unsatisfiable for full higher-order logic and labeled as such
in the TPTP.

To answer question (1) and (3), we ran Zipperposition’s first-order mode on the
first-order benchmarks and the purifying and nonpurifying modes on all bench-
marks. To answer question (2), we implemented an applicative encoding mode in
Zipperposition, which performs the applicative encoding after the clausal normal
form transformation and then proceeds with Zipperposition’s first-order mode. The
encoding makes all function symbols nullary and replaces all applications with a
polymorphic binary app symbol.

We instantiated all four calculi with three term orders: LPO [34], KBO [16]
(without argument coefficients), and EPO. Among these, LPO is the only nonmono-
tonic order and therefore the most relevant option to evaluate our calculi, which
are designed to cope with nonmonotonicity. To answer question (4), we also include
the monotone orders KBO and EPO. EPO is an order designed to resemble LPO
while fulfilling the requirements of a ground-total simplification order on λ-free
terms. We will discuss it in more detail in Chapter 4. KBO and EPO serve as a
yardstick to assess the cost of nonmonotonicity. With these monotone orders, no
superposition inferences at variables are necessary and thus the nonpurifying calculi
become a straightforward generalization of the standard superposition calculus with
the caveat that it may be more efficient to superpose at nongreen subterms directly
instead of relying on the ARGCONG rule. On first-order benchmarks and in the
applicative encoding mode, all three orders are monotone because they are monotone
on first-order terms.

Figure 3.1 summarizes, for the intensional calculi, the number of solved satisfi-
able and unsatisfiable problems within 180 s, and the time taken to show unsatisfia-
bility. Figure 3.2 presents the corresponding data for the extensional calculi. The
average time is computed over the problems that all configurations for the respective
benchmark set and term order found to be unsatisfiable within the time limit. For
each combination of benchmark set and term order, the best result is highlighted

3

54 3. Superposition for Lambda-Free Higher-Order Logic

in bold. The evaluation was carried out on StarExec Iowa [127] using Intel Xeon
E5-2609 0 CPUs clocked at 2.40 GHz.

The experimental results on the TFF part of the TPTP library confirm that our
calculi handle the vast majority of problems that are solvable in first-order mode
gracefully, and thus that the overhead is minimal, answering question (1). On first-
order problems, the calculi are occasionally at variance with the first-order mode, due
to the interaction of ARGCONG with polymorphic types and due to the extensionality
axiom (EXT). In contrast, the applicative encoding is comparatively inefficient on
problems that are already first-order. For LPO, the success rate decreases by around
15%, and the average time to show unsatisfiability triples.

The SH16 benchmarks consist mostly of small higher-order problems. The
small number of axioms benefits the applicative encoding enough to outperform the
purifying calculi but not the nonpurifying ones. The SH256 benchmarks are also
higher-order but much larger. Such problems are underrepresented in the TPTP
library. On these, our calculi clearly outperform the applicative encoding, answering
question (2) decisively. This is hardly surprising given that the proving effort is
dominated by first-order reasoning, which they can perform gracefully.

The THF benchmarks generally require more sophisticated higher-order rea-
soning than the Sledgehammer benchmarks, as observed by Sultana, Blanchette,
and Paulson [128, Section 5]. On these benchmarks, the empirical results are less
clear; the applicative encoding and our calculi are roughly neck-and-neck. The
nonpurifying calculi detect unsatisfiability slightly more frequently, whereas the
applicative encoding tends to find more saturations. It seems that, due to the large
amount of higher-order reasoning necessary to solve TPTP problems, the advantage
of our calculi on the first-order parts of the derivation is not a decisive factor on
these benchmarks.

Concerning question (3), the nonpurifying calculi outperform their purifying
relatives across all benchmarks. The raw data show that on most benchmark sets,
the problems solved by the nonpurifying calculi are almost a superset of the problems
solved by the purifying calculi. Only on the SH256 benchmarks, the purifying calculi
can solve a fair number of problems that the nonpurifying calculi cannot solve
(11 problems for the intensional calculi with LPO and 9 problems for the extensional
calculi with LPO).

KBO tends to have a slight advantage over LPO on all benchmark sets. But the
gap between KBO and LPO is not larger on the higher-order benchmarks than on
TFF. Since LPO is monotonic on first-order terms but nonmonotonic on higher-order
terms, whereas KBO is monotonic on both, the best answer we can give to question (4)
is that no substantial cost seems to be associated with nonmonotonicity. In particular,
for the nonpurifying calculi, the additional superposition inferences at variables
necessary with LPO do not have a negative impact on the overall performance. This
indicates that our approach is an excellent foundation for higher-order logics with
λ-expressions, for which no suitable monotonic orders exist. EPO generally performs
worse than the other two orders, with the exception of the nonpurifying calculus on
SH16 benchmarks, where it is roughly neck-and-neck with LPO. This suggests that
for small, mildly higher-order problems, EPO can be a viable LPO-like complement
to KBO if one considers the effort to implement our calculi too high.

3.6. Evaluation

3

55

sat # unsat � time
LPO KBO EPO LPO KBO EPO LPO KBO EPO

SH16 applicative encoding 111 189 65 373 382 157 0.9 1.2 10.7
nonpurifying calculus 136 165 133 383 385 381 0.4 0.3 0.0
purifying calculus 82 98 82 363 363 355 1.3 2.0 0.0

SH256 applicative encoding 1 1 1 471 488 36 9.4 8.7 63.8
nonpurifying calculus 1 1 1 543 554 498 2.3 2.3 0.1
purifying calculus 1 1 1 523 528 484 2.6 3.4 0.5

TFF first-order mode 0 0 0 212 229 107 1.9 2.3 1.5
applicative encoding 0 0 0 180 205 21 7.0 10.0 4.6
nonpurifying calculus 0 0 0 210 229 105 1.9 2.4 1.5
purifying calculus 0 0 0 211 229 105 2.1 2.6 1.6

THF applicative encoding 127 115 111 523 522 428 0.9 0.6 0.8
nonpurifying calculus 111 114 112 529 527 516 0.3 0.3 0.0
purifying calculus 108 109 108 528 526 514 0.3 0.5 0.0

Figure 3.1: Evaluation of the intensional calculi

sat # unsat � time
LPO KBO EPO LPO KBO EPO LPO KBO EPO

SH16 applicative encoding 79 152 48 379 386 157 1.2 1.3 11.4
nonpurifying calculus 103 131 95 386 393 387 0.4 0.1 0.0
purifying calculus 32 57 32 367 365 363 2.0 1.7 0.0

SH256 applicative encoding 1 1 1 462 486 36 7.5 9.4 63.8
nonpurifying calculus 1 1 1 548 572 504 1.9 2.1 0.1
purifying calculus 1 1 1 512 529 482 2.2 5.0 0.1

TFF first-order mode 0 0 0 212 229 107 1.9 2.5 1.5
applicative encoding 0 0 0 178 202 21 7.9 11.7 4.7
nonpurifying calculus 0 0 0 207 229 106 2.1 3.0 1.5
purifying calculus 0 0 0 210 229 105 2.2 3.2 1.6

THF applicative encoding 108 109 105 526 527 436 0.9 0.6 1.1
nonpurifying calculus 106 108 107 539 535 526 0.3 0.3 0.0
purifying calculus 96 97 96 530 529 519 0.3 0.6 0.0

Figure 3.2: Evaluation of the extensional calculi

3

56 3. Superposition for Lambda-Free Higher-Order Logic

3.7. Discussion and Related Work
Our calculi join a long list of extensions and refinements of superposition. Among the
most closely related is Peltier’s [112] Isabelle/HOL formalization of the refutational
completeness of a superposition calculus that operates on λ-free higher-order terms
and that is parameterized by a monotonic term order. Extensions with polymor-
phism and induction, independently developed by Cruanes [46,47] and Wand [141],
contribute to increasing the power of automated provers. Detection of inconsistencies
in axioms, as suggested by Schulz et al. [121], is important for large axiomatizations.

Also of interest is Bofill and Rubio’s [39] integration of nonmonotonic orders in
ordered paramodulation, a precursor of superposition. Their work is a veritable tour
de force, but it is also highly complicated and restricted to ordered paramodulation.
Lack of compatibility with arguments being a mild form of nonmonotonicity, it
seemed preferable to start with superposition, enrich it with an ARGCONG rule, and
tune the side conditions until we obtained a complete calculus.

Most complications can be avoided by using a monotonic order such as KBO
without argument coefficients. However, coefficients can be useful to help achieve
compatibility with β-reduction. For example, the term λx. x+ x could be treated
as a constant with a coefficient of 2 on its argument and a heavy weight to ensure
(λx. x+ x) y Â y+ y. Although they do not use argument coefficients, the recently
developed combinatory superposition calculus by Bhayat and Reger [28] needs a
nonmonotonic order to cope with β-reduction. Their approach is modeled after our
intensional nonpurifying calculus.

In the term rewriting community, λ-free higher-order logic is known as applica-
tive first-order logic. First-order rewrite techniques can be applied to this logic
via the applicative encoding. However, there are similar drawbacks as in theorem
proving to having app as the only nonnullary symbol. Hirokawa et al. [72] propose a
technique that resembles our mapping F to avoid these drawbacks.

Another line of research has focused on the development of automated proof pro-
cedures for higher-order logic. We discussed such procedures already in Section 1.3.

3.8. Conclusion
We presented four superposition calculi for intensional and extensional clausal λ-
free higher-order logic and proved them refutationally complete. The calculi nicely
generalize standard superposition and are compatible with our λ-free higher-order
LPO and KBO. Especially on large problems, our experiments confirm what one
would naturally expect: that native support for partial application and applied
variables outperforms the applicative encoding.

The new calculi reduce the gap between proof assistants based on higher-order
logic and superposition provers. We can use them to reason about arbitrary higher-
order problems by axiomatizing suitable combinators. But perhaps more importantly,
many ideas developed in this chapter form the basis of our richer higher-order calculi.

4
The Embedding Path Order

for Lambda-Free
Higher-Order Terms

The embedding path order (EPO) is a variant of the recursive path order (RPO)
for untyped λ-free higher-order terms (also called applicative first-order terms).
Unlike other higher-order variants of RPO, it is a ground-total simplification order,
making it suitable for superposition. This property makes it impossible to coincide
with RPO on first-order terms, but EPO strongly resembles RPO in the principle to
compare terms by their heads according to a symbol precedence. I formally proved
the order’s theoretical properties in Isabelle/HOL and evaluated the order using the
Zipperposition prover.

57

4

58 4. The Embedding Path Order for Lambda-Free Higher-Order Terms

4.1. Introduction
To restrict the search space, the superposition calculus uses a term order, which
in practice is usually the Knuth–Bendix order (KBO) or the recursive path order
(RPO). Extending the calculus to higher-order logic requires suitable higher-order
term orders. The proof of refutational completeness of the first-order superposition
calculus relies on a ground-total and well-founded simplification order. For a higher-
order superposition calculus, a simplification order for higher-order terms modulo β-
conversion would be desirable but does not exist, as demonstrated by a=β (λx. a) a> a,
where the inequality follows from the subterm property.

However, for λ-free higher-order terms, also known as applicative first-order
terms, ground-total simplification orders do exist, for instance the generalization of
KBO developed by Becker et al. [16] and the term order presented in this chapter.
Such term orders can be put to use in superposition variants for λ-free higher-order
logic, as implemented in Ehoh [139], and also for richer higher-order logics, as in
recent work by Bhayat and Reger [28].

In contrast to KBO, a λ-free higher-order variant of RPO that is a simplification
order and coincides with first-order RPO on the first-order fragment of lambda-free
higher-order logic is impossible, which the following example shows: If g Â f Â bÂ a,
then g b > f (g a) b by coincidence with first-order RPO, corresponding to g(b) >
f(g(a),b) in first-order syntax, but g < f (g a) by the subterm property and hence
g b< f (g a) b by compatibility with contexts, yielding a contradiction.

Does there exist a ground-total simplification order on λ-free higher-order terms
that resembles RPO but does not coincide with RPO on first-order terms? One candi-
date is the applicative RPO, which is obtained by encoding λ-free higher-order terms
applicatively into first-order logic via a binary symbol app representing application
and then using first-order RPO. However, the symbol app becomes pervasive, which
undermines RPO’s principle of comparing the precedence of different symbols. More-
over, it is impossible to assign different extension orders such as the lexicographic or
multiset extension to different function symbols because the only applied function
symbol in the encoding is app.

The embedding path order (EPO1) presented here allows different extension
operators for different function symbols (Section 4.3). The main difference to RPO
lies in using the notion of embeddings where RPO uses the notion of direct subterms
(Section 4.4). EPO is a ground-total simplification order and I have formally proved
this property in Isabelle/HOL (Section 4.5). I illustrate the strengths and weak-
nesses of EPO on several examples (Section 4.6). I have implemented EPO in the
superposition prover Zipperposition (Section 4.7) and evaluated it on TPTP [129]
and Sledgehammer [111] benchmarks (Section 4.8).

In the literature, there are several other variants of RPO for higher-order terms.
Blanchette et al.’s RPO for λ-free higher-order terms [34] resembles EPO the most,
but it sacrifices compatibility with contexts to be able to coincide with first-order
RPO. Superposition with such nonmonotonic orders is possible but compromises the-
oretical simplicity and to some degree practical efficiency, as demonstrated by Bofill
and Rubio [39] and in the previous chapter. Although targeting the more difficult

1Beware that the unrelated exptime path order [55] has the same abbreviation.

4.2. Preliminaries

4

59

problem of providing useful orders for full higher-order terms with λ-abstractions,
the following RPO variants are vaguely related to the present work: Lifantsev and
Bachmair’s lexicographic path-order on λ-free higher-order terms [100], Jouannaud
and Rubio’s higher-order RPO (HORPO) [78], Kop and Van Raamsdonk’s iterative
HORPO [91], the HORPO extension with polynomial interpretation orders by Bofill
et al. [38], and the computability path order by Blanqui et al. [36]. However, these
orders all lack ground-totality and, except for Lifantsev and Bachmair’s order, the
subterm property for terms of different types.

4.2. Preliminaries
We fix a set of variables V and a nonempty (possibly infinite) set of symbols Σ. We
reserve the names x, y, z for variables and a,b,c, f,g,h for symbols.

In untyped λ-free higher-order logic, a term is defined inductively as being either
a variable, a symbol, or an application s t, where s and t are terms.

We reserve the names t, s,v,u for terms and use T to denote the set of all terms.
Application is left-associative, i.e., s t u = (s t) u. These terms are isomorphic to
applicative terms [83]. Any term can be written as ζ t̄n using spine notation [44],
where ζ is a nonapplication term, called head, and t̄n is a tuple of terms, called
arguments. It represents the term ζ t1 . . . tn.

The size |t| of a term t is inductively defined as 1 if t ∈V ∪Σ and as |t1|+ |t2| if t
is an application t1 t2. A subterm of a term t is inductively defined as being either t
itself or, if t is an application t1 t2, a subterm of t1 or of t2. The positions of a term
are tuples containing the elements left and right and are defined as follows: If the
given term is a head, its only position is (); if the given term is an application t s, the
tuple left · p is a position of t s for each position p of t and right · q is a position of t s
for each position q of s.

The embedding step relation −■→emb is inductively defined as follows: For any
terms s and t, there is a left-embedding step t s −■→emb t at position () and a right-
embedding step t s −■→emb s at position (). If for X = left or X = right there is an
X -embedding step t −■→emb t′ at some position p, then there is an X -embedding
step t s −■→emb t′ s at position left · p and an X -embedding step s t −■→emb s t′ at
position right · p. Let the embedding relation �emb be the reflexive transitive closure
of −■→emb. For example, f a b c d −■→emb a b c d is a right-embedding step at position
(left, left, left); f ab c d−■→emb f ac d is a left-embedding step at position (left, left); and
f (g (h a)b)c−■→emb f (g h b)c is a left-embedding step at position (left,right, left,right).

For a term ξ t̄n with n > 0, we define chop(ξ t̄n) as the term resulting from
applying t1 to the remaining arguments, i.e., chop(ξ t̄n) = t1 t2 . . . tn. For example,
chop(f (g a) (h b))= g a (h b).

4.3. Extension Operators
In the spirit of RPO, EPO compares the heads of terms and, in case of equality,
proceeds to compare the argument tuples. There is a variety of ways to extend a
binary relation > on an arbitrary set A to a binary relation >> on tuples A∗, which
we call extension operators. We define extension operators on binary relations, not

4

60 4. The Embedding Path Order for Lambda-Free Higher-Order Terms

on partial orders, because they are used in the definition of EPO at a point where we
have not shown EPO to be a partial order yet.

Definition 4.1. We define the following properties of extension operators > 7→>>,
which are required for EPO to be a ground-total and well-founded simplification order.
Here, given a function h : A → A, we write h(ā) for the componentwise application of
h to ā.
X1. Monotonicity: b̄ >>1 ā implies b̄ >>2 ā if for all a, b ∈ A, b >1 a implies b >2 a
X2. Preservation of stability: b̄ >> ā implies h(b̄) >> h(ā) if for all a, b ∈ ā∪ b̄,

b > a implies h(b)> h(a)
X3. Preservation of transitivity: >> is transitive if > is transitive
X4. Preservation of irreflexivity: >> is irreflexive if > is irreflexive and transi-

tive
X5. Preservation of well-foundedness: >> is well founded if > is well founded
X6. Compatibility with tuple contexts: b > a implies c̄ ·b · d̄ >> c̄ ·a · d̄
X7. Preservation of totality: >> is total if > is total
X8. Compatibility with prepending: b̄ >> ā implies c · b̄ >> c · ā
X9. Compatibility with appending: b̄ >> ā implies b̄ · c >> ā · c

X10. Minimality of the empty tuple: a >> () for all a ∈ A

The length-lexicographic extension operator, left-to-right or right-to-left, fulfills
all these properties:

Definition 4.2. The left-to-right length-lexicographic extension operator > 7→>>ltr is
defined inductively as follows: ām >>ltr b̄n if m > n; or m = n > 0 and a1 > b1; or m =
n > 0, a1 = b1, and (a2, . . . ,am)>>ltr (b2, . . . ,bn). The right-to-left length-lexicographic
extension operator > 7→>>rtl is defined inductively as follows: ām >>rtl b̄n if m > n; or
m = n > 0 and am > bn; or m = n > 0, am = bn, and (a1, . . . ,am−1)>>rtl (b1, . . . ,bn−1).

The multiset extension operator fulfills all properties except X7, but if combined
with a lexicographic comparison as a tie-breaker, it fulfills all properties as well:

Definition 4.3. The multiset extension operator with tie-breaker > 7→>>ms is defined
as follows: ā >>ms b̄ if the multiset containing the elements of ā is larger than the
multiset containing the elements of b̄ with respect to Dershowitz and Manna’s
multiset order [50]; or if the two multisets are equal and ā >>ltr b̄.

Blanchette et al. [34] give a more detailed account of different extension operators.
Their list of properties is identical with the one above, except for X2, which they
originally formulated differently but corrected in their technical report [33].

4.4. The Order
Any simplification order has the embedding property, i.e., the property that t�emb s
implies t º s [8, Lemma 5.4.7]. The fundamental idea of EPO is to enforce the
embedding property by replacing the notion of subterms used in the definition of
RPO by the notion of embeddings. Performed naively, this causes issues with stability
under substitution and with the time complexity of the order computation due to

4.4. The Order

4

61

the large number of possible embedding steps. Both of these issues are addressed by
EPO.

Definition 4.4 (EPO). Let Â be a well-founded total order on Σ. For each f ∈Σ, let
> 7→ >>f be an extension operator satisfying the properties of Definition 4.1. The
induced embedding path order >ep is inductively defined as follows: t >ep s if any of
the following conditions is met, where t = ξ t̄n and s = ζ s̄m:

E1. n > 0 and chop(t)≥ep s
E2. ξ,ζ ∈Σ, ξÂ ζ, and we have either m = 0 or t >ep chop(s)
E3. ξ,ζ ∈Σ, ξ= ζ, t̄n >>ζep s̄m, and we have either m = 0 or t >ep chop(s)
E4. ξ,ζ ∈ V , ξ = ζ, t̄n >>f

ep s̄m for all f ∈ Σ, n > 0, and we have either m = 0 or
chop(t)>ep chop(s)

The following examples illustrate the differences between RPO and EPO on
first-order terms. We use the precedence g Â f Â c Â b Â a and the left-to-right
length-lexicographic extension for both orders.

f (g a)b<rp g b f (g a)c<rp g b g x y>rp f y y
f (g a)b>ep g b f (g a)c>ep g b g x y 6≶ep f y y

The first term pair illustrates that RPO does not have the embedding property,
whereas EPO does. The relation f (g a) b >ep g b can be shown by applying E1. E1
requires g a b >ep g b, which holds by E3. Finally we need E2 to show g a b >ep b.
The second term pair shows that there are further disagreements between the two
orders, even if one term is not an embedding of the other. As above, f (g a)c>ep g b
can be established by applying E1, followed by E3 and E2. The third term pair is
comparable with RPO but incomparable with EPO. In general, EPO cannot judge
a term to be smaller if it contains more occurrences of a variable. I conjecture that
there are no first-order terms comparable with EPO but incomparable with RPO. In
this sense, EPO is weaker than RPO on first-order terms.

The remainder of this section justifies some of the design decisions in the defini-
tion of EPO and explains how they contribute to make EPO a ground-total simplifi-
cation order that can be computed fairly efficiently.

Condition E1 enforces the embedding property in a similar way as RPO enforces
the subterm property. This underlying idea gives EPO its name. A naive approach
would be to test all embedding steps to enforce the embedding property, but it is
sufficient to test only the embedding step chop, yielding a better computational
complexity. The remaining conditions follow a similar structure as RPO, but contain
subconditions on chop where RPO has subconditions on subterms.

To achieve stability under substitutions, it is essential to demand chop(t) >ep
chop(s) instead of t >ep chop(s) in E4, as the following examples show. If >′

ep is the
relation obtained from >ep by replacing ‘chop(t)’ by ‘t’ in E4, then we have

x f f >′
ep x x, but f y f f 6>′

ep f y (f y)

x f x >′
ep x (x f), but y f f (y f) 6>′

ep y f (y f f)

Using >ep, all of these pairs are incomparable.

4

62 4. The Embedding Path Order for Lambda-Free Higher-Order Terms

In condition E4, it is crucial to check t̄n >>f
ep s̄m for all f ∈Σ. In contrast, λ-free

KBO [16] and λ-free RPO [34] allow us to use a map ghd from variables to possible
ground heads that might occur when a variable is instantiated. The corresponding
condition in these orders then states ‘t̄n >>f

ep s̄m for all f ∈ ghd (ζ)’. For EPO, this
approach cannot be used. For example, assume b Â a, ghd (x) = {f}, and that f uses
the left-to-right length-lexicographic extension. Then we would have x b a> x a b if
we checked only the extension orders for ghd (x). This contradicts stability under
substitutions because, if g uses the right-to-left length-lexicographic extension, y g b a
and y g a b are incomparable, assuming ghd (y)= {f}.

EPO is not a simplification order when (nonlength-)lexicographic extensions
are used. With the left-to-right lexicographic extension, it lacks compatibility with
contexts because for g Â f Â bÂ a, we have f (g a)>ep g but f (g a) b<ep g b. With the
right-to-left lexicographic extension, it lacks stability under substitutions because
x f > x but f y f 6> f y. With the right-to-left lexicographic extension, it also lacks
well-foundedness because for f Â bÂ a, we have f b>ep f b a>ep f b a a>ep · · · .

4.5. Properties of the Order
EPO fulfills all the properties of a ground-total simplification order. The proofs in this
section have been developed in Isabelle/HOL and published in the Archive of Formal
Proofs [18]. They are inspired by the corresponding proofs about λ-free RPO [34],
which in turn were adapted from Baader and Nipkow [8] and Zantema [143].

Theorem 4.5 (Transitivity). u >ep t and t >ep s implies u >ep s.

Proof. By well-founded induction on the multiset {|u| , |t| , |s|} with respect to the
multiset extension [50] of > on N. Let u =ψ ūr, t = ξ t̄n and s = ζ s̄m.

If u >ep t is derived by E1, then r > 0 and chop(u)≥ep t. Applying the induction
hypothesis to chop(u), t, s, it follows that chop(u)>ep s and hence u >ep s by E1.

If u >ep t is derived by E2 or E3 and t >ep s is derived by E1, then n > 0 and
u >ep chop(t)≥ep s. Applying the induction hypothesis to u, chop(t), s, it follows that
u >ep s.

If u >ep t is derived by E4 and t >ep s is derived by E1, then r > 0, n > 0, and
chop(u)>ep chop(t)≥ep s. By applying the induction hypothesis to chop(u), chop(t), s,
we get chop(u)>ep s. By E1, it follows that u >ep s.

If u >ep t and t >ep s are derived by E2 and E2, by E2 and E3, or by E3 and E2,
respectively, then ψÂ ζ and t >ep chop(s). If m = 0, we can apply E2 directly to obtain
u >ep s. If m > 0, by the induction hypothesis for u, t, chop(s), it follows from u >ep t
and t >ep chop(s) that u >ep chop(s). Then we can apply E2 to obtain u >ep s.

If u >ep t and t >ep s are both derived by E3, then ψ= ξ= ζ ∈Σ, ū >>ξep t̄, t̄ >>ζep s̄,
and either m = 0 or t >ep chop(s). By the induction hypothesis and by preservation
of transitivity (property X3) on the set consisting of the elements of ū, t̄ and s̄, it
follows that ū >>ζep s̄. If m = 0, we obtain u >ep s directly by E3. If m > 0, we have
t >ep chop(s) and by applying the induction hypothesis to u, t, chop(s), it follows that
u >ep chop(s). By E3, we have u >ep s.

If u >ep t and t >ep s are both derived by E4, then ψ= ξ= ζ ∈Σ, ū >>f
ep t̄, t̄ >>f

ep s̄
for all f ∈Σ, r > 0, n > 0, chop(u) >ep chop(t), and either m = 0 or chop(t) >ep chop(s).

4.5. Properties of the Order

4

63

As above, by the induction hypothesis and by preservation of transitivity (property
X3) on the set consisting of the elements of ū, t̄ and s̄, it follows that ū >>f

ep s̄ for
all f ∈ Σ. If m = 0, we obtain u >ep s directly by E4. If m > 0, we have chop(u) >ep
chop(t)>ep chop(s). By applying the induction hypothesis to chop(u), chop(t), chop(s),
it follows that chop(u)>ep chop(s). By E4, we have u >ep s.

If one of the inequalities u >ep t and t >ep s is derived by E2 or E3, the other
cannot be derived by E4 because ξ must be either a variable or a symbol.

Theorem 4.6 (Irreflexivity). s 6>ep s.

Proof. By strong induction on |s|. We suppose that s >ep s and derive a contradiction.
Let s = ζ s̄m.

If s >ep s is derived by E1, then m > 0 and chop(s) ≥ep s. From the definition of
chop, it is clear that chop(s) 6= s. Hence, chop(s) >ep s. By E1, we have s >ep chop(s).
By transitivity (Theorem 4.5), it follows that chop(s)>ep chop(s), which contradicts
the induction hypothesis.

If s >ep s is derived by E2, we have ζÂ ζ, in contradiction to Â being a total order.
If s >ep s is derived by E3 or E4, we have s̄ >>f

ep s̄ for some f ∈Σ. By preservation
of irreflexivity (property X4) on the set consisting of the elements of s̄ and by
transitivity of >ep (Theorem 4.5), it follows that s′ >ep s′ for some s′ ∈ s̄. This
contradicts the induction hypothesis.

Lemma 4.7 (Embedding Step Property). t −■→emb s implies t >ep s.

Proof. By strong induction on |s|+ |t|. Let s = ζ s̄m and t = ξ t̄n. We distinguish the
following three cases, depending on the position of the embedding t −■→emb s.

– Generalized Chop: right-embedding at a position left j for some 0≤ j < n,
i.e., s = ti ti+1 . . . tn where i = n− j.

– Remove Argument: left-embedding at a position left j for some 0≤ j < n,
i.e., s = ξ t1 . . . ti−1 ti+1 . . . tn where i = n− j.

– Reduce Argument: embeddings at other positions,
i.e., s = ξ t1 . . . ti−1 u ti+1 . . . tn for some i and some u such that ti −■→emb u.

CASE 1 (GENERALIZED CHOP): Then s = ti ti+1 . . . tn for some i. If i = 1, then
s = chop(t), which implies t >ep s by E1. If i > 1, there is a right-embedding at
position leftn−i from chop(t) to s. By the induction hypothesis, chop(t)>ep s and hence
t >ep s by E1.

CASE 2 (REMOVE ARGUMENT): Then ζ= ξ and s̄m = t1, . . . , ti−1, ti+1, . . . , tn. Depend-
ing on whether ζ ∈V or ζ ∈Σ, we will use E3 or E4 to show t >ep s. To apply either
condition, we show t̄n >>f

ep s̄m for all symbols f ∈Σ. Since s̄m = t1, . . . , ti−1, ti+1, . . . , tn,
this follows from properties X8, X9, and X10. If m = 0, we can apply E3 or E4 directly
to obtain t >ep s.

Otherwise, both m and n are nonzero and we show that chop(t) −■→emb chop(s)
by a case distinction on whether i = 1 or i > 1 as follows. If i = 1, then chop(t) =
t1 t2 . . . tn and chop(s) = t2 t3 . . . tn. Hence, there is a right-embedding step at
position leftn−2 from chop(t) to chop(s). If i > 1, then chop(t)= t1 t2 . . . tn and chop(s)=
t1 t2 . . . ti−1 ti+1 . . . tn. Hence, there is a left-embedding step at position leftn−i from
chop(t) to chop(s).

4

64 4. The Embedding Path Order for Lambda-Free Higher-Order Terms

By the induction hypothesis, chop(t)>ep chop(s). If ζ ∈V , we can then apply E4
to obtain t >ep s. Otherwise, ζ ∈Σ, and we apply E1 to obtain t >ep chop(s) and E3 to
obtain t >ep s.

CASE 3 (REDUCE ARGUMENT): Then ζ= ξ and s̄ = t1, . . . , ti−1,u, ti+1, . . . , tn for some
i and some u such that ti −■→emb u. As above, depending on whether ζ ∈V or ζ ∈Σ,
we will use E3 or E4 to show t >ep s.

To apply either condition, we show t̄n >>f
ep s̄m for all symbols f ∈ Σ. By the

induction hypothesis, ti −■→emb u implies ti >ep u. By property X6, we have t̄n >>f
ep s̄m

for all f ∈Σ.
Both m and n are nonzero because 0< i ≤ m = n. We observe that chop(t)−■→emb

chop(s) because the only difference between chop(t) and chop(s) is that chop(t) has
the subterm ti where chop(s) has the subterm u and we have ti −■→emb u. By the
induction hypothesis, it follows that chop(t) >ep chop(s). If ζ ∈ V , we apply E4 to
obtain t >ep s. Otherwise, ζ ∈Σ, and we apply E1 to obtain t >ep chop(s) and E3 to
obtain t >ep s.

Theorem 4.8 (Embedding Property). t�emb s implies t ≥ep s.

Proof. Follows by induction on t�emb s from Lemma 4.7 and Theorem 4.5.

Theorem 4.9 (Subterm Property). For all subterms s of a term t, we have t ≥ep s.

Proof. Follows directly from Theorem 4.8.

Lemma 4.10 (Compatibility with Functions). If v >ep u, then s v >ep s u.

Proof. By induction on |s|.
Let s = ζ s̄. Depending on whether ζ ∈Σ or ζ ∈V , we show s v >ep s u by applying

E3 or E4. By compatibility with tuple contexts (property X6), v >ep u implies
s̄ · v >>f

ep s̄ ·u for all f ∈ Σ. Obviously, the tuples s̄ · v and s̄ ·u are not empty. So it
remains to show s v >ep chop(s u) if ζ ∈Σ or chop(s v)>ep chop(s u) if ζ ∈V . By E1, it
suffices to show chop(s v)>ep chop(s u) in both cases.

If s̄ = (), then chop(s v)= v >ep u = chop(s u) by assumption. Otherwise, chop(s v)=
chop(s) v >ep chop(s) u = chop(s u) by the induction hypothesis.

Lemma 4.11. If t >ep s and v ≥ep u, then t v >ep s u.

Proof. By induction on |t|+ |s| and a case distinction on how t >ep s is derived. Let
t = ξ t̄n and s = ζ s̄m.

If t >ep s is derived by E1, then chop(t) ≥ep s. By E1, t v >ep chop(t v) = chop(t) v.
So it suffices to show chop(t) v ≥ep s u. If chop(t)= s, this follows from Lemma 4.10.
Otherwise, we have chop(t)>ep s and hence chop(t) v >ep s u holds by the induction
hypothesis.

If t >ep s is derived by E2, then ξÂ ζ and either m = 0 or t >ep chop(s). To derive
t v >ep s u using E2, it remains to show t v >ep chop(s u). If m = 0, then chop(s u)= u.
Therefore, by the subterm property (Theorem 4.9), t v >ep v ≥ep u = chop(s u). If
m > 0, then t >ep chop(s), and hence by the induction hypothesis, t v >ep chop(s) u =
chop(s u).

4.5. Properties of the Order

4

65

If t >ep s is derived by E3 or E4, we need to show that t̄n>>f
ep s̄m implies t̄n ·

v>>f
ep s̄m ·u for all f ∈ Σ. We have t̄n · v>>f

ep s̄m · v by compatibility with appending
(property X9). If v = u, we are done. Otherwise, since s̄m ·v>>f

ep s̄m ·u by compatibility
with tuple contexts (property X6), it follows that t̄n ·v>>f

ep s̄m ·u by preservation of
transitivity (property X3) and transitivity of >ep (Theorem 4.5).

If t >ep s is derived by E3, we can apply E3 to derive t v >ep s u. The condition
t v >ep chop(s u) can be shown as we did for E2 above.

If t >ep s is derived by E4, we can apply E4 to derive t v >ep s u. The proof for the
condition chop(t v)>ep chop(s u) is similar to the argument made for E2 above.

Theorem 4.12 (Compatibility with Contexts). If t >ep s, then u (t v̄)>ep u (s v̄).

Proof. By repeatedly applying Lemma 4.11 and finally Lemma 4.10.

Theorem 4.13 (Stability under Substitutions). If t >ep s, then tσ>ep sσ.

Proof. By well-founded induction on the multiset {|t| , |s|} with respect to the multiset
extension [50] of > on N, followed by a case distinction on how t >ep s is derived. Let
t = ξ t̄n and s = ζ s̄m.

If t >ep s is derived by E1, then chop(t) ≥ep s. By the induction hypothesis,
chop(t)σ≥ep sσ. Since tσ−■→emb chop(t)σ, we have tσ>ep chop(t)σ by the embedding
property (Theorem 4.8). Hence, by transitivity tσ>ep sσ.

If t >ep s is derived by E2, then ξ,ζ ∈ Σ, ξÂ ζ, and either m = 0 or t >ep chop(s).
We show tσ>ep sσ by applying E2. Since ξ,ζ ∈Σ, the head of tσ is ξ, the head of sσ
is ζ, and the number of arguments of sσ is m. Hence, it only remains to show that
t >ep chop(s) implies tσ >ep chop(sσ), which follows from the induction hypothesis
and from chop(s)σ= chop(sσ).

If t >ep s is derived by E3, then ξ = ζ ∈ Σ, t̄n >>ζep s̄m, and either m = 0 or
t >ep chop(s). Since ξ,ζ ∈ Σ, the head of tσ is ξ, the head of sσ is ζ, and t̄nσ and
s̄mσ are the respective argument tuples of tσ and sσ. By the induction hypothesis
and preservation of stability (property X2) on the set of elements of t̄n and s̄m,
we have t̄nσ >>ζep s̄mσ. We apply E3 to show tσ >ep sσ. It remains to show that
t >ep chop(s) implies tσ >ep chop(sσ), which follows from the induction hypothesis
and from chop(s)σ= chop(sσ).

If t >ep s is derived by E4, then ξ = ζ ∈ V , t̄n >>f
ep s̄m for all f ∈ Σ, n > 0, and

either m = 0 or chop(t) >ep chop(s). We will show that u (t̄nσ) >ep u (s̄mσ) for all u
with |u| ≤ |ζσ|. For u = ζσ, it then follows that tσ>ep sσ. We show this by induction
on |u|. We will refer to this induction as the inner induction and to the induction on
the multiset {|t| , |s|} as the outer induction.

We have to show u (t̄nσ)>ep u (s̄mσ). We apply E3 or E4 to do so, depending on
whether the head of u is a symbol or a variable. We write u =ψ ūr.

First, we show that ūr · (t̄nσ) >>f
ep ūr · (s̄mσ) for all f ∈ Σ. As above, by the

outer induction hypothesis and preservation of stability (property X2) on the set of
elements of t̄n and s̄m, we have t̄nσ>>f

ep s̄mσ. Then ūr · (t̄nσ)>>f
ep ūr · (s̄mσ) follows

by compatibility with prepending (property X8).
If m = 0 and r = 0, we can apply E3 or E4 directly to show u (t̄nσ)>ep u (s̄mσ).

4

66 4. The Embedding Path Order for Lambda-Free Higher-Order Terms

If r > 0, then chop(u (t̄nσ)) = chop(u) (t̄nσ) >ep chop(u) (s̄mσ) = chop(u (s̄mσ)) by
the inner induction hypothesis. If ψ ∈V , we can then apply E4 to obtain u (t̄nσ)>ep
u (s̄mσ). Otherwise, ψ ∈Σ, and we can apply E1 to obtain u (t̄nσ)>ep chop(u (s̄mσ))
and then E3 to obtain u (t̄nσ)>ep u (s̄mσ).

If m > 0 and r = 0, then we have chop(t)>ep chop(s), chop(u (t̄nσ))= chop(t)σ, and
chop(u (s̄mσ)) = chop(s)σ. By the outer induction hypothesis, chop(t)σ>ep chop(s)σ,
i.e., chop(u (t̄nσ)) >ep chop(u (s̄mσ)). As above, if ψ ∈ V , we can then apply E4
to obtain u (t̄nσ) >ep u (s̄mσ). Otherwise, ψ ∈ Σ, and we can apply E1 to obtain
u (t̄nσ)>ep chop(u (s̄mσ)) and then E3 to obtain u (t̄nσ)>ep u (s̄mσ).

This concludes the inner and the outer induction.

Theorem 4.14 (Ground Totality). For ground terms t and s, we have t <ep s, t = s,
or t >ep s.

Proof. By well-founded induction on the multiset {|t| , |s|} with respect to the multiset
extension [50] of > on N. Let t = ξ t̄n and s = ζ s̄m. Then ξ,ζ ∈Σ because t and s are
ground.

If n > 0 and chop(t) 6<ep s, then by the induction hypothesis chop(t)≥ep s and hence
t >ep s by E1. Thus we can assume that either n = 0 or s >ep chop(t). Analogously,
we can assume that either m = 0 or t >ep chop(s).

If ξ Â ζ or ξ ≺ ζ, we have t >ep s or t <ep s by E2. Otherwise, we have ξ = ζ by
totality of Â. If either t̄ >>ζep s̄ or t̄ <<ζep s̄, then we have t >ep s or t <ep s by E3. By
the induction hypothesis and preservation of totality (property X7) on the set of
elements of s̄ and t̄, if t̄ 6>>ζep s̄ and t̄ 6<<ζep s̄, then t̄ = s̄ and hence t = s.

Theorem 4.15 (Well-Foundedness). The order >ep is well founded.

Proof. We suppose that there exists an infinite descending chain s0 >ep s1 >ep · · ·
and derive a contradiction. We use a minimal counterexample argument [56].

A term s is bad if there is an infinite descending >ep-chain from s. Other terms
are good. Without loss of generality, we assume that s0 has minimal size among all
bad terms and that si+1 has minimal size among all bad terms u with si >ep u.

For each i, let Ui = {u | si �emb u}, where �emb is the irreflexive counterpart of
�emb. Let U = ⋃

i Ui. All terms in U are good: If there existed a bad u ∈U0, then
|s0| > |u|, contradicting the minimality of s0. If there existed a bad u ∈Ui+1 for some
i, then si >ep si+1 >ep u by the embedding property (Theorem 4.8), contradicting the
minimality of si+1.

Only conditions E2, E3, and E4 can have been used to derive si >ep si+1. If
E1 was used, then chop(si) ≥ep si+1 >ep si+2. But then there would be an infinite
descending chain chop(si) >ep si+2 >ep si+3 >ep · · · from chop(si), contradicting the
goodness of chop(si) ∈U .

E2 can have been used only finitely many times in the chain since E3 and E4
preserve the head and E2 makes the head smaller with respect to the well-founded re-
lation Â. Hence, there is a number k such that the entire chain sk >ep sk+1 >ep · · · has
been derived by E3 and E4. Let si = ζ ūi (where contrary to our usual convention the
indices of ūi identify the tuple and do not denote its length). Then we have an infinite
chain ūk >>f

ep ūk+1 >>f
ep · · · for some f. All elements of these tuples are in U because

4.6. Examples

4

67

each element of ūi is embedded in si. However, since all elements of U are good,
>ep is well founded on U. By preservation of well-foundedness (property X5), >>f

ep
is well founded on U∗, which contradicts the existence of the above >>f

ep-chain.

4.6. Examples
The following examples illustrate the benefits of EPO for term rewriting and super-
position.

Example 4.16. Consider the following term rewriting system:

f x Nil
1→ x f x (A y) 2→ f (A (B x)) y f x (B y) 3→ f (B (A x)) y

This rewriting system can be interpreted as a definition of a function on strings. In
this interpretation, Nil represents the empty string, and chains of applications of the
functions A and B to Nil represent strings over the alphabet {A,B}; thus, A (B (B Nil))
represents the string ABB. The function f takes two such strings, reverses the
second string, replaces in the resulting string each A by AB and each B by BA, and
finally appends the first string.

All three rules are orientable by EPO with the right-to-left length-lexicographic
extension for f and precedence f ÂA,B. Rule 1 can clearly be oriented because of the
subterm property (Theorem 4.9). To show that rule 2 can be oriented, we apply E3.
To do so, we need to prove (x,A y) >>f

ep ((A (B x)), y) and f x (A y) >ep A (B x) y. The
former holds by the definition of the right-to-left length-lexicographic extension and
by E1. For the latter, we apply E2. To show f x (A y) >ep B x y, we apply E2 again.
To show f x (A y)>ep x y, we apply E1. To show x (A y)>ep x y, we apply E4. Finally,
A y>ep y holds by E1. The proof for rule 3 is analogous.

To my knowledge, the literature contains no other ground-total simplification or-
der for λ-free higher-order terms that can orient all three of these rules. Rules 2 and 3
are not orientable by applicative KBO or applicative RPO. With applicative KBO, the
weight of the right-hand sides is always too large. With applicative RPO, too many
heads are the application symbol app, preventing us from finding an appropriate
precedence. With λ-free KBO [16], one of the two rules 2 and 3 can be oriented by
assigning either A or B zero weight, but the system as a whole is not orientable with
this order either. With λ-free RPO [34], we can orient all three rules, but λ-free RPO
is not a simplification order.

This example suggests that EPO with a right-to-left length-lexicographic exten-
sion is generally stronger than left-to-right. If the two arguments of f were swapped,
one would intuitively attempt to use the left-to-right extension for f, but fail because
f (A y) x 6>ep y (A (B x)). For this system with the arguments of f swapped, applicative
RPO can orient all three rules. However, swapping arguments cannot be used as
a general approach to orient rewriting systems if the affected function appears
unapplied.

The term order’s ability to orient equations in the right way can have considerable
effects on the performance of superposition provers. The observations made in
Example 4.16 have implications for the efficiency of the superposition calculus:

4

68 4. The Embedding Path Order for Lambda-Free Higher-Order Terms

Example 4.17. Consider the rewrite rules from Example 4.16, recast as equations,
and the negated conjecture given below, for some k ∈N:

f x Nil≈ x f x (A y)≈ f (A (B x)) y f x (B y)≈ f (B (A x)) y

f c (AB)k+1 6≈B (A (f c ((AB)kA)))

where (AB)k+1 stands for A (B . . . (A (B Nil)) . . .) and (AB)kA for A (B . . . (A Nil) . . .).
Using the EPO from Example 4.16 that can orient the equations left to right, super-
position provers can solve this problem by simplification rules only. Simplification
rules are much more efficient than inference rules because simplifications replace
clauses and do not add new ones. Using an order that can orient only the first
equation from left to right, we would need at least k inferences; using an order that
can orient the first equation and only one of the other two, we would need at least
k/2 inferences.

4.7. Implementation
I implemented EPO in the Zipperposition prover. To evaluate EPO, we use the
nonpurifying intensional calculus presented in the previous chapter, which is the
best-performing one among the four. It is designed to deal with orders that do not
have compatibility with arguments, such as λ-free RPO, but falls back to a simpler
calculus with orders that have full compatibility with contexts, such as λ-free KBO
or EPO.

The pseudocode of the implementation of EPO is given in Figure 4.1. As usual
in superposition provers, the procedure compares two terms in both directions,
yielding one of the answers GreaterThan, Equal, LessThan, or Incomparable. When
the pseudocode refers to >ep, ≥ep, and >>f

ep, this is to be interpreted in terms of the
function epo. The syntax ‘ξ t̄n as t’ in the arguments of function definitions means
that t denotes the entire term, ξ denotes its head, and t̄n denotes its arguments.
Zipperposition’s terms use hash consing, allowing for fast equality checks of terms.

It is crucial to the performance of this implementation to use memoization in the
form of a cache on the function epo. For example, to compute that fm x 6≶ep fn y for
m ≤ n, we need at least 4m calls to epo if the cache is inactive. With a cache however,
only (m+1)(n+1) of these calls to epo have to be computed; the other return values
can be found in the cache. More generally, the following lemma holds:

Lemma 4.18. To calculate the order of two terms t and s, the pseudocode in Fig-
ure 4.1 needs at most depth(t) ·depth(s) · |t| · |s| distinct calls to epo. Here, the depth
of a term ζ ūm is 1 if m = 0 and maxu∈ū(depth(u))+1 otherwise.

Proof. We define a set St that overapproximates the set of all embeddings of t that
may be involved in computing the order of t with some other term.

To this end, let �arg be the relation defined by ζ ūn�arg ui for all terms ζ ūn and
all i. Let �chop be the relation defined by ζ ūn�chop chop(ζ ūn) for all terms ζ ūn with
n > 0. Finally, let St be the set of all terms u such that t (�arg∪�chop)∗ u. In other
words, St is inductively defined as follows: Let t ∈ St. For any term ζ ūn ∈ St, let
chop(ζ ūn) ∈ St and ui ∈ St for all i.

4.7. Implementation

4

69

epo(ξ t̄n as t, ζ s̄m as s) =
if t = s then Equal
elif t ∈V and s ∈V then Incomparable
elif t ∈V then (if t occurs in s then LessThan else Incomparable)
elif s ∈V then (if s occurs in t then GreaterThan else Incomparable)
else

if ξÂ ζ then checkE2,E3(t, s)
elif ξ≺ ζ then checkinvE2,E3(t, s)
elif ξ= ζ and ζ ∈Σ then

if t̄n >>ζep s̄m then checkE2,E3(t, s)
elif t̄n <<ζep s̄m then checkinvE2,E3(t, s)
else checkE1(t, s)

elif ξ= ζ and ζ ∈V then
if t̄n >>f

ep s̄m for all f ∈Σ and n > 0 then checkE4(t, s)
elif t̄n <<f

ep s̄m for all f ∈Σ and m > 0 then checkinvE4 (t, s)
else checkE1(t, s)

else checkE1(t, s)

checkE1(ξ t̄n as t, ζ s̄m as s) =
if n > 0 and chop(t)≥ep s then GreaterThan
elif m > 0 and t ≤ep chop(s) then LessThan
else Incomparable

checkE2,E3(ξ t̄n as t, ζ s̄m as s) =
if m = 0 or t >ep chop(s) then GreaterThan else checkE1(t, s)

checkinvE2,E3(ξ t̄n as t, ζ s̄m as s) =
if n = 0 or chop(t)<ep s then LessThan else checkE1(t, s)

checkE4(ξ t̄n as t, ζ s̄m as s) =
if m = 0 or chop(t)>ep chop(s) then GreaterThan else checkE1(t, s)

checkinvE4 (ξ t̄n as t, ζ s̄m as s) =
if n = 0 or chop(t)<ep chop(s) then LessThan else checkE1(t, s)

Figure 4.1: Pseudocode of the EPO implementation

4

70 4. The Embedding Path Order for Lambda-Free Higher-Order Terms

Inspecting the pseudocode, it is obvious that St and Ss together overapproximate
all terms that are involved in computing the order for the two terms t and s.

In a derivation of (�arg∪�chop)∗, any �chop step before a �arg step can be
eliminated. More precisely, we show that (�arg∪�chop)∗ = (�∗

arg ◦�∗
chop

) by proving
that (�chop ◦�arg) ⊆ (�∗

arg). We assume that w�chop v�arg u for some terms w,
v, and u. Let w = ζ w̄n. Then v = chop(ζ w̄n) = w1 w2 . . . wn. Let w1 = ξ v̄n. Then
v = ξ v̄n w2 . . . wn. Hence u ∈ v̄n or u ∈ {w2, . . . ,wn}. In the first case, we have
w�arg w1�arg u; In the second case w�arg u. Either way, w (�∗

arg) u, which is
what we needed to show.

Hence, St is the set of all terms v such that t (�∗
arg ◦�∗

chop
) v. Therefore, we can

overapproximate the size of St as follows:

|St| ≤
∑

u∈T, t�∗
argu

|{v | u�∗
chop v}| ≤ ∑

u∈T, t�∗
argu

|u| ≤ depth(t) · |t|

The last inequality holds because for any number of steps k,∑
u∈T, t�k

argu

|u| ≤ |t|

and the number of �arg steps from t is bounded by depth(t).
Since St and Ss together overapproximate all terms that are involved in com-

puting the order for the two terms t and s, we can overapproximate the number of
distinct calls to epo by |St ×Ss| = |St| · |Ss| ≤ depth(t) · |t| ·depth(s) · |s|.

We can use this lemma to derive the computational complexity of epo. The
following theorem is stated only for the length-lexicographic extension operators
since other extension operators may have a higher computational complexity.

Theorem 4.19. For each f ∈Σ, let > 7→>>f be either the left-to-right or the right-to-
left length-lexicographic extension operator. For terms t and s, the computational
complexity of epo(t, s) as given in Figure 4.1 is O(depth(t)·depth(s)·|t|·|s|·max(|t| , |s|))
if recursive calls are cached.

Proof. Let R(t, s) be the set of term pairs (v,u), for which epo(t, s) triggers directly
or indirectly a call to epo(v,u). Let C(v,u) be the complexity of epo(u,v) assuming
constant time for all recursive calls. Then the computational complexity of epo(t, s)
is

O

(∑
(v,u)∈R(t,s)

C(v,u)

)
(*)

We assume constant time for the recursive calls in the definition of C(v,u) because
each recursive call is either the first one for this argument pair and therefore counted
by another summand of the sum above, or it is not the first one for this argument
pair and can therefore be retrieved from the cache in constant time.

To determine C(v,u), we analyze the implementation in Figure 4.1, assuming
that all recursive calls are O(1). Searching for occurrences of a given variable in a
term, computing chop, counting the number of arguments of a term, and iterating
through the arguments for the length-lexicographic comparison are O(max(|v| , |u|)).

4.8. Evaluation

4

71

All other operations are O(1). Hence, C(v,u) is O(max(|v| , |u|)). Since the term sizes
do not increase in recursive calls, C(v,u) is also O(max(|t| , |s|)) for all (v,u) ∈ R(t, s).
By Lemma 4.18, |R(t, s)| ≤ depth(t) ·depth(s) · |t| · |s|. Hence, by (*), the computational
complexity of epo(t, s) is O(depth(t) ·depth(s) · |t| · |s| ·max(|t| , |s|)).

Compared with first-order KBO or RPO, this is rather slow. Löchner [102,103]
showed that, with a lexicographic extension, KBO can be computed in O(|t|+ |s|) and
RPO in O(|t| · |s|). RPO can be implemented so efficiently because the computation of
the lexicographic order of the arguments, i.e., computing t̄n >>ζep s̄m, can be merged
with testing other conditions, i.e., the condition corresponding to checkE2,E3(t, s). It
is an open question whether a similar optimization is possible for EPO, although it
is definitely not as straightforward as for RPO.

4.8. Evaluation
The following evaluation compares the implementation of EPO with other orders in
Zipperposition. It was performed with a CPU time limit of 300 s on StarExec nodes
equipped with Intel Xeon E5-2609 0 CPUs clocked at 2.40 GHz. The raw evaluation
results are available online and reproducible.2

From the TPTP [129], 665 higher-order problems in THF format were used,
containing both monomorphic and polymorphic problems and excluding problems
that contain arithmetic, tuples, the $distinct predicate, or the $ite symbol, as
well as problems whose clausal normal form falls outside the λ-free fragment.

The Sledgehammer (SH) benchmarks, corresponding to Isabelle’s Judgment
Day suite [40], were regenerated to target λ-free higher-order logic, encoding λ-
expressions as λ-lifted supercombinators [106]. The SH benchmarks comprise 1253
problems, each including 256 Isabelle facts.

Besides EPO, I evaluated RPO, KBO, and their applicative counterparts (appRPO,
appKBO). Each of the orders were evaluated twice, once using the left-to-right length-
lexicographic extension (LTR) and once using the right-to-left length-lexicographic
extension (RTL) for all symbols. In principle, EPO also allows for different extension
operators for different symbols, but it is unclear how to design appropriate heuristics.
The calculus used for EPO, RPO, and KBO is the intensional nonpurifying variant
of the calculus described in the previous chapter. For the monotonic orders EPO
and KBO, the calculus degrades to essentially first-order superposition, with the
addition of an argument congruence rule that adds arguments of partially applied
functions. In the case of the nonmonotonic order RPO, the calculus performs addi-
tional superposition inferences into variable positions to remain complete. These
inferences are known to harm performance, which is why we would generally expect
a better performance with monotonic orders. To evaluate the applicative counter-
parts appKBO and appRPO, I apply the applicative encoding to the given problem
directly after the clausal normal form transformation and use first-order KBO and
RPO, respectively, on the resulting problem. The results for these last two orders are
therefore to be interpreted with care because the applicative encoding also influences
various unrelated heuristics in Zipperposition.

2https://doi.org/10.5281/zenodo.3992684

https://doi.org/10.5281/zenodo.3992684

4

72 4. The Embedding Path Order for Lambda-Free Higher-Order Terms

LTR RTL
#sat #uns ∅tim %ord ∅cla #sat #uns ∅tim %ord ∅cla

TPTP EPO 120 463 1.3 6.9 2155 120 462 1.2 6.8 2163
RPO 119 472 0.3 0.9 1196 119 471 0.3 1.0 1171
KBO 121 474 0.1 1.6 430 121 473 0.2 1.6 600
appRPO 138 472 0.6 1.1 749 123 472 1.6 2.0 1489
appKBO 122 476 0.1 1.9 306 122 476 0.3 2.0 462

SH EPO 1 509 2.6 23.5 6356 1 505 3.1 23.2 6251
RPO 1 550 1.6 4.7 7130 1 549 2.4 4.8 8612
KBO 1 594 1.6 8.8 9206 1 590 1.3 8.7 6949
appRPO 1 481 13.3 8.1 26346 1 462 17.9 16.3 28897
appKBO 1 502 10.6 11.3 25236 1 502 10.9 11.6 26202

Figure 4.2: Evaluation

Figure 4.2 displays the number of problems found to be satisfiable (#sat), the
number of problems found to be unsatisfiable (#uns), the average CPU time per
problem (∅tim), the average percentage of the CPU time used to compute order
comparisons (%ord), and the average number of clauses produced during a run (∅cla).
When computing the three averages, satisfiable problems and problems that at least
one of the ten configurations failed to solve within the time limit were excluded.

From first-order provers, it is well known that KBO generally outperforms
RPO. In the #uns columns, we observe the same effect. In the present setting, the
advantage of KBO is possibly even greater because the calculus performs inferences
into variable positions with RPO. Although these additional superposition inferences
are not performed when using EPO, the #uns results for EPO are worse than
RPO and KBO. The %ord columns reveal that this is probably because EPO takes
considerably more time to compute. I hypothesized that a second reason could be that
generally more term pairs are incomparable under EPO and thus more inferences
need to be performed and more clauses are produced. Although the numbers in the
∅cla column on the TPTP benchmark set confirm this hypothesis, the corresponding
numbers on the SH benchmark set contradict it because on those benchmarks, EPO
is actually producing the least amount of clauses.

The raw data show that despite the poor performance of RPO and EPO these
orders can be put to good use in a portfolio prover. The RPO configurations can
solve 16 problems that neither of the KBO configurations can solve. The EPO
configurations can solve 11 problems that neither of the RPO configurations can
solve, 12 problems that neither of the KBO configurations can solve, 51 problems
that neither of the appRPO configurations can solve, 66 problems that neither of
the appKBO configurations can solve, and 4 problems that no other configuration
can solve. Most of the problems where EPO outperforms other orders are in the SH
benchmark set. Overall, RPO is preferable over EPO if one is willing to face the
complications of a nonmonotonic order in theory and in implementation.

The direction (LTR or RTL) of the length-lexicographic extension does not have a
large impact. For KBO and appKBO, this is to be expected since the lexicographic

4.9. Conclusion

4

73

comparison comes into play only when weights are equal. For EPO, the advantage
of RTL that Example 4.16 suggests is not corroborated by the evaluation. Only
with appRPO, LTR performs better than RTL. This might be because LTR tends
to put more importance to the symbols that were at the heads of terms before the
applicative encoding, yielding a better measure of the complexity of a term.

4.9. Conclusion
I presented a ground-total simplification order for λ-free higher-order terms resem-
bling RPO. In first-order logic, KBO generally outperforms RPO, but RPO with
well-chosen parameters behaves better than KBO on many examples. In λ-free
higher-order logic, the situation appears to be similar. However, RPO cannot be
easily used for superposition in this logic if we want the calculus to remain complete
because the natural generalization [34] lacks compatibility with contexts. EPO
seems to be a good replacement to fill the role of RPO in λ-free higher-order logic
if one wants to avoid the complications of nonmonotonic orders. Otherwise, calculi
specialized to deal with nonmonotonic orders are the better choice.

To explore different candidate definitions for EPO, I formalized my ideas early
on in Isabelle/HOL [108]. This allowed me to keep track of changes in the definition
and how they influence the properties and their proofs more easily. To find examples
explaining why certain properties do not hold for some tentative definitions of EPO,
Lazy SmallCheck [113] was of great help. For instance, it was Lazy SmallCheck that
found the example x f f >′

ep x x versus f y f f 6>′
ep f y (f y) mentioned in Section 4.4.

In future work, I would like to investigate whether the computation of EPO
can be optimized further. To put EPO to use in practice, implementing it in E
prover [120] would be a good target because E’s λ-free higher-order mode is designed
for ground-total simplification orders and its calculus is more efficient for those than
Zipperposition’s by circumventing the argument congruence rule.

Another application of EPO could lie in termination of λ-free higher-order term
rewriting. Together with λ-free KBO [16], it could serve as a basis for a generalization
of the dependency pair framework [64] to λ-free higher-order terms, which would
compete with dependency pair methods for full higher-order terms [35,60,95,96].
Such a generalized framework could be used to prove termination of applicative
first-order benchmarks from the TPDB library [63] and similar problems.

5
Superposition with Lambdas

Joint work with
Jasmin Blanchette, Sophie Tourret,

Petar Vukmirović, and Uwe Waldmann

Based on the ideas developed in Chapter 3, we designed a superposition calculus for
a clausal fragment of extensional polymorphic higher-order logic that includes anony-
mous functions but excludes Booleans. The inference rules work on βη-equivalence
classes of λ-terms and rely on higher-order unification to achieve refutational com-
pleteness. We implemented the calculus in the Zipperposition prover and evaluated
it on TPTP and Isabelle benchmarks.

My contributions to this chapter are the design of the core calculus, the redundancy criterion, the ground
completeness proof, the soundness and satisfiability preservation proofs of the extensions, and parts of
the implementation.
Parts of this chapter have been published at the Conference on Automated Deduction (CADE-27), LNCS
11716, pp. 55–73, Springer, 2019. This chapter has been accepted to be published in the Journal of
Automated Reasoning.

75

5

76 5. Superposition with Lambdas

5.1. Introduction
Designing a superposition calculus with λ-expressions poses the following three
main challenges:

1. Standard superposition is parameterized by a ground-total simplification or-
der Â, but such orders do not exist for λ-terms equal up to β-conversion. The
relations designed for proving termination of higher-order term rewriting sys-
tems, such as HORPO [78] and CPO [36], lack many of the desired properties
(e.g., transitivity, stability under grounding substitutions).

2. Higher-order unification is undecidable and may give rise to an infinite set
of incomparable unifiers. For example, the constraint f (y a) ?= y (f a) admits
infinitely many independent solutions of the form {y 7→λx. fn x}.

3. In first-order logic, to rewrite into a term s using an oriented equation t ≈ t′, it
suffices to find a subterm of s that is unifiable with t. In higher-order logic, this
is insufficient. Consider superposition from f c≈ a into yc 6≈ yb. The left-hand
sides can obviously be unified by {y 7→ f}, but the more general {y 7→λx. z x (f x)}
also gives rise to a subterm f c after β-reduction. The corresponding inference
generates the clause z c a 6≈ z b (f b).

To address the first challenge, we adopt the η-short β-normal form to represent
βη-equivalence classes of λ-terms. In the spirit of Jouannaud and Rubio’s early
joint work [77], we state requirements on the term order only for ground terms (i.e.,
closed monomorphic βη-equivalence classes); the nonground case is connected to the
ground case via stability under grounding substitutions. Even on ground terms, we
cannot obtain all desirable properties. We sacrifice compatibility with arguments
(the property that s′ Â s implies s′ t Â st), compensating with an argument congruence
rule (ARGCONG), as in Chapter 3.

For the second challenge, we accept that there might be infinitely many incom-
parable unifiers and enumerate a complete set (including the notorious flex–flex
pairs [74]), relying on heuristics to postpone the combinatorial explosion. The satu-
ration loop must also be adapted to interleave this enumeration with the theorem
prover’s other activities (Section 5.6). Despite its reputation for explosiveness, higher-
order unification is a conceptual improvement over SK combinators, because it can
often compute the right unifier. Consider the conjecture ∃z.∀x y. z x y≈ f y x. After
negation, clausification, and skolemization (which are as for first-order logic), the
formula becomes z (skx z) (sky z) 6≈ f (sky z) (skx z). Higher-order unification quickly
computes the unique unifier: {z 7→ λx y. f y x}. In contrast, an encoding approach
based on combinators, similar to the one implemented in Sledgehammer [106], would
blindly enumerate all possible SK terms for z until the right one, S(K(Sf))K, is found.
Given the definitions S z y x ≈ z x (y x) and K x y≈ x, the E prover [120] in auto mode
needs to perform 3757 inferences to derive the empty clause.

For the third challenge, the idea is that, when applying t ≈ t′ to perform rewriting
inside a higher-order term s, we can encode an arbitrary context as a fresh higher-
order variable z, unifying s with z t; the result is (z t′)σ, for some unifier σ. This is
performed by a dedicated fluid subterm superposition rule (FLUIDSUP).

Functional extensionality is also considered a quintessential higher-order chal-

5.2. Logic

5

77

lenge [20], although similar difficulties arise with first-order sets and arrays [68].
Our approach is to add extensionality as an axiom and provide optional rules as
optimizations (Section 5.5). With this axiom, our calculus is refutationally complete
w.r.t. extensional Henkin semantics (Section 5.4).

We implemented the calculus in the Zipperposition prover [47] (Section 5.6). Our
empirical evaluation includes benchmarks from the TPTP [130] and interactive
verification problems exported from Isabelle/HOL [40] (Section 5.7). The results
clearly demonstrate the calculus’s potential.

5.2. Logic
Our extensional polymorphic clausal higher-order logic is a restriction of full TPTP
THF [22] to rank-1 (top-level) polymorphism, as in TH1 [79]. In keeping with
standard superposition, we consider only formulas in clausal normal form, without
explicit quantifiers or Boolean type. We use Henkin semantics [21,59,71], as opposed
to the standard semantics that is commonly considered the foundation of the HOL
systems [67]. However, both of these semantics are compatible with the notion
of provability employed by the HOL systems. By admitting nonstandard models,
Henkin semantics is not subject to Gödel’s first incompleteness theorem, allowing us
to claim not only soundness but also refutational completeness of our calculus.

Syntax We fix a set Σty of type constructors with arities and a set Vty of type
variables. We require at least one nullary type constructor and a binary function
type constructor → to be present in Σty. A type τ,υ is either a type variable α ∈Vty

or has the form κ(τ̄n) for an n-ary type constructor κ ∈Σty and types τ̄n. We write κ
for κ() and τ→ υ for →(τ,υ). Type declarations have the form Πᾱm. τ (or simply τ if
m = 0), where all type variables occurring in τ belong to ᾱm.

We fix a set Σ of (function) symbols a,b,c, f,g,h, . . . , with type declarations, written
as f :Πᾱm. τ or f, and a set V of term variables with associated types, written as x : τ
or x. The notation t : τ will also be used to indicate the type of arbitrary terms t. We
require the presence of a symbol of type Πα.α and of a symbol diff :Πα,β. (α→β)→
(α→β)→α in Σ. We use diff to express the polymorphic functional extensionality
axiom. A signature is a pair (Σty,Σ).

In the following, we will define terms in three layers of abstraction: raw λ-terms,
λ-terms, and terms; where λ-terms will be α-equivalence classes of raw λ-terms and
terms will be βη-equivalence classes of λ-terms.

The raw λ-terms over a given signature and their associated types are defined
inductively as follows. Every x :τ ∈V is a raw λ-term of type τ. If f :Πᾱm. τ ∈Σ and
ῡm is a tuple of types, called type arguments, then f〈ῡm〉 (or f if m = 0) is a raw λ-term
of type τ{ᾱm 7→ ῡm}. If x :τ and t : υ, then the λ-expression λx. t is a raw λ-term of
type τ→ υ. If s : τ→ υ and t : τ, then the application s t is a raw λ-term of type υ.

The function type constructor → is right-associative; application is left-associative.
Using the spine notation [44], raw λ-terms can be decomposed in a unique way as a
nonapplication head t applied to zero or more arguments: t s1 . . . sn or t s̄n (abusing
notation).

5

78 5. Superposition with Lambdas

A raw λ-term s is a subterm of a raw λ-term t, written t = t[s], if t = s, if
t = (λx. u[s]), if t = (u[s]) v, or if t = u (v[s]) for some raw λ-terms u and v. A proper
subterm of a raw λ-term t is any subterm of t that is distinct from t itself.

A variable occurrence is free in a raw λ-term if it is not bound by a λ-expression.
A raw λ-term is ground if it is built without using type variables and contains no
free term variables.

The α-renaming rule is defined as (λx. t) −■→α (λy. t{x 7→ y}), where y does not
occur free in t and is not captured by a λ-binder in t. Raw λ-terms form equivalence
classes modulo α-renaming, called λ-terms. We lift the above notions on raw λ-terms
to λ-terms.

A substitution ρ is a function from type variables to types and from term variables
to λ-terms such that it maps all but finitely many variables to themselves. We require
that it is type-correct—i.e., for each x : τ ∈V, xρ is of type τρ. The letters θ,π,ρ,σ
are reserved for substitutions. Substitutions α-rename λ-terms to avoid capture;
for example, (λx. y){y 7→ x}= (λx′. x). The composition ρσ applies ρ first: tρσ= (tρ)σ.
The notation σ[x̄n 7→ s̄n] denotes the substitution that replaces each xi by si and
that otherwise coincides with σ.

The β- and η-reduction rules are specified on λ-terms as (λx. t)u −■→β t{x 7→ u} and
(λx. t x) −■→η t. For β, bound variables in t are implicitly renamed to avoid capture;
for η, the variable x must not occur free in t. The λ-terms form equivalence classes
modulo βη-reduction, called βη-equivalence classes or simply terms.

Convention 5.1. When defining operations that need to analyze the structure of
terms, we will use the η-short β-normal form t↓βη, obtained by applying −■→β and
−■→η exhaustively, as a representative of the equivalence class t. In particular, we lift
the notions of subterms and occurrences of variables to βη-equivalence classes via
their η-short β-normal representative.

Many authors prefer the η-long β-normal form [74,77,105], but in a polymorphic
setting it has the drawback that instantiating a type variable with a functional
type can lead to η-expansion. We reserve the letters s, t,u,v for terms and x, y, z for
variables.

An equation s ≈ t is formally an unordered pair of terms s and t. A literal is an
equation or a negated equation, written ¬ s ≈ t or s 6≈ t. A clause L1 ∨·· ·∨Ln is a
finite multiset of literals L j. The empty clause is written as ⊥.

A complete set of unifiers on a set X of variables for two terms s and t is a set U of
unifiers of s and t such that for every unifier θ of s and t there exists a member σ ∈U
and a substitution ρ such that xσρ = xθ for all x ∈ X . We let CSUX (s, t) denote an
arbitrary (preferably minimal) complete set of unifiers on X for s and t. We assume
that all σ ∈CSUX (s, t) are idempotent on X—i.e., xσσ= xσ for all x ∈ X . The set X
will consist of the free variables of the clauses in which s and t occur and will be left
implicit.

Given a substitution σ, the σ-instance of a term t or clause C is the term tσ or
the clause Cσ, respectively. If tσ or Cσ is ground, we call it a σ-ground instance.

Semantics A type interpretation Ity = (U,Jty) is defined as follows. The universe
U is a nonempty collection of nonempty sets, called domains. The function Jty

5.2. Logic

5

79

associates a function Jty(κ) :Un →U with each n-ary type constructor κ, such that
for all domains D1,D2 ∈U, the set Jty(→)(D1,D2) is a subset of the function space
from D1 to D2. The semantics is standard if Jty(→)(D1,D2) is the entire function
space for all D1,D2.

A type valuation ξ is a function that maps every type variable to a domain. The
denotation of a type for a type interpretation Ity and a type valuation ξ is defined
by JαKξIty = ξ(α) and Jκ(τ̄)KξIty = Jty(κ)(Jτ̄KξIty). We abuse notation by applying an
operation on a tuple when it must be applied elementwise; thus, Jτ̄nKξIty stands
for Jτ1KξIty , . . . ,JτnKξIty . A type valuation ξ can be extended to be a valuation by
additionally assigning an element ξ(x) ∈ JτKξIty to each variable x : τ. An interpretation
function J for a type interpretation Ity associates with each symbol f :Πᾱm. τ and
domain tuple D̄m ∈Um a value J(f,D̄m) ∈ JτKξIty , where ξ is the type valuation that
maps each αi to Di.

The comprehension principle states that every function designated by a λ-
expression is contained in the corresponding domain. Loosely following Fitting [59,
Section 2.4], we initially allow λ-expressions to designate arbitrary elements of
the domain, to be able to define the denotation of a term. We impose restrictions
afterwards using the notion of a proper interpretation. A λ-designation function L

for a type interpretation Ity is a function that maps a valuation ξ and a λ-expression
of type τ to elements of JτKξIty . A type interpretation, an interpretation function, and
a λ-designation function form an (extensional) interpretation I= (Ity,J,L). For an
interpretation I and a valuation ξ, the denotation of a term is defined as JxKξI = ξ(x),
Jf〈τ̄m〉KξI = J(f,Jτ̄mKξIty), Js tKξI = JsKξI(JtKξI), and Jλx. tKξI =L(ξ,λx. t). For ground terms
t, the denotation does not depend on the choice of the valuation ξ, which is why we
sometimes write JtKI for JtKξI.

An interpretation I is proper if Jλx. tKξI(a)= JtKξ[x 7→a]
I for all λ-expressions λx. t,

all valuations ξ, and all a. If a type interpretation Ity and an interpretation function
J can be extended by a λ-designation function L to a proper interpretation (Ity,J,L),
then this L is unique [59, Proposition 2.18]. Given an interpretation I and a valuation
ξ, an equation s ≈ t is true if JsKξI and JtKξI are equal and it is false otherwise. A
disequation s 6≈ t is true if s ≈ t is false. A clause is true if at least one of its literals
is true. A clause set is true if all its clauses are true. A proper interpretation I is a
model of a clause set N, written I |= N, if N is true in I for all valuations ξ.

Axiomatization of Booleans Our clausal logic lacks a Boolean type, but it can
easily be axiomatized as follows. We extend the signature with a nullary type
constructor bool ∈ Σty equipped with the proxy constants t, f : bool, not : bool →
bool, and,or, impl,equiv : bool → bool → bool, forall,exists : Πα. (α → bool) → bool,
eq :Πα.α→α→ bool, and choice :Πα. (α→ bool)→α, characterized by the axioms

t 6≈ f
x ≈ t∨ x ≈ f

not t≈ f
not f ≈ t

and t x ≈ x
and f x ≈ f

or t x ≈ t
or f x ≈ x

impl t x ≈ x
impl f x ≈ t

x 6≈ y∨ eq〈α〉x y≈ t
x ≈ y∨ eq〈α〉x y≈ f

equiv x y≈ and (impl x y) (impl y x)
forall〈α〉 (λx. t)≈ t

y≈ (λx. t)∨ forall〈α〉 y≈ f
exists〈α〉 y≈ not (forall〈α〉 (λx.not (y x)))

y x ≈ f ∨ y (choice〈α〉y)≈ t

5

80 5. Superposition with Lambdas

This axiomatization of Booleans can be used in a prover to support full higher-
order logic with or without Hilbert choice, corresponding to the TPTP THF format
variants TH0 (monomorphic) [131] and TH1 (polymorphic) [79]. The prover’s clausi-
fier would transform the outer first-order skeleton of a formula into a clause and use
the axiomatized Booleans within the terms. It would also add the proxy axioms to
the clausal problem. As an alternative to this complete axiomatization, Vukmirović
and Nummelin [138] present a possibly refutationally incomplete calculus extension
with dedicated rules to support Booleans. This approach works better in practice
and contributed to Zipperposition’s victory at CASC 2020.

5.3. The Calculus
Our Boolean-free λ-superposition calculus presented here is inspired by the ex-
tensional nonpurifying Boolean-free λ-free higher-order superposition calculus de-
scribed in Chapter 3. The central idea is that superposition inferences are restricted
to unapplied subterms occurring in the first-order outer skeleton of clauses—that
is, outside λ-expressions and outside the arguments of applied variables. Thus,
g ≈ (λx. f x x) cannot be used directly to rewrite g a to f a a, because g is applied in g a.
A separate inference rule, ARGCONG, takes care of deriving g x ≈ f x x, which can be
oriented independently of its parent clause and used to rewrite g a or f a a.

As in Chapter 3, we call the subterms that superposition inferences are restricted
to “green subterms.” However, the notion must be adapted to this chapter’s notion
of terms. We will no longer consider arguments of variables to be green because in
this chapter’s logic they can vanish when instantiating variables due to β-reduction.
Subterms inside λ-expressions will not be considered green either.

Definition 5.2 (Green positions and subterms). The green positions and green
subterms of a term (i.e., a βη-equivalence class) are defined inductively as follows. A
green position is a tuple of natural numbers. For any term t, the empty tuple ε is a
green position of t, and t is the green subterm of t at position ε. For all symbols f ∈Σ,
types τ̄, and terms ū, if t is a green subterm of ui at some position p for some i, then
i.p is a green position of f〈τ̄〉 ū, and t is the green subterm of f〈τ̄〉ū at position i.p.
We denote the green subterm of s at the green position p by s|p.

In f (ga) (yb) (λx.hc (g x)), the proper green subterms are a, ga, yb, and λx.hc (g x).
The last two of these do not look like first-order terms and hence their subterms are
not green.

Definition 5.3 (Green contexts). We write t = s u p to express that u is a green
subterm of t at the green position p and call s p a green context. We omit the
subscript p if there are no ambiguities.

In a βη-normal representative of a green context, the hole never occurs applied.
Therefore, inserting a βη-normal term into the context produces another βη-normal
term.

Another key notion is that of a fluid term:

5.3. The Calculus

5

81

Definition 5.4 (Fluid terms). A term t is called fluid if (1) t↓βη is of the form y ūn
where n ≥ 1, or (2) t↓βη is a λ-expression and there exists a substitution σ such that
tσ↓βη is not a λ-expression (due to η-reduction).

Case (2) can arise only if t contains an applied variable. Intuitively, fluid terms
are terms whose η-short β-normal form can change radically as a result of instan-
tiation. For example, λx. y a (z x) is fluid because applying {z 7→ λx. x} makes the λ
vanish: (λx. ya x)= ya. Similarly, λx. f (y x) x is fluid because (λx. f (y x) x){y 7→λx.a}=
(λx. f a x)= f a.

5.3.1. The Core Inference Rules
The calculus is parameterized by a strict and a nonstrict term order and a selection
function. These concepts are defined below.

Definition 5.5 (Strict ground term order). A strict ground term order is a well-
founded strict total order Â on ground terms satisfying the following criteria, where
º denotes the reflexive closure of Â:

– green subterm property: t s º s;
– compatibility with green contexts: s′ Â s implies t s′ Â t s .

Given a strict ground term order, we extend it to literals and clauses via the multiset
extensions in the standard way [9, Section 2.4].

Two properties that are not required are compatibility with λ-expressions (s′ Â s
implies (λx. s′) Â (λx. s)) and compatibility with arguments (s′ Â s implies s′ t Â s t).
The latter would even be inconsistent with totality. To see why, consider the symbols
cÂ bÂ a and the terms λx.b and λx. x. Owing to totality, one of the terms must be
larger than the other, say, (λx.b)Â (λx. x). By compatibility with arguments, we get
(λx. b) c Â (λx. x) c, i.e., b Â c, a contradiction. A similar line of reasoning applies if
(λx.b)≺ (λx. x), using a instead of c.

Definition 5.6 (Strict term order). A strict term order is a relation Â on terms,
literals, and clauses such that the restriction to ground entities is a strict ground
term order and such that it is stable under grounding substitutions (i.e., t Â s implies
tθ Â sθ for all substitutions θ grounding the entities t and s).

Definition 5.7 (Nonstrict term order). Given a strict term order Â and its reflexive
closure º, a nonstrict term order is a relation % on terms, literals, and clauses such
that t% s implies tθ º sθ for all θ grounding the entities t and s.

Although we call them orders, a strict term order Â is not required to be transitive
on nonground entities, and a nonstrict term order % does not need to be transitive
at all. Normally, t º s should imply t% s, but this is not required either. A nonstrict
term order % allows us to be more precise than the reflexive closure º of Â. For
example, we cannot have ybº ya, because yb 6= ya and yb 6Â ya by stability under
grounding substitutions (with {y 7→ λx. c}). But we can have y b % y a if b Â a. In
practice, the strict and the nonstrict term order should be chosen so that they can
compare as many pairs of terms as possible while being computable and reasonably
efficient.

5

82 5. Superposition with Lambdas

Definition 5.8 (Maximality). An element x of a multiset M is �-maximal for some
relation � if for all y ∈ M with y� x, we have y� x. It is strictly �-maximal if it is
�-maximal and occurs only once in M.

Definition 5.9 (Selection function). A selection function is a function that maps
each clause to a subclause consisting of negative literals, which we call the selected
literals of that clause. A literal L y must not be selected if y ūn, with n > 0, is a
º-maximal term of the clause.

The restriction on the selection function is needed for our proof, but it is an open
question whether it is actually necessary for refutational completeness.

Our calculus is parameterized by a strict term order Â, a nonstrict term order %,
and a selection function HSel. The calculus rules depend on the following auxiliary
notions.

Definition 5.10 (Eligibility). A literal L is (strictly) �-eligible w.r.t. a substitution
σ in C for some relation � if it is selected in C or there are no selected literals in C
and Lσ is (strictly) �-maximal in Cσ. If σ is the identity substitution, we leave it
implicit.

Definition 5.11 (Deep occurrences). A variable occurs deeply in a clause C if it
occurs inside a λ-expression or inside an argument of an applied variable.

For example, x and z occur deeply in f x y ≈ y x ∨ z 6≈ (λw. z a), whereas y does
not occur deeply. The purpose of this definition is to capture all variables with
an occurrence that corresponds to a position inside a λ-expression in some ground
instances of C.

The first rule of our calculus is the superposition rule. We regard positive and
negative superposition as two cases of a single rule

D︷ ︸︸ ︷
D′ ∨ t ≈ t′

C︷ ︸︸ ︷
C′ ∨ s u ≈̇ s′

SUP
(D′ ∨ C′ ∨ s t′ ≈̇ s′)σ

where ≈̇ denotes either ≈ or 6≈. The following side conditions apply:
1. u is not fluid; 2. u is not a variable deeply occurring in C;
3. variable condition: if u is a variable y, there must exist a grounding substitu-

tion θ such that tσθ Â t′σθ and Cσθ ≺ C′′σθ, where C′′ = C{y 7→ t′};
4. σ ∈CSU(t,u); 5. tσ 6- t′σ; 6. s u σ 6- s′σ; 7. Cσ 6- Dσ;
8. t ≈ t′ is strictly %-eligible in D w.r.t. σ;
9. s u ≈̇ s′ is %-eligible in C w.r.t. σ, and strictly %-eligible if it is positive.

There are four main differences with the statement of the standard superposition
rule: Contexts s[] are replaced by green contexts s . The standard condition u ∉V
is generalized by conditions 2 and 3. Most general unifiers are replaced by complete
sets of unifiers. And 6¹ is replaced by the more precise 6-.

The second rule is a variant of SUP that focuses on fluid green subterms:
D︷ ︸︸ ︷

D′ ∨ t ≈ t′
C︷ ︸︸ ︷

C′ ∨ s u ≈̇ s′
FLUIDSUP

(D′ ∨ C′ ∨ s z t′ ≈̇ s′)σ

5.3. The Calculus

5

83

with the following side conditions, in addition to SUP’s conditions 5 to 9:

1. u is either a fluid term or a variable deeply occurring in C;
2. z is a fresh variable; 3. σ ∈CSU(z t, u); 4. (z t′)σ 6= (z t)σ.

The equality resolution and equality factoring rules are almost identical to their
standard counterparts:

C︷ ︸︸ ︷
C′ ∨ u 6≈ u′

ERES
C′σ

C︷ ︸︸ ︷
C′ ∨ u′ ≈ v′ ∨ u ≈ v

EFACT
(C′ ∨ v 6≈ v′ ∨ u ≈ v′)σ

For ERES: σ ∈ CSU(u,u′) and u 6≈ u′ is %-eligible in C w.r.t. σ. For EFACT: σ ∈
CSU(u,u′), uσ 6- vσ, and u ≈ v is %-eligible in C w.r.t. σ.

Argument congruence, a higher-order concern, is embodied by the rule

C︷ ︸︸ ︷
C′ ∨ s ≈ s′

ARGCONG
C′σ∨ sσ x̄n ≈ s′σ x̄n

where σ is the most general type substitution that ensures well-typedness of the
conclusion. In particular, if the result type of s is not a type variable, σ is the
identity substitution; and if the result type is a type variable, it is instantiated
with α1 → ··· → αm → β, where ᾱm and β are fresh. This yields infinitely many
conclusions, one for each m. The literal s ≈ s′ must be strictly %-eligible in C w.r.t. σ,
and x̄n is a nonempty tuple of distinct fresh variables.

The rules are complemented by the polymorphic functional extensionality axiom:

y (diff〈α,β〉y z) 6≈ z (diff〈α,β〉y z)∨ y≈ z (EXT)

From now on, we will omit the type arguments to diff since they can be inferred from
the term arguments.

5.3.2. Rationale for the Rules
The calculus realizes the following division of labor: SUP and FLUIDSUP are re-
sponsible for green subterms, which are outside λs, ARGCONG effectively gives
access to the remaining positions outside λs, and the extensionality axiom takes care
of subterms inside λs. The following examples illustrate these mechanisms. The
unifiers in the examples were chosen to keep the clauses reasonably small.

Example 5.12. Prefix subterms such as g in the term g a b are not green subterms
and thus cannot be superposed into. ARGCONG gives us access to those positions.
Given the clauses g ≈ f and gab 6≈ fab, we can derive a contradiction as in example 3.5.

Example 5.13. Applied variables give rise to subtle situations with no counterparts
in first-order logic. Consider the clauses f a≈ c and h (yb) (ya) 6≈ h (g (f b)) (g c), where
f aÂ c. It is easy to see that the clause set is unsatisfiable, by grounding the second
clause with θ = {y 7→λx.g (f x)}. However, to mimic the superposition inference that

5

84 5. Superposition with Lambdas

can be performed at the ground level, it is necessary to superpose at an imaginary
position below the applied variable y and yet above its argument a, namely, into the
subterm f a of g (f a)= (λx.g (f x))a= (ya)θ. We need FLUIDSUP:

f a≈ c h (yb) (ya) 6≈ h (g (f b)) (g c)
FLUIDSUP

h (z (f b)) (z c) 6≈ h (g (f b)) (g c)
ERES⊥

FLUIDSUP’s z variable effectively transforms f a≈ c into z (f a)≈ z c, whose left-hand
side can be unified with ya by taking {y 7→λx. z (f x)}.

Example 5.14. The clause set consisting of f a ≈ c, f b ≈ d, and g c 6≈ y a ∨ g d 6≈ y b
has a similar flavor. ERES is applicable on either literal of the third clause, but the
computed unifier, {y 7→ λx.g c} or {y 7→ λx.g d}, is not the right one. Again, we need
FLUIDSUP:

f b≈ d

f a≈ c g c 6≈ ya∨ g d 6≈ yb
FLUIDSUP

g c 6≈ z c∨ g d 6≈ z (f b)
ERES

g d 6≈ g (f b)
SUP

g d 6≈ g d
ERES⊥

Again, the FLUIDSUP inference uses the unifier {y 7→λx. z (f x)} ∈CSU(z (f a), ya).

Example 5.15. Third-order clauses containing subterms of the form y (λx. t) can be
even more stupefying. The clause set consisting of f a ≈ c and h (y (λx. g (f x)) a) y 6≈
h (g c) (λw x. w x) is unsatisfiable. To see why, apply θ = {y 7→λw x. w x} to the second
clause, yielding h (g (f a)) (λw x. w x) 6≈ h (g c) (λw x. w x). Let f aÂ c. A SUP inference is
possible between the first clause and this ground instance of the second one:

f a≈ c h (g (f a)) (λw x. w x) 6≈ h (g c) (λw x. w x)
SUP

h (g c) (λw x. w x) 6≈ h (g c) (λw x. w x)

But at the nonground level, the subterm fa is not clearly localized: g(fa)= (λx.g(fx))a=
(λw x. w x) (λx. g (f x)) a = (y (λx. g (f x)) a)θ. The FLUIDSUP rule can cope with this
using the unifier {y 7→λw x. w x, z 7→ g} ∈CSU(z (f a), y (λx.g (f x))a):

f a≈ c h (y (λx.g (f x))a) y 6≈ h (g c) (λw x. w x)
FLUIDSUP

h (g c) (λw x. w x) 6≈ h (g c) (λw x. w x)
ERES⊥

Example 5.16. The FLUIDSUP rule is concerned not only with applied variables
but also with λ-expressions that, after substitution, may be η-reduced to reveal new
applied variables or green subterms. Consider the clause set consisting of f a ≈ c
and h (λu. y u b) (λu. y u a) 6≈ h (g (f b)) (g c), where f a Â c. Applying the substitution
{y 7→λu′v.g(f v)u′} to the second clause yields h(λu.g(f b)u)(λu.g(f a)u) 6≈ h(g(f b))(gc)
after β-reduction and h(g(fb))(g(fa)) 6≈ h(g(fb))(gc) after βη-reduction. A SUP inference
is possible between the first clause and this new ground clause:

f a≈ c h (g (f b)) (g (f a)) 6≈ h (g (f b)) (g c)
SUP

h (g (f b)) (g c) 6≈ h (g (f b)) (g c)

5.3. The Calculus

5

85

By also considering λ-expressions, the FLUIDSUP rule is applicable at the non-
ground level to derive a corresponding nonground clause using the unifier {y 7→
λu′ v. z (f v) u′} ∈CSU(z (f a), λu. y u a):

f a≈ c h (λu. y u b) (λu. y u a) 6≈ h (g (f b)) (g c)
FLUIDSUP

h (z (f b)) (z c) 6≈ h (g (f b)) (g c)
ERES⊥

Example 5.17. Consider the clause set consisting of the facts Csucc = succ x 6≈ zero,
Cdiv = n ≈ zero∨ div n n ≈ one, Cprod = prod K (λk.one)≈ one, and the negated conjec-
ture Cconj = prod K (λk.div (succ k) (succ k)) 6≈ one. Intuitively, the term prod K (λk. u)
is intended to denote the product

∏
k∈K u, where k ranges over a finite set K of

natural numbers. The calculus derives the empty clause as follows:

Cprod

Cconj

Cdiv
EXT

y (diff〈α,β〉y z) 6≈ z (diff〈α,β〉y z)∨ y≈ z
FLUIDSUP

w (diff〈α, ι〉(λk.div (w k) (w k)) z)≈ zero

∨ one 6≈ z (diff〈α, ι〉(λk.div (w k) (w k)) z)∨ (λk.div (w k) (w k))≈ z
ERES

Csucc

w (diff〈α, ι〉(λk.div (w k) (w k)) (λk.one))≈ zero

∨ (λk.div (w k) (w k))≈ (λk.one)
SUP

zero 6≈ zero∨ (λk.div (succ k) (succ k))≈ (λk.one)
ERES

(λk.div (succ k) (succ k))≈ (λk.one)
SUP

prod K (λk.one) 6≈ one
SUP

one 6≈ one
ERES⊥

Since the calculus does not superpose into λ-expressions, we must use the extension-
ality axiom to refute this clause set. We perform a FLUIDSUP inference into the exten-
sionality axiom with the unifier {β 7→ ι, z′ 7→λx.x, n 7→ w(diff〈α, ι〉(λk.div(wk)(wk))z),
y 7→λk.div (w k) (w k)} ∈CSU(z′ (div n n), y (diff〈α,β〉y z)). Then we apply ERES with
the unifier {z 7→λk.one} ∈CSU(one, z (diff〈α, ι〉(λk.div (w k) (w k)) z)) to eliminate the
negative literal. Next, we perform a SUP inference from the resulting clause into
Csucc with the unifier {α 7→ ι, w 7→ succ, x 7→ diff〈α, ι〉(λk. div (w k) (w k)) (λk. one)} ∈
CSU(w (diff〈α, ι〉(λk.div (w k) (w k)) (λk.one)), succ x). To eliminate the trivial literal,
we apply ERES. We then apply a SUP inference into Cconj and superpose into the
resulting clause with Cprod. Finally we derive the empty clause by ERES.

Because it gives rise to flex–flex pairs, which are unification constraints where
both sides are variable-headed, FLUIDSUP can be very prolific. With variable-headed
terms on both sides of its maximal literal, the extensionality axiom is another prime
source of flex–flex pairs. Flex–flex pairs can also arise in the other rules (SUP, ERES,
and EFACT). Due to order restrictions and fairness, we cannot postpone solving flex–
flex pairs indefinitely. Thus, we cannot use Huet’s pre-unification procedure [74] and
must instead choose a full unification procedure such as Jensen and Pietrzykowski’s
[76], Snyder and Gallier’s [123], or the procedure that has recently been developed by
Vukmirović, Bentkamp, and Nummelin [136]. On the positive side, optional inference
rules can efficiently cover many cases where FLUIDSUP or the extensionality axiom

5

86 5. Superposition with Lambdas

would otherwise be needed (Section 5.5), and heuristics can help postpone the
explosion. Moreover, flex–flex pairs are not always as bad as their reputation; for
example, ya b

?= z c d admits a most general unifier: {y 7→λw x. y′ w x c d, z 7→ y′ a b}.
The calculus is a graceful generalization of standard superposition, except for

the extensionality axiom. From simple first-order clauses, the axiom can be used
to derive clauses containing λ-expressions, which are useless if the problem is first-
order. For instance, the clause g x ≈ f x x can be used for a FLUIDSUP inference into
the axiom (EXT) yielding the clause w t (f t t) 6≈ z t ∨ (λu. w u (gu))≈ z via the unifier
{α 7→ ι,β 7→ ι, x 7→ t, v 7→λu.wtu, y 7→λu.wu(gu)} ∈CSU(v(gx), y(diff〈α,β〉yz)) where
t = diff〈ι, ι〉(λu. w u (g u)) z, the variable w is freshly introduced by unification, and
v is the fresh variable introduced by FLUIDSUP (named z in the definition of the
rule). By ERES, with the unifier {z 7→λu.w u (f u u)} ∈CSU(w t (f t t), z t), we can then
derive (λu. w u (g u))≈ (λu. w u (f u u)), an equality of two λ-expressions, although we
started with a simple first-order clause. This could be avoided if we could find a way
to make the positive literal y≈ z of (EXT) larger than the other literal, or to select
y≈ z without losing refutational completeness. The literal y≈ z interacts only with
green subterms of functional type, which do not arise in first-order clauses.

5.3.3. Soundness
To show soundness of the inferences, we need the substitution lemma for our logic:

Lemma 5.18 (Substitution lemma). Let I = (Ity,J,L) be a proper interpretation.
Then

JτρKξIty = JτKξ
′
Ity

and JtρKξI = JtKξ
′
I

for all terms t, all types τ, and all substitutions ρ, where ξ′(α)= JαρKξIty for all type
variables α and ξ′(x)= JxρKξI for all term variables x.

Proof. First, we prove that JτρKξIty = JτKξ
′
Ity

by induction on the structure of τ. If τ=α
is a type variable,

JαρKξIty = ξ′(α)= JαKξ
′
Ity

If τ= κ(ῡ) for some type constructor κ and types ῡ,

Jκ(ῡ)ρKξIty = Jty(κ)(JῡρKξIty) IH= Jty(κ)(JῡKξ
′
Ity

)= Jκ(ῡ)Kξ
′
Ity

Next, we prove JtρKξI = JtKξ
′
I by induction on the structure of a λ-term representative

of t, allowing arbitrary substitutions ρ in the induction hypothesis. If t = y, then by
the definition of the denotation of a variable

JyρKξI = ξ′(y)= JyKξ
′
I

If t = f〈τ̄〉, then by the definition of the term denotation

Jf〈τ̄〉ρKξI = J(f,Jτ̄ρKξIty) IH= J(f,Jτ̄Kξ
′
Ity

)= Jf〈τ̄〉Kξ′I
If t = u v, then by the definition of the term denotation

J(u v)ρKξI = JuρKξI(JvρKξI) IH= JuKξ
′
I (JvKξ

′
I)= Ju vKξ

′
I

5.3. The Calculus

5

87

If t =λz. u, let ρ′(z)= z and ρ′(x)= ρ(x) for x 6= z. Using properness of I in the second
and the last step, we have

J(λz. u)ρKξI(a)= J(λz. uρ′)KξI(a)= Juρ′Kξ[z 7→a]
I

IH= JuKξ
′[z 7→a]
I = Jλz. uKξ

′
I (a)

Lemma 5.19. If I |= C for some interpretation I and some clause C, then I |= Cρ for
all substitutions ρ.

Proof. We have to show that Cρ is true in I for all valuations ξ. Given a valuation ξ,
define ξ′ as in Lemma 5.18. Then, by Lemma 5.18, a literal in Cρ is true in I for ξ if
and only if the corresponding literal in C is true in I for ξ′. There must be at least
one such literal because I |= C and hence C is in particular true in I for ξ′. Therefore,
Cρ is true in I for ξ.

Theorem 5.20 (Soundness). The inference rules SUP, FLUIDSUP, ERES, EFACT,
and ARGCONG are sound (even without the variable condition and the side conditions
on fluidity, deeply occurring variables, order, and eligibility).

Proof. We fix an inference and an interpretation I that is a model of the premises.
We need to show that it is also a model of the conclusion.

From the definition of the denotation of a term, it is obvious that congruence
holds in our logic, at least for subterms that are not inside a λ-expression. In
particular, it holds for green subterms and for the left subterm t of an application t s.

By Lemma 5.19, I is a model of the σ-instances of the premises as well, where
σ is the substitution used for the inference. Let ξ be a valuation. By making case
distinctions on the truth under I,ξ of the literals of the σ-instances of the premises,
using the conditions that σ is a unifier, and applying congruence, it follows that the
conclusion is true under I,ξ. Hence, I is a model of the conclusion.

As in the λ-free higher-order logic of Chapter 3, skolemization is unsound in our
logic. As a consequence, axiom (EXT) does not hold in all interpretations, but the
axiom is consistent with our logic, i.e., there exist models of (EXT).

5.3.4. The Redundancy Criterion
As in Chapter 3, we define our redundancy criterion via an encoding F into ground
monomorphic first-order logic. F indexes each symbol occurrence with the type
arguments and the number of term arguments. For example, F (f a) = f1(a0) and
F (g〈κ〉) = gκ0. In addition, F conceals λ-expressions by replacing them with fresh
symbols. These measures effectively disable argument congruence and extension-
ality. For example, the clause sets {g ≈ f, g a 6≈ f a} and {b ≈ a, (λx. b) 6≈ (λx. a)} are
unsatisfiable in higher-order logic, but the encoded clause sets {g0 ≈ f0, g1(a0) 6≈ f1(a0)}
and {b0 ≈ a0, lamλx.b 6≈ lamλx. a} are satisfiable in first-order logic, where lamλx. t is a
family of fresh symbols.

Given a higher-order signature (Σty,Σ), we define a ground first-order signature
(Σty,ΣGF) as follows. The type constructors Σty are the same in both signatures, but
→ is uninterpreted in first-order logic. For each ground instance f〈ῡ〉 : τ1 → ··· →
τn → τ of a symbol f ∈Σ, we introduce a first-order symbol f ῡj ∈ΣGF with argument

5

88 5. Superposition with Lambdas

types τ̄j and return type τj+1 →···→ τn → τ, for each j. Moreover, for each ground
term λx. t, we introduce a symbol lamλx. t ∈ΣGF of the same type.

Thus, we again consider three levels of logics: the higher-order level H over a
given signature (Σty,Σ), the ground higher-order level GH, which is the ground
fragment of H, and the ground monomorphic first-order level GF over the signature
(Σty,ΣGF) defined above. We use TH, TGH, and TGF to denote the respective sets of
terms, TyH, TyGH, and TyGF to denote the respective sets of types, and CH, CGH,
and CGF to denote the respective sets of clauses. Each of the three levels has an
entailment relation |=. A clause set N1 entails a clause set N2, denoted N1 |= N2, if
every model of N1 is also a model of N2. For H and GH, we use higher-order models;
for GF, we use first-order models.

As in Chapter 3, the three levels are connected by two functions G and F :

Definition 5.21 (Grounding function G on terms and clauses). The grounding
function G maps terms t ∈ TH to the set of their ground instances—i.e., the set of all
tθ ∈ TGH where θ is a substitution. It also maps clauses C ∈ CH to the set of their
ground instances—i.e., the set of all Cθ ∈CGH where θ is a substitution.

Definition 5.22 (Encoding F on terms and clauses). The encoding F : TGH → TGF
is recursively defined as

F (λx. t)= lamλx. t F (f〈ῡ〉 s̄j)= f ῡj (F (s̄j))

using η-short β-normal representatives of terms. The encoding F is extended to map
from CGH to CGF by mapping each literal and each side of a literal individually.

The schematic overview of the three levels also applies to our new construction:

H
higher-order

GH
ground higher-order

GF
ground first-order

FG

The mapping F is clearly bijective. Using the inverse mapping, the order Â
can be transferred from TGH to TGF and from CGH to CGF by defining t Â s as
F −1(t) Â F −1(s) and C Â D as F −1(C) Â F −1(D). The property that Â on clauses is
the multiset extension of Â on literals, which in turn is the multiset extension of Â on
terms, is maintained because F −1 maps the multiset representations elementwise.

For example, let C = yb≈ ya∨y 6≈ fa ∈CH. Then G (C) contains, among many other
clauses, Cθ = fbb≈ faa∨(λx.f xx) 6≈ fa ∈CGH, where θ = {y 7→λx.f xx}. On the GF level,
this clause corresponds to F (Cθ)= f2(b0,b0)≈ f2(a0,a0)∨ lamλx. f x x 6≈ f1(a0) ∈CGF.

A key property of F is that green subterms in TGH correspond to subterms in TGF.
This allows us to show that well-foundedness, totality on ground terms, compatibility
with contexts, and the subterm property hold for Â on TGF.

Lemma 5.23. Let s, t ∈ TGH. We have F (t s p)=F (t)[F (s)]p. In other words, s is a
green subterm of t at position p if and only if F (s) is a subterm of F (t) at position p.

Proof. Analogous to Lemma 3.18.

5.3. The Calculus

5

89

Lemma 5.24. Well-foundedness, totality, compatibility with contexts, and the sub-
term property hold for Â in TGF.

Proof. Analogous to Lemma 3.20, using Lemma 5.23.

The saturation procedures of superposition provers aggressively delete clauses
that are strictly subsumed by other clauses. A clause C subsumes D if there exists
a substitution σ such that Cσ⊆ D. A clause C strictly subsumes D if C subsumes
D but D does not subsume C. For example, x ≈ c strictly subsumes both a ≈ c and
b 6≈ a∨ x ≈ c. The proof of refutational completeness of resolution and superposition
provers relies on the well-foundedness of the strict subsumption relation. In the
λ-free higher-order logic used in Chapter 3, strict subsumption is well founded.
Unfortunately, this property does not hold for this chapter’s logic, where f x x ≈ c is
strictly subsumed by f (x a) (x b)≈ c, which is strictly subsumed by f (x a a′) (x b b′)≈ c,
and so on. To prevent such infinite chains, we use a well-founded partial order = on
CH. We can define = as ·&∩>size, where ·& stands for “subsumed by” and D >size C if
either size(D)> size(C) or size(D)= size(C) and D contains fewer distinct variables
than C; the size function is some notion of syntactic size, such as the number of
constants and variables contained in a clause. This yields for instance a≈c= x≈c
and f (x a a)≈c= f (ya)≈c. To justify the deletion of subsumed clauses, we set up our
redundancy criterion to cover subsumption, following Waldmann et al. [140].

Based on these slightly altered definitions, we define clause redundancy verbatim
as in Chapter 3:

– Given C ∈CGF and N ⊆CGF, let C ∈GFRedC(N) if {D ∈ N | D ≺ C} |= C.
– Given C ∈CGH and N ⊆CGH, let C ∈GHRedC(N) if F (C) ∈GFRedC(F (N)).
– Given C ∈ CH and N ⊆ CH, let C ∈ HRedC(N) if for every D ∈ G (C), we have

D ∈GHRedC(G (N)) or there exists C′ ∈ N such that C=C′ and D ∈G (C′).
For example, (hg)x ≈ (hf)x is redundant w.r.t. g ≈ f, but gx ≈ f x and (λx.g)≈ (λx.f) are
not, because F translates an unapplied g to g0, whereas an applied g is translated
to g1 and the expression λx.g is translated to lamλx.g. These different translations
prevent entailment on the GF level. For an example of subsumption, we assume
that a≈c= x≈c holds, for instance using the above definition of =. Then a≈c is
redundant w.r.t. x≈c.

Along with the three levels of logics, we consider three inference systems, as
in Chapter 3: HInf , GHInf , and GFInf . HInf is the inference system described in
Section 5.3.1. For uniformity, we regard the extensionality axiom as a premise-free
inference rule EXT whose conclusion is axiom (EXT). The rules of GHInf include SUP,
ERES, and EFACT from HInf , but with the restriction that premises and conclusion
are ground and with all references to % replaced by º. In addition, GHInf contains a
premise-free rule GEXT whose infinitely many conclusions are the ground instances
of (EXT), and the following ground variant of ARGCONG:

C′ ∨ s ≈ s′
GARGCONG

C′ ∨ s ūn ≈ s′ ūn

where s ≈ s′ is strictly º-eligible in C′ ∨ s ≈ s′ and ūn is a nonempty tuple of ground
terms.

5

90 5. Superposition with Lambdas

GFInf contains all SUP, ERES, and EFACT inferences from GHInf translated by
F . It coincides with standard first-order superposition.

Each of the three inference systems is parameterized by a selection function.
For HInf , we globally fix one selection function HSel. For GHInf and GFInf , we
need to consider different selection functions. We write GHInf GHSel for GHInf and
GFInf GFSel for GFInf to make the dependency on the respective selection functions
GHSel and GFSel explicit. Let G (HSel) denote the set of all selection functions
on CGH such that for each clause in C ∈ CGH, there exists a clause D ∈ CH with
C ∈G (D) and corresponding selected literals. For each selection function GHSel on
CGH, via the bijection F , we obtain a corresponding selection function on CGF, which
we denote by F (GHSel).

We extend the functions F and G to inferences:

Notation 5.25. Given an inference ι, we write prems(ι) for the tuple of premises,
mprem(ι) for the main (i.e., rightmost) premise, and concl(ι) for the conclusion.

Definition 5.26 (Encoding F on inferences). Given a SUP, ERES, or EFACT

inference ι ∈GHInf , let F (ι) ∈GFInf denote the inference defined by prems(F (ι))=
F (prems(ι)) and concl(F (ι))=F (concl(ι)).

Definition 5.27 (Grounding function G on inferences). Given an inference ι ∈HInf ,
and a selection function GHSel ∈ G (HSel), we define the set GGHSel(ι) of ground
instances of ι to be all inferences ι′ ∈GHInf GHSel such that prems(ι′)= prems(ι)θ and
concl(ι′)= concl(ι)θ for some grounding substitution θ.

This will map SUP and FLUIDSUP to SUP, EFACT to EFACT, ERES to ERES,
EXT to GEXT, and ARGCONG to GARGCONG inferences, but it is also possible that
GGHSel(ι) is the empty set for some inferences ι.

We define the sets of redundant inferences w.r.t. a given clause set as for the
nonpurifying calculi in Chapter 3:

– Given ι ∈GFInf GFSel and N ⊆CGF, let ι ∈GFRedGFSel
I (N) if we have prems(ι)∩

GFRedC(N) 6=∅ or {D ∈ N | D ≺mprem(ι)} |= concl(ι).
– Given ι ∈GHInf GHSel and N ⊆CGH, let ι ∈GHRedGHSel

I (N) if
– ι is not a GARGCONG or GEXT inference and F (ι) ∈GFRedF (GHSel)

I (F (N));
or

– ι is a GARGCONG or GEXT inference and concl(ι) ∈ N ∪GHRedC(N).
– Given ι ∈ HInf and N ⊆ CH, let ι ∈ HRedI(N) if GGHSel(ι) ⊆ GHRedI(G (N)) for

all GHSel ∈G (HSel).

Occasionally, we omit the selection function in the notation when it is irrelevant. A
clause set N is saturated w.r.t. an inference system and the inference component
RedI of a redundancy criterion if every inference from clauses in N is in RedI(N).

This redundancy criterion gracefully generalizes the usual first-order redundancy
criterion and thus most of the simplification rules implemented in Schulz’s first-order
prover E [117, Sections 2.3.1 and 2.3.2] can be applied, with the same caveats as
listed in Section 3.3.5.

5.3. The Calculus

5

91

5.3.5. A Derived Term Order
We stated some requirements on the term orders Â and % in Section 5.3.1 but have
not shown how to fulfill them. To derive a suitable strict term order Â, we propose to
encode η-short β-normal forms into untyped first-order terms and apply an order Âfo
of first-order terms such as the Knuth–Bendix order [87] or the lexicographic path
order [82].

The encoding, denoted by O, indexes symbols with their number of term argu-
ments, similarly to the F encoding. Unlike the F encoding, O translates λx :τ. t
to lam(O(τ),O(t)) and uses De Bruijn [43] symbols to represent bound variables.
The O encoding replaces fluid terms t by fresh variables z t and maps type argu-
ments to term arguments, while erasing any other type information. For example,
O(λx :κ. f (f (a〈κ〉)) (yb))= lam(κ, f2(f1(a0(κ)), z yb)). The use of De Bruijn indices and
the monolithic encoding of fluid terms ensure stability under both α-renaming and
substitution.

Definition 5.28 (Encoding O). Given a signature (Σty,Σ), O encodes types and terms
as terms over the untyped first-order signature Σty] {fk | f ∈Σ, k ∈N}] {lam}] {dbi

k |
i,k ∈ N}. We reuse higher-order type variables as term variables in the target
untyped first-order logic. Moreover, let z t be an untyped first-order variable for each
higher-order term t. The auxiliary function Bx(t) replaces each free occurrence of
the variable x by a symbol dbi, where i is the number of λ-expressions surrounding
the variable occurrence. The type-to-term version of O is defined by O(α) = α and
O(κ(τ̄))= κ(O(τ̄)). The term-to-term version is defined by

O(t)=

z t if t = x or t is fluid
lam(O(τ),O(Bx(u))) if t = (λx :τ. u) and t is not fluid
fk(O(τ̄),O(ūk)) if t = f〈τ̄〉ūk

For example, let s =λy. f y (λw.g (y w)) where y has type κ→ κ and w has type κ.
We have By(f y(λw.g(yw)))= fdb0(λw.g(db1w)) and Bw(g(db1w))= g(db1db0). Neither
s nor λw.g (y w) are fluid. Hence, O(s)= lam(→(κ,κ), f2(db0

0, lam(κ,g1(db1
1(db0

0)))).

Definition 5.29 (Derived strict term order). Let the strict term order derived from
Âfo be Âλ where t Âλ s if O(t)Âfo O(s).

We will show that the derived Âλ fulfills all properties of a strict term order
(Definition 5.6) if Âfo fulfills the corresponding properties on first-order terms. For
the nonstrict term order %, we can use the reflexive closure ºλ of Âλ.

Lemma 5.30. Let Âfo be a strict partial order on first-order terms and Âλ the derived
term order on βη-equivalence classes. If the restriction of Âfo to ground terms enjoys
well-foundedness, totality, the subterm property, and compatibility with contexts
(w.r.t. first-order terms), the restriction of Âλ to ground terms enjoys well-foundedness,
totality, the green subterm property, and compatibility with green contexts (w.r.t.
βη-equivalence classes).

Proof. Transitivity and irreflexivity of Âfo imply transitivity and irreflexivity of Âλ.

5

92 5. Superposition with Lambdas

WELL-FOUNDEDNESS: If there existed an infinite chain t1 Âλ t2 Âλ · · · of ground
terms, there would also be the chain O(t1) Âfo O(t2) Âfo · · · , contradicting the well-
foundedness of Âfo on ground λ-free terms.

TOTALITY: By ground totality of Âfo, for any ground terms t and s we have O(t)Âfo
O(s), O(t)≺fo O(s), or O(t)=O(s). In the first two cases, it follows that t Âλ s or t ≺λ s.
In the last case, it follows that t = s because O is clearly injective.

GREEN SUBTERM PROPERTY: Let s be a term. We show that s ºλ s|p by induction
on p, where s|p denotes the green subterm at position p. If p = ε, this is trivial. If
p = p′.i, we have s ºλ s|p′ by the induction hypothesis. Hence, it suffices to show that
s|p′ ºλ s|p′.i. From the existence of the position p′.i, we know that s|p′ must be of the
form s|p′ = f〈τ̄〉ūk. Then s|p′.i = ui. The encoding yields O(s|p′)= fk(O(τ̄),O(ūk)) and
hence O(s|p′)ºfo O(s|p′.i) by the ground subterm property of Âfo. Hence, s|p′ ºλ s|p′.i
and thus s ºλ s|p.

COMPATIBILITY WITH GREEN CONTEXTS: By induction on the depth of the context,
it suffices to show that t Âλ s implies f〈τ̄〉ū tv̄ Âλ f〈τ̄〉ūsv̄ for all t, s, f, τ̄, ū, and v̄. This
amounts to showing that O(t)Âfo O(s) implies O(f〈τ̄〉ūtv̄)= fk(O(τ̄),O(ū),O(t),O(v̄))Âfo
fk(O(τ̄),O(ū),O(s),O(v̄))=O(f〈τ̄〉ū s v̄), which follows directly from ground compatibil-
ity of Âfo with contexts and the induction hypothesis.

Lemma 5.31. Let Âfo be a strict partial order on first-order terms. If Âfo is stable
under grounding substitutions (w.r.t. first-order terms), the derived term order Âλ is
stable under grounding substitutions (w.r.t. βη-equivalence classes).

Proof. Assume s Âλ s′ for some terms s and s′. Let θ be a higher-order substitution
grounding s and s′. We must show sθ Âλ s′θ. We will define a first-order substitution
ρ grounding O(s) and O(s′) such that O(s)ρ =O(sθ) and O(s′)ρ =O(s′θ). Since s Âλ s′,
we have O(s)Âfo O(s′). By stability of Âfo under grounding substitutions, O(s)ρ Âfo
O(s′)ρ. It follows that O(sθ)Âfo O(s′θ) and hence sθ Âλ s′θ.

We define the first-order substitution ρ as αρ = αθ for type variables α and
zuρ =O(uθ) for terms u. Strictly speaking, the domain of a substitution must be
finite, so we restrict this definition of ρ to the finitely many variables that occur in
the computation of O(s) and O(s′).

Clearly O(τ)ρ =O(τθ) for all types τ occurring in the computation of O(s) and
O(s′). Moreover, O(t)ρ =O(tθ) for all t occurring in the computation of O(s) and O(s′),
which we show by induction on the definition of the encoding. If t = x or if t is fluid,
O(t)ρ = z tρ = O(tθ). If t = f〈τ̄〉 ū, then O(t)ρ = fk(O(τ̄)ρ,O(ū)ρ) IH= fk(O(τ̄θ),O(ūθ)) =
O(f〈τ̄θ〉(ūθ)) = O(tθ). If t = (λx : τ. u) and t is not fluid, then O(t)ρ = lam(O(τ)ρ,
O(Bx(u))ρ) IH= lam(O(τθ),O(Bx(u)θ))= lam(O(τθ),O(Bx(u)θ[x 7→ x]))=O(λx :τθ. uθ[x 7→
x])=O((λx :τ. u)θ)=O(tθ).

5.4. Refutational Completeness
Using the same general structure as in Chapter 3, we prove static and dynamic
refutational completeness of HInf w.r.t. (HRedI,HRedC).

5.4. Refutational Completeness

5

93

5.4.1. Outline of the Proof

The proof proceeds in three steps, corresponding to the three levels GF, GH, and H
introduced in Section 5.3.4:

1. We use Bachmair and Ganzinger’s work on the refutational completeness of
standard (first-order) superposition [9] to prove static refutational complete-
ness of GFInf .

2. From the first-order model constructed in Bachmair and Ganzinger’s proof,
we derive a clausal higher-order model and thus prove static refutational
completeness of GHInf .

3. We use the saturation framework by Waldmann et al. [140] to lift the static
refutational completeness of GHInf to static and dynamic refutational com-
pleteness of HInf .

The first step is identical with the first step of the completeness proof in Chapter 3.
We will omit it here and refer to Section 3.4.2.

In the second step, we derive refutational completeness of GHInf . Given a
saturated clause set N ⊆ CGH with ⊥ 6∈ N, we use the first-order model RF (N) of
F (N) constructed in the first step to derive a clausal higher-order interpretation
that is a model of N. Under the encoding F , occurrences of the same symbol with
different numbers of arguments are regarded as different symbols—e.g., F (f) = f0
and F (f a) = f1(a0). All λ-expressions λx. t are regarded as uninterpreted symbols
lamλx. t. The difficulty is to construct a higher-order interpretation that merges the
first-order denotations of all fi into a single higher-order denotation of f and to show
that the symbols lamλx. t behave like λx. t. This step relies on saturation w.r.t. the
GARGCONG rule—which connects a term of functional type with its value when
applied to an argument x—and on the presence of the extensionality rule GEXT.

In the third step, we employ the saturation framework by Waldmann et al. [140].
The main proof obligation we must discharge to use the framework is that there
should exist nonground inferences in HInf corresponding to all nonredundant in-
ferences in GHInf . We face two specifically higher-order difficulties. First, since
our term order lacks compatibility with contexts, we need to argue as in Chapter 3
that SUP into variables can make up for that flaw of the term order. The other
difficulty also concerns applied variables. We must show that any nonredundant
SUP inference in level GH into a position corresponding to a fluid term or a deeply
occurring variable in level H can be lifted to a FLUIDSUP inference. This involves
showing that the z variable in FLUIDSUP can represent arbitrary contexts around a
term t.

For the entire proof of refutational completeness, βη-normalization is the prover-
bial dog that did not bark. On level GH, the rules SUP, ERES, and EFACT preserve
η-short β-normal form, and so does first-order term rewriting. Thus, we can com-
pletely ignore −■→β and −■→η. On level H, instantiation can cause β- and η-reduction,
but this poses no difficulties thanks to the clause order’s stability under grounding
substitutions.

5

94 5. Superposition with Lambdas

5.4.2. The Ground Higher-Order Level
Since the refutational completeness proof for the ground first-order level GF is
identical to the one in Section 3.4.2, we skip directly to the GH level.

In this subsection, let GHSel be a selection function on CGH, let N ⊆ CGH be a
clause set saturated w.r.t. GHInf GHSel and GHRedGHSel

I such that ⊥ 6∈ N. Clearly,
F (N) is then saturated w.r.t. GFInf F (GHSel) and GFRedF (GHSel)

I .
We abbreviate RF (N) as R. Given two terms s, t ∈ TGH, we write s ∼ t to abbreviate

R |=F (s)≈F (t), which is equivalent to JF (s)KR = JF (t)KR .

Lemma 5.32. For all terms t, s : τ→ υ in TGH, the following statements are equiva-
lent:

1. t ∼ s;
2. t (diff t s)∼ s (diff t s);
3. t u ∼ s u for all u ∈ TGH.

Proof. (3)⇒ (2): Take u := diff t s.

(2)⇒ (1): Since N is saturated, the GEXT inference that generates the clause C =
t (diff t s) 6≈ s (diff t s) ∨ t ≈ s is redundant—i.e., C ∈ N ∪ GHRedC(N)—and hence
R |= F (C) by Theorem 3.29 and the assumption that ⊥ 6∈ N. Therefore, it follows
from t (diff t s)∼ s (diff t s) that t ∼ s.

(1)⇒ (3): We assume that t ∼ s—i.e., F (t) ←→∗
R F (s). By induction on the number

of rewrite steps between F (t) and F (s) and by transitivity of ∼, it suffices to show
that F (t) −■→R F (s) implies t u ∼ s u. If the rewrite step F (t) −■→R F (s) is not at the
top level, then neither s↓βη nor t↓βη can be λ-expressions. Therefore, (s↓βη) (u↓βη)
and (t↓βη) (u↓βη) are in η-short β-normal form, and there is an analogous rewrite
step F (t u) −■→R F (s u) using the same rewrite rule. It follows that t u ∼ s u. If the
rewrite step F (t)−■→R F (s) is at the top level, F (t)−■→F (s) must be a rule of R. This
rule must originate from a productive clause of the form F (C) = F (C′ ∨ t ≈ s). By
Lemma 3.28, F (t ≈ s) is strictly º-eligible in F (C) w.r.t. F (GHSel), and hence t ≈ s is
strictly º-eligible in C w.r.t. GHSel. Thus, the following GARGCONG inference ι is
applicable:

C′ ∨ t ≈ s
GARGCONG

C′ ∨ t u ≈ s u

By saturation, ι is redundant w.r.t. N—i.e., concl(ι) ∈ N ∪ GHRedC(N). By The-
orem 3.29 and the assumption that ⊥ 6∈ N, F (concl(ι)) is then true in R. By
Lemma 3.28, F (C′) is false in R. Therefore, F (t u ≈ s u) must be true in R.

Lemma 5.33. Let s ∈ TH and θ, θ′ grounding substitutions such that xθ ∼ xθ′ for all
variables x and αθ =αθ′ for all type variables α. Then sθ ∼ sθ′.

Proof. In this proof, we work directly on λ-terms. To prove the lemma, it suffices to
prove it for any λ-term s. Here, for λ-terms t1 and t2, the notation t1 ∼ t2 is to be
read as t1↓βη ∼ t2↓βη because F is only defined on η-short β-normal terms.

DEFINITION We extend the syntax of λ-terms with a new polymorphic function
symbol ⊕ :Πα.α→α→α. We will omit its type argument. It is equipped with two

5.4. Refutational Completeness

5

95

reduction rules: ⊕ t s −■→ t and ⊕ t s −■→ s. A β⊕-reduction step is either a rewrite step
following one of these rules or a β-reduction step.

The computability path order ÂCPO [36] guarantees that
– ⊕ t s ÂCPO s by applying rule @�;
– ⊕ t s ÂCPO t by applying rule @� twice;
– (λx. t) s ÂCPO t[x 7→ s] by applying rule @β.

Since this order is moreover monotone, it decreases with β⊕-reduction steps. The or-
der is also well founded; thus, β⊕-reductions terminate. And since the β⊕-reduction
steps describe a finitely branching term rewriting system, by Kőnig’s lemma [85],
there is a maximal number of β⊕-reduction steps from each λ-term.

DEFINITION A λ-term is term-ground if it does not contain free term variables. It
may contain polymorphic type arguments.

DEFINITION We introduce an auxiliary function S that essentially measures the
size of a λ-term but assigns a size of 1 to term-ground λ-terms.

S(s)=

1 if s is term-ground or is a bound or free variable or a symbol
1+S(t) if s is not term-ground and has the form λx. t
S(t)+S(u) if s is not term-ground and has the form t u

We prove sθ ∼ sθ′ by well-founded induction on s, θ, and θ′ using the left-to-right
lexicographic order on the triple

(
n1(s),n2(s),n3(s)

) ∈N3, where
– n1(s) is the maximal number of β⊕-reduction steps starting from sσ, where σ

is the substitution mapping each term variable x to ⊕ xθ xθ′;
– n2(s) is the number of free term variables occurring more than once in s;
– n3(s)= S(s).

CASE 1: The λ-term s is term-ground. Then the lemma is trivial.

CASE 2: The λ-term s contains k ≥ 2 free term variables. Then we can apply the
induction hypothesis twice and use the transitivity of ∼ as follows. Let x be one of
the free term variables in s. Let ρ = {x 7→ xθ} the substitution that maps x to xθ and
ignores all other variables. Let ρ′ = θ′[x 7→ x].

We want to invoke the induction hypothesis on sρ and sρ′. This is justified
because sσ ⊕-reduces to sρσ and to sρ′σ. These ⊕-reductions have at least one step
because x occurs in s and k ≥ 2. Hence, n1(s)> n1(sρ) and n1(s)> n1(sρ′).

This application of the induction hypothesis gives us sρθ ∼ sρθ′ and sρ′θ ∼ sρ′θ′.
Since sρθ = sθ and sρ′θ′ = sθ′, this is equivalent to sθ ∼ sρθ′ and sρ′θ ∼ sθ′. Since
moreover sρθ′ = sρ′θ, we have sθ ∼ sθ′ by transitivity of ∼. The following illustration
visualizes the above argument:

sρ sρ′

sθ ∼
IH

sρθ′ = sρ′θ ∼
IH

sθ′
θ θ′ θ θ′

5

96 5. Superposition with Lambdas

CASE 3: The λ-term s contains a free term variable that occurs more than once.
Then we rename variable occurrences apart by replacing each occurrence of each free
term variable x by a fresh variable xi, for which we define xiθ = xθ and xiθ

′ = xθ′.
Let s′ be the resulting λ-term. Since sσ= s′σ, we have n1(s)= n1(s′). All free term
variables occur only once in s′. Hence, n2(s)> 0= n2(s′). Therefore, we can invoke
the induction hypothesis on s′ to obtain s′θ ∼ s′θ′. Since sθ = s′θ and sθ′ = s′θ′, it
follows that sθ ∼ sθ′.

CASE 4: The λ-term s contains only one free term variable x, which occurs exactly
once.

CASE 4.1: The λ-term s is of the form f〈τ̄〉 t̄ for some symbol f, some types τ̄, and
some λ-terms t̄. Then let u be the λ-term in t̄ that contains x. We want to apply the
induction hypothesis to u, which can be justified as follows. Consider the longest
sequence of β⊕-reductions from uσ. This sequence can be replicated inside sσ =
(f〈τ̄〉t̄)σ. Therefore, the longest sequence of β⊕-reductions from sσ is at least as long—
i.e., n1(s)≥ n1(u). Since both s and u have only one free term variable occurrence,
we have n2(s)= 0= n2(u). But n3(s)> n3(u) because u is a term-nonground subterm
of s.

Applying the induction hypothesis gives us uθ ∼ uθ′. By definition of F , we
have F ((f〈τ̄〉 t̄)θ) = f τ̄θm F (t̄θ) and analogously for θ′, where m is the length of t̄. By
congruence of ≈ in first-order logic, it follows that sθ ∼ sθ′.

CASE 4.2: The λ-term s is of the form xt̄ for some λ-terms t̄. Then we observe that, by
assumption, xθ ∼ xθ′. By applying Lemma 5.32 repeatedly, we have xθ t̄ ∼ xθ′ t̄. Since
x occurs only once, t̄ is term-ground and hence sθ = xθ t̄ and sθ′ = xθ′ t̄. Therefore,
sθ ∼ sθ′.

CASE 4.3: The λ-term s is of the form λz. u for some λ-term u. Then we observe
that to prove sθ ∼ sθ′, it suffices to show that sθ (diff sθ sθ′) ∼ sθ′ (diff sθ sθ′) by
Lemma 5.32. Via βη-conversion, this is equivalent to uρθ ∼ uρθ′ where ρ = {z 7→
diff (sθ↓βη) (sθ′↓βη)}. To prove uρθ ∼ uρθ′, we apply the induction hypothesis on uρ.

It remains to show that the induction hypothesis is applicable on uρ. Consider
the longest sequence of β⊕-reductions from uρσ. Since zρ starts with the diff
symbol, zρ will not cause more β⊕-reductions than z. Hence, the same sequence of
β⊕-reductions can be applied inside sσ= (λz. u)σ, proving that n1(s)≥ n1(uρ). Since
both s and uρ have only one free term variable occurrence, n2(s)= 0= n2(uρ). But
n3(s)= S(s)= 1+S(u) because s is term-nonground. Moreover, S(u)≥ S(uρ)= n3(uρ)
because ρ replaces a variable by a ground λ-term. Hence, n3(s) > n3(uρ), which
justifies the application of the induction hypothesis.

CASE 4.4: The λ-term s is of the form (λz. u) t0 t̄ for some λ-terms u, t0, and t̄. We
apply the induction hypothesis on s′ = u{z 7→ t0} t̄. To justify it, consider the longest
sequence of β⊕-reductions from s′σ. Prepending the reduction sσ−■→β s′σ to it gives
us a longer sequence from sσ. Hence, n1(s)> n1(s′). The induction hypothesis gives
us s′θ ∼ s′θ′. Since ∼ is invariant under β-reductions, it follows that sθ ∼ sθ′.

We proceed by defining a higher-order interpretation IGH = (UGH,JGH
ty ,JGH,LGH)

derived from R. The interpretation R is an interpretation in monomorphic first-order
logic. Let Uτ be its universe for type τ and J its interpretation function.

5.4. Refutational Completeness

5

97

To illustrate the construction, we will employ the following running example.
Let the higher-order signature be Σty = {ι,→} and Σ = {f : ι→ ι, a : ι, b : ι}. The first-
order signature accordingly consists of Σty and ΣGF = {f0, f1,a0,b0}∪ {lamλx. t |λx. t ∈
TGH}. We write [t] for the equivalence class of t ∈ TGF modulo R. We assume that
[f0]= [lamλx. x], [a0]= [f1(a0)], [b0]= [f1(b0)], and that f0, lamλx.a, lamλx.b0 , a0, and b0
are in disjoint equivalence classes. Hence, Uι→ι = {[f0], [lamλx.a], [lamλx.b], . . . } and
Uι = {[a0], [b0]}.

When defining the universe UGH of the higher-order interpretation, we need to
ensure that it contains subsets of function spaces, since JGH

ty (→)(D1,D2) must be a
subset of the function space from D1 to D2 for all D1,D2 ∈UGH. But the first-order
universes Uτ consist of equivalence classes of terms from TGF w.r.t. the rewriting
system R, not of functions.

To repair this mismatch, we will define a family of functions Eτ that give a
meaning to the elements of the first-order universes Uτ. We will define a domain Dτ

for each ground type τ and then let UGH be the set of all these domains Dτ. Thus,
there will be a one-to-one correspondence between ground types and domains. Since
the higher-order and first-order type signatures are identical (including →, which is
uninterpreted in first-order logic), we can identify higher-order and first-order types.

We define Eτ and Dτ in a mutual recursion and prove that Eτ is a bijection
simultaneously. We start with nonfunctional types τ: Let Dτ =Uτ and let Eτ :Uτ −■→
Dτ be the identity. We proceed by defining Eτ→υ and Dτ→υ. We assume that Eτ, Eυ,
Dτ, and Dυ have already been defined and that Eτ, Eυ are bijections. To ensure that
Eτ→υ will be bijective, we first define an injective function E0

τ→υ :Uτ→υ −■→ (Dτ −■→Dυ),
define Dτ→υ as its image E0

τ→υ(Uτ→υ), and finally define Eτ→υ as E0
τ→υ with its

codomain restricted to Dτ→υ:

E0
τ→υ :Uτ→υ −■→ (Dτ −■→Dυ)

E0
τ→υ(JF (s)KR)

(
Eτ

(
JF (u)KR

))=Eυ
(
JF (s u)KR

)
This is a valid definition because each element of Uτ→υ is of the form JF (s)KR for
some s and each element of Dτ is of the form Eτ

(
JF (u)KR

)
for some u. This function

is well defined if it does not depend on the choice of s and u. To show this, we
assume that there are other ground terms t and v such that JF (s)KR = JF (t)KR and
Eτ

(
JF (u)KR

)=Eτ
(
JF (v)KR

)
. Since Eτ is bijective, we have JF (u)KR = JF (v)KR . Using

the ∼-notation, we can write this as u ∼ v. Applying Lemma 5.33 to the term x y
and the substitutions {x 7→ s, y 7→ u} and {x 7→ t, y 7→ v}, we obtain s u ∼ t v—i.e.,
JF (s u)KR = JF (t v)KR . Thus, E0

τ→υ is well defined. It remains to show that E0
τ→υ is

injective as a function from Uτ→υ to Dτ −■→Dυ. Assume two terms s, t ∈ TGH such
that for all u ∈ TGH, we have JF (s u)KR = JF (t u)KR . By Lemma 5.32, it follows that
JF (s)KR = JF (t)KR , which concludes the proof that E0

τ→υ is injective.
We define Dτ→υ =E0

τ→υ(Uτ→υ) and Eτ→υ(a)=E0
τ→υ(a). This ensures that Eτ→υ is

bijective and concludes the inductive definition of D and E. In the following, we will
usually write E instead of Eτ, since the type τ is determined by the first argument of
Eτ.

In our running example, we thus have Dι =Uι = {[a0], [b0]} and Eι is the identity
Uι −■→Dι, c 7→ c. The function E0

ι→ι maps [f0] to the identity Dι −■→Dι, c 7→ c; it maps

5

98 5. Superposition with Lambdas

[lamλx.a] to the constant function Dι −■→Dι, c 7→ [a0]; and it maps [lamλx.b] to the
constant function Dι −■→Dι, c 7→ [b0]. The swapping function [a0] 7→ [b0], [b0] 7→ [a0]
is not in the image of E0

ι→ι. Therefore, Dι→ι contains only the identity and the two
constant functions, but not this swapping function.

We define the higher-order universe as UGH = {Dτ | τ ground}. Moreover, we
define JGH

ty (κ)(Dτ̄) =Uκ(τ̄) for all κ ∈ Σty, completing the type interpretation IGH
ty =

(UGH,JGH
ty). We define the interpretation function as JGH(f,Dῡm) =E(J(f ῡm

0)) for all
f :Πᾱm. τ.

In our example, we thus have JGH(f)=E([f0]), which is the identity on Dι −■→Dι.
Finally, we need to define the designation function LGH, which takes a valuation

ξ and a λ-expression as arguments. Given a valuation ξ, we choose a grounding sub-
stitution θ such that Dαθ = ξ(α) and E(JF (xθ)KR)= ξ(x) for all type variables α and
all variables x. Such a substitution can be constructed as follows: We can fulfill the
first equation in a unique way because there is a one-to-one correspondence between
ground types and domains. Since E−1(ξ(x)) is an element of a first-order universe
and R is term-generated, there exists a ground term t such that JtKξR = E−1(ξ(x)).
Choosing one such t and defining xθ = F −1(t) gives us a grounding substitution θ

with the desired property.
We define LGH(ξ, (λx. t)) = E(JF ((λx. t)θ)KR). To prove that this is well defined,

we assume that there exists another substitution θ′ with the properties Dαθ′ = ξ(α)
for all α and E(JF (xθ′)KR) = ξ(x) for all x. Then we have αθ = αθ′ for all α due
to the one-to-one correspondence between domains and ground types. We have
JF (xθ)KR = JF (xθ′)KR for all x because E is injective. By Lemma 5.33 it follows that
JF ((λx. t)θ)KR = JF ((λx. t)θ′)KR , which proves that LGH is well defined.

In our example, for all ξ we have LGH(ξ,λx. x) = E([lamλx. x]) = E([f0]), which is
the identity. If ξ(y) = [a0], then LGH(ξ,λx. y) = E([lamλx.a]), which is the constant
function c 7→ [a0]. Similarly, if ξ(y)= [b0], then LGH(ξ,λx. y) is the constant function
c 7→ [b0].

This concludes the definition of the interpretation IGH = (UGH,JGH
ty ,JGH,LGH). It

remains to show that IGH is proper. In a proper interpretation, the denotation JtKIGH

of a term t does not depend on the representative of t modulo βη, but since we have
not yet shown IGH to be proper, we cannot rely on this property. For this reason, we
use λ-terms in the following three lemmas and mark all βη-reductions explicitly.

The higher-order interpretation IGH relates to the first-order interpretation R as
follows:

Lemma 5.34. Given a ground λ-term t, we have

JtKIGH =E(JF (t↓βη)KR)

Proof. By induction on t. Assume that JsKIGH =E(JF (s↓βη)KR) for all proper subterms
s of t. If t is of the form f〈τ̄〉, then

JtKIGH = JGH(f,Dτ̄)
=E(J(f0,UF (τ̄)))
=E(Jf0〈F (τ̄)〉KR)
=E(JF (f〈τ̄〉)KR)
=E(JF (f〈τ̄〉↓βη)KR)=E(JF (t↓βη)KR)

5.4. Refutational Completeness

5

99

If t is an application t = t1 t2, where t1 is of type τ→ υ, then

Jt1 t2KIGH = Jt1KIGH (Jt2KIGH)
IH=Eτ→υ(JF (t1↓βη)KR)(Eτ(JF (t2↓βη)KR))

Def E= Eυ(JF ((t1 t2)↓βη)KR)

If t is a λ-expression, then

Jλx. uKξIGH =LGH(ξ, (λx. u))
=E(JF ((λx. u)θ↓βη)KR)
=E(JF ((λx. u)↓βη)KR)

where θ is a substitution such that Dαθ = ξ(α) and E(JF (xθ)KR)= ξ(x).

We need to show that the interpretation IGH = (UGH,JGH
ty ,JGH,LGH) is proper.

In the proof, we will need to employ the following lemma, which is very similar to
the substitution lemma (Lemma 5.18), but we must prove it here for our particular
interpretation IGH because we have not shown that IGH is proper yet.

Lemma 5.35 (Substitution lemma). JτρKξIGH
ty

= JτKξ
′
IGH
ty

and JtρKξIGH = JtKξ
′
IGH for all

λ-terms t, all τ ∈ TyH and all grounding substitutions ρ, where ξ′(α) = JαρKξIGH
ty

for
all type variables α and ξ′(x)= JxρKξIGH for all term variables x.

Proof. We proceed by induction on the structure of τ and t. The proof is identical
to the one of Lemma 5.18, except for the last step, which uses properness of the
interpretation, a property we cannot assume here. However, here, we have the
assumption that ρ is a grounding substitution. Therefore, if t is a λ-expression, we
argue as follows:

J(λz. u)ρKξIGH

= J(λz. uρ′)KξIGH where ρ′(z)= z and ρ′(x)= ρ(x) for x 6= z

=LGH(ξ, (λz. uρ′)) by the definition of the term denotation

=E(JF ((λz. u)ρθ↓βη)KξR) for some θ by the definition of LGH

=E(JF ((λz. u)ρ↓βη)KξR) because (λz. u)ρ is ground
∗=LGH(ξ′,λz. u) by the definition of LGH and Lemma 5.34

= Jλz. uKξ
′
IGH by the definition of the term denotation

The step ∗ is justified as follows: We have LGH(ξ′,λz. u)=E(JF ((λz. u)θ′↓βη)KξR) by
the definition of LGH, if θ′ is a substitution such that Dαθ′ = ξ′(α) for all α and
E(JF (xθ′↓βη)KξR)= ξ′(x) for all x. By the definition of ξ′ and by Lemma 5.34, ρ is such
a substitution. Hence, LGH(ξ′,λz. u)=E(JF ((λz. u)ρ↓βη)KξR).

Lemma 5.36. The interpretation IGH is proper.

5

100 5. Superposition with Lambdas

Proof. We must show that J(λx. t)KξIGH (a) = JtKξ[x 7→a]
IGH for all λ-expressions λx. t, all

valuations ξ, and all values a.

Jλx. tKξIGH (a)=LGH(ξ,λx. t)(a) by the definition of J KIGH

=E(JF ((λx. t)θ↓βη)KR)(a) by the definition of LGH for some θ
such that E(JF (zθ)KR)= ξ(z) for all z
and Dαθ = ξ(α) for all α

=E(JF (((λx. t)θ s)↓βη)KR) by the definition of E
where E(JF (s)KR)= a

=E(JF (t(θ[x 7→ s])↓βη)KR) by β-reduction

= Jt(θ[x 7→ s])KIGH by Lemma 5.34

= JtKξ[x 7→a]
IGH by Lemma 5.35

Lemma 5.37. IGH is a model of N.

Proof. By Lemma 5.34, we have JtKIGH = E(JF (t)KR) for all t ∈ TGH. Since E is a
bijection, it follows that any (dis)equation s ≈̇ t ∈ CGH is true in IGH if and only if
F (s ≈̇ t) is true in R. Hence, a clause C ∈CGH is true in IGH if and only if F (C) is true
in R. By Theorem 3.29 and the assumption that ⊥∉ N, R is a model of F (N)—that
is, for all clauses C ∈ N, F (C) is true in R. Hence, all clauses C ∈ N are true in IGH

and therefore IGH is a model of N.

We summarize the results of this subsection in the following theorem:

Theorem 5.38 (Ground static refutational completeness). Let GHSel be a selection
function on CGH. Then the inference system GHInf GHSel is statically refutation-
ally complete w.r.t. (GHRedI,GHRedC). In other words, if N ⊆ CGH is a clause set
saturated w.r.t. GHInf GHSel and GHRedGHSel

I , then N |=⊥ if and only if ⊥∈ N.

The construction of IGH relies on specific properties of R. It would not work with
an arbitrary first-order interpretation. Transforming a higher-order interpretation
into a first-order interpretation is easier:

Lemma 5.39. Given a clausal higher-order interpretation I on GH, there exists a
first-order interpretation IGF on GF such that for any clause C ∈CGH the truth values
of C in I and of F (C) in IGF coincide.

Proof. Let I = (Ity,J,L) be a clausal higher-order interpretation. Let UGF
τ = JτKIty

be the first-order type universe for the ground type τ. For a symbol f ῡj ∈ ΣGF, let
JGF(f ῡj) = Jf〈ῡ〉KI (up to currying). For a symbol lamλx. t ∈ ΣGF, let JGF(lamλx. t) =
Jλx. tKI. This defines a first-order interpretation IGF = (UGF,JGF).

We need to show that for any C ∈CGH, I |= C if and only if IGF |=F (C). It suffices
to show that JtKI = JF (t)KIGF for all terms t ∈ TGH. We prove this by induction on the
structure of the η-short β-normal form of t. If t is a λ-expression, this is obvious. If t
is of the form f〈ῡ〉s̄j, then F (t)= f ῡj (F (s̄j)) and hence JF (t)KIGF = JGF(f ῡj)(JF (s̄j)KIGF)=
Jf〈ῡ〉KI(JF (s̄j)KIGF) IH= Jf〈ῡ〉KI(Js̄jKI)= JtKI.

5.4. Refutational Completeness

5

101

5.4.3. The Nonground Higher-Order Level
To lift the result to the nonground level, we employ the saturation framework of
Waldmann et al. [140]. It is easy to see that the entailment relation |= on GH is
a consequence relation in the sense of the framework. We need to show that our
redundancy criterion on GH is a redundancy criterion in the sense of the framework
and that G is a grounding function in the sense of the framework:

Lemma 5.40. The redundancy criterion for GH is a redundancy criterion in the
sense of Section 2 of the saturation framework.

Proof. The proof is analogous to the proof of Lemma 3.36.

Lemma 5.41. The grounding functions GGHSel for GHSel ∈G (HSel) are grounding
functions in the sense of Section 3 of the saturation framework.

Proof. We must prove the conditions (G1), (G2), and (G3) of the saturation frame-
work. Adapted to our context, they state the following:
(G1) G (⊥)= {⊥};
(G2) for every C ∈CH, if ⊥∈G (C), then C =⊥;
(G3) for every ι ∈HInf , GGHSel(ι)⊆GHRedGHSel

I (G (concl(ι))).
Clearly, C =⊥ if and only if ⊥∈G (C) if and only if G (C)= {⊥}, proving (G1) and (G2).
For every ι ∈HInf , by the definition of GGHSel, we have concl(GGHSel(ι))⊆G (concl(ι)),
and thus (G3) by (R4).

As in Chapter 3, we use the saturation framework’s lifting theorem to lift the
completeness result of the previous subsection. It can be stated as a verbatim copy
of Theorem 3.38, but referring to the notions established in this chapter:

Theorem 5.42 (Lifting theorem). If GHInf GHSel is statically refutationally complete
w.r.t. (GHRedGHSel

I ,GHRedC) for every GHSel ∈ G (HSel), and if for every N ⊆ CH
that is saturated w.r.t. HInf and HRedI there exists a GHSel ∈ G (HSel) such that
GHInf GHSel(G (N))⊆GGHSel(HInf (N))∪GHRedGHSel

I (G (N)), then also HInf is stati-
cally refutationally complete w.r.t. (HRedI,HRedC) and |=G .

Proof. The proof is analogous to the one of Theorem 3.38, but using Lemma 5.40
and 5.41.

Let N ⊆CH be a clause set saturated w.r.t. HInf and HRedI. We assume that HSel
fulfills the selection restriction that a literal L y must not be selected if y ūn, with
n > 0, is a º-maximal term of the clause, as required in Definition 5.9. For the above
theorem to apply, we need to show that there exists a selection function GHSel ∈
G (HSel) such that all inferences ι ∈GHInf GHSel with prems(ι) ∈G (N) are liftable or
redundant. Here, for ι to be liftable means that ι is a GGHSel-ground instance of a
HInf -inference from N; for ι to be redundant means that ι ∈GHRedGHSel

I (G (N)).
To choose the right selection function GHSel ∈ G (HSel), we observe that each

ground clause C ∈ G (N) must have at least one corresponding clause D ∈ N such
that C is a ground instance of D. We choose one of them for each C ∈ G (N), which
we denote by G−1(C). Then let GHSel select those literals in C that correspond to

5

102 5. Superposition with Lambdas

literals selected by HSel in G−1(C). With respect to this selection function GHSel,
we can show that all inferences from G (N) are liftable or redundant:

Lemma 5.43. Let G−1(C) = D ∈ N and Dθ = C. Let σ and ρ be substitutions such
that xσρ = xθ for all variables x in D. Let L be a (strictly) º-eligible literal in C w.r.t.
GHSel. Then there exists a (strictly) %-eligible literal L′ in D w.r.t. σ and HSel such
that L′θ = L.

Proof. If L ∈ GHSel(C), then there exists L′ such that L′θ = L and L′ ∈ HSel(D) by
the definition of G−1. Otherwise, L is º-maximal in C. Since C = Dσρ, there are
literals L′ in Dσ such that L′ρ = L. Choose L′ to be a %-maximal among them.
Then L′ is %-maximal in Dσ because for any literal L′′ ∈ D with L′′ % L′, we have
L′′ρ º L′ρ = L and hence L′′ρ = L by º-maximality of L.

If L is strictly º-maximal in C, L′ is also strictly %-maximal in Dσ because a
duplicate of L′ in Dσ would imply a duplicate of L in C.

Lemma 5.44 (Lifting of ERES, EFACT, GARGCONG, and GEXT). All ERES, EFACT,
GARGCONG, and GEXT inferences from G (N) are liftable.

Proof. ERES: Let ι ∈GHInf GHSel be an ERES inference with prems(ι) ∈G (N). Then
ι is of the form

Cθ = C′θ ∨ sθ 6≈ s′θ
ERES

C′θ

where G−1(Cθ) = C = C′ ∨ s 6≈ s′ and the literal sθ 6≈ s′θ is º-eligible w.r.t. GHSel.
Since sθ and s′θ are unifiable and ground, we have sθ = s′θ. Thus, there exists an
idempotent σ ∈CSU(s, s′) such that for some substitution ρ and for all variables x in
C, we have xσρ = xθ. By Lemma 5.43, we may assume without loss of generality that
s 6≈ s′ is %-eligible in C w.r.t. σ and HSel. Hence, the following inference ι′ ∈HInf is
applicable:

C′ ∨ s 6≈ s′
ERES

C′σ

Then ι is the σρ-ground instance of ι′ and is therefore liftable.

EFACT: Analogously, if ι ∈GHInf GHSel is an EFACT inference with prems(ι) ∈G (N),
then ι is of the form

Cθ = C′θ ∨ s′θ ≈ t′θ ∨ sθ ≈ tθ
EFACT

C′θ ∨ tθ 6≈ t′θ ∨ sθ ≈ t′θ

where G−1(Cθ) = C = C′ ∨ s′ ≈ t′ ∨ s ≈ t, the literal sθ ≈ tθ is º-eligible in C w.r.t.
GHSel, and sθ 6≺ tθ. Then s 6≺ t. Moreover, sθ and s′θ are unifiable and ground.
Hence, sθ = s′θ and there exists an idempotent σ ∈ CSU(s, s′) such that for some
substitution ρ and for all variables x in C, we have xσρ = xθ. By Lemma 5.43, we
may assume without loss of generality that s ≈ t is %-eligible in C w.r.t. σ and HSel.
It follows that the following inference ι′ ∈HInf is applicable:

C′ ∨ s′ ≈ t′ ∨ s ≈ t
EFACT

(C′ ∨ t 6≈ t′ ∨ s ≈ t′)σ

5.4. Refutational Completeness

5

103

Then ι is the σρ-ground instance of ι′ and is therefore liftable.

GARGCONG: Let ι ∈ GHInf GHSel be a GARGCONG inference with prems(ι) ∈ G (N).
Then ι is of the form

Cθ = C′θ ∨ sθ ≈ s′θ
GARGCONG

C′θ ∨ sθ ūn ≈ s′θ ūn

where G−1(Cθ)= C = C′ ∨ s ≈ s′, the literal sθ ≈ s′θ is strictly º-eligible w.r.t. GHSel,
and sθ and s′θ are of functional type. It follows that s and s′ have either a functional
or a polymorphic type. Let σ be the most general substitution such that sσ and
s′σ take n arguments. By Lemma 5.43, we may assume without loss of generality
that s 6≈ s′ is strictly %-eligible in C w.r.t. σ and HSel. Hence the following inference
ι′ ∈HInf is applicable:

C′ ∨ s ≈ s′
ARGCONG

C′σ∨ sσ x̄n ≈ s′σ x̄n

Since σ is the most general substitution that ensures well-typedness of the conclu-
sion, ι is a ground instance of ι′ and is therefore liftable.

GEXT: The conclusion of a GEXT inference in GHInf is by definition a ground
instance of the conclusion of an EXT inference in HInf . Hence, the GEXT inference
is a ground instance of the EXT inference. Therefore it is liftable.

Some of the SUP inferences in GHInf are liftable as well:

Lemma 5.45 (Instances of green subterms). Let s be a λ-term in η-short β-normal
form, let σ be a substitution, and let p be a green position of both s and sσ↓βη. Then
(s|p)σ↓βη = (sσ↓βη)|p.

Proof. By induction on p. If p = ε, then (s|p)σ↓βη = sσ↓βη = (sσ↓βη)|p. If p =
i.p′, then s = f〈τ̄〉s1 . . . sn and sσ = f〈τ̄σ〉(s1σ) . . . (snσ), where 1 ≤ i ≤ n and p′ is
a green position of si. Clearly, βη-normalization steps of sσ can take place only
in proper subterms. So sσ↓βη = f〈τ̄σ〉(s1σ↓βη) . . . (snσ↓βη). Since p = i.p′ is a green
position of sσ↓βη, p′ must be a green position of (siσ)↓βη. By the induction hy-
pothesis, (si|p′)σ↓βη = (siσ↓βη)|p′ . Therefore (s|p)σ↓βη = (s|i.p′)σ↓βη = (si|p′)σ↓βη =
(siσ↓βη)|p′ = (sσ↓βη)|p.

Lemma 5.46 (Lifting of SUP). Let ι ∈GHInf GHSel be a SUP inference

Dθ︷ ︸︸ ︷
D′θ ∨ tθ ≈ t′θ

Cθ︷ ︸︸ ︷
C′θ ∨ sθ tθ p ≈̇ s′θ

SUP
D′θ ∨ C′θ ∨ sθ t′θ p ≈̇ s′θ

where G−1(Dθ)= D = D′ ∨ t ≈ t′ ∈ N, sθ = sθ tθ p, and G−1(Cθ)= C = C′ ∨ s ≈̇ s′ ∈ N.
We assume that s, t, sθ, and tθ are represented by λ-terms in η-short β-normal form.
Let p′ be the longest prefix of p that is a green position of s. Since ε is a green position
of s, the longest prefix always exists. Let u = s|p′ . Suppose one of the following

5

104 5. Superposition with Lambdas

conditions applies: (i) u is a deeply occurring variable in C; (ii) p = p′ and the
variable condition holds for D and C; or (iii) p 6= p′ and u is not a variable. Then ι is
liftable.

Proof. The SUP inference conditions for ι are that tθ ≈ t′θ is strictly º-eligible,
sθ ≈̇ s′θ is strictly º-eligible if positive and º-eligible if negative, Dθ 6%Cθ, tθ 6- t′θ,
and sθ 6- s′θ. We assume that s, t, sθ, and tθ are represented by λ-terms in η-short
β-normal form. By Lemma 5.45, uθ agrees with sθ|p′ (considering both as terms
rather than as λ-terms).

CASE 1: We have (a) p = p′, (b) u is not fluid, and (c) u is not a variable deeply
occurring in C. Then uθ = sθ|p′ = sθ|p = tθ. Since θ is a unifier of u and t, there
exists an idempotent σ ∈ CSU(t,u) such that for some substitution ρ and for all
variables x occurring in D and C, we have xσρ = xθ. The inference conditions can be
lifted: (Strict) eligibility of tθ ≈ t′θ and sθ ≈̇ s′θ w.r.t. GHSel implies (strict) eligibility
of t ≈ t′ and s ≈̇ s′ w.r.t. σ and HSel; Dθ 6% Cθ implies D 6% C; tθ 6- t′θ implies t 6- t′;
and sθ 6- s′θ implies s 6- s′. Moreover, by (a) and (c), condition (ii) must hold and thus
the variable condition holds for D and C. Hence there is the following SUP inference
ι′ ∈HInf :

D′ ∨ t ≈ t′ C′ ∨ s u p ≈̇ s′
SUP

(D′ ∨ C′ ∨ s t′ p ≈̇ s′)σ

Then ι is the σρ-ground instance of ι′ and therefore liftable.

CASE 2: We have (a) p 6= p′, or (b) u is fluid, or (c) u is a variable deeply occurring in
C. We will first show that (a) implies (b) or (c). Suppose (a) holds but neither (b) nor
(c) holds. Then condition (iii) must hold—i.e., u is not a variable. Moreover, since (b)
does not hold, u cannot have the form y ūn for a variable y and n ≥ 1. If u were of
the form f〈τ̄〉s1 . . . sn with n ≥ 0, uθ would have the form f〈τ̄θ〉(s1θ) . . . (snθ), but then
there is some 1≤ i ≤ n such that p′.i is a prefix of p and s|p′.i is a green subterm of s,
contradicting the maximality of p′. So u must be a λ-expression, but since tθ is a
proper green subterm of uθ, uθ cannot be a λ-expression, yielding a contradiction.
We may thus assume that (b) or (c) holds.

Let p = p′.p′′. Let z be a fresh variable. Define a substitution θ′ that maps
this variable z to λy. (sθ|p′) y p′′ and any other variable w to wθ. Clearly, (z t)θ′ =
(sθ|p′) tθ p′′ = sθ|p′ = uθ = uθ′. Since θ′ is a unifier of u and z t, there exists an
idempotent σ ∈ CSU(z t,u) such that for some substitution ρ, for x = z, and for all
variables x in C and D, we have xσρ = xθ′. As in case 1, (strict) eligibility of the
ground literals implies (strict) eligibility of the nonground literals. Moreover, by
construction of θ′, tθ′ = tθ 6= t′θ = t′θ′ implies (z t)θ′ 6= (z t′)θ′, and thus (z t)σ 6= (z t′)σ.
Since we also have (b) or (c), there is the following inference ι′:

D′ ∨ t ≈ t′ C′ ∨ s u p′ ≈̇ s′
FLUIDSUP

(D′ ∨ C′ ∨ s z t′ p′ ≈̇ s′)σ

Then ι is the σρ-ground instance of ι′ and therefore liftable.

The other SUP inferences might not be liftable, but they are redundant:

5.4. Refutational Completeness

5

105

Lemma 5.47. Let ι ∈ GHInf GHSel be a SUP inference from G (N) not covered by
Lemma 5.46. Then ι ∈GHRedGHSel

I (G (N)).

Proof. Let Cθ = C′θ∨ sθ ≈̇ s′θ and Dθ = D′θ∨ tθ ≈ t′θ be the premises of ι, where
sθ ≈̇ s′θ and tθ ≈ t′θ are the literals involved in the inference, sθ Â s′θ, tθ Â t′θ,
and C′, D′, s, s′, t, t′ are the respective subclauses and terms in C = G−1(Cθ) and
D =G−1(Dθ). Then the inference ι has the form

D′θ ∨ tθ ≈ t′θ C′θ ∨ sθ tθ ≈̇ s′θ
SUP

D′θ ∨ C′θ ∨ sθ t′θ ≈̇ s′θ

To show that ι ∈GHRedGHSel
I (G (N)), it suffices to show {D ∈F (G (N)) | D ≺F (Cθ)} |=

F (concl(ι)). To this end, let I be an interpretation in GF such that I |= {D ∈F (G (N)) |
D ≺ F (Cθ)}. We need to show that I |= F (concl(ι)). If F (D′θ) is true in I, then
obviously I |=F (concl(ι)). So we assume that F (D′θ) is false in I. Since Cθ Â Dθ by
the SUP order conditions, it follows that I |=F (tθ ≈ t′θ). Therefore, it suffices to show
I |=F (Cθ).

Let p be the position in sθ where ι takes place and p′ be the longest prefix of p
that is a green subterm of s. Let u = s|p′ . Since Lemma 5.46 does not apply to ι, u is
not a deeply occurring variable; if p = p′, the variable condition does not hold for D
and C; and if p 6= p′, u is a variable. This means either the position p does not exist
in s, because it is below an unapplied variable that does not occur deeply in C, or s|p
is an unapplied variable that does not occur deeply in C and for which the variable
condition does not hold.

CASE 1: The position p does not exist in s because it is below a variable x that does
not occur deeply in C. Then tθ is a green subterm of xθ and hence a green subterm of
xθ w̄ for any arguments w̄. Let v be the term that we obtain by replacing tθ by t′θ in
xθ at the relevant position. Since I |=F (tθ ≈ t′θ), by congruence, I |=F (xθ w̄ ≈ vw̄) for
any arguments w̄. Hence, I |= F (Cθ) if and only if I |= F (C{x 7→ v}θ) by congruence.
Here, it is crucial that the variable does not occur deeply in C because congruence
does not hold in F -encoded terms below λ-binders. By the inference conditions,
we have tθ Â t′θ, which implies F (Cθ) Â F (C{x 7→ v}θ) by compatibility with green
contexts. Therefore, by the assumption about I, we have I |=F (C{x 7→ v}θ) and hence
I |=F (Cθ).

CASE 2: The term s|p is a variable x that does not occur deeply in C and for which
the variable condition does not hold. From this, we know that Cθ º C′′θ, where
C′′ = C{x 7→ t′}. We cannot have Cθ = C′′θ because xθ = tθ 6= t′θ and x occurs in C.
Hence, we have Cθ Â C′′θ. By the definition of I, Cθ Â C′′θ implies I |=F (C′′θ). We
will use equalities that are true in I to rewrite F (Cθ) into F (C′′θ), which implies
I |=F (Cθ) by congruence.

By saturation, every ARGCONG inference ι′ from D is in HRedI(N), which by
definition means that G (concl(ι′))⊆G (N)∪GHRedC(G (N)). Hence, D′θ∨ tθ ū ≈ t′θ ū
is in G (N)∪GHRedC(G (N)) for any ground arguments ū.

We observe that whenever tθ ū and t′θ ū are smaller than the º-maximal term of
Cθ for some arguments ū, we have

I |=F (tθ ū)≈F (t′θ ū) (∗)

5

106 5. Superposition with Lambdas

To show this, we assume that tθ ū and t′θ ū are smaller than the º-maximal term
of Cθ and we distinguish two cases: If tθ is smaller than the º-maximal term
of Cθ, all terms in D′θ are smaller than the º-maximal term of Cθ and hence
D′θ∨ tθ ū ≈ t′θ ū ≺ Cθ. If, on the other hand, tθ is equal to the º-maximal term
of Cθ, then tθ ū and t′θ ū are smaller than tθ. Hence tθ ū ≈ t′θ ū ≺ tθ ≈ t′θ and
D′θ∨ tθ ū ≈ t′θ ū ≺ Dθ ≺ Cθ. In both cases, since D′θ is false in I, by the definition of
I, we have (∗).

Next, we show the equivalence of Cθ and C′′θ via rewriting with equations of the
form (∗) where tθ ū and t′θ ū are smaller than the º-maximal term of Cθ. Since x
does not occur deeply in C, every occurrence of x in C is not inside a λ-expression
and not inside an argument of an applied variable. Therefore, all occurrences of x
in C are in a green subterm of the form x v̄ for some terms v̄ that do not contain
x. Hence, every occurrence of x in C corresponds to a subterm F ((x v̄)θ) = F (tθ v̄θ)
in F (Cθ) and to a subterm F ((x v̄){x 7→ t′}θ)=F (t′θ v̄{x 7→ t′}θ)=F (t′θ v̄θ) in F (C′′θ).
These are the only positions where Cθ and C′′θ differ.

To justify the necessary rewrite steps from F (tθ v̄θ) into F (t′θ v̄θ) using (∗), we
must show that F (tθ v̄θ) and F (t′θ v̄θ) are smaller than the º-maximal term in F (Cθ)
for the relevant v̄. If v̄ is the empty tuple, we do not need to show this because
I |= F (tθ ≈ t′θ) follows from F (Dθ)’s being true and F (D′θ)’s being false. If v̄ is
nonempty, it suffices to show that x v̄ is not a º-maximal term in C. Then F (tθ v̄θ)
and F (t′θ v̄θ), which correspond to the term x v̄ in C, cannot be º-maximal in F (Cθ)
and F (C′′θ). Hence they must be smaller than the º-maximal term in F (Cθ) because
they are subterms of F (Cθ) and F (C′′θ)≺F (Cθ), respectively.

To show that x v̄ is not a º-maximal term in C, we make a case distinction on
whether sθ ≈̇ s′θ is selected in Cθ or sθ is the º-maximal term in Cθ. One of these
must hold because sθ ≈̇ s′θ is º-eligible in Cθ. If it is selected, by the selection
restrictions, x cannot be the head of a º-maximal term of C. If sθ is the º-maximal
term in Cθ, we can argue that x is a green subterm of s and, since x does not occur
deeply, s cannot be of the form x v̄ for a nonempty v̄. This justifies the necessary
rewrites between F (Cθ) and F (C′′θ) and it follows that I |=F (Cθ).

With these properties of our inference systems in place, Theorem 5.42 guarantees
static and dynamic refutational completeness of HInf w.r.t. HRedI. However, this
theorem gives us refutational completeness w.r.t. the Herbrand entailment |=G ,
defined as N1 |=G N2 if G (N1) |=G (N2), whereas our semantics is Tarski entailment
|=, defined as N1 |= N2 if any model of N1 is a model of N2. To repair this mismatch,
we use the following lemma, which can be proved along the lines of Lemma 3.43,
using Lemma 5.18 and Lemma 5.19.

Lemma 5.48. For N ⊆CH, we have N |=G ⊥ if and only if N |=⊥.

Theorem 5.49 (Static refutational completeness). The inference system HInf is
statically refutationally complete w.r.t. (HRedI,HRedC). In other words, if N ⊆ CH
is a clause set saturated w.r.t. HInf and HRedI, then we have N |= ⊥ if and only if
⊥∈ N.

Proof. We apply Theorem 5.42. By Theorem 5.38, GHInf GHSel is statically refuta-
tionally complete for all GHSel ∈G (HSel). By Lemmas 5.44, 5.46, and 5.47, for every

5.5. Extensions

5

107

saturated N ⊆ CH, there exists a selection function GHSel ∈ G (HSel) such that all
inferences ι ∈GHInf GHSel with prems(ι) ∈G (N) either are GGHSel-ground instances
of HInf -inferences from N or belong to GHRedGHSel

I (G (N)).
Theorem 5.42 implies that if N ⊆ CH is a clause set saturated w.r.t. HInf and

HRedI, then N |=G ⊥ if and only if ⊥ ∈ N. By Lemma 5.48, this also holds for the
Tarski entailment |=. That is, if N ⊆ CH is a clause set saturated w.r.t. HInf and
HRedI, then N |=⊥ if and only if ⊥∈ N.

From static refutational completeness, we can easily derive dynamic refutational
completeness.

Theorem 5.50 (Dynamic refutational completeness). The inference system HInf
is dynamically refutationally complete w.r.t. (HRedI,HRedC), as defined in Defini-
tion 3.26.

Proof. By Theorem 17 of the saturation framework, this follows from Theorem 5.49
and Lemma 5.48.

5.5. Extensions
The core calculus can be extended with various optional rules. Although these
are not necessary for refutational completeness, they can allow the prover to find
more direct proofs. Most of these rules are concerned with the areas covered by the
FLUIDSUP rule and the extensionality axiom.

Two of the optional rules below rely on the notion of “orange subterms.”

Definition 5.51. A λ-term t is an orange subterm of a λ-term s if s = t; or if s = f〈τ̄〉s̄
and t is an orange subterm of si for some i; or if s = x s̄ and t is an orange subterm of
si for some i; or if s = (λx. u) and t is an orange subterm of u.

For example, in the term f (g a) (yb) (λx.h c (g x)), the orange subterms are all the
green subterms—a, ga, yb, λx.hc(gx) and the whole term—and in addition b, c, x, gx,
and h c (g x). Following Convention 5.1, this notion is lifted to βη-equivalence classes
via representatives in η-short β-normal form. We write t = s x̄n.u to indicate that
u is an orange subterm of t, where x̄n are the variables bound in the orange context
around u, from outermost to innermost. If n = 0, we simply write t = s u .

Once a term s x̄n. u has been introduced, we write s x̄n. u′
η to denote

the same context with a different subterm u′ at that position. The η subscript
is a reminder that u′ is not necessarily an orange subterm of s x̄n. u′

η due to
potential applications of η-reduction. For example, if s x.g x x = ha (λx.g x x), then
s x. f x η = h a (λx. f x)= h a f.

Demodulation, which destructively rewrites using an equality t ≈ t′, is available
at green positions. In addition, a variant of demodulation rewrites in orange contexts:

t ≈ t′ C s x̄. tσ
λDEMODEXT

t ≈ t′ C s x̄. t′σ η s x̄. tσ ≈ s x̄. t′σ η

where the term tσ may refer to the bound variables x̄. The following side conditions
apply:

5

108 5. Superposition with Lambdas

1. s x̄. tσ ↓βη is a λ-expression or a term of the form y ūn with n > 0;
2. s x̄. tσ Â s x̄. t′σ η; 3. C s x̄. tσ Â s x̄. tσ ≈ s x̄. t′σ η

Condition 3 ensures that the second premise is redundant w.r.t. the conclusions and
may be removed. The double bar indicates that the conclusions collectively make the
premises redundant and can replace them.

The third conclusion, which is entailed by t ≈ t′ and (EXT), could be safely
omitted if the corresponding (EXT) instance is smaller than the second premise.
But in general, the third conclusion is necessary for the proof, and the variant of
λDEMODEXT that omits it—let us call it λDEMOD—might not preserve refutational
completeness.

An instance of λDEMODEXT, where g z is rewritten to f z z under a λ-binder,
follows:

g x ≈ f x x k (λz.h (g z))≈ c
λDEMODEXT

g x ≈ f x x k (λz.h (f z z))≈ c (λz.h (g z))≈ (λz.h (f z z))

Lemma 5.52. λDEMODEXT is sound and preserves refutational completeness of the
calculus.

Proof. Soundness of the first conclusion is obvious. Soundness of the second and third
conclusion follows from congruence and extensionality using the premises. Preserva-
tion of completeness is justified by redundancy. Specifically, we justify the deletion of
the second premise by showing that it is redundant w.r.t. the conclusions. By defini-
tion, it is redundant if for every ground instance C s x̄. tσ θ ∈G (C s x̄. tσ),
its encoding F (C s x̄. tσ θ) is entailed by F (G (N)), where N are the conclusions
of λDEMODEXT. The first conclusion cannot help us prove redundancy because
s x̄. tσ θ↓βη might be a λ-expression and then F (s x̄. tσ θ) is a symbol that is
unrelated to F (tσθ). Instead, we use the θ-instances of the last two conclusions. By
Lemma 5.23, F (C s x̄. t′σ η θ) has F (s x̄. t′σ ηθ) as a subterm. If this subterm
is replaced by F (s x̄. tσ θ), we obtain F (C s x̄. tσ θ). Hence, the F -encodings
of the θ-instances of the last two conclusions entail the F -encoding of the θ-instance
of the second premise by congruence. Due to the side condition that the second
premise is larger than the second and third conclusion, by stability under grounding
substitutions, the θ-instances of the last two conclusions must be smaller than the
θ-instance of the second premise. Thus, the second premise is redundant.

The next simplification rule can be used to prune arguments of applied variables
if the arguments can be expressed as functions of the remaining arguments. For
example, the clause C[yab(f ba), ybd(f db)], in which y occurs twice, can be simplified
to C[y′ab, y′bd]. Here, for each occurrence of y, the third argument can be computed
by applying f to the second and first arguments. The rule can also be used to remove
the repeated arguments in yb b 6≈ ya a, the static argument a in ya c 6≈ ya b, and all
four arguments in ya b 6≈ z b d. It is stated as

C
PRUNEARG

Cσ

where the following conditions apply:

5.5. Extensions

5

109

1. σ= {y 7→λx̄j. y′ x̄j−1}; 2. y′ is a fresh variable; 3. C=Cσ;
4. the minimum number k of arguments passed to any occurrence of y in the

clause C is at least j;
5. there exists a term t containing no variables bound in the clause such that for

all terms of the form y s̄k occurring in the clause we have sj = t s̄j−1 sj+1 . . . sk.
Clauses with a static argument correspond to the case t := (λx̄j−1 xj+1 . . . xk. u),

where u is the static argument (containing no variables bound in t) and j is
its index in y’s argument list. The repeated argument case corresponds to t :=
(λx̄j−1 xj+1 . . . xk. xi), where i is the index of the repeated argument’s mate.

Lemma 5.53. PRUNEARG is sound and preserves refutational completeness of the
calculus.

Proof. The rule is sound because it simply applies a substitution to C. It preserves
completeness because the premise C is redundant w.r.t. the conclusion Cσ. This
is because the sets of ground instances of C and Cσ are the same and C = Cσ.
Clearly Cσ is an instance of C. We will show the inverse: that C is an instance
of Cσ. Let ρ = {y′ 7→ λx̄j−1 xj+1 . . . xk. y x̄j−1 (t x̄j−1 xj+1 . . . xk) xj+1 . . . xk}. We show
Cσρ = C. Consider an occurrence of y in C. By the side conditions, it will have
the form y s̄k ū, where sj = t s̄j−1 sj+1 . . . sk. Hence, (y s̄k)σρ = (y′ s̄j−1 sj+1 . . . sk)ρ =
y s̄j−1 (t s̄j−1 sj+1 . . . sk) sj+1 . . . sk = y s̄k. Thus, Cσρ = C.

We designed an algorithm that efficiently computes the subterm u of the term
t = (λx1 . . . xj−1 xj+1 . . . xk. u) occurring in the side conditions of PRUNEARG. The
algorithm is incomplete, but our tests suggest that it discovers most cases of prunable
arguments that occur in practice. The algorithm works by maintaining a mapping
of pairs (y, i) of functional variables y and indices i of their arguments to a set of
candidate terms for u. For an occurrence y s̄n of y and for an argument sj, the
algorithm approximates this set by computing all possible ways in which subterms of
sj that are equal to any other si can be replaced with the variable xi corresponding to
the ith argument of y. The candidate sets for all occurrences of y are then intersected.
An arbitrary element of the final intersection is returned as the term u.

For example, suppose that ya (f a)b and y z (f z)b are the only occurrences of y in
the clause C. The initial mapping is {1 7→ TH, 2 7→ TH, 3 7→ TH}. After computing the
ways in which each argument can be expressed using the remaining ones for the first
occurrence and intersecting the sets, we get {1 7→ {a}, 2 7→ {f a, f x1}, 3 7→ {b}}, where
x1 represents y’s first argument. Finally, after computing the corresponding sets
for the second occurrence of y and intersecting them with the previous candidate
sets, we get {1 7→;, 2 7→ {f x1}, 3 7→ {b}}. The final mapping shows that we can remove
the second argument, since it can be expressed as a function of the first argument:
t = (λx1 x3. f x1 x3). We can also remove the third argument, since its value is fixed:
t = (λx1 x3. b). An example where our procedure fails is the pair of occurrences
y (λx. a) (f a) c and y (λx. b) (f b) d. PRUNEARG can be used to eliminate the second
argument by taking t := (λx1 x3. f (x1 x3)), but our algorithm will not detect this.

Following the literature [68,126], we provide a rule for negative extensionality:

C′ ∨ s 6≈ s′
NEGEXT

C′ ∨ s (sk〈ᾱ〉 ȳ) 6≈ s′ (sk〈ᾱ〉 ȳ)

5

110 5. Superposition with Lambdas

where the following conditions apply:
1. sk is a fresh Skolem symbol; 2. s 6≈ s′ is %-eligible in the premise;
3. ᾱ and ȳ are the type and term variables occurring free in the literal s 6≈ s′.

Negative extensionality can be applied as an inference rule at any time or as a
simplification rule during preprocessing of the initial problem. The rule uses Skolem
terms sk ȳ rather than diff s s′ because they tend to be more compact.

Lemma 5.54 (NEGEXT’s satisfiability preservation). Let N ⊆ CH and let E be the
conclusion of a NEGEXT inference from N. If N ∪ {(EXT)} is satisfiable, then N ∪
{(EXT),E} is satisfiable.

Proof. Let I be a model of N ∪ {(EXT)}. We need to construct a model of N ∪
{(EXT),E}. Since (EXT) holds in I, so does its instance s (diff s s′) 6≈ s′ (diff s s′)∨ s ≈ s′.
We extend the model I to a model I′, interpreting sk such that I′ |= sk〈ᾱ〉 ȳ≈ diff s s′.
The Skolem symbol sk takes the free type and term variables of s 6≈ s′ as arguments,
which include all the free variables of diff s s′, allowing us to extend I in this way.

By assumption, the premise C′ ∨ s 6≈ s′ is true in I and hence in I′. Since
the above instance of (EXT) holds in I, it also holds in I′. Hence, the conclusion
C′ ∨ s (sk〈ᾱm〉 ȳn) 6≈ s′ (sk〈ᾱm〉 ȳn) also holds, which can be seen by resolving the
premise against the (EXT) instance and unfolding the defining equation of sk.

One reason why the extensionality axiom is so prolific is that both sides of its
maximal literal, y (diff y z) 6≈ z (diff y z), are fluid. As a pragmatic alternative to the
axiom, we introduce the “abstracting” rules ABSSUP, ABSERES, and ABSEFACT

with the same premises as the core SUP, ERES, and EFACT, respectively. We call
these rules collectively ABS. Each new rule shares all the side conditions of the corre-
sponding core rule except that of the form σ ∈CSU(s, t). Instead, it lets σ be the most
general unifier of s and t’s types and adds this condition: Let v s1, . . . , sn = sσ and
v t1, . . . , tn = tσ, where v is the largest common green context of sσ and tσ. If any
si is of functional type and the core rule has conclusion Eσ, the new rule has conclu-
sion Eσ∨ s1 6≈ t1 ∨ ·· · ∨ sn 6≈ tn. The NEGEXT rule can then be applied to those liter-
als si 6≈ ti whose sides have functional type. Essentially the same idea was proposed
by Bhayat and Reger as unification with abstraction in the context of combinatory
superposition [28, Section 3.1]. The approach regrettably does not fully eliminate the
need for axiom (EXT), as Visa Nummelin demonstrated via the following example.

Example 5.55. Consider the unsatisfiable clause set consisting of h x ≈ f x, k h ≈
k g, and k g 6≈ k f, where k takes at most one argument and h Â g Â f. The only
nonredundant ABS inference applicable is ABSERES on the third clause, resulting
in g 6≈ f. Applying EXTNEG further produces g sk 6≈ f sk. The set consisting of all five
clauses is saturated.

A different approach is to instantiate the extensionality axiom with arbitrary
terms s, s′ of the same functional type:

EXTINST
s (diff s s′) 6≈ s′ (diff s s′)∨ s ≈ s′

5.5. Extensions

5

111

We would typically choose s, s′ among the green subterms occurring in the cur-
rent clause set. Intuitively, if we think in terms of eligibility, EXTINST demands
s(diff ss′)≈ s′(diff ss′) to be proved before s ≈ s′ can be used. This can be advantageous
because simplifying inferences (based on matching) will often be able to rewrite the
applied terms s (diff s s′) and s′ (diff s s′). In contrast, ABS assume s ≈ s′ and delay
the proof obligation that s (diff s s′)≈ s′ (diff s s′). This can create many long clauses,
which will be subject to expensive generating inferences (based on full unification).

Superposition can be generalized to orange subterms as follows:

D′ ∨ t ≈ t′ C′ ∨ s x̄. u ≈̇ s′
λSUP

(D′ ∨ C′ ∨ s x̄. t′ η ≈̇ s′)σρ

where the substitution ρ is defined as follows: Let Py = {y} for all type and term vari-
ables y 6∈ x̄. For each i, let Pxi be recursively defined as the union of all Py such that
y occurs free in the λ-expression that binds xi in s x̄. u σ or that occurs free in the
corresponding subterm of s x̄. t′ ησ. Then ρ is defined as {xi 7→ ski〈ᾱi〉ȳi for each i},
where ȳi are the term variables in Pxi and ᾱi are the type variables in Pxi and the
type variables occurring in the type of the λ-expression binding xi. In addition, SUP’s
side conditions and the following conditions apply:

10. x̄ has length n > 0; 11. x̄σ= x̄;
12. the variables x̄ do not occur in yσ for all variables y in u.

The substitution ρ introduces Skolem terms to represent bound variables that
would otherwise escape their binders. The rule can be justified in terms of paramod-
ulation and extensionality, with the Skolem terms standing for diff terms. We can
shorten the derivation of Example 5.17 by applying this rule to the clauses Cdiv and
Cconj as follows:

n ≈ zero∨ div n n ≈ one prod K (λk.div (succ k) (succ k)) 6≈ one
λSUP

succ sk≈ zero∨ prod K (λk.one) 6≈ one

From this conclusion, ⊥ can be derived using only SUP and EQRES inferences. We
thus avoid both FLUIDSUP and (EXT).

Lemma 5.56 (λSUP’s satisfiability preservation). Let N ⊆CH and let E be the con-
clusion of a λSUP inference from N. If N ∪ {(EXT)} is satisfiable, then N ∪ {(EXT),E}
is satisfiable.

Proof. Let I be a model of N ∪ {(EXT)}. We need to construct a model of N ∪
{(EXT),E}. For each i, let vi be the λ-expression binding xi in the term s x̄. u σ

in the rule. Let v′i be the variant of vi in which the relevant occurrence of uσ is
replaced by t′σ. We define a substitution π recursively by xiπ= diff (viπ) (v′iπ) for all
i. This definition is well founded because the variables xj with j ≥ i do not occur
freely in vi and v′i. We extend the model I to a model I′, interpreting ski such that
I′ |= ski〈ᾱi〉 ȳi ≈ diff (viπ)(v′iπ) for each i. Since the free type and term variables of any
xiπ are necessarily contained in Pxi , the arguments of ski include the free variables
of diff (viπ) (v′iπ), allowing us to extend I in this way.

5

112 5. Superposition with Lambdas

By assumption, the premises of the λSUP inference are true in I and hence in
I′. We need to show that the conclusion (D′ ∨ C′ ∨ s x̄. t′ η ≈̇ s′)σρ is also true in I′.
Let ξ be a valuation. If I′,ξ |= (D′ ∨ C′)σρ, we are done. So we assume that D′σρ and
C′σρ are false in I′ under ξ. In the following, we omit ‘I′,ξ |=’, but all equations (≈)
are meant to be true in I′ under ξ. Assuming D′σρ and C′σρ are false, we will show
inductively that viπ≈ v′iπ for all i = k, . . . ,1. By this assumption, the premises imply
that tσρ ≈ t′σρ and s x̄. u σρ ≈̇ s′σρ. Due to the way we constructed I′, we have
wπ≈ wρ for any term w. Hence, we have tσπ≈ t′σπ. The terms vkπ (diff (vkπ) (v′kπ))
and v′kπ (diff (vkπ) (v′kπ)) are the respective result of applying π to the body of the
λ-expressions vk and v′k. Therefore, by congruence, tσπ≈ t′σπ and tσ= uσ imply
that vkπ(diff (vkπ)(v′kπ))≈ v′kπ(diff (vkπ)(v′kπ)). The extensionality axiom then implies
vkπ≈ v′kπ.

It follows directly from the definition of π that for all i, viπ (diff (viπ) (v′iπ)) =
si vi+1π and v′iπ (diff (viπ) (v′iπ))= si v′i+1π for some context si . The sub-
terms vi+1π of si vi+1π and v′i+1π of si v′i+1π may be below applied variables
but not below λs. Since substitutions avoid capture, in vi and v′i, π only substitutes
xj with j < i, but in vi+1 and v′i+1, it substitutes all xj with j ≤ i. By an induction
using these equations, congruence, and the extensionality axiom, we can derive from
vkπ ≈ v′kπ that v1π ≈ v′1π. Since I′ |= wπ ≈ wρ for any term w, we have v1ρ ≈ v′1ρ.
By congruence, it follows that s x̄. u σρ ≈ s x̄. t′ ησρ. With s x̄. u σρ ≈̇ s′σρ, it
follows that (s x̄. t′ η ≈̇ s′)σρ. Hence, the conclusion of the λSUP inference is true
in I′.

The next rule, duplicating flex subterm superposition, is a lightweight alternative
to FLUIDSUP:

D′∨ t ≈ t′ C′∨ s y ūn ≈̇ s′
DUPSUP

(D′∨C′∨ s z ūn t′ ≈̇ s′)ρσ

where n > 0, ρ = {y 7→λx̄n.z x̄n (wx̄n)}, and σ ∈CSU(t,w(ūnρ)) for fresh variables w, z.
The order and eligibility restrictions are as for SUP. The rule can be understood as
the composition of an inference that applies the substitution ρ and of a paramodula-
tion inference into the subterm w (ūnρ) of s z (ūnρ) (w (ūnρ)) . DUPSUP is general
enough to replace FLUIDSUP in Examples 5.13 and 5.14 but not in Example 5.15. On
the other hand, FLUIDSUP’s unification problem is usually a flex–flex pair, whereas
DUPSUP yields a less explosive flex–rigid pair unless t is variable-headed.

The last rule, flex subterm superposition, is an even more lightweight alternative
to FLUIDSUP:

D′∨ t ≈ t′ C′∨ s y ūn ≈̇ s′
FLEXSUP

(D′∨C′∨ s t′ ≈̇ s′)σ

where n > 0 and σ ∈ CSU(t, y ūn). The order and eligibility restrictions are as for
SUP.

5.6. Implementation
We have implemented our calculus in the Zipperposition prover. We use the order Âλ
(Section 5.3.5) derived from the Knuth–Bendix order [87] and the lexicographic path

5.6. Implementation

5

113

order [82]. We currently use the corresponding nonstrict order ºλ as %.
Except for FLUIDSUP, the core calculus rules already existed in Zipperposition

in a similar form. To improve efficiency, we extended the prover to use a higher-order
generalization [136] of fingerprint indices [118] to find inference partners for all
new binary inference rules. To speed up the computation of the SUP conditions,
we omit the condition Cσ 6- Dσ in the implementation, at the cost of performing
some additional inferences. Among the optional rules, we implemented λDEMOD,
PRUNEARG, NEGEXT, ABS, EXTINST, λSUP, DUPSUP, and FLEXSUP. For λDEMOD

and λSUP, demodulation, subsumption, and other standard simplification rules
(as implemented in E [120]), we use pattern unification. For generating inference
rules that require enumerations of complete sets of unifiers, we use the complete
procedure of Vukmirović et al. [136]. It has better termination behavior, produces
fewer redundant unifiers, and can be implemented more efficiently than procedures
such as Jensen and Pietrzykowski’s [76] and Snyder and Gallier’s [123]. The set of
fluid terms is overapproximated in the implementation by the set of terms that are
either nonground λ-expressions or terms of the form y ūn with n > 0. To efficiently
retrieve candidates for ABS inferences without slowing down superposition term
indexing structures, we implemented dedicated indexing for clauses that are eligible
for ABS inferences [138, Section 3.3].

Zipperposition implements a DISCOUNT-style given clause procedure [7]. The
proof state is represented by a set A of active clauses and a set P of passive clauses.
To interleave nonterminating unification with other computation, we added a set T
containing possibly infinite sequences of scheduled inferences. These sequences are
stored as finite instructions of how to compute the inferences. Initially, all clauses
are in P. At each iteration of the main loop, the prover heuristically selects a given
clause C from P. If P is empty, sequences from T are evaluated to generate more
clauses into P; if no clause can be produced in this way, A is saturated and the
prover stops. Assuming a given clause C could be selected, it is first simplified
using A. Clauses in A are then simplified w.r.t. C, and any simplified clause is
moved to P. Then C is added to A and all sequences representing nonredundant
inferences between C and A are added to T. This maintains the invariant that all
nonredundant inferences between clauses in A have been scheduled or performed.
Then some of the scheduled inferences in T are performed and the conclusions are
put into P.

We can view the above loop as an instance of the abstract Zipperposition loop
prover ZL of Waldmann et al. [140, Example 34]. Their Theorem 32 allows us to ob-
tain dynamic completeness for this prover architecture from our static completeness
result (Theorem 54). This requires that the sequences in T are visited fairly, that
clauses in P are chosen fairly, and that simplification terminates, all of which are
guaranteed by our implementation.

The unification procedure we use returns a sequence of either singleton sets
containing the unifier or an empty set signaling that a unifier is still not found.
Empty sets are returned to give back control to the caller of unification procedure
and avoid getting stuck on nonterminating problems. These sequences of unifier
subsingletons are converted into sequences containing subsingletons of clauses
representing inference conclusions.

5

114 5. Superposition with Lambdas

5.7. Evaluation
We evaluated our prototype implementation of the calculus in Zipperposition with
other higher-order provers and with Zipperposition’s modes for less expressive logics.
All of the experiments were performed on StarExec nodes equipped with Intel Xeon
E5-26090 CPUs clocked at 2.40 GHz. Following CASC 2019,1 we use 180 s as the
CPU time limit.

We used both standard TPTP benchmarks [130] and Sledgehammer-generated
benchmarks [106]. From the TPTP, version 7.2.0, we used 1000 randomly selected
first-order (FO) problems in CNF, FOF, or TFF syntax without arithmetic and
all 499 monomorphic higher-order theorems in TH0 syntax without interpreted
Booleans and arithmetic. We partitioned the TH0 problems into those containing
no λ-expressions (TH0λf, 452 problems) and those containing λ-expressions (TH0λ,
47 problems). The Sledgehammer benchmarks, corresponding to Isabelle’s Judgment
Day suite [40], were regenerated to target clausal higher-order logic. They comprise
2506 problems, divided in two groups: SH-λ preserves λ-expressions, whereas SH-ll
encodes them as λ-lifted supercombinators [106] to make the problems accessible to
λ-free clausal higher-order provers. Each group of problems is generated from 256
Isabelle facts (definitions and lemmas). Our results are publicly available.2

Evaluation of Extensions To assess the usefulness of the extensions described
in Section 5.5, we fixed a base configuration of Zipperposition parameters. For each
extension, we then changed the corresponding parameters and observed the effect on
the success rate. The base configuration uses the complete variant of the unification
procedure of Vukmirović et al. [136]. It also includes the optional rules NEGEXT and
PRUNEARG, substitutes FLEXSUP for the highly explosive FLUIDSUP, and excludes
axiom (EXT). The base configuration is not refutationally complete.

The rules NEGEXT (NE) and PRUNEARG (PA) were added to the base configu-
ration because our informal experiments showed that they usually help. Fig. 5.1
confirms this, although the effect is small. In all tables, +R denotes the inclusion of
a rule R not present in the base, and −R denotes the exclusion of a rule R present
in the base. Numbers given in parentheses denote the number of problems that are
solved only by the given configuration and no other configuration in the same table.

The rules λDEMOD (λD) and λSUP extend the calculus to perform some rewriting
under λ-binders. While experimenting with the calculus, we noticed that, in some
configurations, λSUP performs better when the number of fresh Skolem symbols it
introduces overall is bounded by some parameter n. As Fig. 5.2 shows, inclusion of
these rules has different effect on the two benchmark sets. Different choices of n for
λSUP (denoted by λSn) do not seem to influence the success rate much.

The evaluation of the ABS and EXTINST rules and axiom (EXT), presented in
Fig. 5.3, confirms our intuition that including the extensionality axiom is severely
detrimental to performance. The +(EXT) configuration solved two unique problems
on SH-λ benchmarks, but the success of the +(EXT) configuration on these problems

1http://tptp.cs.miami.edu/CASC/27/
2https://doi.org/10.5281/zenodo.4032969

http://tptp.cs.miami.edu/CASC/27/
https://doi.org/10.5281/zenodo.4032969

5.7. Evaluation

5

115

−NE,−PA −NE −PA Base

TH0 446 (0) 446 (0) 447 (0) 447 (0)
SH-λ 431 (0) 433 (0) 433 (0) 436 (1)

Figure 5.1: Number of problems proved without rules included in the base configuration

Base +λD +λS0 +λS1 +λS2 +λS4 +λS8 +λS1024

TH0 447 (0) 448 (0) 449 (0) 449 (0) 449 (0) 449 (0) 449 (0) 449 (0)
SH-λ 436 (1) 435 (4) 430 (1) 429 (0) 429 (0) 429 (0) 429 (0) 429 (0)

Figure 5.2: Number of problems proved using rules that perform rewriting under λ-binders

Base +ABS +EXTINST +(EXT)

TH0 447 (0) 450 (1) 450 (1) 376 (0)
SH-λ 436 (11) 430 (11) 402 (1) 365 (2)

Figure 5.3: Number of problems proved using rules that perform extensionality reasoning

−FLEXSUP Base −FLEXSUP,+DUPSUP −FLEXSUP,+FLUIDSUP

TH0 446 (0) 447 (0) 448 (1) 447 (0)
SH-λ 469 (10) 436 (4) 451 (3) 461 (7)

Figure 5.4: Number of problems proved with rules that perform superposition into fluid terms

FO TH0λf TH0λ SH-ll SH-λ

CVC4 539 424 31 696 650
Ehoh 681 418 – 691 –
Leo-III-uncoop 198 389 42 226 234
Leo-III-coop 582 438 43 683 674
Satallax-uncoop – 398 43 489 507
Satallax-coop – 432 43 602 616
Vampire 729 432 42 718 707

FOZip 399 – – – –
@+FOZip 363 400 – 478 –
λfreeZip 395 398 – 538 –
λZip-base 388 408 39 420 436
λZip-pragmatic 396 411 33 496 503
λZip-full 177 339 34 353 361
Zip-uncoop 514 426 46 661 677
Zip-coop 625 434 46 710 717

Figure 5.5: Number of problems proved by the different provers

5

116 5. Superposition with Lambdas

appears to be due to a coincidental influence of the axiom on heuristics—the axiom
is not referenced in the generated proofs.

The FLEXSUP rule included in the base configuration did not perform as well as
we expected. Even the FLUIDSUP and DUPSUP rules outperformed FLEXSUP, as
shown in Fig. 5.4. This effect is especially visible on SH-λ benchmarks. On TPTP,
the differences are negligible.

Most of the extensions had a stronger effect on SH-λ than on TH0. A possible
explanation is that the Boolean-free TH0 benchmark subset consists mostly of
problems that are simple to solve using most prover parameters. On the other hand,
SH-λ benchmarks are of varying difficulty and can thus benefit more from changing
prover parameters.

Main Evaluation We selected all contenders in the THF division of CASC 2019
as representatives of the state of the art: CVC4 1.8 prerelease [13], Leo-III 1.4 [126],
Satallax 3.4 [42], and Vampire 4.4 [27]. We also included Ehoh [137], the λ-free
clausal higher-order mode of E 2.4. Leo-III and Satallax are cooperative higher-order
provers that can be set up to regularly invoke first-order provers as terminal proof
procedures. To assess the performance of their core calculi, we evaluated them with
first-order backends disabled. We denote these “uncooperative” configurations by
Leo-III-uncoop and Satallax-uncoop respectively, as opposed to the standard versions
Leo-III-coop and Satallax-coop.

To evaluate the overhead our calculus incurs on first-order or λ-free higher-
order problems, we ran Zipperposition in first-order (FOZip) and λ-free (λfreeZip)
modes, as well as in a mode that encodes curried applications using a distinguished
binary symbol @ before using first-order Zipperposition (@+FOZip). We evaluated the
implementation of our calculus in Zipperposition (λZip) in three configurations: base,
pragmatic, and full. Pragmatic builds on base by disabling FLEXSUP and replacing
complete unification with the pragmatic variant procedure pv2

1121 of Vukmirović et
al. Full is a refutationally complete extension of base that substitutes FLUIDSUP

for FLEXSUP and includes axiom (EXT). Finally, we evaluated Zipperposition in a
portfolio mode that runs the prover in various configurations (Zip-uncoop). We also
evaluated a cooperative version of the portfolio which, in some configurations, after
a predefined time invokes Ehoh as backend on higher-order problems (Zip-coop). In
this version, Zipperposition encodes heuristically selected clauses from the current
proof state to lambda-free higher-order logic supported by Ehoh [137]. On first-order
problems, we ran Ehoh, Vampire, and Zip-uncoop using the provers’ respective
first-order modes.

A summary of these experiments is presented in Figure 5.5. In the pragmatic
configuration, our calculus outperformed λfreeZip on TH0λf problems and incurred
less than 1% overhead compared with FOZip, but fell behind λfreeZip on SH-ll
problems. The full configuration suffers greatly from the explosive extensionality
axiom and FLUIDSUP rule.

Except on TH0λ problems, both base and pragmatic configurations outperformed
Leo-III-uncoop, which runs a fixed configuration, by a substantial margin. Zip-
uncoop outperformed Satallax-uncoop, which uses a portfolio. Our most competitive
configuration, Zip-coop, emerges as the winner on both problem sets containing

5.8. Conclusion

5

117

λ-expressions.
On higher-order TPTP benchmarks this configuration does not solve any prob-

lems that no other (cooperative) higher-order prover solves. By contrast, on SH-ll
benchmarks Zip-coop solves 21 problems no other higher-order prover solves, and on
SH-λ benchmarks, it uniquely solves 27 problems.

5.8. Conclusion
We presented the Boolean-free λ-superposition calculus, which targets a clausal
fragment of extensional polymorphic higher-order logic. With the exception of a
functional extensionality axiom, it gracefully generalizes standard superposition.
Our prototype prover Zipperposition shows promising results on TPTP and Isabelle
benchmarks.

Our calculus is based on the extensional nonpurifying calculus from Chapter 3.
Initially, we considered to extend the other calculi as well. However, as we extended
their work to support λ-expressions, we found the purification approach problematic
and gave it up because it needs x to be smaller than x t, which is impossible to
achieve with a term order on βη-equivalence classes. We also quickly gave up our
attempt at supporting intensional higher-order logic. Extensionality is the norm for
higher-order unification [53] and is mandated by the TPTP THF format [131] and in
proof assistants such as HOL4, HOL Light, Isabelle/HOL, Lean, Nuprl, and PVS.

6
Superposition with

Interpreted Booleans

Joint work with
Visa Nummelin, Sophie Tourret, and Petar Vukmirović

Before we extend our Boolean-free λ-superposition calculus to full higher-order
logic, we first investigate how the first-order superposition calculus can be extended
with Booleans and how clausification can be interleaved with other derivation steps.
Besides being the basis for higher-order superposition, the calculus presented in
this chapter works efficiently on first-order problems that would be obfuscated when
using clausification as preprocessing, and it avoids the costly axiomatic encoding of
the theory of Booleans into first-order logic.

The contents of this chapter are part of ongoing work with Visa Nummelin, Sophie Tourret, and Petar
Vukmirović. I include parts of this work here because it forms the basis of Chapter 7 and has not been
published yet. The main author is Nummelin. I contributed the core ideas of the calculus and of the
ground completeness proof, which my coauthors improved and elaborated on.

119

6

120 6. Superposition with Interpreted Booleans

6.1. Introduction
Standard superposition operates on problems given in clausal normal form (CNF).
Sometimes, clausifying a problem into CNF can obfuscate an originally simple
problem and thus hamper proof search. For example, given a conjecture of the form
φ→→→→→→→→→→→→→→→→→→→→→→→→→ φ where φ is some complicated formula, clausification can produce a variety
of clauses, concealing that the problem is provable without even inspecting φ in
detail. Especially when φ contains equivalences, clauses multiply quickly during
clausification. For users of theorem provers, for instance within proof assistants, it
can be frustrating to see provers fail on such seemingly trivial problems.

Ganzinger and Stuber [62] presented an approach to combat this issue by delay-
ing clausification and interleaving it with the superposition calculus. They show
that on set theoretic benchmarks delayed clausification can substantially reduce the
number of derived clauses. With their approach, many equivalences do not need to
be clausified and can be used for rewriting.

We rework Ganzinger and Stuber’s approach to delayed clausification into a
sound and refutationally complete calculus for first-order logic with an interpreted
Boolean type. In standard first-order logic, Booleans are second-class citizens. The
logic strictly separates terms, which can be typed with uninterpreted types, and
formulas, which effectively have Boolean type, but which are only allowed to appear
at the surface and not within terms. We lift this restriction, following Kotelnikov
et al. [93]. In this thesis, our main motivation is to use the calculus as a basis for a
calculus for higher-order logic. However, this extension of first-order logic is useful
in itself for problems coming from program verification or proof assistants since they
often contain functions with Boolean arguments or variables of Boolean type.

Furthermore, the term order requirements of our calculus are less restrictive than
Ganzinger and Stuber’s. In addition to the lexicographic path order, we also support
the Knuth–Bendix order, which is known to yield better results in superposition
provers. Moreover, Ganzinger and Stuber’s rules work from the top down, prioritizing
the topmost connective or quantifier. Our calculus is more flexible as its rules can
manipulate Boolean subterms at any position. To restrict the number of inferences
on Boolean subterms, we employ selection functions and simplification rules that
allow us to steer the clausification process precisely. In particular, our calculus is
parameterized by a Boolean subterm selection function, a mechanism resembling
literal selection. We developed it based on a short paragraph in Ganzinger and
Stuber’s work.

Besides Ganzinger and Stuber, our work is based on work by Kotelnikov et al. on
FOOL, which is essentially first-order logic with interpreted Booleans. Kotelnikov
et al.’s first approach [93] describes an encoding of Booleans into first-order logic.
The result is then clausified with a standard first-order clausification procedure.
Kotelnikov et al.’s second approach [92] integrates the encoding of Booleans into the
CNF procedure, yielding a clausified problem that superposition provers are better
prepared to deal with. Our work takes Kotelnikov et al.’s approaches a step further
by integrating clausification and all Boolean reasoning into the core calculus.

The main advantage over Kotelnikov et al.’s approaches is that the powerful
simplification machinery of the superposition calculus can already be put to work

6.2. Logic

6

121

before the problem is clausified. For instance, this allows us to recognize trivial
patterns such as formulas of the form φ→→→→→→→→→→→→→→→→→→→→→→→→→φ early and to rewrite using equivalences.
Also more advanced simplification techniques such as subsumption resolution (also
known as contextual literal cutting) can be applied on the formula level. A second
advantage of delaying clausification is that many heuristics such as selection func-
tions and the choice of the next given clause can be based on formulas instead of
clauses.

On the other hand, Kotelnikov et al.’s second approach has the advantage that
it eliminates all Boolean equalities during clausification, eliminating the need for
a modification of the calculus. This approach is compatible neither with delayed
clausification nor with higher-order reasoning because new Boolean equalities may
emerge during the derivation.

In this chapter, we introduce first-order logic with interpreted Booleans (Sec-
tion 6.2), present a ground calculus for the logic (Section 6.3), and prove it to be
refutationally complete (Section 6.4). The nonground version of this calculus, simpli-
fication rules, and an empirical evaluation are in progress [109].

6.2. Logic
Our logic is a first-order logic with an interpreted Boolean type. It is essentially
identical to Kotelnikov et al.’s FOOL [93], but does not include let- and if-then-else-
expressions.

Syntax We fix a set Σty of type constructors with associated arities. We require
that Σty contains the nullary type constructor o of Booleans. A type is inductively
defined to be of the form κ(τ̄n) for an n-ary type constructor κ ∈Σty and types τ̄n. We
write κ for κ(). A type declaration is an expression of the form τ̄n ⇒ υ for types τ̄n
and υ. If n = 0, we simply write υ for ()⇒ υ.

We fix a set Σ of (function) symbols f, each associated with a type declaration
τ̄n ⇒ υ, written as f : τ̄n ⇒ υ or f, and a countably infinite set V of variables with
associated types, written as x : τ or x. The notation t : τ will also be used to indicate
the type of arbitrary terms t. We require that Σ contains the logical symbols >>>>>>>>>>>>>>>>>>>>>>>>>,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ : o;
¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ : o ⇒ o; ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧,∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨,→→→→→→→→→→→→→→→→→→→→→→→→→ : (o×o)⇒ o; and ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈, 6≈ : (τ×τ)⇒ o for each type τ. The logical symbols
are printed in bold to distinguish them from the notation used for clauses below. We
use infix notation for the binary logical symbols. Moreover, we require that there is
at least one nullary symbol for each type to avoid empty Herbrand universes.

A signature is a pair (Σty,Σ). The set of terms is defined inductively as follows.
Every x :τ ∈ V is a term of type τ. If f : τ̄n ⇒ υ ∈ Σ and t̄n : τ̄n is a tuple of terms,
then the application f(t̄n) (or simply f if n = 0) is a term of type υ. If x : τ and t : o,
then the quantifier-headed terms ∀x. t and ∃x. t are terms of Boolean type. We view
quantifier-headed terms modulo α-renaming.

The head of a term is x if the term is a variable x; it is f if the term is an
application f(t̄n); and it is Q if the term is a quantifier-headed term Qx. t. Here and
elsewhere, we let Q stand for either ∀ or ∃.

A variable occurrence is free in a term if it is not bound by ∀ or ∃. A term is
ground if it contains no free variables. We write TG for the set of all ground terms.

6

122 6. Superposition with Interpreted Booleans

A literal is an equation s ≈ t or a disequation s 6≈ t. We write s ≈̇ t for a literal
that can be either an equation or a disequation. Unlike terms constructed using
the function symbols ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ and 6≈, literals are unordered—i.e., s ≈̇ t and t ≈̇ s denote
the same literal. A clause L1 ∨·· ·∨Ln is a finite multiset of literals L j. The empty
clause is written as ⊥.

Terms t of Boolean type are not literals. They must be encoded as t ≈ >>>>>>>>>>>>>>>>>>>>>>>>> and
t ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Both of these are considered positive literals because they are equations, not
disequations. We also considered to make the calculus operate on positive literals
only and to encode negative literals s 6≈ t as (s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t) ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, following Ganzinger and
Stuber. However, this approach requires an additional term order condition to
make the conclusion of EFACT small enough, excluding the Knuth–Bendix order. To
support both the Knuth–Bendix order and the lexicographic path order, we allow
negative literals. As a consequence, the truth of a Boolean term can be expressed
as t ≈ >>>>>>>>>>>>>>>>>>>>>>>>> or t 6≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and the falsity of a Boolean term can be expressed as t ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ or
t 6≈ >>>>>>>>>>>>>>>>>>>>>>>>>. Fortunately, the simplification mechanism in the next chapter will allow us to
simplify negative literals of the form t 6≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and t 6≈ >>>>>>>>>>>>>>>>>>>>>>>>> into t ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈>>>>>>>>>>>>>>>>>>>>>>>>> and t ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, respectively,
eliminating the redundancy.

Subterms and positions are inductively defined as follows. A position in a term is
a tuple of natural numbers. For any term t, the empty position ε is a position of t,
and t is the subterm of t at position ε. If t is the subterm of ui at position p, then i.p
is a position of f(ū), and t is the subterm of f(ū) at position i.p. If t is the subterm
of u at position p, then 1.p is a position of Qx. u, and t is the subterm of Qx. u at
position 1.p.

For positions in clauses, natural numbers are not appropriate because clauses
and literals are unordered. A position in a clause C is a tuple L.s.p where L = s ≈̇ t
is a literal in C and p is a position in s. The subterm of C at position L.s.p is the
subterm of s at position p.

We write s|p to denote the subterm at position p in s. We write s[u]p to denote a
term s with the subterm u at position p and call s[]p a context; the position p may
be omitted in this notation.

A position p is at or below a position q if q is a prefix of p. A position p is below
a position q if q is a proper prefix of p.

Substitutions are defined as usual in first-order logic and they rename quantified
variables to avoid capture.

Semantics An interpretation I = (U,J) is a pair, consisting of a universe Uτ for
each type τ and an interpretation function J, which associates with each symbol
f : τ̄⇒ υ and universe elements ā ∈Uτ̄ a universe element J(f)(ā) ∈Uυ. We require
that Uo = {0,1}; J(>>>>>>>>>>>>>>>>>>>>>>>>>) = 1; J(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) = 0; J(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬)(a) = 1−a; J(∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧)(a,b) = min {a,b}; J(∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨)(a,b) =
max {a,b}; J(→→→→→→→→→→→→→→→→→→→→→→→→→)(a,b)=max {1−a,b}; J(≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈)(c,d)= 1 if c = d and 0 otherwise; J(6≈)(c,d)
= 0 if c = d and 1 otherwise; for all a,b ∈Uo and c,d ∈Uτ where τ is a type.

A valuation is a function assigning an element ξ(x) ∈Uτ to each variable x : τ.
For an interpretation I and a valuation ξ, the denotation of a term is inductively
defined as JxKξI = ξ(x) for a variable x ∈ V; Jf(t̄)KξI = J(f)(Jt̄KξI) for a symbol f ∈ Σ
and appropriately typed terms t̄; and J∀x. tKξI = min {JtKξ[x 7→a]

I | a ∈ Uτ}, J∃x. tKξI =
max {JtKξ[x 7→a]

I | a ∈Uτ} for a variable x : τ ∈ V and a term t : o. For ground terms t,

6.3. The Calculus

6

123

the denotation does not depend on the choice of the valuation ξ, which is why we
sometimes write JtKI for JtKξI.

Given an interpretation I and a valuation ξ, an equation s ≈ t is true if JsKξI and
JtKξI are equal and it is false otherwise. A disequation s 6≈ t is true if s ≈ t is false. A
clause is true if at least one of its literals is true. A clause set is true if all its clauses
are true. An interpretation I is a model of a clause set N, written I |= N, if N is true
in I for all valuations ξ.

6.3. The Calculus
In this chapter, we will only consider the ground calculus for first-order logic with
interpreted Booleans because this is sufficient for the completeness proof of our
higher-order calculus.

6.3.1. Parameters of Our Calculus
The calculus is parameterized by a term order, a literal selection function, a Boolean
subterm selection function, and a witness function. These concepts are defined below.

Definition 6.1 (Term order). A term order is a well-founded strict total order Â on
ground terms such that
(O1) compatibility with contexts holds, but not necessarily below quantifiers;
(O2) the subterm property holds, but not necessarily below quantifiers;
(O3) u Â⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥Â>>>>>>>>>>>>>>>>>>>>>>>>> for any term u that is not >>>>>>>>>>>>>>>>>>>>>>>>> or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥; and
(O4) Qx. t Â t{x 7→ u} for any term u ∈ TG whose only Boolean subterms are >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.

Such term orders exist. For example, we can use the transfinite Knuth–Bendix
order [104]. For (O3), we assign >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ minimal weight and minimal precedence.
To cope with quantifier terms, we encode them using De Bruin indices, which we
compare as if they were ordinary symbols. For (O3), we use the weights W (∀) =
W (∃)=ω and finite weights for all other symbols.

In addition to negative literals, literals of the form s ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ can be selected:

Definition 6.2 (Literal selection). A literal selection function is a mapping from
each clause to a subset of its literals that are negative or of the form s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. The
literals in this subset are called selected.

Moreover, Boolean subterms can be selected. This resembles an idea described
by Ganzinger and Stuber [62, Section 7], but we can weaken their restrictions on the
selection as follows:

Definition 6.3 (Boolean subterm selection). A Boolean subterm selection function is
a mapping from each clause C to a subset of the positions of Boolean subterms in
C. The positions in this subset are called selected. Informally, we also say that the
Boolean subterms at these positions are selected. The following restrictions apply:

– The Boolean subterms >>>>>>>>>>>>>>>>>>>>>>>>> or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ cannot be selected.
– Positions below quantifiers cannot be selected.
– The topmost position on either side of a positive literal cannot be selected.

6

124 6. Superposition with Interpreted Booleans

The last parameter of our calculus is a witness function. This function will be
used in the next chapter to produce applied Skolem symbols that serve as witnesses
for quantifier-headed terms.

Definition 6.4 (Witness function). Given a ground clause C and a position p of a
quantifier-headed term in C that is not below another quantifier, a witness function
returns a ground term w(C, p) ∈ TG. We require that Qx. v Â v{x 7→w(C, p)} if C|p =
Qx. v.

For soundness of the calculus, we would also need to require that w produces
terms whose head is a fresh constant, but we will ignore soundness in this chapter
and focus on refutational completeness only.

6.3.2. The Inference Rules
For this calculus, we define eligibility on literals and on all positions of a clause:

Definition 6.5 (Eligibility). A literal L is (strictly) eligible in C if it is selected in C
or there are neither selected literals nor selected Boolean subterms in C and L is
(strictly) maximal in C. (A selected literal is strictly eligible.)

The eligible positions of a clause C are inductively defined as follows.
(E1) Any selected position is eligible.
(E2) If a literal s ≈̇ t with s Â t is either eligible and negative or strictly eligible and

positive, then L.s.ε is eligible.
(E3) If the position p is eligible and the head of C|p is not ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈, 6≈, ∀, or ∃, the positions

of all direct subterms are eligible.
(E4) If the position p is eligible and C|p is of the form s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t or s 6≈ t, the maximal

sides of this (dis)equation are eligible.

Our calculus is parameterized by a term order Â, a literal selection function,
a Boolean subterm selection function, and a witness function w. The rules of
our calculus are the following. The first three rules closely resemble standard
superposition:

D︷ ︸︸ ︷
D′ ∨ t ≈ t′ C[t]p

SUP
D′ ∨ C[t′]

1. p is eligible in C; 2. t ≈ t′ is strictly eligible in D; 3. t Â t′;
4. D ≺ C; 5. the head of t is not a logical symbol;
6. if t′ =⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, the position p is at the top level of a positive equation.

C′ ∨ u 6≈ u
ERES

C′
C′ ∨ u ≈ v′ ∨ u ≈ v

EFACT
C′ ∨ v 6≈ v′ ∨ u ≈ v′

For ERES we require that u 6≈ u is eligible in the premise. For EFACT we require:
1. u Â v; 2. u ≈ v is maximal in the premise;

6.3. The Calculus

6

125

3. no literal is selected in the premise;
4. no Boolean subterms are selected in the premise.

The following BOOLHOIST rule enforces that >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ are the only Boolean values.
It resembles FOOL paramodulation [93, Section 4] but is restricted to nonlogical
symbols.

C[u]
BOOLHOIST

C[⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥]∨ u ≈>>>>>>>>>>>>>>>>>>>>>>>>>
1. u is a Boolean term whose head is not a logical symbol
2. the position of u is eligible in C
3. the subterm u is not at the top level of a positive literal

The rule FALSEELIM is responsible for resolving literals of the form ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥≈>>>>>>>>>>>>>>>>>>>>>>>>>:

C′ ∨⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥≈>>>>>>>>>>>>>>>>>>>>>>>>>
FALSEELIM

C′

where ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥≈>>>>>>>>>>>>>>>>>>>>>>>>> is strictly eligible in the premise.
Finally, we introduce rules to handle the various logical symbols. For each logical

symbol, we need to consider the case where the term is false and the case where it is
true. Whenever possible, we prefer rules that rewrite the Boolean subterm in place
(with names ending in RW). When this cannot be done in a sound way, we resort to
rules hoisting the Boolean subterm into a dedicated literal (with names ending in
HOIST).

C[s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t]
EQHOIST

C[⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥]∨ s ≈ t

C[s 6≈ t]
NEQHOIST

C[>>>>>>>>>>>>>>>>>>>>>>>>>]∨ s ≈ t

C[∀x. t]
FORALLHOIST

C[⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥]∨ t{x 7→ u}≈>>>>>>>>>>>>>>>>>>>>>>>>>
C[∃x. t]

EXISTSHOIST
C[>>>>>>>>>>>>>>>>>>>>>>>>>]∨ t{x 7→ u}≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥

1. the position of the indicated subterm is eligible in C;
2. u is ground and its only Boolean subterms are >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.

The rules FORALLHOIST and EXISTSHOIST must enumerate all possible u, which
would be impractical in an implementation. In the nonground calculus of the next
chapter, we will resolve this issue by using a fresh variable instead of u.

C[t]
BOOLRW

C[t′]

1. (t, t′) is one of the following pairs for some term s:

(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ , >>>>>>>>>>>>>>>>>>>>>>>>>) (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ , ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ , ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥→→→→→→→→→→→→→→→→→→→→→→→→→⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ , >>>>>>>>>>>>>>>>>>>>>>>>>)

(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬>>>>>>>>>>>>>>>>>>>>>>>>> , ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (>>>>>>>>>>>>>>>>>>>>>>>>>∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ , ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (>>>>>>>>>>>>>>>>>>>>>>>>>∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ , >>>>>>>>>>>>>>>>>>>>>>>>>) (>>>>>>>>>>>>>>>>>>>>>>>>>→→→→→→→→→→→→→→→→→→→→→→→→→⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ , ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ s , >>>>>>>>>>>>>>>>>>>>>>>>>) (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧>>>>>>>>>>>>>>>>>>>>>>>>> , ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨>>>>>>>>>>>>>>>>>>>>>>>>> , >>>>>>>>>>>>>>>>>>>>>>>>>) (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥→→→→→→→→→→→→→→→→→→→→→→→→→>>>>>>>>>>>>>>>>>>>>>>>>> , >>>>>>>>>>>>>>>>>>>>>>>>>)

(s 6≈ s , ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (>>>>>>>>>>>>>>>>>>>>>>>>>∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧>>>>>>>>>>>>>>>>>>>>>>>>> , >>>>>>>>>>>>>>>>>>>>>>>>>) (>>>>>>>>>>>>>>>>>>>>>>>>>∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨>>>>>>>>>>>>>>>>>>>>>>>>> , >>>>>>>>>>>>>>>>>>>>>>>>>) (>>>>>>>>>>>>>>>>>>>>>>>>>→→→→→→→→→→→→→→→→→→→→→→→→→>>>>>>>>>>>>>>>>>>>>>>>>> , >>>>>>>>>>>>>>>>>>>>>>>>>)

6

126 6. Superposition with Interpreted Booleans

2. the position of t is eligible in C.

C[∃z. v]p
EXISTSRW

C[v{z 7→w(C, p)}]p

C[∀z. v]p
FORALLRW

C[v{z 7→w(C, p)}]p

1. the position p is eligible in C;
2a. for FORALLRW, C[>>>>>>>>>>>>>>>>>>>>>>>>>]p is not a tautology;
2b. for EXISTSRW, C[⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥]p is not a tautology.

6.4. Refutational Completeness
In the spirit of Bachmair and Ganzinger’s completeness proof for first-order logic, our
proof idea is, given a saturated set N such that ⊥ 6∈ N, to construct a term rewriting
system—the candidate model. The construction of our candidate model is inspired
by Ganzinger and Stuber’s [62]. Finally, we employ Bachmair and Ganzinger’s
framework of reducing counterexamples [10, Section 4.2] to show static refutational
completeness.

Our term rewriting systems are essentially standard first-order term rewriting
systems. We generalize them to our terms with interpreted Booleans by treating all
quantifier-headed terms as if they were constants, meaning that a term rewriting
system does not rewrite below quantifiers. For example, the rewrite rule ∀x.q −■→
∀x.p can rewrite f(∀x. q) into f(∀x. p), but the rewrite rule q −■→ p cannot. Term
rewriting concepts such as confluence and critical pairs function as in standard
first-order logic.

6.4.1. Viewing Term Rewriting Systems as Interpretations
It is well-known that in first-order logic, term rewriting systems can be used to
describe interpretations. In the following, we will show under which requirements
also a term rewriting system on our logic can be viewed as an interpretation.

Definition 6.6 (Viewing a rewriting system as an interpretation). Let R be a
rewriting system over TG such that
(I1) for all Boolean terms t ∈ TG, either t ←→∗

R >>>>>>>>>>>>>>>>>>>>>>>>> or t ←→∗
R ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥;

(I2) ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥←→∗
R >>>>>>>>>>>>>>>>>>>>>>>>>; ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬>>>>>>>>>>>>>>>>>>>>>>>>>←→∗

R ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥; and corresponding requirements for ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧, ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨, and →→→→→→→→→→→→→→→→→→→→→→→→→;
(I3) s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ s′ ←→∗

R >>>>>>>>>>>>>>>>>>>>>>>>> if and only if s ←→∗
R s′ for all s, s′ ∈ TG; and corresponding require-

ments for 6≈;
(I4) ∀x. s ←→∗

R >>>>>>>>>>>>>>>>>>>>>>>>> if and only if s{x 7→ u} ←→∗
R >>>>>>>>>>>>>>>>>>>>>>>>> for all u ∈ TG; and corresponding

requirements for ∃.
We define an interpretation (U,J) based on R. We will use R to denote both the
rewriting system and the interpretation.

For each type τ, let Uτ be the set of equivalence classes [t] of terms t ∈ TG modulo
←→∗

R . Let J(f)(a)= [f(t̄)] where t̄ are terms from the equivalence classes ā, respectively.
This does not depend on the choice of t̄ because if t̄ ←→∗

R t̄′, then f(t̄)←→∗
R f(t̄′).

We identify [>>>>>>>>>>>>>>>>>>>>>>>>>] with 1 and [⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥] with 0. By (I1), this ensures that Uo = {0,1},
J(>>>>>>>>>>>>>>>>>>>>>>>>>) = 1, and J(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) = 0. (I2) ensures that J(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬), J(∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧), J(∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨), and J(→→→→→→→→→→→→→→→→→→→→→→→→→) adhere to the

6.4. Refutational Completeness

6

127

requirements of an interpretation. (I3) ensures that J(≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈) and J(6≈) adhere to the
requirements of an interpretation.

To show that this definition has the expected properties, we need the substitution
lemma for our logic:

Lemma 6.7 (Substitution lemma). Let I= (U,J) be an interpretation. Then

JtρKξI = JtKξ
′
I

for all terms t, all substitutions ρ, and all valuations ξ, ξ′ such that ξ′(x)= JxρKξI for
all variables x.

Proof. We prove this by structural induction on t. If t = x for some x ∈V, then

JtρKξI = ξ′(x)= JtKξ
′
I

If t = f(t̄) for some f ∈Σ and terms t̄, then

JtρKξI = Jf(t̄ρ)KξI = J(f)(Jt̄ρKξI) IH= J(f)(Jt̄Kξ
′
I)= JtKξ

′
I

If t =∀x.s for some term s, then we can assume without loss of generality that xρ = x
and that x does not appear in yρ for any y 6= x. We have

JtρKξI = J∀x. sρKξI =min {JsρKξ[x 7→a]
I | a ∈Uτ}

IH= min {JsKξ
′[x 7→a]
I | a ∈Uτ}= J∀x. sKξ

′
I = JtKξ

′
I

The induction hypothesis is applicable here because ξ′[x 7→ a](x) = a = JxKξ[x 7→a]
I =

JxρKξ[x 7→a]
I and for all y 6= x we have ξ′[x 7→ a](y) = ξ′(y) = JyρKξI = JyρKξ[x 7→a]

I . An
analogous argument applies if t =∃x.s.

Lemma 6.8. Under the requirements of Definition 6.6, we have JtKR = [t] for all
t ∈ TG.

Proof. By induction on the structure of t.
If t = f(s̄), then JtKR = J(f)(Js̄KR)IH=J(f)([s])= [f(s)]= [t]. If t =∃x. s, then, using the

substitution lemma (Lemma 6.7), JtKR =min {JsK{x 7→[u]}
R | u ∈ TG}=min {Js{x 7→ u}KR |

u ∈ TG}IH= min {[s{x 7→ u}] | u ∈ TG}(I4)= [∀x. s]= [t]. If t =∃x. s, we argue analogously.

This lemma shows that R |= t ≈ t′ if and only if t ←→∗
R t′, as in first-order logic.

In the next step, we will define a closure operation on term rewriting systems that
allows us to enforce that the conditions of Definition 6.6 are fulfilled.

Definition 6.9 (Boolean closure of a term rewriting system). Let R be a term
rewriting system over TG. We define Rs and ∆s

R by mutual recursion over all ground

terms s. Let Rs = R∪⋃
u≺s∆

u
R . Thus, the base of the recursion is R>>>>>>>>>>>>>>>>>>>>>>>>> = R since >>>>>>>>>>>>>>>>>>>>>>>>> is

the smallest term by (O3). For ∆s
R , we distinguish the following cases:

(B1) Let ∆s
R =∅ if s is not Boolean, if s is reducible by Rs, if s =>>>>>>>>>>>>>>>>>>>>>>>>>, or if s =⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥

(B2) Otherwise, let ∆s
R = {s −■→>>>>>>>>>>>>>>>>>>>>>>>>>} if one of the following conditions holds:

(i) s =¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥;

6

128 6. Superposition with Interpreted Booleans

(ii) s =>>>>>>>>>>>>>>>>>>>>>>>>>∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧>>>>>>>>>>>>>>>>>>>>>>>>>;
(iii) s =>>>>>>>>>>>>>>>>>>>>>>>>>∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ t or s = t∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨>>>>>>>>>>>>>>>>>>>>>>>>>;
(iv) s =⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥→→→→→→→→→→→→→→→→→→→→→→→→→ t or s = t →→→→→→→→→→→→→→→→→→→→→→→→→>>>>>>>>>>>>>>>>>>>>>>>>>;
(v) s = t ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t;

(vi) s = t 6≈ t′ and t 6= t′;
(vii) s =∀x. t and t{x 7→ u}−■→∗

Rs >>>>>>>>>>>>>>>>>>>>>>>>> for all u ∈ TG in which all Boolean subterms
are either >>>>>>>>>>>>>>>>>>>>>>>>> or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥;

(viii) s = ∃x. t and t{x 7→ u} −■→∗
Rs >>>>>>>>>>>>>>>>>>>>>>>>> for some u ∈ TG in which all Boolean sub-

terms are either >>>>>>>>>>>>>>>>>>>>>>>>> or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.
(B3) Otherwise, let ∆s

R = {s −■→⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥}.

Finally, we define R∗ = R∪⋃
u∆

u
R .

The following lemma identifies under which conditions on R the Boolean clo-
sure R∗ fulfills the requirements of Definition 6.6 and can thus be viewed as an
interpretation.

Lemma 6.10. Let R be a term rewriting system on TG without critical pairs and
oriented by Â. Assume for each rule s′ −■→ t′ ∈ R that all proper Boolean subterms of s′
are >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and that the head of s′ is not a logical symbol. Let s be a Boolean term.
Then

(1) Rs and R∗ are oriented by Â and hence terminating.
(2) Rs and R∗ do not have critical pairs and are thus confluent.
(3) The normal form of any Boolean term smaller than s w.r.t. Rs is ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ or >>>>>>>>>>>>>>>>>>>>>>>>>.
(4) The normal form of any Boolean term w.r.t. R∗ is ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ or >>>>>>>>>>>>>>>>>>>>>>>>>.
(5) R∗ fulfills the requirements of Definition 6.6.

Proof. (1) is obvious from Definition 6.9 and (O3).
For (2), suppose there is a critical pair. Since R does not have critical pairs, one

of the rules of the critical pair must come from some ∆u
R for some term u. Due to

condition (B1), ∆u
R cannot form a critical pair with some ∆v

R . Thus, the other rule
of the critical pair must stem from R, say s′ −■→ t′ ∈ R. Also due to condition (B1), s′
cannot be smaller or equal to u because that would make u reducible by Ru. But
s′ Â u is not possible either because then s′ would contain a proper Boolean subterm
that is neither >>>>>>>>>>>>>>>>>>>>>>>>> nor ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ by condition (B1) and by (O2). Contradiction by totality.

(3) and (4) are obvious from Definition 6.9.
For (5): Condition (I1) follows from part (4). For (I2), since R does not contain any

rules reducing terms headed by logical symbols, R cannot reduce ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬>>>>>>>>>>>>>>>>>>>>>>>>>, or similar
terms. Therefore, (I2) follows directly from the definition of the Boolean closure.

For (I3), first assume that s←→∗
R∗ s′. Let u be their common normal form. Then

s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ s′ −■→∗
R∗ u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ u. Since u cannot be reduced further, and R does not contain any

rules reducing terms headed by logical symbols, the Boolean closure will add the
rule u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ u −■→>>>>>>>>>>>>>>>>>>>>>>>>>. If on the other hand, s 6←→ ∗

R∗ s′, then s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ s′ −■→∗
R∗ u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ u′ for distinct

normal forms u,u′. Then the Boolean closure will add the rule u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ u′ −■→⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.
For (I4), we first need to prove the following claim. Let t be a term. Let θ,θ′

be grounding substitutions such that for each variable x in t, we have xθ←→∗
R∗ xθ′.

Then we claim that tθ←→∗
R∗ tθ′. Since we do not allow term rewriting systems to

rewrite below quantifiers, this is not entirely trivial. We prove the claim by induction

6.4. Refutational Completeness

6

129

on the number of nested levels of quantifiers in t. If t contains no quantifiers, we
can rewrite freely and the claim is obvious. If t contains a quantifier-headed term,
say ∀x. s, it suffices to show that (∀x. s)θ←→∗

R∗ (∀x. s)θ′. Since R does not contain any
rules reducing terms headed by logical symbols, R cannot reduce (∀x. s)θ or (∀x. s)θ′.
Hence, either (∀x. s)θ −■→∗

R t ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ by (B3) or s{x 7→ u}θ −■→∗
R t >>>>>>>>>>>>>>>>>>>>>>>>> for all ground terms u in

which all Boolean subterms are either >>>>>>>>>>>>>>>>>>>>>>>>> or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and (∀x. s)θ −■→∗
R t >>>>>>>>>>>>>>>>>>>>>>>>> by (B2). The same

holds for θ′. Therefore, it suffices to show that s{x 7→ u}θ←→∗
R∗ s{x 7→ u}θ′, which holds

by the induction hypothesis. An analogous argument applies if the quantifier-headed
term has the form ∃x. s.

By the above claim, using θ = {x 7→ u}, and by (I1), we have s{x 7→ u} for all u if
and only if s{x 7→ u} for all u in which all Boolean subterms are either >>>>>>>>>>>>>>>>>>>>>>>>> or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Hence,
if s{x 7→ u} for all u, the Boolean closure will add the rule ∀x. s −■→>>>>>>>>>>>>>>>>>>>>>>>>>, and otherwise
it will add the rule ∀x. s −■→⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, proving (I4).

A further property of our Boolean closure operation is that ∆s
R depends only on

the small rewrite rules in R. We formalize this observation in the following lemma.
We write R|≺s or R|¹s for the rewriting system consisting of the rules in R with a
left-hand side ≺ s or ¹ s, respectively.

Lemma 6.11. Let t be a ground Boolean term. Let R1|≺t = R2|≺t for two rewriting
systems R1 and R2 on TG oriented by Â. Then, for all s ≺ t, we have ∆s

R1
=∆s

R2
.

Proof. By induction on s. The induction hypothesis states that ∆u
R1

= ∆u
R2

for all
u ≺ s. With the assumption R1|≺t = R2|≺t, it follows that Rs

1|≺t = Rs
2|≺t. Since s ≺ t,

in particular Rs
1|¹s = Rs

2|¹s. Inspecting the dependencies on R in the definition of
∆s

R , we observe that ∆s
R depends only on rules in Rs|¹s. Hence, ∆s

R1
=∆s

R2
.

6.4.2. Construction of the Candidate Model
Inspired by Ganzinger and Stuber [62], we define the following term rewriting
system, which forms the basis of our candidate model for a given clause set N.

Definition 6.12. Let N with ⊥ 6∈ N be a set of ground clauses. Although the
rewriting systems R in this definition do not necessarily fulfill the requirements of
Definition 6.6, we write R |= D if and only if normalizing D with R yields a clause
with a trivial literal (i.e., s ≈ s or s 6≈ t for terms s 6= t). We define RC and ∆C by
mutual recursion over all clauses C ∈ N, ordered by Â. Let RC = ⋃

D≺C∆D . Let
∆C = {s −■→ t} if
(C1) s Â t;
(C2) Rs

C 6|= C;
(C3) C = C′ ∨ s ≈ t where s ≈ t is eligible in C;
(C4) the head of s is not a logical symbol;
(C5) s ≈ t is maximal in C;
(C6) Rs

C ∪ {s −■→ t} 6|= C′; and
(C7) s is irreducible by Rs

C .
Then C is said to produce s −■→ t or to be productive. Otherwise ∆C =;. Finally, we
define RN =⋃

C∆C .

6

130 6. Superposition with Interpreted Booleans

RC and RN fulfill the conditions of Lemma 6.10, meaning that their respective
Boolean closure R∗

C and R∗
N can be viewed as an interpretation.

Lemma 6.13. RC and RN fulfill the conditions of Lemma 6.10. That is, they do not
have critical pairs and are oriented by Â. For each of their rules s −■→ t, all proper
Boolean subterms of s are >>>>>>>>>>>>>>>>>>>>>>>>> or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and the head of s is not a logical symbol.

Proof. By (C1), all rules are oriented by Â. Suppose there is a critical pair, and let C
be the larger one of the two clauses producing the critical pair. Then Rs

C would be
reducible by the other rule of the critical pair, contradicting (C7). By (C4), the head
of the rules’ left-hand sides cannot be a logical symbol.

Finally, we must show that all proper Boolean subterms of each left-hand side
are >>>>>>>>>>>>>>>>>>>>>>>>> or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. We proceed by induction on the clause C producing the rule s −■→ t.
By the induction hypothesis, Lemma 6.10 can be applied to RC , meaning that by
Lemma 6.10(3), the normal form w.r.t. Rs

C of any Boolean term smaller than s is >>>>>>>>>>>>>>>>>>>>>>>>> or
⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Thus, if s had a proper Boolean subterm other than >>>>>>>>>>>>>>>>>>>>>>>>> or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, it would be reducible
by Rs

C , contradicting (C7).

The Boolean closure R∗
N will be our candidate model. We can express it in terms

of Rs
C as follows:

Lemma 6.14. Let s be the maximal term of a clause C ∈ N. Then we have R∗
N =

Rs
C ∪⋃

DºC∆D ∪⋃
uºs∆

u
RN

.

Proof.

R∗
N = ⋃

C∈N
∆C ∪⋃

u
∆u

RN
by definition of RN and R∗

= RC ∪ ⋃
u≺s

∆u
RC

∪ ⋃
DºC

∆D ∪ ⋃
uºs

∆u
RN

by definition of RC and Lemma 6.11

= Rs
C ∪ ⋃

DºC
∆D ∪ ⋃

uºs
∆u

RN
by definition of Rs

C

The following lemma shows that rules produced by clauses greater than a clause
C do not matter for the truth of C. We use the notation R∗

N |≺C for RC ∪ (R∗
N \ RN).

In other words, R∗
N |≺C is R∗

N but without all rules produced by clauses greater than
or equal to C.

Lemma 6.15. Let C be a clause. If R∗
N |≺C |= C, then R∗

N |= C.

Proof. We assume that R∗
N |≺C |= C. Then we have R∗

N |≺C |= L for some literal L of C.
It suffices to show that R∗

N |= L.
If L = t ≈ t′ is a positive literal, then t ↓R∗

N |≺C= t′ ↓R∗
N |≺C . Since R∗

N |≺C ⊆ R∗
N , this

implies t ↓R∗
N
= t′ ↓R∗

N
. Thus, R∗

N |= L.
If L = t 6≈ t′ is a negative literal, then t ↓R∗

N |≺C 6= t′ ↓R∗
N |≺C . Without loss, let t Â t′.

Let s ≈̇ s′ be the maximal term in C with s º s′. We have s Â t if s ≈̇ s′ is positive and
s º t if s ≈̇ s′ is negative. Hence, the left-hand sides of rules in

⋃
DºC∆D are larger

than t. Since only rules with a left-hand side ¹ t can be involved in normalizing t and
t′ and R∗

N |≺C ∪⋃
DºC∆D = R∗

N , it follows that t ↓R∗
N
6= t′ ↓R∗

N
and hence R∗

N |= L.

6.4. Refutational Completeness

6

131

If the maximal literal of a clause C is positive, even the larger rules introduced
by the Boolean closure do not matter for the truth of C:

Lemma 6.16. Let C = C′ ∨ s ≈ s′ be a clause where s ≈ s′ is maximal and s º s′. If
Rs

C |= C, then R∗
N |= C. As in Definition 6.12, although Rs

C does not represent an
interpretation, we write Rs

C |= C to mean that normalizing C by Rs
C yields a trivial

literal.

Proof. We assume that Rs
C |= C. Then we have Rs

C |= L for some literal L of C. It
suffices to show that R∗

N |= L.
If L = t ≈ t′ is a positive literal, then t ↓Rs

C
= t′ ↓Rs

C
. Since Rs

C ⊆ R∗
N by Lemma 6.14,

this implies t ↓R∗
N
= t′ ↓R∗

N
. Thus, R∗

N |= L.
If L = t 6≈ t′ is a negative literal, then s Â t and s Â t′ and t ↓Rs

C
6= t′ ↓Rs

C
. By

Lemma 6.14, Rs
C |≺s = R∗

N |≺s. Since only rules with a left-hand side smaller than
s can be involved in normalizing t and t′, it follows that t ↓R∗

N
6= t′ ↓R∗

N
and hence

R∗
N |= L (using (O2), (O1)).

Moreover, we will need the following basic properties of R∗
N :

Lemma 6.17. If C∨ t ≈ s produces t −■→ s, then R∗
N 6|= C.

Proof. Let D = C ∨ t ≈ s. By (C1) and (C5), all terms in D are ¹ t. By (C6), we have
R t

D ∪ {t −■→ s} 6|= C. The other rules R∗
N \ (R t

D ∪ {t −■→ s}) cannot reduce C because their
left-hand sides are Â t. The º t in that claim is by Lemma 6.14 and 6= t by absence of
critical pairs (Lemma 6.10(2)). Consequently, R t

D ∪ {t −■→ s} 6|= C implies R∗
N 6|= C.

Lemma 6.18. >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ are normal forms in R∗
N .

Proof. By condition (B1) and condition (C4), there is no rule that reduces >>>>>>>>>>>>>>>>>>>>>>>>> or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.

Lemma 6.19. Let C be a clause. Let t be Boolean subterm. Let
– t be smaller than the maximal term in C; or
– t be selected

Then R∗
N |≺C reduces t to ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ or >>>>>>>>>>>>>>>>>>>>>>>>>.

Proof. By Lemma 6.10(4), R∗
N reduces t to ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ or >>>>>>>>>>>>>>>>>>>>>>>>>. If this reduction does not contain

any rule from a ∆D with D º C, then R∗
N |≺C reduces t to ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ or >>>>>>>>>>>>>>>>>>>>>>>>> as well. If this

reduction does contain a rule from a ∆D with D º C, then by (C1) and (C5), t must be
the maximal term of D and of C. The term t must occur on the top level of a positive
literal in D and in C. Such terms may not be selected by the selection restrictions
(Definition 6.3). Thus we have a contradiction to the condition that t is smaller than
the maximal term in C and to the condition that t is selected.

6.4.3. Reduction of Counterexamples
We employ Bachmair and Ganzinger’s framework of reducing counterexamples [10,
Section 4.2], with small modifications to their standard redundancy criterion. The
interpretation R∗

N is our candidate model. A clause C ∈ N is called a counterexample
if R∗

N 6|= C. It is a minimal counterexample if C is the smallest clause in N w.r.t. Â

6

132 6. Superposition with Interpreted Booleans

such that R∗
N 6|= C. An inference reduces a counterexample C if its main premise

is C, its side premises are true in R∗
N , and its conclusion D is a counterexample

smaller than C. An inference system has the reduction property for counterexamples
if for all clause sets N with a minimal counterexample C, there exists an inference
from N that reduces C. Bachmair and Ganzinger’s framework lets us derive static
refutational completeness from this property.

The following lemma will guide us to choose a subterm on which we will find a
reducing inference:

Lemma 6.20. Let C be a clause. Let t be a term that is eligible in C and reducible
by R∗

N |≺C . Then t has a subterm u such that:
1. The term u is eligible in C.
2. The term u is neither >>>>>>>>>>>>>>>>>>>>>>>>> nor ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.
3. If the head of u is not a logical symbol, there exists a rule u −■→ u′ ∈ R∗

N |≺C .
4. If the head of u is ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬, ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧, ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨, or →→→→→→→→→→→→→→→→→→→→→→→→→, each proper subterm of u is >>>>>>>>>>>>>>>>>>>>>>>>> or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.
5. If the head of u is ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ and u ↓R∗

N |≺C=>>>>>>>>>>>>>>>>>>>>>>>>>, or head of u is 6≈ and u ↓R∗
N |≺C=⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, then

the two sides of the (dis)equation are equal.

Proof. We proceed by structural induction on t. First, we observe that whenever
we can apply the induction hypothesis, we are done. Given an eligible, R∗

N |≺C-
reducible proper subterm t′ of t, the induction hypothesis guarantees the existence
of a subterm u of t′ with the above five properties. Since u is then also a subterm
of t and the properties do not refer to t itself, such an application of the induction
hypothesis finishes the proof.

We make a case distinction on the head h of t. First, assume that h is not a logical
symbol. If an argument t′ of h is reducible by R∗

N |≺C , we can apply the induction
hypothesis and are done. On the other hand, if no argument of h reduces, then
R∗

N |≺C must reduce t by a rule u −■→ u′ where u = t. Clearly, u satisfies the required
five properties in this case.

Otherwise, h must a logical symbol. We have t 6= >>>>>>>>>>>>>>>>>>>>>>>>>,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ because Lemma 6.18 tells
us that >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ are irreducible by R∗

N |≺C ⊆ R∗
N . The cases of connectives, quantifiers

and (dis)equations remain.
We assume h is ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬, ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧, ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨, or →→→→→→→→→→→→→→→→→→→→→→→→→. We proceed as in the case where h was not a logical

symbol. If an argument is reducible by R∗
N |≺C , the induction hypothesis applies.

If none of the Boolean arguments reduce, then each of them is either >>>>>>>>>>>>>>>>>>>>>>>>> or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ by
Lemma 6.19. This takes care of property 4 as we choose u = t. Since t is eligible and
the head of t = u is a connective, the other properties are fulfilled as well.

We assume h is ∀ or ∃. Choose u = t. The required properties are easy to check
because t is eligible and the head of t = u is ∀ or ∃.

Finally, we assume h = ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈. (The case h = 6≈ is analogous.) If a strictly larger
argument t′ of h reduces by R∗

N |≺C , then t′ is eligible and the induction hypothesis
applies to t′. Otherwise we choose u = t. Property 5 holds because if u ↓R∗

N |≺C= >>>>>>>>>>>>>>>>>>>>>>>>>,
then the two arguments of h must have the same R∗

N |≺C-normal form, since case (v)
of Definition 6.9 is the only rule that reduces a term headed by ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ to >>>>>>>>>>>>>>>>>>>>>>>>>. Thus, the
two arguments of h must be equal because otherwise the strictly larger one would
be reducible by R∗

N |≺C . The other properties hold because t is eligible and the head
of t = u is ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈.

6.4. Refutational Completeness

6

133

The next lemma tells us under which conditions we can apply a reducing inference
from the calculus rules that operate on subterms:

Lemma 6.21. Assume R∗
N 6|= C[s]p ∈ N, such that

(a) p is eligible in C,
(b) s reducible by R∗

N |≺C , and
(c) if p is a topmost position of a positive literal and the head of s is not a logical

symbol, s must be reducible by Rs
C .

Then our inference system reduces the counterexample C.

Proof. We apply Lemma 6.20 to s to find an appropriate subterm u of s.
CASE 1: We assume that the head of u is not a logical symbol. Then, by property 3
of Lemma 6.20, there exists a rule u −■→ u′ ∈ R∗

N |≺C for some u′. We can apply
BOOLHOIST or SUP to reduce the counterexample:
CASE 1.1: We assume that if u −■→ u′ ∈ RC , then u′ = ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and p is not a topmost
position of a positive literal in C.

We check that BOOLHOIST is applicable:
1. The term u is of Boolean type and its head is not a logical symbol.
2. The position of u in C [u] is eligible by property 1 of Lemma 6.20.
3. Finally, we need to show that the position of u is not a topmost position of a

positive literal in C. If it was, then necessarily s = u and by condition (c) of this
lemma, it follows that s = u is reducible by Rs

C . By the assumption of case 1.1
and the fact that u −■→ u′ ∈ R∗

N |≺C , we have u −■→ u′ ∈ R∗
N \ RN . The rules in

Rs
C \ RN have left-hand sides smaller than s = u. So u −■→ u′ ∈ R∗

N \ RN \ Rs
C .

Since s = u is reducible by Rs
C , this contradicts the absence of critical pairs in

R∗
N , which we have shown in Lemma 6.10(2).

CASE 1.2: We assume that case 1.1 does not apply. That means that u −■→ u′ ∈ RC
and if u′ =⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, then p is a topmost position of a positive literal in C.

Then some clause D ∨ u ≈ u′ ∈ N smaller than C produces the rule u −■→ u′. We
claim that the counterexample C is reduced by the superposition inference

D∨u ≈ u′ C[u]
SUP

D∨C[u′]

This superposition is a valid inference:
1. The position of u in C[u] is eligible by property 1 of Lemma 6.20.
2. The literal u ≈ u′ is strictly eligible by (C3) and (C6).
3. We have u Â u′ by (C1).
4. The head of u is not a logical symbol by the assumption of case 1.
5. By construction of D ∨ u ≈ u′, we have D ∨ u ≈ u′ ≺ C.
6. If u′ =⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, then p is at the top level of a positive equation by the assumption of

case 1.2.
As D ∨ u ≈ u′ is productive, R∗

N 6|= D by Lemma 6.17. Hence the conclusion D∨C[u′]
is equivalent to C[u′], which is equivalent to C[u] with respect to R∗

N . It remains to
show that the new counterexample D∨C[u′], which C is transformed into, is strictly
smaller than C. The maximal literal in C is at least as large as u ≈ u′ because

6

134 6. Superposition with Interpreted Booleans

D ∨ u ≈ u′ ≺ C and D ≺ u ≈ u′ because D is productive. Thus, the counterexample C
reduces.
CASE 2: We assume that the head of u is a logical symbol. By property 2 of
Lemma 6.20, u 6= >>>>>>>>>>>>>>>>>>>>>>>>>,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. By Lemma 6.10(4), R∗

N reduces u to >>>>>>>>>>>>>>>>>>>>>>>>> or to ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.
CASE 2.1: The head of u is ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬, ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧, ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨, or →→→→→→→→→→→→→→→→→→→→→→→→→; or the head of u is ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ and it reduces to >>>>>>>>>>>>>>>>>>>>>>>>>;
or the head of u is 6≈ and it reduces to ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. We apply BOOLRW. Only two of its side
conditions are relevant on ground clauses. Eligibility of u in C holds by property 1 of
Lemma 6.20. For the other relevant side condition, we must pick the right item from
the list. By properties 4 and 5 of Lemma 6.20, the list will contain an applicable
item. Clearly, the conclusion is false in R∗

N and smaller than C.
CASE 2.2: The head of u is ∀ and it reduces to >>>>>>>>>>>>>>>>>>>>>>>>>. We apply FORALLRW. Clearly,
the rule is applicable and the conclusion is false in R∗

N and smaller than C.
CASE 2.3: The head of u is ∃ and it reduces to ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Analogous to the previous case,
using EXISTSRW.
CASE 2.4: The head of u is ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈, say u = s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t, and u reduces to ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. We apply EQHOIST:

C [s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t]
EQHOIST

C [⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥]∨ s ≈ t

Clearly, the inference conditions are fulfilled and the conclusion is smaller than C.
The reduction u −■→+

R∗
N
⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ necessarily has the form

s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t −■→∗
R∗

N
s′ ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t′ −■→

∆s′≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈t′
R∗

N

⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥

because the final step is the only way to reduce ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈. Here, s′ and t′ are different R∗
N

normal forms. Hence R∗
N 6|= s′ ≈ t′ and R∗

N 6|= s ≈ t and R∗
N 6|= C [⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥]∨ s ≈ t.

CASE 2.5: The head of u is 6≈ and it reduces to >>>>>>>>>>>>>>>>>>>>>>>>>. Analogous to the previous case,
using NEQHOIST.
CASE 2.6: The head of u is ∀, say u =∀x.t, and u reduces to ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. We apply FORALL-
HOIST:

C [∀x.t]
FORALLHOIST

C [⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥]∨ t {x 7→ s}≈>>>>>>>>>>>>>>>>>>>>>>>>>
Clearly, the inference conditions are fulfilled and the conclusion is smaller than C.
The reduction u −■→+

R∗
N
⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ necessarily has the form ∀x. t −■→ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and originates from

case (B3) of Definition 6.9 because rewriting under quantifiers is forbidden. In
particular, case (vii) of Definition 6.9 does not apply. Hence there exists a ground
term s whose Boolean subterms are only >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ such that t {x 7→ s}−■→∗

Rs
N
⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. This

is the s we choose for FORALLHOIST. Then the conclusion is a strictly smaller
counterexample.
CASE 2.7: The head of u is ∃ and it reduces to >>>>>>>>>>>>>>>>>>>>>>>>>. Analogous to the previous case,
using EXISTSHOIST.

Lemma 6.22. Our ground inference system has the reduction property for counter-
examples.

6.4. Refutational Completeness

6

135

Proof. Let N be a set of ground clauses that does not contain the empty clause. Let
C be a minimal counterexample for R∗

N in N, i.e. the smallest clause in N that is
false in R∗

N . We must show that there is an inference from N that reduces C, i.e.,
the inference has main premise C, side premises in N, and a conclusion that is a
smaller counterexample for R∗

N than C.

1. We assume that C contains a selected Boolean subterm. Then it cannot be at a
topmost position of a positive literal by the selection restrictions (Definition 6.3).
By Lemma 6.19, R∗

N |≺C reduces the selected subterm. Hence we can apply
Lemma 6.21 to that subterm and are done.

2. We assume that there is an eligible literal of the form s 6≈ s ∈ C. Then ERES

reduces C.
3. We assume that there is an eligible literal s 6≈ s′ ∈ C where s Â s′. Since

R∗
N 6|= C, we have R∗

N |≺C 6|= C by Lemma 6.15. Therefore R∗
N |≺C 6|= s 6≈ s′ and

R∗
N |≺C |= s ≈ s′. Thus, s must be reducible by R∗

N |≺C because s Â s′. Therefore,
we can apply Lemma 6.21 to s.

4. We assume that
– no literals or Boolean subterms are selected in C;
– there is a maximal literal s ≈ s′ ∈ C and second literal s ≈ t ∈ C where

s Â s′, t; and
– R∗

N |= s′ ≈ t.
Then we can apply

C = C′′ ∨ s ≈ t ∨ s ≈ s′
EFACT

C′′ ∨ s′ 6≈ t ∨ s ≈ t

Since C is false in R∗
N , we have R∗

N |= s 6≈ t. Since moreover R∗
N |= s′ ≈ t, it

follows that the conclusion of this inference must be false in R∗
N . Since s Â s′, t

and s ≈ s′ is maximal, the above inference reduces C.
5. We assume that there is a selected literal s ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∈ C with s Â⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Since C is false

in R∗
N , C is also false in R∗

N |≺C by Lemma 6.15. Hence R∗
N |≺C |= s ≈>>>>>>>>>>>>>>>>>>>>>>>>>. If the

head of s is not a logical symbol, since s reduces to >>>>>>>>>>>>>>>>>>>>>>>>>, s must thus be reducible
by RC . Therefore, we can apply Lemma 6.21.

6. We assume that there is a strictly eligible literal s ≈ s′ where s is reducible by
Rs

C . Hence, s is eligible in C. Thus, we can again apply Lemma 6.21 to s.
7. We assume that there is a strictly eligible literal s ≈ s′ ∈ C where s Â s′ and the

head of s is a logical symbol. By (O3), s =>>>>>>>>>>>>>>>>>>>>>>>>> contradicts s Â s′. If s =⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, then
s′ =>>>>>>>>>>>>>>>>>>>>>>>>> by (O3), and FALSEELIM reduces C. If s 6= >>>>>>>>>>>>>>>>>>>>>>>>>,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ then s is reducible by
Lemma 6.10(4). Thus, we can again apply Lemma 6.21 to s.

We will now show that one of the above cases applies or the clause C is productive,
which would be a contradiction to R∗

N 6|= C.
First, we assume that a Boolean subterm or a literal is selected in C. If a Boolean

subterm is selected, case 1 applies. If a literal is selected, it is either negative or of
the form s ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ by the selection restrictions. If it is negative, case 2 or 3 applies. If
it is of the form s ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, s cannot be ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ because C is false in R∗

N . If s =>>>>>>>>>>>>>>>>>>>>>>>>>, then case 7
applies. If s Â⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, then case 5 applies.

Now we may assume that C contains no selections. Then the maximal literal
must be eligible. If the maximal literal is negative ((C3) does not hold), case 2 or 3

6

136 6. Superposition with Interpreted Booleans

applies. If (C1) does not hold, the literal must be negative because C is true in R∗
N .

If (C2) does not hold, then by Lemma 6.16, the maximal literal must be negative.
So we may assume that C contains no selections and the maximal literal is

positive. If (C6) does not hold, then Rs
C ∪ {s −■→ s′} |= C′ where C′ is the subclause of

C with the maximal literal removed. However, Rs
C 6|= C by Lemma 6.16 and by the

assumption R∗
N 6|= C. Therefore, Rs

C 6|= C′. Thus, we must have C′ = C′′ ∨ r ≈ t for
some terms r and t where Rs

C ∪ {s −■→ s′} |= r ≈ t and Rs
C 6|= r ≈ t. So r 6= t and without

loss we assume r Â t. Moreover s −■→ s′ must participate in the normalization of r
or t by Rs

C ∪ {
s −■→ s′

}
. Since r ¹ s Â s′, the rule s −■→ s′ can only be used as the first

step in the normalization of r. Hence r = s and Rs
C |= s′ ≈ t. Then case 4 applies. In

particular, it applies if the maximal literal is not strictly maximal.
Now we may assume that C contains no selections and the maximal literal is

strictly maximal and positive. If (C7) does not apply, then case 6 applies. If (C4) does
not apply, then case 7 applies.

Bachmair and Ganzinger [10, Section 4.2] have shown that the reduction property
for counterexamples implies static refutational completeness. We deviate slightly
from their framework and define the set of redundant clauses RedC(N) and the set of
redundant inferences RedI(N) w.r.t. a clause set N as we have in previous chapters.

Definition 6.23 (Redundancy). Given a ground clause C and a set N of ground
clauses, let C ∈RedC(N) if {D ∈ N | D ≺ C} |= C. Given an inference ι and a set N of
ground clauses, let ι ∈RedI(N) if prems(ι)∩RedC(N) 6=∅ or {D ∈ N | D ≺mprem(ι)} |=
concl(ι). A clause set N is saturated if all inferences from N are in RedI(N).

Adapting the proof of Theorem 4.9 of Bachmair and Ganzinger [10] to match
our redundancy criterion, we can show refutational completeness of our calculus as
follows:

Theorem 6.24 (Ground static refutational completeness). Let N be a set of ground
clauses saturated w.r.t. our calculus and our redundancy criterion and let ⊥ 6∈ N.
Then R∗

N\RedC(N) is a model of N.

Proof. By Lemma 6.22, our inference system fulfills the reduction property of
counterexamples w.r.t. Â. This means that for any clause set M where C is the
smallest clause in M that is false in R∗

M , there exists an inference from M with
– main premise C,
– side premises that are true in R∗

M , and
– a conclusion that is smaller than C and false in R∗

M .
To derive a contradiction, we assume that R∗

N\RedC(N) 6|= N. Then there must be a
smallest clause in C ∈ N that is false in R∗

N\RedC(N). Using M = N \ RedC(N), we
obtain an inference ι with the above properties. Since N is saturated and prems(ι)⊆
M ⊆ N, we have ι ∈RedI

q(N). By definition, this means prems(ι)∩GFRedC(N) 6=∅ or
{D ∈ N | D ≺ C} |= concl(ι). Since prems(ι)⊆ M = N \GFRedC(N), it must be the latter.
Then R∗

M 6|= {D ∈ N | D ≺ C} because R∗
M 6|= concl(ι). This contradicts the minimality

of C.

6.5. Conclusion

6

137

6.5. Conclusion
We presented a ground calculus for first-order logic with interpreted Booleans and
proved it to be refutationally complete. The approach builds on the ideas of Ganzinger
and Stuber [62] on the one hand and of Kotelnikov et al. [92,93] on the other hand. In
contrast to Ganzinger and Stuber’s calculus, our calculus supports an actual Boolean
type, breaking the strict separation between terms and formulas. In contrast to
Kotelnikov et al.’s approach, our approach integrates Booleans directly into the
calculus instead of preprocessing them. These qualities of our calculus will allow us
to extend it to higher-order logic in the following chapter.

7
Superposition for

Full Higher-Order Logic

Joint work with
Jasmin Blanchette, Sophie Tourret, and Petar Vukmirović

We present a sound and refutationally complete calculus for full higher-order logic.
It is based on both the Boolean-free λ-superposition calculus developed in Chapter 5
and the calculus for first-order logic with interpreted Booleans developed in Chap-
ter 6. Merging the two approaches yields a calculus operating on βη-equivalence
classes of λ-terms that supports delayed clausification. We have implemented the
calculus in the Zipperposition prover, and our evaluation shows that it outperforms
other modern higher-order provers.

My contributions to this chapter are the design of the core calculus, the Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-preprocessing mechanism,
the concrete term order, the redundancy criterion, and the ground first-order and nonground higher-order
level of the completeness proof.

139

7

140 7. Superposition for Full Higher-Order Logic

7.1. Introduction
Having constructed superposition calculi for various logics between first-order and
higher-order logic, we have finally collected all the parts necessary to assemble a
calculus for full higher-order logic. Besides the issues discussed in previous chapters
and the sheer complexity of combining the different approaches, we encountered the
following four main challenges.

First, Boolean subterms cannot always be hoisted to the clausal level. In first-
order logic with an interpreted Boolean type as introduced by Kotelnikov et al. [93], a
clause C[t] with a subterm t of Boolean type is equivalent to the clauses C[>>>>>>>>>>>>>>>>>>>>>>>>>]∨ t ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
and C[⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥]∨ t ≈>>>>>>>>>>>>>>>>>>>>>>>>>. Hoisting all Boolean subterms in this way yields clauses whose only
Boolean subterms below the top level are >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. In higher-order logic, however,
Boolean subterms can contain variables bound by λ-expressions—e.g., f (λx.x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ a)≈ b.
These Boolean subterms cannot be hoisted as described above.

Our solution is to perform inprocessing clausification (i.e. clausification during
the derivation), similarly to Leo-III [126], instead of preprocessing clausification
(i.e. clausification before the derivation). To justify the refutational completeness
of this approach, we follow the structure of the proof in Chapter 5, but swap out
the GF level to use the logic and completeness result of Chapter 6. In addition,
this allows our redundancy criterion to incorporate Boolean reasoning and thus our
simplification machinery can simplify Boolean terms in various ways.

Second, when grounding applied variables, Boolean subterms containing the
applied variable’s arguments may appear. For example, consider the clause h (yb) 6≈
h (g ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) ∨ h (y a) 6≈ h (g >>>>>>>>>>>>>>>>>>>>>>>>>). When grounding the clause with the substitution {y 7→
λx.g (x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ a)}, the Boolean subterms b ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ a and a ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ a appear. Because they contain the
argument of y, simply ignoring them leads to incompleteness.

We solve this issue with a dedicated fluid Boolean subterm hoisting rule (FLUID-
BOOLHOIST) and a closely related rule FLUIDLOOBHOIST. These rules resemble
the rule FLUIDSUP from Chapter 5, but introduce Boolean subterms and hoist them
to the clausal level instead of introducing arbitrary subterms and superposing into
them.

Third, like other calculi for higher-order logic, we must perform a form of prim-
itive substitution [2, 23, 73, 126]. For example, given the clauses C = a 6≈ b and
D = z a ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ z b ≈ >>>>>>>>>>>>>>>>>>>>>>>>>, it is crucial to find the substitution {z 7→ λ v. v ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ a}, which
does not arise through unification. Primitive substitution blindly substitutes logical
connectives and quantifiers as a remedy—e.g., it applies ρ = {z 7→λv. yv ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y′ v} where
y and y′ are fresh variables. In combination with the superposition calculus, this
is problematic because the clause Dρ is subsumed by D and could immediately be
discarded by our simplification machinery. Our solution is to directly clausify the
introduced logical symbol, yielding a clause that is no longer subsumed.

Fourth, our core calculus cannot handle variables bound by unclausified quan-
tifiers if these variables occur applied, within λ-expressions, or in arguments of
applied variables. We solve the issue by replacing such quantified term ∀y. t by
(λy. t) ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ (λy.>>>>>>>>>>>>>>>>>>>>>>>>>) in a preprocessing step.

We have implemented the calculus in Zipperposition and evaluated it on TPTP
and Sledgehammer benchmarks. The new Zipperposition outperforms all other

7.2. Logic

7

141

higher-order provers and is on a par with an ad hoc implementation of Booleans in
the same prover by Vukmirović and Nummelin [138].

7.2. Logic
Our logic is higher-order logic with rank-1 polymorphism, Hilbert choice, and func-
tional and Boolean extensionality. To be able to prove refutational completeness, we
use Henkin semantics [21,59,71].

Thus, our logic is essentially the one of the TPTP TH1 standard [79], but we focus
on a smaller yet comprehensive subset of connectives and binders, and—as in the
Isabelle proof assistant—our type variables are always implicitly bound universally
at the top level. To adhere to the restriction that we do not support explicit type
variable binders, these binders can easily be eliminated by type skolemization [32,
Section 5.2].

On top of the standard higher-order terms, we employ a clausal structure, forcing
us to express the input problem as a conjunction of disjunctions of equations and dis-
equations. This allows for a formulation of the calculus rules that closely resembles
the first-order superposition calculus. It does not restrict the flexibility of the logic
because an arbitrary term t of Boolean type can be written as the clause t ≈>>>>>>>>>>>>>>>>>>>>>>>>>.

Syntax As a basis for our logic’s types, we fix an infinite set Vty of type variables. A
set Σty of type constructors with associated arities is a type signature if it contains at
least one nullary Boolean type constructor o and a binary function type constructor
→. A type, usually denoted by τ or υ, is inductively defined to either be a type
variable α ∈ Vty or have the form κ(τ̄n) for an n-ary type constructor κ ∈ Σty and
types τ̄n. We write κ for κ() and τ→ υ for →(τ,υ). A type declaration is an expression
Πᾱm. τ (or simply τ if m = 0), where all type variables occurring in τ belong to ᾱm.

To define our logic’s terms, we fix a type signature Σty and a set V of term
variables with associated types, written as x : τ or x. We require that there are
infinitely many variables for each type.

A term signature is a set Σ of (function) symbols, usually denoted by a, b, c, f,
g, h, each associated with a type declaration, written as f :Πᾱm. τ. We require the
presence of the logical symbols >>>>>>>>>>>>>>>>>>>>>>>>>,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ : o; ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ : o → o; ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧,∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨,→→→→→→→→→→→→→→→→→→→→→→→→→ : o → o → o; ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀,∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃ :Πα. (α→
o) → o; and ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈, 6≈ :Πα.α→α→ o. Moreover, we require the presence of the Hilbert
choice operator ε :Πα. (α→ o)→α. Although ε is interpreted in our semantics, we
do not consider it to be a logical symbol. The reason is that our calculus will enforce
the semantics of ε by an axiom, whereas the semantics of the logical symbols will be
enforced by inference rules. In the following, we also fix a term signature Σ. A type
signature and a term signature form a signature.

As in Chapter 5, we will define terms in three layers of abstraction: raw λ-terms,
λ-terms, and terms; where λ-terms will be α-equivalence classes of raw λ-terms and
terms will be βη-equivalence classes of λ-terms.

The set of raw λ-terms and their associated types is defined exactly as in Sec-
tion 5.2. For the symbols ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ and 6≈, we will typically use infix notation and omit
the type argument. For the definitions of subterms, free variable occurrences, and
ground terms, we also refer to Section 5.2.

7

142 7. Superposition for Full Higher-Order Logic

The α-renaming rule is defined as (λx. t) −■→α (λy. t{x 7→ y}), where y does not
occur free in t and is not captured by a λ-binder in t. Raw λ-terms form equivalence
classes modulo α-renaming, called λ-terms. We lift the above notions on raw λ-terms
to λ-terms. We define substitutions as in Section 5.2.

The β- and η-reduction rules are specified on λ-terms as (λx. t)u −■→β t{x 7→ u} and
(λx. t x) −■→η t. For β, bound variables in t are implicitly renamed to avoid capture;
for η, the variable x may not occur free in t. The λ-terms form equivalence classes
modulo βη-reduction, called βη-equivalence classes or simply terms.

Deviating from Chapter 5, we do not use the η-short β-normal form, but the
following related nonstandard normal form. The βηQη-normal form t↓βηQη

of a
λ-term t is obtained by applying −■→β and −■→η exhaustively and finally applying the
following rewrite rule Qη exhaustively:

Q〈τ〉t −■→Qη
Q〈τ〉(λx. t x)

where t is not a λ-expression. Here and elsewhere, Q stands for either ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀ or ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃.
We lift all of the notions defined on λ-terms to terms:

Convention 7.1. When defining operations that need to analyze the structure of
terms, we use the βηQη-normal representative as the default representative of a
βη-equivalence class.

A literal is an equation s ≈ t or a disequation s 6≈ t of terms s and t. In both cases,
the order of s and t is not fixed. We write s ≈̇ t for a literal that can be either an
equation or a disequation. A clause L1 ∨·· ·∨Ln is a finite multiset of literals L j.
The empty clause is written as ⊥. As in Chapter 6, nonequational literals must be
encoded as t ≈>>>>>>>>>>>>>>>>>>>>>>>>> or t ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.

As in the previous chapter, our calculus does not allow nonequational literals.
These must be encoded as t ≈>>>>>>>>>>>>>>>>>>>>>>>>> or t ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Both of these are considered positive literals
because they are equations, not disequations. Our simplification mechanism will
allow us to simplify negative literals of the form t 6≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and t 6≈ >>>>>>>>>>>>>>>>>>>>>>>>> into t ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈>>>>>>>>>>>>>>>>>>>>>>>>> and t ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥,
respectively.

For the definition of a complete set of unifiers CSU(s, t) of two terms s and t, we
refer to Section 5.2.

Semantics A type interpretation Ity = (U,Jty) is defined as follows. The universe U
is a collection of nonempty sets, called domains. We require that {0,1} ∈U. The func-
tion Jty associates a function Jty(κ) :Un →U with each n-ary type constructor κ, such
that Jty(o)= {0,1} and for all domains D1,D2 ∈U, the set Jty(→)(D1,D2) is a subset of
the function space from D1 to D2. The semantics is standard if Jty(→)(D1,D2) is the
entire function space for all D1,D2. A type valuation ξ is a function that maps every
type variable to a domain. The denotation of a type for a type interpretation Ity and
a type valuation ξ is recursively defined by JαKξIty = ξ(α) and Jκ(τ̄)KξIty = Jty(κ)(Jτ̄KξIty).

A type valuation ξ can be extended to be a valuation by additionally assigning
an element ξ(x) ∈ JτKξIty to each variable x : τ. An interpretation function J for a type
interpretation Ity associates with each symbol f :Πᾱm. τ and domain tuple D̄m ∈Um

7.2. Logic

7

143

a value J(f,D̄m) ∈ JτKξIty , where ξ is the type valuation that maps each αi to Di. We
require that

J(>>>>>>>>>>>>>>>>>>>>>>>>>)= 1 J(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)= 0 J(∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧)(a,b)=min {a,b} J(∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨)(a,b)=max {a,b}

J(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬)(a)= 1−a J(→→→→→→→→→→→→→→→→→→→→→→→→→)(a,b)=max {1−a,b}

J(≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈,D)(c,d)= 1 if c = d and 0 otherwise

J(6≈,D)(c,d)= 0 if c = d and 1 otherwise

J(∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀,D)(f)=min { f (a) | a ∈D} J(∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃,D)(f)=max { f (a) | a ∈D}

f (J(ε,D)(f))=max { f (a) | a ∈D}

for all a,b ∈ {0,1}, D ∈U, c,d ∈D, and f ∈ Jty(→)(D, {0,1}).
As in Chapter 5, loosely following Fitting [59, Section 2.4], we initially allow

λ-expressions to designate arbitrary elements of the domain and impose restrictions
afterwards using the notion of a proper interpretation.

A λ-designation function L for a type interpretation Ity is a function that maps a
valuation ξ and a λ-expression of type τ to elements of JτKξIty . A type interpretation,
an interpretation function, and a λ-designation function form an interpretation
I= (Ity,J,L).

For an interpretation I and a valuation ξ, the denotation of a term is defined
as JxKξI = ξ(x), Jf〈τ̄m〉KξI = J(f,Jτ̄mKξIty), Js tKξI = JsKξI(JtKξI), and Jλx. tKξI =L(ξ,λx. t). For
ground terms t, the denotation does not depend on the choice of the valuation ξ,
which is why we sometimes write JtKI for JtKξI.

An interpretation I is proper if Jλx. tKξI(a) = JtKξ[x 7→a]
I for all λ-expressions λx. t

and all valuations ξ. If a type interpretation Ity and a interpretation function J can
be extended by a λ-designation function L to a proper interpretation (Ity,J,L), then
this L is unique [59, Proposition 2.18]. Truth of clauses under an interpretation and
models are defined as in Section 5.2.

Skolem-Aware Interpretations Some of the rules in our calculus introduce
Skolem symbols—i.e., symbols representing objects mandated by existential quan-
tification. We define a Skolem-extended signature that contains all Skolem symbols
that could possibly be needed by the calculus rules.

Definition 7.2. Given a term signature Σ, let the Skolem-extended term signa-
ture Σsk the smallest signature that contains all symbols from Σ and a symbol
skΠᾱ.∀x̄.∃z. t z :Πᾱ. τ̄→ υ for all types υ, variables z : υ, terms t : υ→ o over the signa-
ture (Σty,Σsk), where ᾱ are the free type variables occurring in t and x̄ : τ̄ are the
free term variables occurring in t in order of first appearance.

Interpretations as defined above can interpret the Skolem symbols arbitrarily.
For example, an interpretation I does not necessarily interpret the symbol sk∃z. z≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈a
as JaKI. Therefore, an inference producing (sk∃z. z≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈a ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ a)≈>>>>>>>>>>>>>>>>>>>>>>>>> from ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈ι〉(λz. z ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ a)≈>>>>>>>>>>>>>>>>>>>>>>>>>
is unsound w.r.t. |=. As a remedy, we define Skolem-aware interpretations as follows:

Definition 7.3. We call a proper interpretation over a Skolem-extended signature
Skolem-aware if for all Skolem symbols I |= (∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈υ〉(λz. t z))≈ t(skΠᾱ.∀x̄.∃z. t z〈ᾱ〉x̄), where

7

144 7. Superposition for Full Higher-Order Logic

ᾱ are the free type variables and x̄ are the free term variables occurring in t in order
of first appearance. An interpretation is a Skolem-aware model of a clause set N,
written I |≈ N, if I is Skolem-aware and I |= N.

7.3. The Calculus
Our λ-superposition calculus presented here combines ideas from Chapters 3, 5, and
6. As in Chapters 3 and 5, we restrict superposition inferences to green subterms.
We add several rules for the treatment of Booleans, inspired by Chapter 6. As in
Chapter 5, we need a FLUIDSUP rule to simulate superposition inferences inside
instantiated fluid terms. In addition, we require two new rules, FLUIDBOOLHOIST

and FLUIDLOOBHOIST, that simulate inferences on Boolean terms inside instan-
tiated fluid terms. We refine the definition of green subterms to exclude subterms
below quantifiers:

Definition 7.4 (Green subterms and positions). Green subterms and positions are
inductively defined as follows. A green position is a tuple of natural numbers. For
any λ-term t, the empty tuple ε is a green position of t, and t is the green subterm of
t at position ε. For all symbols f ∈Σ\{∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀,∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃}, if t is a green subterm of ui at position p,
then i.p is a green position of f〈τ̄〉ū, and t is the green subterm of f〈τ̄〉ū at position
i.p.

For positions in clauses, natural numbers are not appropriate because clauses
and literals are unordered. A green position in a clause C is a tuple L.s.p where
L = s ≈̇ t is a literal in C and p is a green position in s. The green subterm of C at
position L.s.p is the green subterm of s at position p.

We write s|p to denote the green subterm at position p in s. We write s u p
to denote a λ-term s with the green subterm u at position p and call s p a green
context; the position p may be omitted in this notation. A position p is at or below
a position q if q is a prefix of p. A position p is below a position q if q is a proper
prefix of p.

The notions of green positions, subterms, and context are lifted to βη-equivalence
classes via the βηQη-normal representative.

For example, the green subterms of f (g (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p))(∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈τ〉(λx.q))(ya)(λx.hb) are the term
itself, g (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p), ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p, p, ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈τ〉(λx.q), ya, and λx.h b.

7.3.1. Preprocessing
Some combinations of applied variables with quantifiers could lead to incomplete-
ness of our calculus. This is why we use preprocessing to eliminate problematic
occurrences of quantifiers.

Definition 7.5. The rewrite rules ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ and ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈, which we collectively denote Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈, are
defined on λ-terms as

∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈τ〉−■→∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ λy. y ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ (λx.>>>>>>>>>>>>>>>>>>>>>>>>>) ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈τ〉−■→∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ λy. y 6≈ (λx.⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

7.3. The Calculus

7

145

where the rewritten occurrence of Q〈τ〉 is unapplied, has an argument that is not a
λ-expression, or has an argument of the form λx. v such that x occurs in a nongreen
position of v.

If neither of these rewrite rules can be applied to a given λ-term, the λ-term
is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal; otherwise it is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-reducible. We lift this notion to βη-equivalence
classes via the βηQη-normal representative. A clause or clause set is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal if
all contained terms are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal.

For example, the term λy. ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈ι→ ι〉(λx. g x y (z y) (f x)) is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal. Reasons
for a term to be Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-reducible are: A quantifier appears unapplied, e.g., g ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈ι〉; A
quantifier-bound variable occurs applied, e.g., ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈ι→ ι〉(λx. x a); A quantifier-bound
variable occurs inside a nested λ-expression, e.g., ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈ι〉(λx.f (λy.x)); A quantifier-bound
variable occurs in the argument of a variable, either a free variable, e.g., ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈ι〉(λx. z x),
or a variable bound above the quantifier, e.g., λy.∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈ι〉(λx. y x).

In principle, we could remove the condition of the Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ rewrite rules and thus
eliminate all quantifiers. However, our calculus and in particular our redundancy
criterion can deal better with quantifiers than with λ-expressions, which is why we
restrict Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normalization as much as possible without compromising refutational
completeness.

We can also characterize Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normality as follows:

Lemma 7.6. Let t be a term with spine notation t = s ūn. Then t is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal if and
only if ūn are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal and

(i) s is of the form Q〈τ〉, n = 1, and u1 is of the form λy. u′ such that y occurs only
in green positions of u′; or

(ii) s is a λ-expression whose body is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal; or
(iii) s is neither of the form Q〈τ〉 nor a λ-expression.

Proof. This follows directly from Definition 7.5.

In the following lemmas, our goal is to show that Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normality is invariant under
βηQη-normalization—i.e., if a λ-term t is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, then so is t↓βηQη

. However,
Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normality is not invariant under arbitrary βη-conversions. Clearly, a β-expansion
can easily introduce Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-reducible terms, e.g., c←■−β (λx.c) (∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈ι〉).
Lemma 7.7. If t and v are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal λ-terms, then t v is a Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal λ-term.

Proof. We prove this by induction on the structure of t. Let s ūn = t be the spine
notation of t. By Lemma 7.6, ūn are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal and one of the lemma’s three cases
applies. Since t is of functional type and Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, s cannot be of the form Q〈τ〉,
excluding case (i). Cases (ii) and (iii) are independent of ūn, and hence appending v
to that tuple does not affect the Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normality of t.

Lemma 7.8. If t is a Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal λ-term and ρ is a substitution such that xρ is
Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal for all x, then tρ is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal.

Proof. We prove this by induction on the structure of t. Let s ūn = t be its spine
notation. Since t is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, by Lemma 7.6, un are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal and one of the
following cases applies:

7

146 7. Superposition for Full Higher-Order Logic

Case (i): s is of the form Q〈τ〉, n = 1, and u1 is of the form λy. u′ such that y
occurs only in green positions of u′. Since our substitutions avoid capture, yρ = y
and y does not appear in xρ for all other variables x. It is clear from the definition of
green positions that since y occurs only in green positions of u′, y also occurs only
in green positions of u′ρ. Moreover, by the induction hypothesis, u1ρ is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal.
Hence, tρ =Q〈τρ〉(u1ρ)=Q〈τρ〉(λy. u′ρ) is also Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal.

Case (ii): s is a λ-expression whose body is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal. Then tρ = (λy. s′ρ) (ūnρ)
for some Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal λ-term s′. By the induction hypothesis, s′ρ and ūnρ are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-
normal. Therefore, tρ is also Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal.

Case (iii): s is neither of the form Q〈τ〉 nor a λ-expression. If s is of the form
f〈τ̄〉 for some f 6∈ {∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀,∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃}, then tρ = f〈τ̄ρ〉(ūnρ). By the induction hypothesis, ūnρ are
Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, and therefore tρ is also Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal. Otherwise, s is a variable x and
hence tρ = xρ (ūnρ). Since xρ is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal by assumption and ūnρ are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal
by the induction hypothesis, it follows from (repeated application of) Lemma 7.7 that
tρ is also Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal.

Lemma 7.9. Let t be a λ-term of functional type that does not contain the variable x.
If λx. t x is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, then t is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal.

Proof. Since λx. t x is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, t x is also Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal. Let s ūn = t. Since t x is
Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal and x is not a λ-expression, s cannot be a quantifier by Lemma 7.6. Cases
(ii) and (iii) are independent of ūn, and hence removing x from that tuple does not
affect Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normality. Thus, t x being Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal implies that t is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal.

Lemma 7.10. Let t be a λ-term and x a variable occurring only in green positions of
t. Let t′ be a term obtained via a βηQη-normalization step from t. Then x occurs only
in green positions of t′.

Proof. By induction on the structure of t. If x does not occur in t, the claim is obvious.
If t = x, there is no possible βηQη-normalization step because for these steps the
head of the rewritten term must be either a λ-expression or a quantifier. So we now
assume that x does occur in t and that t 6= x. Then, by the assumption that x occurs
only in green positions, t must be of the form f〈τ̄〉ū for some f ∈Σ\{∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀,∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃}, some types
τ̄ and some λ-terms ū. The βηQη-normalization step must take place in one of the ū,
yielding ū′ such that t′ = f〈τ̄〉ū′. By the induction hypothesis, x occurs only in green
positions of ū′ and therefore only in green positions of t′.

Lemma 7.11. Let t be Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal and let t′ be obtained from t by a βηQη-normali-
zation step. If it is an η-reduction step, we assume that it happens not directly below
a quantifier. Then t′ is also Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal.

Proof. Let s ūn = t. By Lemma 7.6, ūn are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, and one of the following cases
applies:

Case (i): s is of the form Q〈τ〉, n = 1, and u1 is of the form λy.v such that y occurs
only in green positions of v. Then the normalization cannot happen at t, because s
is of the form Q〈τ〉 and u1 is a λ-expression already. It cannot happen at u1 by the
assumption of this lemma. So it must happen in v, yielding some λ-term v′. Then
t = s (λx. v′). The λ-term v′ is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal by the induction hypothesis and hence

7.3. The Calculus

7

147

(λx. v′) is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal. Since x occurs only in green positions of v, by Lemma 7.10, x
occurs only in green positions of v′. Thus, t′ is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal.

Cases (ii) and (iii): s is a λ-expression whose body is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal; or s is neither of
the form Q〈τ〉 nor a λ-expression.

If the βηQη-normalization step happens in some ui, yielding some λ-term u′
i,

then u′
i is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal by the induction hypothesis. Thus, t′ = su1 · · · ui−1 u′

i ui+1 · · · un
is also Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal.

Otherwise, if s = λx. v and the βηQη-normalization step happens in v, yielding
some λ-term v′, then v′ is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal by the induction hypothesis. Thus, t′ = (λx.v′)ūn
is also Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal.

Otherwise, the βηQη-normalization step happens at sūm for some m ≤ n, yielding
some λ-term v′. Then t′ = v′ um+1 · · · un. The λ-terms s and ūm are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal and
by repeated application of Lemma 7.7, s ūm is also Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal. The λ-term v′ is
Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal by Lemma 7.8 (for β-reductions) or Lemma 7.9 (for η-reductions). The
normalization step cannot be a Qη-normalization because s is not a quantifier. Since
ūn are also Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, by repeated application of Lemma 7.7, t[v′]= v′ um+1 · · · un
is also Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal.

A direct consequence of this lemma is that Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ normality is invariant under
βηQη-normalization, as we wanted to show:

Corollary 7.12. If t is a Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal λ-term, then t↓βηQη
is also Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal.

As mentioned above, the converse does not hold. Therefore, following our conven-
tion, Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normality is defined on terms (i.e., βη-equivalence classes) via βηQη-normal
forms. It follows that Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normality is well-behaved under applications of terms as
well:

Lemma 7.13. If t and v are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal terms where t is of functional type, then t v
is also Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal.

Proof. Since Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normality is defined via βηQη-normal forms, we must show that if
t↓βηQη

and v↓βηQη
are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, then t v↓βηQη

is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal. By Lemma 7.7, the
λ-term (t↓βηQη

) (v↓βηQη
) is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal. By Corollary 7.12, ((t↓βηQη

) (v↓βηQη
))↓βηQη

=
(t v)↓βηQη

is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal.

Our preprocessing mechanism Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normalizes the input problem. It clearly termi-
nates because each Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-step reduces the number of quantifiers. The Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normality of
the initial clause set of a derivation will be a precondition of our completeness theo-
rem. Although inferences may produce Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-reducible clauses, we do not Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normalize
during the derivation process itself. Instead, Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-reducible ground instances of
clauses will be considered redundant by our redundancy criterion. Thus, clauses
whose ground instances are all Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-reducible can be deleted. However, there are
Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-reducible clauses, such as x (∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈ι〉)≈ a, that are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-reducible but have Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal
ground instances. They must be kept because our completeness proof relies on their
Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal ground instances.

7

148 7. Superposition for Full Higher-Order Logic

7.3.2. Term Orders and Selection Functions
The calculus is parameterized by a strict and a nonstrict term order, a literal selection
function, and a Boolean subterm selection function. These concepts are defined below.

Definition 7.14 (Strict ground term order). A strict ground term order is a well-
founded strict total order Â on ground terms satisfying the following criteria, where
º denotes the reflexive closure of Â:
(O1) compatibility with green contexts: s′ Â s implies t s′ Â t s ;
(O2) green subterm property: t s º s;
(O3) u Â⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥Â>>>>>>>>>>>>>>>>>>>>>>>>> for all terms u 6= >>>>>>>>>>>>>>>>>>>>>>>>>,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥;
(O4) Q〈τ〉 t Â t u for all types τ, terms t, and terms u such that Q〈τ〉 t and u are

Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal and the only Boolean green subterms of u are >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.
Given a strict ground term order, we extend it to literals and clauses via the multiset
extensions in the standard way [9, Section 2.4].

Based on this new notion of a strict ground term order, we define the strict and
the nonstrict term order as in Chapter 5:

Definition 7.15 (Strict term order). A strict term order is a relation Â on terms,
literals, and clauses such that its restriction to ground entities is a strict ground
term order and such that it is stable under grounding substitutions (i.e., t Â s implies
tθ Â sθ for all substitutions θ grounding the entities t and s).

Definition 7.16 (Nonstrict term order). Given a strict term order Â and its reflexive
closure º, a nonstrict term order is a relation % on terms, literals, and clauses such
that t% s implies tθ º sθ for all θ grounding the entities t and s.

For the selection functions, we combine the restrictions imposed in Chapters 5
and 6:

Definition 7.17 (Literal selection function). A literal selection function is a mapping
from each clause to a subset of its literals. The literals in this subset are called
selected. The following restrictions apply:

– A literal must not be selected if it is positive and neither side is ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.
– A literal L y must not be selected if y ūn, with n > 0, is a º-maximal term of

the clause (as per Definition 5.8).

Definition 7.18 (Boolean subterm selection function). A Boolean subterm selection
function is a function mapping each clause C to a subset of the green positions
with Boolean subterms in C. The positions in this subset are called selected in C.
Informally, we also say that the Boolean subterms at these positions are selected.
The following restrictions apply:

– A subterm s y must not be selected if y ūn, with n > 0, is a º-maximal term
of the clause.

– A subterm must not be selected if it is >>>>>>>>>>>>>>>>>>>>>>>>> or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ or a variable-headed term.
– A subterm must not be selected if it is at a topmost position on either side of a

positive literal.

7.3. The Calculus

7

149

7.3.3. The Core Inference Rules
Let Â be a strict term order, let % be a nonstrict term order, let HLitSel be a literal
selection function, and let HBoolSel be a Boolean subterm selection function. The
calculus rules depend on the following auxiliary notions. We generalize the notion of
eligibility from Chapter 6 to nonground higher-order terms:

Definition 7.19 (Eligibility). A literal L is (strictly) �-eligible w.r.t. a substitution
σ in C for some relation � if it is selected in C or there are no selected literals and
no selected Boolean subterms in C and Lσ is (strictly) �-maximal in Cσ.

The �-eligible positions of a clause C w.r.t. a substitution σ are inductively
defined as follows:
(E1) Any selected position is �-eligible.
(E2) If a literal L = s ≈̇ t with sσ 6� tσ is either �-eligible and negative or strictly

�-eligible and positive, then L.s.ε is �-eligible.
(E3) If the position p is �-eligible and the head of C|p is not ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ or 6≈, the positions of

all direct green subterms are �-eligible.
(E4) If the position p is �-eligible and C|p is of the form s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t or s 6≈ t, then the

position of s is �-eligible if sσ 6� tσ and the position of t is �-eligible if sσ 6� tσ.
If σ is the identity substitution, we leave it implicit.

We define deeply occurring variables and fluid terms as in Chapter 5, but based on
our new βηQη-normal form and excluding λ-expressions directly below quantifiers:

Definition 7.20 (Deep occurrences). A variable occurs deeply in a clause C if it
occurs inside an argument of an applied variable or inside a λ-expression that is not
directly below a quantifier.

For example, x and z occur deeply in f x y≈ y x ∨ z 6≈ (λw. z a)∨∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈ι〉(λu. p y)≈>>>>>>>>>>>>>>>>>>>>>>>>>,
whereas y does not occur deeply. Fluid terms are defined as in Chapter 5, using the
βηQη-normal form:

Definition 7.21 (Fluid terms). A term t is called fluid if (1) t↓βηQη
is of the form

y ūn where n ≥ 1, or (2) t↓βηQη
is a λ-expression and there exists a substitution σ

such that tσ↓βηQη
is not a λ-expression (due to η-reduction).

The rules of our calculus are stated as follows. The superposition rule strongly
resembles the one from Chapter 5 but uses our new notion of eligibility, and the new
conditions 9 and 10 stem from the SUP rule of Chapter 6:

D︷ ︸︸ ︷
D′ ∨ t ≈ t′ C u

SUP
(D′ ∨ C t′)σ

1. u is not fluid; 2. u is not a variable deeply occurring in C;
3. variable condition: if u is a variable y, there must exist a grounding substitu-

tion θ such that tσθ Â t′σθ and Cσθ ≺ C′′σθ, where C′′ = C{y 7→ t′};
4. σ ∈CSU(t,u); 5. tσ 6- t′σ; 6. Cσ 6- Dσ;
7. t ≈ t′ is strictly %-eligible in D w.r.t. σ;

7

150 7. Superposition for Full Higher-Order Logic

8. the position of u is %-eligible in C w.r.t. σ;
9. tσ is not a fully applied logical symbol;

10. if t′σ=⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, the position of the subterm u is at the top level of a positive literal.
The FLUIDSUP rule is like the one in Chapter 5 but based on the SUP rule

defined above. It is responsible for fluid green subterms.
D︷ ︸︸ ︷

D′ ∨ t ≈ t′
C︷ ︸︸ ︷

C′ ∨ s u ≈̇ s′
FLUIDSUP

(D′ ∨ C′ ∨ s z t′ ≈̇ s′)σ

with the following side conditions, in addition to SUP’s conditions 5 to 10:

1. u is a variable deeply occurring in C or u is fluid;
2. z is a fresh variable; 3. σ ∈CSU(z t, u); 4. (z t′)σ 6= (z t)σ.

The ERES and EFACT rules are copied from Chapter 5. As a minor optimization, we
add a condition to EFACT that u ≈ v is %-maximal, which is only necessary because
positive literals of the form u ≈>>>>>>>>>>>>>>>>>>>>>>>>> can be selected.

C︷ ︸︸ ︷
C′ ∨ u 6≈ u′

ERES
C′σ

C︷ ︸︸ ︷
C′ ∨ u′ ≈ v′ ∨ u ≈ v

EFACT
(C′ ∨ v 6≈ v′ ∨ u ≈ v′)σ

For ERES: σ ∈ CSU(u,u′) and u 6≈ u′ is %-eligible in C w.r.t. σ. For EFACT: σ ∈
CSU(u,u′), uσ 6- vσ, (u ≈ v)σ is %-maximal in Cσ, and nothing is selected in C.

We also employ the ARGCONG rule, which is identical with the one in Chapter 5:
C︷ ︸︸ ︷

C′ ∨ s ≈ s′
ARGCONG

C′σ∨ sσ x̄n ≈ s′σ x̄n

where σ is the most general type substitution that ensures well-typedness of the
conclusion. The literal s ≈ s′ must be strictly %-eligible in C w.r.t. σ, and x̄n is a
nonempty tuple of distinct fresh variables.

The following rules are concerned with Boolean reasoning and stem from Chap-
ter 6. However, the rules must be adapted to cope with polymorphism and applied
variables:

C u
BOOLHOIST

(C ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ u ≈>>>>>>>>>>>>>>>>>>>>>>>>>)σ

1. σ is a type unifier of the type of u with the Boolean type o (i.e., the identity if
u is Boolean or α 7→ o if u is of type α for some type variable α);

2. the head of u is neither a variable nor a fully applied logical symbol;
3. the position of u is %-eligible in C;
4. the occurrence of u is not at the top level of a positive literal.

C︷ ︸︸ ︷
C′ ∨ s ≈ s′

FALSEELIM
C′σ

7.3. The Calculus

7

151

1. σ ∈CSU(s ≈ s′,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥≈>>>>>>>>>>>>>>>>>>>>>>>>>); 2. s ≈ s′ is strictly %-eligible in C w.r.t. σ.

C u
EQHOIST

(C ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ x ≈ y)σ

C u
NEQHOIST

(C >>>>>>>>>>>>>>>>>>>>>>>>> ∨ x ≈ y)σ

C u
FORALLHOIST

(C ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ y x ≈>>>>>>>>>>>>>>>>>>>>>>>>>)σ

C u
EXISTSHOIST

(C >>>>>>>>>>>>>>>>>>>>>>>>> ∨ y x ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)σ

1. σ ∈ CSU(u, x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y), σ ∈ CSU(u, x 6≈ y), σ ∈ CSU(u,∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈α〉 y), or σ ∈ CSU(u,∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈α〉 y),
respectively;

2. x, y, and α are fresh variables; 3. the position of u is %-eligible in C w.r.t. σ;
4. if the head of u is a variable, it must be applied and the affected literal must

be of the form u ≈>>>>>>>>>>>>>>>>>>>>>>>>>, u ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, or u ≈ v where v is a variable-headed term.

C u
BOOLRW

C t′ σ

1. σ ∈CSU(t,u) and (t, t′) is one of the following pairs:

(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ , >>>>>>>>>>>>>>>>>>>>>>>>>) (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ , ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ , ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥→→→→→→→→→→→→→→→→→→→→→→→→→⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ , >>>>>>>>>>>>>>>>>>>>>>>>>)

(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬>>>>>>>>>>>>>>>>>>>>>>>>> , ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (>>>>>>>>>>>>>>>>>>>>>>>>>∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ , ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (>>>>>>>>>>>>>>>>>>>>>>>>>∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ , >>>>>>>>>>>>>>>>>>>>>>>>>) (>>>>>>>>>>>>>>>>>>>>>>>>>→→→→→→→→→→→→→→→→→→→→→→→→→⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ , ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(y ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y , >>>>>>>>>>>>>>>>>>>>>>>>>) (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧>>>>>>>>>>>>>>>>>>>>>>>>> , ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨>>>>>>>>>>>>>>>>>>>>>>>>> , >>>>>>>>>>>>>>>>>>>>>>>>>) (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥→→→→→→→→→→→→→→→→→→→→→→→→→>>>>>>>>>>>>>>>>>>>>>>>>> , >>>>>>>>>>>>>>>>>>>>>>>>>)

(y 6≈ y , ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (>>>>>>>>>>>>>>>>>>>>>>>>>∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧>>>>>>>>>>>>>>>>>>>>>>>>> , >>>>>>>>>>>>>>>>>>>>>>>>>) (>>>>>>>>>>>>>>>>>>>>>>>>>∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨>>>>>>>>>>>>>>>>>>>>>>>>> , >>>>>>>>>>>>>>>>>>>>>>>>>) (>>>>>>>>>>>>>>>>>>>>>>>>>→→→→→→→→→→→→→→→→→→→→→→→→→>>>>>>>>>>>>>>>>>>>>>>>>> , >>>>>>>>>>>>>>>>>>>>>>>>>)

where y is a fresh variable;
2. u is not a variable; 3. the position of u is %-eligible in C w.r.t. σ;
4. if the head of u is a variable, it must be applied and the affected literal must

be of the form u ≈>>>>>>>>>>>>>>>>>>>>>>>>>, u ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, or u ≈ v where v is a variable-headed term.

C u
FORALLRW

C y (skΠᾱ.∀x̄.∃z.¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬(yσ z)〈ᾱ〉 x̄) σ

C u
EXISTSRW

C y (skΠᾱ.∀x̄.∃z. yσ z〈ᾱ〉 x̄) σ

1. σ ∈CSU(∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈β〉y,u) and σ ∈CSU(∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈β〉y,u), respectively, where β is a fresh type
variable, y is a fresh term variable, ᾱ are the free type variables and x̄ are the
free term variables occurring in yσ in order of first appearance;

2. u is not a variable; 3. the position of u is %-eligible in C w.r.t. σ;
4. if the head of u is a variable, it must be applied and the affected literal must

be of the form u ≈>>>>>>>>>>>>>>>>>>>>>>>>>, u ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, or u ≈ v where v is a variable-headed term;
5. for FORALLRW, the indicated occurrence of u is not in a literal u ≈>>>>>>>>>>>>>>>>>>>>>>>>>, and for

EXISTSRW, the indicated occurrence of u is not in a literal u ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.

7

152 7. Superposition for Full Higher-Order Logic

In principle, the subscript of the Skolems above could be normalized using Boolean
tautologies to share as many Skolem symbols as possible. This is an extension of our
calculus that we did not investigate any further.

Like SUP, also the Boolean rules must be simulated inside fluid terms. As an
analogue of FLUIDSUP, we introduce the rules FLUIDBOOLHOIST and FLUIDLOOB-
HOIST:

C u
FLUIDBOOLHOIST

(C z⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ x ≈>>>>>>>>>>>>>>>>>>>>>>>>>)σ

1. u is fluid;
2. z and x are fresh variables; 3. σ ∈CSU(z x, u); 4. (z⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)σ 6= (z x)σ;
5. xσ 6= >>>>>>>>>>>>>>>>>>>>>>>>> and xσ 6= ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥; 6. the position of u is %-eligible in C w.r.t. σ.

C u
FLUIDLOOBHOIST

(C z>>>>>>>>>>>>>>>>>>>>>>>>> ∨ x ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)σ

Same conditions as FLUIDBOOLHOIST, but ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ is replaced by >>>>>>>>>>>>>>>>>>>>>>>>> in condition 4.
Finally, in addition to the inference rules, our calculus employs two axioms. The

axiom (EXT) is concerned with functional extensionality and is identical with the
one in Chapter 5. The axiom (CHOICE) axiomatizes the semantics of the Hilbert
choice operator ε.

z (diff〈α,β〉z y) 6≈ y (diff〈α,β〉z y)∨ z ≈ y (EXT)

y x ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∨ y (ε〈α〉y)≈>>>>>>>>>>>>>>>>>>>>>>>>> (CHOICE)

where diff〈α,β〉 abbreviates skΠαβ.∀z y.∃x. z x 6≈y x.

7.3.4. Rationale for the Rules
Most of the calculus rules are adapted from precursor calculi. The rules SUP, ERES,
and EFACT were already present in Bachmair and Ganzinger’s calculus for first-
order logic, with slightly different side conditions. Most notably, as in Chapters 3
and 5, SUP inferences are only required into green contexts. Other subterms are
accessed indirectly via the ARGCONG rule and the axiom (EXT).

The rules BOOLHOIST, FALSEELIM, EQHOIST, NEQHOIST, FORALLHOIST,
EXISTSHOIST, BOOLRW, FORALLRW, and EXISTSRW, concerned with Boolean rea-
soning, stem from the calculus presented in the previous chapter, originally inspired
by Ganzinger and Stuber’s work. The rules have been lifted to the nonground calcu-
lus. Except for the first two, all of these rules have a condition stating: “if the head of
u is a variable, it must be applied and the affected literal must be of the form u ≈>>>>>>>>>>>>>>>>>>>>>>>>>,
u ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, or u ≈ v where v is a variable-headed term.” The inferences at variable-headed
terms permitted by this condition are our form of primitive substitution—i.e., our
mechanism to instantiate applied variables with logical symbols. The following
example illustrates this mechanism:

7.3. The Calculus

7

153

Example 7.22 (Leibniz equality). Our calculus can prove that Leibniz equality
implies equality as follows:

a 6≈ b

z a≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∨ z b≈>>>>>>>>>>>>>>>>>>>>>>>>>
EQHOIST

(x a ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ ya)≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∨⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥≈>>>>>>>>>>>>>>>>>>>>>>>>>∨ x b≈ yb
BOOLRW>>>>>>>>>>>>>>>>>>>>>>>>>≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∨⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥≈>>>>>>>>>>>>>>>>>>>>>>>>>∨ w a b b≈ w b a b
FALSEELIM⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥≈>>>>>>>>>>>>>>>>>>>>>>>>>∨ w a b b≈ w b a b

FALSEELIM
w a b b≈ w b a b

SUP
a 6≈ a

ERES
⊥

The EQHOIST step at the top illustrates how our calculus copes without a dedicated
primitive substitution rule. Although ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ does not appear in the premise, we still need
to apply EQHOIST on zb with CSU(zb, x0 ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y0)= {{z 7→λv.xv ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ yv, x0 7→ xb, y0 7→ yb}}.
Other calculi [2, 23, 73, 126] would apply an explicit primitive substitution rule
instead, yielding essentially (x a ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y a) ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ (x b ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y b) ≈ >>>>>>>>>>>>>>>>>>>>>>>>>. However, this clause
is subsumed by the premise and thus redundant according to our redundancy
criterion—i.e., it could be discarded immediately. By hoisting the equality to the
clausal level, we can bypass the redundancy criterion.

Next, BOOLRW can be applied to x a ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y a with CSU(x a ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y a, y0 ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y0) = {{x 7→
λv. w a v v, y 7→λv. w v a v, y0 7→ w a a a}}. The following two steps use FALSEELIM to
remove the ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ >>>>>>>>>>>>>>>>>>>>>>>>> literals. Then SUP applies with the unifier {w 7→ λx1 x2 x3. x2} ∈
CSU(b, w a b b), and ERES derives the contradiction.

This mechanism resembling primitive substitution is not the only way our calcu-
lus can instantiate variables with logical symbols. Often, the correct instantiation
can also be found by unification with a logical symbol that is already present:

Example 7.23. The following derivation shows that there exists a function y that
is equivalent to the conjunction of p x and q x for all arguments x:

∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈ι〉(λy.∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈ι〉(λx. y x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ (p x∧q x)))≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
EXISTSHOIST>>>>>>>>>>>>>>>>>>>>>>>>>≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∨∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈ι〉(λx. y′ x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ (p x∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧q x))≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥

FORALLRW>>>>>>>>>>>>>>>>>>>>>>>>>≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∨ (y′ (sk y′) ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ (p (sk y′)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧q (sk y′)))≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
BOOLRW>>>>>>>>>>>>>>>>>>>>>>>>>≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∨>>>>>>>>>>>>>>>>>>>>>>>>>≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥

FALSEELIM>>>>>>>>>>>>>>>>>>>>>>>>>≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
FALSEELIM

⊥
Here, sk stands for sk∀u.∃v.¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬u v≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ (pv∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧qv). First, we use EXISTSHOIST to resolve the
existential quantifier, using the unifier {α 7→ ι, z 7→ λy.∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈ι〉(λx. y x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ (p x∧q x))} ∈
CSU(∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈ι〉(λy.∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈ι〉(λx. y x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ (p x∧q x))), ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈α〉z) for fresh variables α, y′, and z. Then
FORALLRW skolemizes the universal quantifier, using the unifier {β 7→ ι, z′ 7→
λx. y′ x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ (px∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧qx)} ∈CSU(∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈β〉z′, ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈ι〉(λx. y′ x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ (px∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧qx))) for fresh variables β and z′.
The Skolem symbol takes y′ as argument because it occurs free in λx. y′ x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ (p x∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧q x).

7

154 7. Superposition for Full Higher-Order Logic

Then BOOLRW applies because the terms y′ (sk y′) and p (sk y′)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧q (sk y′) are unifiable
and thus y′ (sk y′) ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ (p(sk y′)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧q(sk y′)) is unifiable with y ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y. Finally, two FALSEELIM

inferences lead to the empty clause.

As in Chapter 5, the FLUIDSUP rule is responsible to simulate superposition
inferences below applied variables, other fluid terms, or deeply occurring variables.
In addition, our calculus introduces the rules FLUIDBOOLHOIST and FLUIDLOOB-
HOIST. They simulate the various Boolean inference rules below fluid terms. Initially,
we considered adding a fluid version for each rule that operates on Boolean subterms.
While possible, it seems excessive, and we discovered that the two rules FLUIDBOOL-
HOIST and FLUIDLOOBHOIST can achieve refutational completeness, too.

The following example demonstrates the need for the rules FLUIDBOOLHOIST

and FLUIDLOOBHOIST.

Example 7.24. Consider the following clause set:

h (yb) 6≈ h (g⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)∨ h (ya) 6≈ h (g>>>>>>>>>>>>>>>>>>>>>>>>>) a 6≈ b

This clause set is unsatisfiable because the instantiation y 7→λx.g (x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ a) yields the
clause h (g (a ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ b)) 6≈ h (g⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) ∨ h (g (a ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ a)) 6≈ h (g>>>>>>>>>>>>>>>>>>>>>>>>>), which is clearly unsatisfiable in
conjunction with a 6≈ b.

The literal selection function could select either literal in the first clause. ERES

is applicable in either case, but the unifiers {y 7→λx.g⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥} and {y 7→λx.g>>>>>>>>>>>>>>>>>>>>>>>>>} do not lead
to a contradiction. Instead, we need to apply FLUIDBOOLHOIST if the first literal is
selected or FLUIDLOOBHOIST if the second literal is selected. The derivation with
FLUIDBOOLHOIST proceeds as follows:

a 6≈ b

h (yb) 6≈ h (g⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)∨ h (ya) 6≈ h (g>>>>>>>>>>>>>>>>>>>>>>>>>)
FLUIDBOOLHOIST

h (z′ b⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) 6≈ h (g⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)∨ h (z′ a (x′a)) 6≈ h (g>>>>>>>>>>>>>>>>>>>>>>>>>)∨ x′ b≈>>>>>>>>>>>>>>>>>>>>>>>>>
ERES

h (g (x′ a)) 6≈ h (g>>>>>>>>>>>>>>>>>>>>>>>>>)∨ x′ b≈>>>>>>>>>>>>>>>>>>>>>>>>>
EQHOIST

h (g (x′′ a ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ x′′′ a)) 6≈ h (g>>>>>>>>>>>>>>>>>>>>>>>>>)∨⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥≈>>>>>>>>>>>>>>>>>>>>>>>>>∨ x′′ b≈ x′′′ b
SUP

h (g (a ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ x′′′ a)) 6≈ h (g>>>>>>>>>>>>>>>>>>>>>>>>>)∨⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥≈>>>>>>>>>>>>>>>>>>>>>>>>>∨ a 6≈ x′′′ b
BOOLRW

h (g>>>>>>>>>>>>>>>>>>>>>>>>>) 6≈ h (g>>>>>>>>>>>>>>>>>>>>>>>>>)∨⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥≈>>>>>>>>>>>>>>>>>>>>>>>>>∨ a 6≈ a
ERES⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥≈>>>>>>>>>>>>>>>>>>>>>>>>>∨ a 6≈ a

ERES⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥≈>>>>>>>>>>>>>>>>>>>>>>>>>
FALSEELIM

⊥
The FLUIDBOOLHOIST inference uses the unifier {y 7→λu.z′u(x′u), z 7→λu.z′bu,

x 7→ x′ b} ∈ CSU(z x, y b). We apply ERES to the first literal of the resulting clause,
with unifier {z′ 7→λuv.g v} ∈CSU(h (z′ b⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥), h (g⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)). Next, we apply EQHOIST with
unifier {x′ 7→ λu. x′′ u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ x′′′ u, w 7→ x′′ b, w′ 7→ x′′′ b} ∈ CSU(x′ b, w ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ w′) to the literal
created by FLUIDBOOLHOIST, effectively performing a primitive substitution. The
resulting clause can superpose into a 6≈ b with unifier {x′′ 7→λu.u} ∈CSU(x′′b, b). The
two sides of the interpreted equality in the first literal can then be unified, allowing
us to apply BOOLRW with unifier {y 7→ a, x′′′ 7→λu.a} ∈CSU(y ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y, a ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ x′′′ b). Finally,
applying ERES twice and FALSEELIM once yields the empty clause.

7.3. The Calculus

7

155

7.3.5. Soundness
All of our inference rules and axioms are sound w.r.t. |≈ and the ones that do not
introduce Skolem symbols are also sound w.r.t. |=. The preprocessing is sound w.r.t.
both |= and |≈:

Lemma 7.25. Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normalization preserves denotations of terms and truth of clauses
w.r.t. proper interpretations.

Proof. It suffices to show that

J∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈τ〉KξI = Jλy. y ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ (λx.>>>>>>>>>>>>>>>>>>>>>>>>>)KξI and J∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈τ〉KξI = Jλy. y 6≈ (λx.⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)KξI

for all types τ, proper interpretations I= (Ity,J,L), and all valuations ξ.
Let f be a function from JτKξIty to {0,1}. Then

J∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈τ〉KξI(f)= J(∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀,JτKξIty)(f)=min { f (a) | a ∈ JτKξIty }=
{

1 if f is constantly 1
0 otherwise

By the definition of proper interpretations, we have

Jλy. y ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ (λx.>>>>>>>>>>>>>>>>>>>>>>>>>)KξI(f)= Jy ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ (λx.>>>>>>>>>>>>>>>>>>>>>>>>>)Kξ[y7→ f]
I =

{
1 if JyKξ[y 7→ f]

I = Jλx.>>>>>>>>>>>>>>>>>>>>>>>>>Kξ[y 7→ f]
I

0 otherwise

Thus it remains to show that JyKξ[y 7→ f]
I = Jλx.>>>>>>>>>>>>>>>>>>>>>>>>>Kξ[y 7→ f]

I if and only if f is constantly 1.
This holds because by the definition of term denotation, JyKξ[y 7→ f]

I = f and because
Jλx.>>>>>>>>>>>>>>>>>>>>>>>>>Kξ[y 7→ f]

I (a) = J>>>>>>>>>>>>>>>>>>>>>>>>>Kξ[x 7→a, y 7→ f]
I = 1 by properness of the interpretation, for all a ∈

JτKξIty . The case of ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃ is analogous.

To show satisfiability preservation of the inferences, we need the substitution
lemma for our logic:

Lemma 7.26 (Substitution lemma). Let I = (Ity,J,L) be a proper interpretation.
Then

JτρKξIty = JτKξ
′
Ity

and JtρKξI = JtKξ
′
I

for all terms t, all types τ, and all substitutions ρ, where ξ′(α)= JαρKξIty for all type
variables α and ξ′(x)= JxρKξI for all term variables x.

Proof. Analogous to Lemma 5.18.

It follows that a model of a clause is also a model of its instances:

Lemma 7.27. If I |= C for some interpretation I and some clause C, then I |= Cρ for
all substitutions ρ.

Proof. Analogous to Lemma 5.19, using Lemma 7.26.

With this lemma in place, we can prove the soundness of our calculus. Some of
the rules and axioms are only sound w.r.t. |≈.

7

156 7. Superposition for Full Higher-Order Logic

Theorem 7.28 (Soundness). The axiom (CHOICE) and all of our inference rules,
except for FORALLRW and EXISTSRW, are sound w.r.t. |=. All of our axioms and
inference rules are sound w.r.t. |≈. Both of these claims hold even without the variable
condition and the side conditions on fluidity, deeply occurring variables, order, and
eligibility.

Proof. Analogous to Lemma 5.20. For the Boolean rules, we make use of the special
requirements on interpretations of logical symbols.

We elaborate on the soundness of FORALLRW, EXISTSRW, and EXT w.r.t. |≈.
For FORALLRW: Let I be a Skolem-aware model of C u . By Lemma 7.26, I is

a model of C u σ as well. Since σ ∈CSU(∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈β〉y,u), we have C u σ= C ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈β〉y σ.
Thus, to show that I is also a model of the conclusion C y (skΠᾱ.∀x̄.∃z.¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ yσ z〈ᾱ〉 x̄) σ, it
suffices to show that I |= ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈βσ〉(yσ)≈ yσ (skΠᾱ.∀x̄.∃z.¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ yσ z〈ᾱ〉 x̄). This follows directly
from the definition of Skolem-awareness, which states that

I |= (∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈βσ〉(λz.¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ yσ z))≈¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ yσ (skΠᾱ.∀x̄.∃z.¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ yσ z〈ᾱ〉 x̄)

For EXISTSRW, we can argue analogously.
For (EXT), we must show that any Skolem-aware model I is a model of the axiom

(EXT) z (diff〈α,β〉z y) 6≈ y(diff〈α,β〉z y)∨ z ≈ y. By the definition of Skolem-awareness,
we have I |= (∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈α〉(λx. z x 6≈ y x))≈ (λx. z x 6≈ y x) (diff〈α,β〉z y). Thus, if the first literal
of (EXT) is false in I for some valuation ξ, then

0= J(λx. z x 6≈ y x) (diff〈α,β〉z y)KξI
= J∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈α〉(λx. z x 6≈ y x)KξI
=max{Jλx. z x 6≈ y xKξI(a) | a ∈ JαKξI}

=max{Jz x 6≈ y xKξ[x 7→a]
I | a ∈ JαKξI}

It follows that there exists no a ∈ JαKξI such that Jz xKξ[x 7→a]
I = JzKξI(a) and Jy xKξ[x 7→a]

I =
JyKξI(a) are different. Thus, JzKξI = JyKξI and hence the second literal of (EXT) must
be true under I and ξ.

7.3.6. The Redundancy Criterion
As in previous chapters, the redundancy criterion and the completeness proof dis-
tinguish three levels of logics. In this chapter, we have a higher-order level H, a
Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal ground higher-order level GH, and a ground monomorphic first-order
level GF with an interpreted Boolean type. We use TH, TGH, and TGF to denote
the respective sets of terms, TyH, TyGH, and TyGF to denote the respective sets of
types, and CH, CGH, and CGF to denote the respective sets of clauses. We will define
a grounding function G that connects levels H and GH and an encoding F that
connects levels GH and GF.

Let (Σty,Σ) be the signature of level H. The level GH has the same signature but
is restricted to ground Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal terms and clauses. For the GF level, we employ
the logic defined in Section 6.2. Its signature (Σty,ΣGF) is defined as follows. The
type constructors Σty are the same in both signatures, but → is an uninterpreted
symbol on GF.

7.3. The Calculus

7

157

For each ground instance f〈ῡ〉 : τ1 →···→ τn → τ of a symbol f ∈Σ, we introduce a
first-order symbol f ῡj ∈ΣGF of type τ̄j ⇒ (τj+1 →···→ τn → τ), for each j. This is done
for both logical and nonlogical symbols. Moreover, for each ground term λx. t, we
introduce a symbol lamλx. t ∈ΣGF of the same type. The symbols ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥0, >>>>>>>>>>>>>>>>>>>>>>>>>0, ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬1, ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧2, ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨2,
→→→→→→→→→→→→→→→→→→→→→→→→→2, ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈τ

2, and 6≈τ
2 are identified with the corresponding first-order logical symbols.

Definition 7.29 (The grounding function G on terms and clauses). Given a clause
C ∈CH, let its ground instances G (C) be the set of all clauses in CGH of the form Cθ
for some grounding substitution θ such that for all variables x occurring in C, the
only Boolean green subterms of xθ are >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.

Restricting the grounding to the Boolean terms >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ allows condition (O4)
to consider only terms u with Boolean subterms >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. This is crucial because
without the restriction no suitable term order would exist. The approach resembles
basic superposition [11], where the redundancy criterion only considers ground
instances that are irreducible w.r.t. an arbitrary term rewriting system. A disad-
vantage of basic superposition is that its redundancy criterion severely restricts
the simplification machinery because the irreducible terms are unknown during a
derivation. In our setting, however, we know that >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ will be normal forms
of the term rewriting system used in the completeness proof. Thus we can restrict
grounding to the Boolean terms >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ without compromising the simplification
machinery.

Since we have defined all clauses in CGH to be Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, the ground instances
G (C) of a clause are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal as well. The clauses in CGH being Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal allows
us to define the encoding F as follows:

Definition 7.30 (The encoding F on terms and clauses). The encoding F : TGH →
TGF is recursively defined by

F (∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈τ〉(λx. t))=∀x.F (t) F (∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈τ〉(λx. t))=∃x.F (t)

F (x)= x F (λx. t)= lamλx. t F (f〈ῡ〉 s̄j)= f ῡj (F (s̄j))

using ↓βηQη
representatives of terms. The encoding F is extended to map from CGH

to CGF by mapping each literal and each side of a literal individually.

The encoding of variables is necessary for variables bound by ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀ and ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃. Since
the terms TGH are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, these variables occur neither applied nor inside
λ-expressions.

Thus our schematic overview of the three levels looks as follows:

H
higher-order

GH
ground Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal

higher-order

GF
ground first-order

with interpreted Booleans

FG

The mapping F is clearly bijective. As in previous chapters, the order Â can be
transferred from TGH to TGF and from CGH to CGF by defining t Â s as F −1(t)ÂF −1(s)
and C Â D as F −1(C) Â F −1(D). The property that Â on clauses is the multiset

7

158 7. Superposition for Full Higher-Order Logic

extension of Â on literals, which in turn is the multiset extension of Â on terms, is
maintained because F −1 maps the multiset representations elementwise.

As with previous incarnations of the function F , there is a correspondence
between green subterms on GH and subterms on GF. This time, it is restricted to
subterms on GF that are not below quantifiers:

Lemma 7.31. Let s, t ∈ TGH. If p is a green position in t or a position in F (t) that is
not below a quantifier, we have F (t s p)=F (t)[F (s)]p. In other words, s is a green
subterm of t at position p if and only if F (s) is a subterm of F (t) at position p that is
not below a quantifier.

Proof. Analogous to Lemma 3.18.

Lemma 7.32. The relation Â on TGF is a term order in the sense of Definition 6.1.

Proof. Transitivity and irreflexivity follow directly from transitivity and irreflexivity
of Â on TGH. Well-foundedness, compatibility with contexts, subterm property and
totality can be shown analogously to Lemma 3.20, using Lemma 7.31. That >>>>>>>>>>>>>>>>>>>>>>>>> or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
are the smallest terms follows from (O3) of Definition 7.14. Finally, Qx. t Â t{x 7→ u}
follows from (O4) of Definition 7.14.

Each of the three levels has an entailment relation |=. A clause set N1 entails
a clause set N2, denoted by N1 |= N2, if all models of N1 are also a models of N2.
For H and GH, we use higher-order models; for GF, we use first-order models with
interpreted Booleans as defined in Section 6.2. We write N1 |=F N2 to abbreviate
F (N1) |=F (N2) and similarly for N1 |=G N2. On the H level, we additionally define
Skolem-aware entailment, denoted by N1 |≈ N2, to hold if all Skolem-aware models
of a clause set N1 ⊆CH are also models of a clause set N2 ⊆CH.

Based on these slightly altered definitions, we define clause redundancy verbatim
as in Chapters 3 and 5:

– Given C ∈CGF and N ⊆CGF, let C ∈GFRedC(N) if {D ∈ N | D ≺ C} |= C.
– Given C ∈CGH and N ⊆CGH, let C ∈GHRedC(N) if F (C) ∈GFRedC(F (N)).
– Given C ∈ CH and N ⊆ CH, let C ∈ HRedC(N) if for every D ∈ G (C), we have

D ∈GHRedC(G (N)) or there exists C′ ∈ N such that C=C′ and D ∈G (C′).
The tiebreaker = can be an arbitrary well-founded partial order on CH, natural
candidates being restrictions of (ill-founded) strict subsumption as explained in
Section 5.3.4. The redundancy criterion on GF coincides with the one in Chapter 6.

Each of the three levels has an associated inference system HInf , GHInf , and
GFInf . For H, it is the inference system HInf consisting of the rules described
above. We view axioms (EXT) and (CHOICE) as premise-less inference rules EXT and
CHOICE, respectively. We fix the selection functions HLitSel and HBoolSel globally.

The system GHInf is parameterized by selection functions and a witness function,
which are defined as follows.

Definition 7.33 (GH level selection functions). A GH level literal selection GHLitSel
maps each clause C ∈ CGH to a subset of its literals. A GH level Boolean subterm
selection function GHBoolSel maps each clause C ∈ CGH to a subset of its green
positions with Boolean subterms. We require these selection functions to have the

7.3. The Calculus

7

159

property that for every C ∈ CGH, there exists a D ∈ CH with C ∈G (D) for which the
selections HLitSel(D), HBoolSel(D) and the selections GHLitSel(C), GHBoolSel(C)
correspond.

Definition 7.34 (Witness function). A witness function GHWit maps a clause C ∈
CGH and a green position of a quantifier-headed term in C to a term GHWit(C, p) ∈
TGH such that Q〈τ〉t Â t GHWit(C, p) if C|p =Q〈τ〉t.

The witness function will be used to provide appropriate Skolem terms that
witness the existence of terms fulfilling the given formula.

Definition 7.35 (Set of parameter triples Q). Let Q be the set of parameters triples
(GHLitSel,GHBoolSel,GHWit) where GHLitSel and GHBoolSel are GH level selec-
tion functions and GHWit is a witness function.

We write GHInf q with q = (GHLitSel,GHBoolSel,GHWit) ∈ Q to specify the
inference system for a given set of parameters. The rules of GHInf q include SUP,
ERES, EFACT, BOOLHOIST, FALSEELIM, EQHOIST, NEQHOIST, and BOOLRW with
the restriction that all references to % are replaced by º.

In addition, GHInf q contains the rules GFORALLHOIST, GEXISTSHOIST, GARG-
CONG, GEXT, and GCHOICE, which enumerate ground terms in the conclusion
where their HInf counterparts use fresh variables. They enumerate all terms
u ∈ TGH such that the only Boolean green subterms of u are >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Let T ?

GH be the
set of all such terms u. Then these rules are stated as follows:

C ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈τ〉v p
GFORALLHOIST

C ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ v u ≈>>>>>>>>>>>>>>>>>>>>>>>>>
C ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈τ〉v p

GEXISTSHOIST
C >>>>>>>>>>>>>>>>>>>>>>>>> ∨ v u ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥

where p is º-eligible in C and u ∈ T ?
GH.

C′ ∨ t ≈ s
GARGCONG

C′ ∨ t ū ≈ s ū

where t ≈ s is strictly º-eligible in C′ ∨ t ≈ s and ui ∈ T ?
GH.

The rules GEXT and GCHOICE are premise-free and their conclusions are the
infinitely many G -instances of (EXT) and (CHOICE), respectively.

Moreover, GHInf q contains the following two rules, which use the witness func-
tion GHWit instead of Skolem terms:

C ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈τ〉v p
GFORALLRW

C v GHWit(C, p) p

C ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈τ〉v p
GEXISTSRW

C v GHWit(C, p) p

where the p is º-eligible in C, for GFORALLRW F (C >>>>>>>>>>>>>>>>>>>>>>>>> p) is not a tautology, and for
GEXISTSRW F (C ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ p) is not a tautology.

The inference systems GHInf q are indeed inference systems on CGH—i.e., if the
premises are in CGH, the conclusions are in CGH, too. The conclusions are obviously
ground. They are also Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal:

Lemma 7.36. If the premises of an GHInf q inference are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, then the
conclusion is also Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal.

7

160 7. Superposition for Full Higher-Order Logic

Proof. The conclusions of GEXT and GCHOICE are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal by the definition of G .
The definition of Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normality clearly only depends on the contained quantifier-

headed subterms. As long as no new quantifier-headed subterms are added, a clause
set cannot become Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-reducible.

The inference rules ERES, EFACT, and FALSEELIM do not introduce any sub-
terms that were not already present in the premises. The inference rules SUP, BOOL-
HOIST, EQHOIST, NEQHOIST, BOOLRW only introduce new subterms by replacing
a green subterm of a Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal term by another Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal term. Since green posi-
tions are never below quantifiers, these rules also do not add new quantifier-headed
subterms.

For the inference rules GFORALLHOIST, GEXISTSHOIST, GARGCONG, GFOR-
ALLRW, and GEXISTSRW, we can use Lemma 7.13 to show that the conclusions are
Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal.

The system GFInf is parameterized by an analogous triple (GFLitSel,GFBoolSel,
GFWit). Using the bijection F , we can translate a parameter triple q of GHInf to
a parameter triple F (q) of GFInf . Let GFInf F (q) be the inference system contain-
ing the inferences isomorphic to GHInf q obtained by F , except for GARGCONG,
GEXT, and GCHOICE. This is identical to the ground inference system defined in
Section 6.3.2.

We extend the functions F and G to inferences:

Notation 7.37. Given an inference ι, we write prems(ι) for the tuple of premises,
mprem(ι) for the main (i.e., rightmost) premise, and concl(ι) for the conclusion.

Definition 7.38 (The encoding F on inferences). Given an inference ι ∈GHInf that
is not a GARGCONG, GEXT, or GCHOICE inference, let F (ι) ∈ GFInf denote the
inference defined by prems(F (ι))=F (prems(ι)) and concl(F (ι))=F (concl(ι)).

Definition 7.39 (The grounding function G on inferences). Given a parameter triple
q ∈Q and an inference ι ∈HInf , we define the set G q(ι) of ground instances of ι to be
all inferences ι′ ∈GHInf q such that prems(ι′)= prems(ι)θ and concl(ι′)= concl(ι)θ for
some grounding substitution θ.

Thus, G maps FLUIDSUP to SUP, FLUIDBOOLHOIST to BOOLHOIST, FORALLRW

to GFORALLRW, EXISTSRW to GEXISTSRW, FORALLHOIST to GFORALLHOIST,
EXISTSHOIST to GEXISTSHOIST, ARGCONG to GARGCONG, EXT to GEXT, CHOICE

to GCHOICE, and inferences of other HInf rules to inferences of the identically
named rules in GHInf . For FLUIDLOOBHOIST, which needs not be grounded, we let
G q(ι)= undef .

We define the sets of redundant inferences w.r.t. a given clause set as follows:
– Given ι ∈GFInf q and N ⊆CGF, let ι ∈GFRedq

I (N) if prems(ι)∩GFRedC(N) 6=∅
or {D ∈ N | D ≺mprem(ι)} |= concl(ι).

– Given ι ∈GHInf q and N ⊆CGH, let ι ∈GHRedq
I (N) if

– ι is GARGCONG, GEXT, or GCHOICE and concl(ι) ∈ N ∪GHRedC(N); or
– ι is any another inference and F (ι) ∈GFRedF (q)

I (F (N)).
– Given ι ∈HInf and N ⊆CH, let ι ∈HRedI(N) if

7.3. The Calculus

7

161

– ι is a FLUIDLOOBHOIST inference and we have G (concl(ι)) ⊆ G (N)∪
GHRedC(G (N)); or

– ι is any other inference and G q(ι)⊆GHRedI(G (N)) for all q ∈Q.
The redundancy criterion on GF coincides with the one in Chapter 6. Some authors
prefer not to define inferences with a redundant premise as redundant, but in
our proof of refutational completeness, this will be crucial for the lifting lemma of
FORALLRW and EXISTSRW.

As in previous chapters, a clause set N is saturated w.r.t. an inference system
and the inference component RedI of a redundancy criterion if every inference from
clauses in N is in RedI(N).

7.3.7. Simplification Rules
The redundancy criterion (HRedI,HRedC) supports the simplification rules imple-
mented in Schulz’s first-order prover E [117, Sections 2.3.1 and 2.3.2] to the extend
described in Section 3.3.5, based on this chapter’s notion of green subterms. In
addition to green subterms, the simplification rules can also be applied to subterms
below quantifiers that correspond to first-order subterms via the F -encoding—e.g.,
the subterms p a and a of ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈τ〉(λx.p a).

Under some circumstances, certain inference rules of our calculus can be applied
as simplifications—i.e., a premise can be deleted after performing them. The FALSE-
ELIM and BOOLRW rules can be applied as a simplification if σ is the identity. If
the head of u is ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀, FORALLHOIST and FORALLRW can be applied together as a
simplification rule. The same holds for EXISTSHOIST and EXISTSRW if the head of
u is ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃. For all of these simplifications, the eligibility conditions can be ignored.

If σ is the identity, the rule BOOLHOIST can also be applied as a simplification
in combination with the following rule to the same subterm u:

C u
LOOBHOIST

C >>>>>>>>>>>>>>>>>>>>>>>>> ∨ u ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥

Again, the eligibility condition can be ignored, and the head of u can even be a fully
applied logical symbol as long as it is not >>>>>>>>>>>>>>>>>>>>>>>>> or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.

The proofs justifying all of these simplifications work essentially as exemplified
in Lemma 3.24.

7.3.8. A Concrete Term Order
We will define a concrete order Âλ that fulfills the properties of a strict term order as
defined in Definition 7.15 to show that the requirements can indeed be fulfilled and
to provide a concrete order for implementations of our calculus.

Given a signature (Σty,Σ), we encode types and terms as terms over the untyped
first-order signature Σty] {fk | f ∈ Σ, k ∈N}] {lam,∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀′

1,∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃′1}] {dbi
k | i,k ∈N}. We define

the encoding in two parts. The first part is the encoding O, resembling the one
in Section 5.3.5. The auxiliary function Bx(t) replaces each free occurrence of the
variable x by a De Bruijn index—that is, a symbol dbi where i is the number of
λ-expressions surrounding the variable occurrence. The encoding O recursively

7

162 7. Superposition for Full Higher-Order Logic

encodes higher-order types into untyped first-order terms as follows: O(α)=α and
O(κ(τ̄))= κ(O(τ̄)). Using βηQη-normal representatives, it recursively encodes higher-
order terms into untyped first-order terms as follows:

O(t)=

z t if t = x or t is fluid
lam(O(τ),O(Bx(u))) if t = (λx :τ. u) and t is not fluid
fk(O(τ̄),O(ūk)) if t = f〈τ̄〉ūk and either f 6∈ {∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀,∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃} or k = 0
Q1(O(τ),O(Bx(u))) if t =Q〈τ〉(λx :τ. u)

Via this encoding, the term order conditions (O1), (O2), and (O3) can be easily
achieved. For (O4), however, we need to transform the encoded term further to ensure
that the symbols ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀1 and ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃1 occur only as translations of fully applied quantifiers in
green contexts. Then we can achieve (O4) by assigning them a large weight. The
function P transforms the result of O in this way by applying a function p to all
subterms below lam symbols.

P (t)=

α if t =α
zu if t = zu

lam(P (τ),p(u)) if t = lam(τ,u)
f(P (t̄)) if t = f(t̄) and f 6= lam

The function p replaces ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀1 by ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀′
1, ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃1 by ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃′1, and zu by a fresh variable z′u.

p(t)=

α if t =α
z′u if t = zu

∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀′
1(p(τ),p(u)) if t =∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀1(τ,u)

∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃′1(p(τ),p(u)) if t = ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃1(τ,u)
f(p(t̄)) if t = f(t̄) and f 6∈ {∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀1,∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃1}

For example, O encodes the term ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈ι〉(λx.p y y(λu.f y y(∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈ι〉(λv.u)))) into the first-order
term ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀1(ι,p3(zy, zy, lam(o, f3(zy, zy,∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀1(ι,db1))))) and P transforms it into ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀1(ι,p3(zy, zy,
lam(o, f3(z′y, z′y,∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀′

1(ι,db1))))).
Using the encoding O and the function P , we define our term order Âλ. Let Âkb

be the transfinite Knuth–Bendix order [104] on first-order terms. The weight of ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀1
and ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃1 must be ω, the weight of >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ must be 1, and the weights of all other
symbols must be smaller than ω. The precedence > must be total and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥0 >>>>>>>>>>>>>>>>>>>>>>>>>>0 must
be the symbols of lowest precedence. We do not use subterm coefficients (i.e., all
coefficients are 1), nor a symbol of weight 0. The precedence function is arbitrary.
Let ÂP be the order induced by P from Âkb, meaning t ÂP s if and only if P (t)Âkb P (s).
Let Âλ be the order induced by O from ÂP , meaning t Âλ s if and only if O(t)ÂP O(s).
We extend Âλ to literals and clauses in the usual way. We will show that Âλ fulfills
the properties of a strict term order:

Lemma 7.40. The restriction of Âλ to ground terms is a strict ground term order, as
defined in Definition 7.14.

7.3. The Calculus

7

163

Proof. We follow the proof of Lemma 5.30.
The transfinite Knuth–Bendix order Âkb has been shown to enjoy irreflexivity,

transitivity, well-foundedness, totality on ground terms, the subterm property, and
compatibility with contexts [104].

Transitivity and irreflexivity of Âkb imply transitivity and irreflexivity of Âλ,
respectively.

WELL-FOUNDEDNESS: If there existed an infinite chain t1 Âλ t2 Âλ · · · of ground
terms, there would also be the chain P (O(t1))Âkb P (O(t2))Âkb · · · , contradicting the
well-foundedness of Âkb.

TOTALITY: For any ground terms t and s we have P (O(t)) Âkb P (O(s)), P (O(t)) ≺kb
P (O(s)), or P (O(t))=P (O(s)) by ground totality of Âkb. In the first two cases, it follows
that t Âλ s or t ≺λ s. In the last case, it follows that t = s because O and P are clearly
injective.

(O3): Since we do not have a symbol of weight 0, and >>>>>>>>>>>>>>>>>>>>>>>>>0 and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥0 have weight 1, there
cannot be any term of smaller weight. Since moreover >>>>>>>>>>>>>>>>>>>>>>>>>0 and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥0 have the lowest
precedence, they are the smallest terms w.r.t. Âkb. We have ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥0 Âkb >>>>>>>>>>>>>>>>>>>>>>>>>0 because ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥0
has higher precedence. Since P (O(>>>>>>>>>>>>>>>>>>>>>>>>>))=>>>>>>>>>>>>>>>>>>>>>>>>>0 and P (O(>>>>>>>>>>>>>>>>>>>>>>>>>))=⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥0, it follows that >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
are the smallest ground terms w.r.t. Âλ and that ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥Âλ >>>>>>>>>>>>>>>>>>>>>>>>>.

(O4): Let Q〈τ〉t and u be Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal ground terms. We assume that the Boolean
green subterms of u are >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. We must show Q〈τ〉t Âλ t u, which is equivalent to
P (O(Q〈τ〉t))Âkb P (O(t u)).

All symbols except ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀1 and ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃1 have finite weight. Only ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀1 and ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃1 have weight ω.
Since all subterm coefficients are 1, the coefficient of ω in the weight of a given term
indicates the number of occurrences of the symbols ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀1 and ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃1 in that term.

In η-expanded form, we have t = λx. s for some s. Then we have P (O(Q〈τ〉t)) =
Q1(P (O(τ)),P (O(Bx(s)))) and P (O(t u)) =P (O(s{x 7→ u})). By Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normality, x occurs
only in green positions of s. Therefore, replacing x by u in s does not trigger any
βηQη-normalizations. Thus, P (O(Bx(s)))) and P (O(s{x 7→ u})) are almost identical,
except that P (O(Bx(s)))) contains dbi where P (O(s{x 7→ u})) contains P (O(u)). Since
the only Boolean green subterms of u are >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, P (O(u)) does not contain ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀1 or ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃1.
So P (O(Bx(s)))) and P (O(s{x 7→ u})) contain the same number of ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀1 and ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃1 symbols.
Hence, P (O(Q〈τ〉t)) contains exactly one more of these symbols than P (O(t u)). This
means that the weight of the former is larger than the weight of the latter and thus
P (O(Q〈τ〉t))Âkb P (O(t u)).

(O2): Let s be a term. We show that s ºλ s|p by induction on p, where s|p denotes
the green subterm at position p. If p = ε, this is trivial. If p = p′.i, we have
s ºλ s|p′ by the induction hypothesis. Hence, it suffices to show that s|p′ ºλ s|p′.i.
From the existence of the position p′.i, we know that s|p′ must be of the form
s|p′ = f〈τ̄〉ūk for some f ∈Σ\{∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀,∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃}. Then s|p′.i = ui. The encoding yields P (O(s|p′))=
P (fk(O(τ̄),O(ūk))) = fk(P (O(τ̄)),P (O(ūk))) and hence P (O(s|p′)) ºkb P (O(s|p′.i)) by the
subterm property of Âkb. Hence, s|p′ ºλ s|p′.i and thus s ºλ s|p.

(O1): By induction on the depth of the context, it suffices to show that t Âλ s implies
f〈τ̄〉 ū t v̄ Âλ f〈τ̄〉 ū s v̄ for all t, s, f ∈ Σ\ {∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀,∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃}, τ̄, ū, and v̄. This amounts to showing

7

164 7. Superposition for Full Higher-Order Logic

that P (O(t))Âkb P (O(s)) implies

P (O(f〈τ̄〉ū t v̄))=P (fk(O(τ̄),O(ū),O(t),O(v̄)))=
fk(P (O(τ̄)),P (O(ū)),P (O(t)),P (O(v̄)))Âkb fk(P (O(τ̄)),P (O(ū)),P (O(s)),P (O(v̄)))

=P (fk(O(τ̄),O(ū),O(s),O(v̄)))=P (O(f〈τ̄〉ū s v̄))

which follows directly from compatibility of Âkb with contexts and the induction
hypothesis.

Lemma 7.41. The relation Âλ is a strict term order as defined in Definition 7.15.

Proof. Given Lemma 7.40, it remains to show that Âλ is stable under grounding
substitutions. Assume s Âλ s′ for some terms s and s′. Let θ be a higher-order
substitution grounding s and s′. We must show sθ Âλ s′θ. We will define a first-order
substitution ρ grounding P (O(s)) and P (O(s′)) such that P (O(s))ρ = P (O(sθ)) and
P (O(s′))ρ = P (O(s′θ)). Since s Âλ s′, we have P (O(s)) Âkb P (O(s′)). The transfinite
Knuth–Bendix order Âkb has been shown to be stable under substitutions [104].
Hence, P (O(s))ρ Âkb P (O(s′))ρ and therefore P (O(sθ))Âkb P (O(s′θ)) and sθ Âλ s′θ.

We define the first-order substitution ρ as αρ = αθ for type variables α, zuρ =
P (O(uθ)), and z′uρ =p(O(uθ)) for terms u. Strictly speaking, the domain of a substi-
tution must be finite, so we restrict this definition of ρ to the finitely many variables
that occur in the computation of P (O(s)) and P (O(s′)).

Clearly, we have P (O(τ))ρ = P (O(τθ)) and p(O(τ))ρ = p(O(τθ)) for all types τ

occurring in the computation of P (O(s)) and P (O(s′)). Moreover, P (O(t))ρ =P (O(tθ))
and p(O(t))ρ = p(O(tθ)) for all terms t occurring in the computation of P (O(s)) and
P (O(s′)), which we show by induction on the structure of t.

If t = x or if t is fluid, P (O(t))ρ = z tρ =P (O(tθ)) and p(O(t))ρ = z′tρ =p(O(tθ)).
If t = f〈τ̄〉ū for f 6∈ {∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀,∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃}, then

P (O(t))ρ = fk(P (O(τ̄))ρ,P (O(ū))ρ)
IH= fk(P (O(τ̄θ)),P (O(ūθ)))=P (O(f〈τ̄θ〉(ūθ)))=P (O(tθ))

and analogously for p.
If t =Q〈τ〉(λx. u), then

P (O(t))ρ =Q1(P (O(τ))ρ,P (O(Bx(u)))ρ)
IH= Q1(P (O(τθ)),P (O(Bx(u)θ)))

=Q1(P (O(τθ)),P (O(Bx(uθ[x 7→ x]))))

=P (O(Q〈τ〉(λx. (uθ[x 7→ x]))))=P (O(Q〈τ〉((λx. u)θ)))=P (O(tθ))

and similarly for p, using Q′
1 instead of Q1.

If t = (λx :τ. u) and t is not fluid, then

P (O(t))ρ = lam(P (O(τ))ρ,p(O(Bx(u)))ρ)
IH= lam(P (O(τθ)),p(O(Bx(u)θ)))

= lam(P (O(τθ)),p(O(Bx(uθ[x 7→ x]))))

=P (O(λx :τθ. (uθ[x 7→ x])))=P (O((λx :τ. u)θ))=P (O(tθ))

and analogously for p.

7.4. Refutational Completeness

7

165

7.4. Refutational Completeness
We present a proof of refutational completeness for our higher-order logic superposi-
tion calculus.

We have introduced three different notions of entailment on the H level: |=G , |=,
and |≈. With respect to |=G , static and dynamic completeness hold unconditionally.
For the other two notions of entailment, we will need to add an additional precondi-
tion that ensure that the initial clause set is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, which can only be stated for
dynamic completeness. For |≈, we need to require in addition that the initial clause
set does not contain any sk symbols.

7.4.1. Outline of the Proof
Like in Chapters 5 and 6, the proof is done in three steps:

1. We prove static refutational completeness of GFInf .
2. We show static refutational completeness of GHInf by transforming the model

constructed on the GF level into a higher-order interpretation.
3. We employ the saturation framework to lift the result to the H layer.
We have achieved the first step already in Chapter 6. The refutational complete-

ness result holds for any tuple of parameters q ∈F (Q). In addition to the refutational
completeness of GFInf , the subsequent steps also depend on some properties of the
constructed model.

For the second step, we fix a parameter triple q ∈Q and a set N ⊆CGH saturated
w.r.t. GHInf q and not containing the empty clause. Then the first step guarantees
us a model of F (N). Based on this model, we construct a higher-order interpretation
that we show to be a model of N. In essence, the proof is analogous to the one
in Chapter 5, but additionally, we need to consider Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normality and the logical
symbols.

For the third step, the saturation framework leaves to us the proof of the lifting
lemmas for our inference rules. For this lifting from GHInf q to HInf , we must choose
an appropriate parameter triple q ∈Q, given a set N ⊆ CH. In particular, we must
specify the witness function to produce Skolem terms according to the given set N.

Once we have fulfilled the requirements of the saturation framework’s lifting
theorem, it guarantees static refutational completeness w.r.t.|=G . We can then show
that this also implies dynamic refutational completeness w.r.t. |= and |≈.

7.4.2. The Ground First-Order Level
We have established refutational completeness for the GF level in the previous
chapter. Besides refutational completeness, we will need some additional properties
of the model R∗

M we have constructed. Concretely, we will need the following lemma:

Lemma 7.42. Let N ⊆CGF. If C = C′ ∨ s ≈ t ∈ N produces s → t, then s ≈ t is strictly
º-eligible in C and C′ is false in R∗

M .

Proof. The literal s ≈ t is º-eligible in C by (C3) of Definition 6.12. It is even strictly
º-eligible by (C6). The subclause C′ is false in R∗

M by Lemma 6.17.

7

166 7. Superposition for Full Higher-Order Logic

Adapted to the context of this chapter, the completeness theorem (Theorem 6.24)
can be restated as follows:

Theorem 7.43 (Ground first-order static refutational completeness). Let q ∈F (Q).
Then GFInf q is statically refutationally complete w.r.t. |= and (GFRedI,GFRedC).
More precisely, if N ⊆ CGF is a clause set saturated w.r.t. GFInf q and GFRedq

I such
that ⊥ 6∈ N, then R∗

N\GFRedC(N) is a model of N.

7.4.3. The Ground Higher-Order Level
In this subsection, let q = (GHLitSel,GHBoolSel,GHWit) ∈Q be a parameter triple
and let N ⊆CGH. Since all terms on the GH level are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, in particular N is
Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal. We assume that N is saturated w.r.t. GHInf q and GHRedq

I , and that
⊥ 6∈ N. Clearly, the set F (N) is then saturated w.r.t. GFInf F (sel) and GFRedF (sel)

I
and R∗

F (N)\GFRedC(N) is a model of F (N) by Theorem 7.43.
In the following, we abbreviate R∗

F (N)\GFRedC(N) as R. Given two terms s, t ∈ TGH,
we write s ∼ t to abbreviate R |=F (s)≈F (t), which is equivalent to JF (s)KR = JF (t)KR .

Lemma 7.44. For all terms t, s : τ→ υ in TGH, these statements are equivalent:
1. t ∼ s;
2. t (diff t s)∼ s (diff t s);
3. t u ∼ s u for all u ∈ TGH.

Proof. Analogous to Lemma 5.32, using Lemma 7.42 and the βηQη-normal form.

Lemma 7.45. Let s ∈ TH and let θ, θ′ be grounding substitutions such that sθ and
sθ′ are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, xθ ∼ xθ′ for all variables x, and αθ =αθ′ for all type variables α.
Then sθ ∼ sθ′.

Proof. This proof is almost identical to the one of Lemma 5.33. The only difference
lies in Case 4.1 that must deal with quantifiers. In Case 4.1 of the proof of Lemma
5.33, we consider a λ-term s that contains exactly one free term-variable that occurs
exactly once in s and s is of the form f 〈τ̄〉 t̄, for some symbol f, some types τ̄, and
some λ-terms t̄. For any f ∉ {∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀,∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃} the proof proceeds as before, because then the
definition of the encoding F coincides with the one of Chapter 5. The remaining case
to handle is thus when s is of the form Q〈τ〉(λz. t).

In that case, we have JF (sθ)KR = JQz.F (tθ)KR where Q ∈ {∀,∃}, but θ and θ′ are
not necessarily grounding for t since t may contain the variable z that is bound in
s. Thus we cannot apply our induction hypothesis directly on t. Instead we want to
apply it on t{z 7→ u}, which we denote tu, where u ∈ TGH. It is possible to apply the
induction hypothesis to obtain tuθ ∼ tuθ

′ because
– n1(s)= n1(tu) since all β⊕-reductions in s are also in tu;
– n2(s)= 0= n2(tu) since the same unique free term variable occurs in s and in

tu; and
– n3(tu)< n3(s) because S(z)= S(u)= 1 implies n3(tu)= n3(t) and hence n3(s)=

S(Q)+S(λz. t)= 1+1+S(t)= 1+1+S(tu).

7.4. Refutational Completeness

7

167

Moreover, since θ and θ′ do not capture z, and since u is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, tuθ = (tθ){z 7→ u}
is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal by Lemma 7.8 and similarly for θ′. Thus we obtain (tθ){z 7→ u} ∼
(tθ′){z 7→ u}.

Now, let us consider the case where Q = ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀: By the definition of interpreta-
tions on the GF level, by Lemma 6.7 (substitution lemma), and R being term-
generated, J∀z.F (tθ)KξR = min{JF (tθ)Kξ[z 7→a]

R | a ∈ Uτ} = min{JF (tθ){z 7→ v}KξR | v ∈
TGF} = min{JF (tθ{z 7→ u})KξR | u ∈ TGH}. The same holds for θ′. Moreover, above
we deduced (tθ){z 7→ u}∼ (tθ′){z 7→ u} from the induction hypothesis. Thus, sθ ∼ sθ′,
as desired in the case Q = ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀. The case Q = ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃ is analogous, with max instead of
min.

We proceed by defining a higher-order interpretation IGH = (UGH,JGH
ty ,JGH,LGH)

derived from R. We call this interpretation IGH because we use it to show refutational
completeness of GHInf ; it is a higher-order interpretation as defined in Section 7.2,
which can interpret ground as well as nonground terms. The construction closely
resembles the one in Section 5.4.2, but we need to consider questions of Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normality
and the interpretation of logical symbols. Let (U,J) = R, meaning that Uτ is the
universe of R for type τ and J is the interpretation function of R.

To illustrate the construction, we will employ the following running example.
Let Σty = {ι, o,→} and let Σ contain f : ι→ ι and a : ι, as well as the logical symbols
and the choice constant ε. Then, on the GF level, the type signature is also Σty, and
the term signature is the set ΣGF, which contains f0, f1, a0, subscripted versions
of all logical symbols, such as >>>>>>>>>>>>>>>>>>>>>>>>>0, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥0, ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬0, and ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬1, as well as symbols ετi for each
τ ∈ TyGH, and a symbol lamλx. t for each λx. t ∈ TGH. We write [t] for the equivalence
class of t ∈ TGF modulo R. The universes Uτ are sets of such equivalence classes; for
instance [f1(a0)] ∈Uι, [¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬0] ∈Uo→o, and [lamλx.a] ∈Uι→ι. We assume that R is such
that [a0], [f1(a0)], [f1(f1(a0))], . . . are all different from each other, and therefore that
Uι is infinite.

When defining the universe UGH of the higher-order interpretation, we need to
ensure that it contains subsets of function spaces, since JGH

ty (→)(D1,D2) must be a
subset of the function space from D1 to D2 for all D1,D2 ∈UGH. But the first-order
universes Uτ consist of equivalence classes of terms from TGF w.r.t. the rewriting
system R, not of functions.

To repair this mismatch, we will define a family of functions Eτ that give a
meaning to the elements of the first-order universes Uτ. We will define a domain Dτ

for each ground type τ and then let UGH be the set of all these domains Dτ. Thus,
there will be a one-to-one correspondence between ground types and domains. Since
the higher-order and first-order type signatures are identical (including →, which is
uninterpreted in GF’s logic), we can identify higher-order and first-order types.

We define Eτ and Dτ in a mutual induction and prove that Eτ is a bijection
simultaneously. We start with nonfunctional types τ: Let Dτ =Uτ and let Eτ :Uτ −■→
Dτ be the identity. We proceed by defining Eτ→υ and Dτ→υ. We assume that Eτ, Eυ,
Dτ, and Dυ have already been defined and that Eτ, Eυ are bijections. To ensure that
Eτ→υ will be bijective, we first define an injective function E0

τ→υ :Uτ→υ −■→ (Dτ −■→Dυ),
define Dτ→υ as its image E0

τ→υ(Uτ→υ), and finally define Eτ→υ as E0
τ→υ with its

7

168 7. Superposition for Full Higher-Order Logic

codomain restricted to Dτ→υ:

E0
τ→υ :Uτ→υ −■→ (Dτ −■→Dυ)

E0
τ→υ(JF (s)KR)

(
Eτ

(
JF (u)KR

))=Eυ
(
JF (s u)KR

)
This is a valid definition because each element of Uτ→υ is of the form JF (s)KR for
some s and each element of Dτ is of the form Eτ

(
JF (u)KR

)
for some u. This function

is well defined if it does not depend on the choice of s and u. To show this, we
assume that there are other ground terms t and v such that JF (s)KR = JF (t)KR
and Eτ

(
JF (u)KR

) = Eτ
(
JF (v)KR

)
. Since Eτ is bijective, we have JF (u)KR = JF (v)KR .

Using the ∼-notation, we can write this as u ∼ v. The terms s, t, u, and v are in
GH, and thus Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, allowing us to apply Lemma 7.45 to the term x y and
the substitutions {x 7→ s, y 7→ u} and {x 7→ t, y 7→ v}. Thus, we obtain s u ∼ t v—i.e.,
JF (s u)KR = JF (t v)KR , indicating that E0

τ→υ is well defined. It remains to show that
E0
τ→υ is injective as a function from Uτ→υ to Dτ −■→Dυ. Assume two terms s, t ∈ TGH

such that for all u ∈ TGH, we have JF (s u)KR = JF (t u)KR . By Lemma 7.44, it follows
that JF (s)KR = JF (t)KR , which concludes the proof that E0

τ→υ is injective.

We define Dτ→υ =E0
τ→υ(Uτ→υ) and Eτ→υ(a)=E0

τ→υ(a). This ensures that Eτ→υ is
bijective and concludes the inductive definition of D and E. In the following, we will
usually write E instead of Eτ, since the type τ is determined by the first argument
of Eτ.

In our running example, we thus have Dι =Uι = {[a0], [f1(a0)], [f1(f1(a0))], . . . } and
Eι is the identity Uι →Dι, c 7→ c. The function E0

ι→ι maps [lamλx.x] to the identity
Dι → Dι, c 7→ c; it maps [lamλx.a] to the constant function Dι → Dι, c 7→ [a0]; it
maps [f0] to the function Dι →Dι, [t] 7→ [f1(t)]; and it maps [ει→ι

1 (lamλz. z (f a)≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈a)] to
the function Dι →Dι, [t] 7→ [ει→ι

2 (lamλz. z (f a)≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈a, t)]. So there are a lot of different
functions in Dι→ι =E0

ι→ι(Uι→ι), but still Dι→ι is a proper subset of the function space
Uι→Uι because the function space is uncountably infinite, whereas TGF and hence
Dι→ι is countable. Thus, the construction works only because we allow nonstandard
Henkin models.

We define the higher-order universe as UGH = {Dτ | τ ground}. In particular, this
implies that Do = {0,1} ∈UGH as needed, where 0 is identified with [⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥0] and 1 with
[>>>>>>>>>>>>>>>>>>>>>>>>>0]. Moreover, we define JGH

ty (κ)(Dτ̄) = Uκ(τ̄) for all κ ∈ Σty, completing the type
interpretation of IGH

ty = (UGH,JGH
ty) and ensuring that JGH

ty (o)=Uo = {0,1}.

We define the interpretation function JGH for non-quantifier symbols f :Πᾱm. τ 6∈
{∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀,∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃} by JGH(f,Dῡm)=E(J(f ῡm

0)), and for quantifiers by JGH(∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀,Dτ)(f)=min{ f (a) | a ∈
Dτ} and JGH(∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃,Dτ)(f)=max{ f (a) | a ∈Dτ} for all f ∈ JGH

ty (→)(Dτ, {0,1}).

In our example, we thus have JGH(f)=E([f0]), which is the function [t] 7→ [f1(t)].

We must show that this definition indeed fulfills the requirements of an in-
terpretation function. By definition, we have JGH(>>>>>>>>>>>>>>>>>>>>>>>>>) = E(J>>>>>>>>>>>>>>>>>>>>>>>>>0KR) = J>>>>>>>>>>>>>>>>>>>>>>>>>0KR = 1 and
JGH(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)=E(J⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥0KR)= J⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥0KR = 0.

7.4. Refutational Completeness

7

169

Let a,b ∈ {0,1}, u0 =⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, and u1 =>>>>>>>>>>>>>>>>>>>>>>>>>. Then

JGH(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬)(a)=E(J(F (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬)))(JF (ua)KR)=E0(J¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬0KR)(JF (ua)KR)

=E(JF (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ua)KR)= JF (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ua)KR = 1−a

JGH(∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧)(a,b)=E0(JF (∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧)KR)(JF (ua)KR ,JF (ub)KR)=E(JF (ua ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ub)KR)

=min {a,b}

JGH(∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨)(a,b)=E(JF (ua ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ub)KR)=max {a,b}

JGH(→→→→→→→→→→→→→→→→→→→→→→→→→)(a,b)=E(JF (ua →→→→→→→→→→→→→→→→→→→→→→→→→ ub)KR)=max {1−a,b}

Let D ∈UGH and a′,b′ ∈D. Since E is bijective and R is term-generated, there
exist ground terms u and v such that E(JF (u)KR)= a′ and E(JF (v)KR)= b′. Then

JGH(≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈)(a′,b′)=E0(JF (≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈)KR)(E(JF (u)KR),E(JF (v)KR))=E(JF (u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ v)KR)

which is 1 if a′ = b′ and 0 otherwise. Similarly JGH(6≈)(a′,b′) = 0 if a′ = b′ and 1
otherwise.

The requirements for ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀ and ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃ hold by definition of JGH.
Let Dτ ∈UGH and f ∈ Jty(→)(Dτ, {0,1}). For the requirement on ε, we must show

that f (JGH(ε〈τ〉)(f))=max{ f (a) | a ∈Dτ}.
First, we assume that f (JGH(ε〈τ〉)(f)) = 0. We want to show that max{ f (a) |

a ∈ Dτ} = 0. Let a ∈ Dτ. We have f = E(JF (p)KR) for some p : τ → o and a =
E(JF (u)KR) for some u : τ ∈ TGH because E and F are bijective and R is term-
generated. Since N is saturated, all conclusions of GCHOICE belong to N. In particu-
lar, we have (pu ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∨ p(ε〈τ〉p)≈>>>>>>>>>>>>>>>>>>>>>>>>>) ∈ N and hence JF (p u ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∨ p (ε〈τ〉p)≈>>>>>>>>>>>>>>>>>>>>>>>>>)KR = 1.
Thus, we have max{JF (p u ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)KR , JF (p (ε〈τ〉p)≈>>>>>>>>>>>>>>>>>>>>>>>>>)KR}= 1. Since f (JGH(ε〈τ〉)(f))=
JF (p (ε〈τ〉p)≈>>>>>>>>>>>>>>>>>>>>>>>>>)KR , our assumption implies that JF (p u ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)KR = 1. Moreover,

JF (p u ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)KR = 1 ⇔ J(F (p u))≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥0KR = 1

⇔ JF (p u)KR = 0

⇔ E(JF (p u)KR)= 0

⇔ E(JF (p)KR)(E(JF (u)KR))= 0

⇔ f (a)= 0

Since our choice of a was arbitrary, this shows that max{ f (a) | a ∈Dτ}= 0.
For the other direction, we assume that max{ f (a) | a ∈Dτ}= 0. Then, by definition

of max, and since JGH(ε〈τ〉)(f) ∈Dτ, we have in particular f (JGH(ε〈τ〉)(f))= 0. Thus,
we have f (JGH(ε〈τ〉)(f))=max{ f (a) | a ∈Dτ} as required, which concludes the proof
that JGH is an interpretation function.

Finally, we need to define the designation function LGH, which takes a valuation
ξ and a λ-expression as arguments. Given a valuation ξ, we choose a grounding
substitution θ such that Dαθ = ξ(α) and E(JF (xθ)KR) = ξ(x) for all type variables α
and all variables x. Such a substitution can be constructed as follows: We can fulfill
the first equation in a unique way because there is a one-to-one correspondence
between ground types and domains. Since E−1(ξ(x)) is an element of a first-order
universe and R is term-generated, there exists a ground term s such that JsKξR =

7

170 7. Superposition for Full Higher-Order Logic

E−1(ξ(x)). Choosing one such t and defining xθ = F −1(s) gives us a grounding
substitution θ with the desired property.

We define LGH(ξ, (λx. t))=E(JF ((λx. t)θ)KR) if λx. t is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, and otherwise
LGH(ξ, (λx. t))=LGH(ξ, (λx. t) ↓Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈). Since F is only defined on Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal terms, we
need to show that (λx.t)θ is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal if λx. t is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal. This holds because by
construction of θ all xθ are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal and thus so is (λx.t)θ according to Lemma
7.8. Moreover we need to show that our definition does not depend on the choice of θ.
We assume that there exists another substitution θ′ with the properties Dαθ′ = ξ(α)
for all α and E(JF (xθ′)KR) = ξ(x) for all x. Then we have αθ = αθ′ for all α due
to the one-to-one correspondence between domains and ground types. We have
JF (xθ)KR = JF (xθ′)KR for all x because E is injective. By Lemma 7.45 it follows that
JF ((λx. t)θ)KR = JF ((λx. t)θ′)KR , which proves that LGH is well defined.

In our running example, for all ξ we have LGH(ξ,λx. x) = E([lamλx. x]), which is
the identity. If ξ(y) = [a0], then LGH(ξ,λx. y) = E([lamλx.a]), which is the constant
function c 7→ [a0].

This concludes the definition of the interpretation IGH = (UGH,JGH
ty ,JGH,LGH). It

remains to show that IGH is proper. We need a lemma:

Lemma 7.46. Let I be an interpretation such that Jλx. tKξI(a)= Jt ↓Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈Kξ[x 7→a]
I for all

λ-terms t and all valuations ξ. Then Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normalization preserves denotations of terms
and truth of clauses w.r.t. I.

Proof. We must show JtKξI = Jt ↓Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈KξI for all λ-terms t and all valuations ξ. We cannot
work with βη-equivalence classes here because that would require the interpretation
to be proper and thus result in a circular argument. We proceed by induction on the
structure of t.

If t =λx.u, by applying our assumption on I twice and because Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normalization
is idempotent, we have for all a

JtKξI(a)= Jλx. uKξI(a)= Ju ↓Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈Kξ[x 7→a]
I = Ju ↓Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈↓Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈Kξ[x 7→a]

I = Jλx. (u ↓Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈)KξI(a)

= J(λx. u) ↓Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈KξI(a)= Jt ↓Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈KξI(a)

Otherwise, if t = s ū, where s is a head that is not of the form Q〈τ〉,
JtKξI = Js ūKξI = JsKξI(JūKξI) IH= Js ↓Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈KξI(Jū ↓Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈KξI)= J(s ū) ↓Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈KξI = Jt ↓Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈KξI

If t =Q〈τ〉u, where t is not Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-reducible at its head, then

JtKξI = JQ〈τ〉uKξI = JQ〈τ〉KξI(JuKξI) IH= JQ〈τ〉KξI(Ju ↓Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈KξI)

= J(Q〈τ〉u) ↓Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈KξI = Jt ↓Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈KξI

Otherwise we have t =Q〈τ〉 or t =Q〈τ〉u such that t is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-reducible at its head.
In these cases, it suffices to show that J∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈τ〉KξI = Jλy. y ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ (λx.>>>>>>>>>>>>>>>>>>>>>>>>>)KξI and J∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈τ〉KξI =
Jλy. y 6≈ (λx.⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)KξI for all types τ and all valuations ξ. The argument we use here
resembles the proof of Lemma 7.25, but here we cannot assume I to be proper.

Let f be a function from JτKξIty to {0,1}. Then

J∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈τ〉KξI(f)= J(∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀,JτKξIty)(f)=min { f (a) | a ∈ JτKξIty }=
{

1 if f is constantly 1
0 otherwise

7.4. Refutational Completeness

7

171

By our assumption on I, we have

Jλy. y ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ (λx.>>>>>>>>>>>>>>>>>>>>>>>>>)KξI(f)= J(y ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ (λx.>>>>>>>>>>>>>>>>>>>>>>>>>)) ↓Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈Kξ[y7→ f]
I = Jy ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ (λx.>>>>>>>>>>>>>>>>>>>>>>>>>)Kξ[y 7→ f]

I

=
{

1 if JyKξ[y 7→ f]
I = Jλx.>>>>>>>>>>>>>>>>>>>>>>>>>Kξ[y 7→ f]

I

0 otherwise

Thus it remains to show that JyKξ[y 7→ f]
I = Jλx.>>>>>>>>>>>>>>>>>>>>>>>>>Kξ[y 7→ f]

I if and only if f is constantly 1.
This holds because JyKξ[y 7→ f]

I (a)= f (a) and, by our assumption on I, Jλx.>>>>>>>>>>>>>>>>>>>>>>>>>Kξ[y7→ f]
I (a)=

J>>>>>>>>>>>>>>>>>>>>>>>>>Kξ[x 7→a, y 7→ f]
I = 1 for all a ∈ JτKξIty .
The case of ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃ is analogous.

Corollary 7.47. Let I be an interpretation such that Jλx. tKξI(a) = Jt ↓Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈Kξ[x 7→a]
I for

all λ-terms t and all valuations ξ. Then I is proper.

Therefore, to show that IGH is proper, it suffices to prove that Jλx. tKξIGH (a) =
Jt ↓Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈Kξ[x 7→a]

IGH . For quantifiers, we have the following relation between the higher-
order interpretation IGH and the first-order interpretation R:

Lemma 7.48. Let Q ∈ {∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀,∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃} and f ∈ JGH
ty (→)(Dτ, {0,1}). Then, for any term p such

that Q〈τ〉(λx. p) is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal and such that f =E(JF (λx. p)KR),

JGH(Q,Dτ)(f)=E(JF (Q〈τ〉(λx. p))KR)

Proof. Let Q, f , and p be as in the preconditions of the lemma. If Q=∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀, then

JGH(∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀,Dτ)(f)=min{ f (a) | a ∈Dτ}

=min{Eτ→o(JF (λx. p)KR)(Eτ(JF (u)KR)) |Eτ(JF (u)KR) ∈Dτ}

=min{Eo(JF ((λx. p) u)KR) |Eτ(JF (u)KR) ∈Dτ}

=min{JF ((λx. p) u)KR | JF (u)KR ∈Uτ}

=min{JF (p{x 7→ u})KR | JF (u)KR ∈Uτ}

=min{JF (p){x 7→F (u)}KR | JF (u)KR ∈Uτ}

since, by Lemma 7.6, x never occurs under a λ in p,

=min {JF (p)Kξ{x 7→a′}
R | a′ ∈Uτ}

by Lemma 6.7 (substitution lemma),

= J∀x.F (p)KR =Eo(JF (∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈τ〉(λx. p))KR)

If Q= ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃, the proof is analogous, but uses max instead of min.

A similar relation holds on all Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal terms:

Lemma 7.49. Given a ground Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal λ-term t, we have

JtKIGH =E(JF (t↓βηQη
)KR)

Proof. The proof is analogous to that of Lemma 5.34, using the βηQη-normal form
instead of the βη-normal form and with a special case for quantifier-headed terms.
We proceed by induction on t. Assume that JsKIGH =E(JF (s↓βηQη

)KR) for all proper

7

172 7. Superposition for Full Higher-Order Logic

subterms s of t. If t is of the form f〈τ̄〉, then it cannot be a quantifier since t is
Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal. Thus:

JtKIGH = JGH(f,Dτ̄)
=E(J(f0,UF (τ̄)))
=E(Jf0〈F (τ̄)〉KR)
=E(JF (f〈τ̄〉)KR)
=E(JF (f〈τ̄〉↓βηQη

)KR)=E(JF (t↓βηQη
)KR)

If t is of the form t =Q〈τ〉u, then u =λx. v since t is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, and

JQ〈τ〉(λx. v)KIGH = JQ〈τ〉KIGH Jλx. vKIGH

=Eo(JF (Q〈τ〉(λx. v))KR) by Lemma 7.48

=Eo(JF ((Q〈τ〉(λx. v))↓βηQη
)KR) by the definition of F

If t is an application t = t1 t2, where t1 is of type τ→ υ and t1 is not a quantifier, then

Jt1 t2KIGH = Jt1KIGH (Jt2KIGH)
IH=Eτ→υ(JF (t1↓βηQη

)KR)(Eτ(JF (t2↓βηQη
)KR))

=Eυ(JF ((t1 t2)↓βηQη
)KR)

If t is a λ-expression, then

Jλx. uKξIGH =LGH(ξ, (λx. u))
=E(JF ((λx. u)θ↓βηQη

)KR)
=E(JF ((λx. u)↓βηQη

)KR)

where θ is a substitution such that Dαθ = ξ(α) and E(JF (xθ)KR)= ξ(x).

We also need to employ the following lemma, which is very similar to the sub-
stitution lemma, but we must prove it here for our particular interpretation IGH

because we have not shown that IGH is proper yet.

Lemma 7.50 (Substitution lemma). JτρKξIGH
ty

= JτKξ
′
IGH
ty

and JtρKξIGH = JtKξ
′
IGH for all

Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal λ-terms t, all τ ∈ TyH and all grounding substitutions ρ, where ξ′(α) =
JαρKξIGH

ty
for all type variables α and ξ′(x)= JxρKξIGH for all term variables x.

Proof. Analogous to Lemma 5.35, using the βηQη-normal form instead of the βη-
normal form.

Lemma 7.51. The interpretation IGH is proper.

Proof. By Corollary 7.47, it is enough to show that Jλx. tKξIGH (a) = Jt ↓Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈Kξ[x 7→a]
IGH .

First, we show it for all Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal λ-expressions λx. t, all valuations ξ, and all

7.4. Refutational Completeness

7

173

values a:

Jλx. tKξIGH (a)=LGH(ξ,λx. t)(a) by the definition of J KIGH

=E(JF ((λx. t)θ↓βηQη
)KR)(a) by the definition of LGH for some θ

such that E(JF (zθ)KR)= ξ(z) for all z
and Dαθ = ξ(α) for all α

=E(JF (((λx. t)θ s)↓βηQη
)KR) by the definition of E

where E(JF (s)KR)= a
=E(JF (t(θ[x 7→ s])↓βηQη

)KR) by β-reduction

= Jt(θ[x 7→ s])KIGH by Lemma 7.49

= JtKξ[x 7→a]
IGH by Lemma 7.50

= Jt ↓Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈Kξ[x 7→a]
IGH because t is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal by definition

The case where λx. t is not Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal is reduced to the previous case because
then Jλx. tKξIGH (a) =LGH(ξ, (λx. t) ↓Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈)(a) and (λx. t) ↓Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈= λx.t′ where t′ = t ↓Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ by
definition.

Lemma 7.52. IGH is a model of N.

Proof. Because all terms in N are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, by Lemma 7.49, JtKIGH =E(JF (t)KR)
for all t ∈ TGH. Since E is a bijection, it follows that any literal s ≈̇ t ∈CGH is true in
IGH if and only if F (s ≈̇ t) is true in R. Hence, a clause C ∈CGH is true in IGH if and
only if F (C) is true in R. By Theorem 7.43 and the assumption that ⊥∉ N, R is a
model of F (N)—that is, for all clauses C ∈ N, F (C) is true in R. Hence, all clauses
C ∈ N are true in IGH and therefore IGH is a model of N.

We summarize the results of this subsection in the following theorem:

Theorem 7.53 (Ground static completeness). Let q ∈ Q be some parameter triple.
Then GHInf q is statically refutationally complete w.r.t. |= and (GHRedq

I ,GHRedC).
In other words, if N ⊆CGH is a clause set saturated w.r.t. GHInf q and GHRedq

I , then
N |=⊥ if and only if ⊥∈ N.

The construction of IGH relies on the specific properties of R. It would not work
with an arbitrary interpretation. In the other direction, transforming a higher-order
model into a first-order model with interpreted Booleans is easier, as the following
lemma shows:

Lemma 7.54. Given a proper higher-order interpretation I on GH, there exists an
interpretation IGF on GF such that for any clause C ∈CGH the truth values of C in I

and of F (C) in IGF coincide.

Proof. Let I= (Ity,J,L) be a proper higher-order interpretation on GH. Let UGF
τ =

JτKIty be the GF universe for the ground type τ. For a symbol f ῡj ∈ΣGF, let JGF(f ῡj)=
Jf〈ῡ〉KI (up to currying). For a symbol lamλx. t ∈ΣGF, let JGF(lamλx. t)= Jλx. tKI.

The requirements on the GF-interpretation of logical symbols are fulfilled be-
cause we have similar requirements on H: UGF

o = Jty(o)= {0,1}; JGF(>>>>>>>>>>>>>>>>>>>>>>>>>0)= J(>>>>>>>>>>>>>>>>>>>>>>>>>)= 1;

7

174 7. Superposition for Full Higher-Order Logic

JGF(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬1)(a)= J(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬)(a)= 1−a; and similarly for the other logical symbols. Thus, this
defines an interpretation IGF = (UGF,JGF) on GF.

We need to show that for any C ∈CGH, I |= C if and only if IGF |=F (C). It suffices
to show that JtKξI = JF (t)KξIGF for all terms t ∈ TGH. We prove this by induction on the
structure of the βηQη-normal form of t. If t is a λ-expression, this is obvious. If t is
of the form f〈ῡ〉 s̄j, then F (t)= f ῡj (F (s̄j)) and hence

JF (t)KξIGF = JGF(f ῡj)(JF (s̄j)KξIGF)= Jf〈ῡ〉KξI(JF (s̄j)KξIGF) IH= Jf〈ῡ〉KξI(Js̄jKξI)= JtKξI

If t is of the form ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈τ〉(λx. s), then F (t)=∀x.F (s) and hence

JF (t)KξIGF =min{JF (s)Kξ[x 7→a]
IGF | a ∈UGF

τ } IH= min{JsKξ[x 7→a]
I | a ∈ JτKIty }

=min{Jλx. sKξI(a) | a ∈ JτKIty }= JtKξI

A similar argument applies for ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃. Since the definition of F recurses into subterms
below quantifiers, we finally need to consider the case where t is a variable x. In
that case, we have F (x)= x and hence JF (t)KξIGF = ξ(x)= JtKξI.

7.4.4. The Nonground Higher-Order Level
To lift the result to the nonground level, we employ the saturation framework of
Waldmann et al. [140]. Clearly, the entailment relation |= on GH qualifies as a
consequence relation in the sense of the framework. We need to show that our
redundancy criterion on GH qualifies as a redundancy criterion and that G qualifies
as a grounding function:

Lemma 7.55. The pair (GHRedq
I ,GHRedC) is a redundancy criterion in the sense of

the saturation framework.

Proof. We must prove the conditions (R1) to (R4) of the saturation framework.
Adapted to our context, they state the following for all clause sets N, N ′ ⊆CGH:
(R1) if N |=⊥, then N \GHRedC(N) |=⊥;
(R2) if N ⊆ N ′, then GHRedC(N)⊆GHRedC(N ′) and GHRedI(N)⊆GHRedI(N ′);
(R3) if N ′ ⊆ GHRedC(N), then GHRedC(N) ⊆ GHRedC(N \ N ′) and GHRedI(N) ⊆

GHRedI(N \ N ′);
(R4) if ι ∈GHInf and concl(ι) ∈ N, then ι ∈GHRedI(N).

For (R1), it suffices to show that N \ GHRedC(N) |= N. Let I be a model of
N \GHRedC(N). By Lemma 7.54, there exists a model IGF of F (N \GHRedC(N))=
F (N) \ GFRedC(F (N)). We show that IGF |= C for each clause C ∈ F (N) by well-
founded induction on C w.r.t. Â. If C 6∈GFRedC(F (N)), we have already shown that
IGF |= C. Otherwise, C ∈ GFRedC(F (N)) and hence {D ∈ F (N) | D ≺ C} |= C. By the
induction hypothesis, it follows that IGF |= C. Thus, we have shown that IGF |=F (N).
By Lemma 7.54, this implies I |= N.

For the first part of (R2), let N ⊆ N ′ and C ∈ GHRedC(N), which is defined as
{D ∈ F (N) | D ≺ F (C)} |= F (C). We must show that {D ∈ F (N ′) | D ≺ F (C)} |= F (C).
This is obvious because {D ∈F (N) | D ≺F (C)}⊆ {D ∈F (N ′) | D ≺F (C)}.

For the second part of (R2), let N ⊆ N ′ and ι ∈GHRedI(N). We must show that ι ∈
GHRedI(N ′). If ι is a GARGCONG, GEXT, or GCHOICE inference, we have concl(ι) ∈

7.4. Refutational Completeness

7

175

N ∪GHRedC(N). Using the first part of (R2), it follows that N ∪GHRedC(N)⊆ N ′∪
GHRedC(N ′), which implies ι ∈GHRedI(N ′). If ι is some other kind of inference, we
have prems(F (ι))∩GFRedC(F (N)) 6=∅ or {D ∈F (N) | D ≺mprem(F (ι))} |= concl(F (ι)).
In the first case, prems(F (ι))∩GFRedC(F (N ′)) 6=∅ because by the first part of (R2),
we have GFRedC(F (N))⊆GFRedC(F (N ′)). In the second case, we have {D ∈F (N ′) |
D ≺ mprem(F (ι))} |= concl(F (ι)) because {D ∈ F (N) | D ≺ mprem(F (ι))} ⊆ {D ∈ F (N ′) |
D ≺mprem(F (ι))}.

For the first part of (R3), let N ′ ⊆ GHRedC(N) and C ∈ GHRedC(N), which is
defined as {D ∈ F (N) | D ≺ F (C)} |= F (C). We must show that {D ∈ F (N \ N ′) | D ≺
F (C)} |=F (C). Let I be a model of {D ∈F (N \ N ′) | D ≺F (C)}. It suffices to show that
I |= {D ∈F (N) | D ≺F (C)}, meaning I |= E for every E ∈F (N) such that E ≺F (C). We
prove this by well-founded induction on E w.r.t. Â. If E ∈F (N\N ′), the claim holds by
assumption. Otherwise, E ∈ F (N ′) ⊆ GFRedC(F (N)); hence {D ∈ F (N) | D ≺ E} |= E
and therefore I |= E by the induction hypothesis.

For the second part of (R3), let N ′ ⊆ GHRedC(N) and ι ∈ GHRedI(N). We must
show that ι ∈GHRedI(N \ N ′). If ι is a GARGCONG, GEXT, or GCHOICE inference,
we have concl(ι) ∈ N ∪GHRedC(N). Using N ′ ⊆GHRedC(N), and by the first part of
(R3), it follows that concl(ι) ∈ N ∪GHRedC(N) = (N \ N ′)∪GHRedC(N) ⊆ (N \ N ′)∪
GHRedC(N \ N ′) and therefore ι ∈ GHRedI(N \ N ′). If ι is some other kind of infer-
ence, we have prems(F (ι))∩GFRedC(F (N)) 6=∅ or {D ∈ F (N) | D ≺ mprem(F (ι))} |=
concl(F (ι)). In the first case, prems(F (ι))∩GFRedC(F (N\N ′)) 6=∅ because by the first
part of (R3), we have GFRedC(F (N))⊆GFRedC(F (N \N ′)). In the second case, it suf-
fices to show that {D ∈F (N) | D ≺mprem(F (ι))} |= {D ∈F (N \ N ′) | D ≺mprem(F (ι))},
which can be shown analogously to the induction used for the first part of (R3).

For (R4), let ι ∈ GHInf and concl(ι) ∈ N. We must show that ι ∈ GHRedI(N).
If ι is a GARGCONG, GEXT, or GCHOICE inference, we must show concl(ι) ∈
N ∪GHRedC(N), which obviously holds by assumption. If ι is some other kind
of inference, it suffices to show {D ∈ F (N) | D ≺ mprem(F (ι))} |= concl(F (ι)). This
holds because concl(F (ι)) ∈F (N) and concl(F (ι))≺mprem(F (ι)).

Lemma 7.56. For every q ∈Q, the function G q is a grounding function in the sense
of the saturation framework.

Proof. We must prove the conditions (G1), (G2), and (G3) of the saturation frame-
work. Adapted to our context, they state the following:
(G1) G (⊥)= {⊥};
(G2) for every C ∈CH, if ⊥∈G (C), then C =⊥;
(G3) for every ι ∈HInf , G q(ι)⊆GHRedq

I (G (concl(ι))).
Clearly, C =⊥ if and only if ⊥∈G (C) if and only if G (C)= {⊥}, proving (G1) and

(G2). For every ι ∈HInf , by the definition of G q (Definition 7.39) and by Lemma 7.36,
we have concl(G q(ι))⊆G (concl(ι)), and thus (G3) by (R4).

As in Chapters 3 and 5, we employ Theorem 14 of the saturation framework to lift
the completeness result of the previous subsection to the nonground calculus HInf .
Adapted to our context, it resembles Theorem 3.38 and 5.42, but uses a parameter
triple q instead of just the literal selection function. The theorem uses the notation

7

176 7. Superposition for Full Higher-Order Logic

Inf (N) to denote the set of Inf -inferences whose premises are in N, for an inference
system Inf and a clause set N. It is stated as follows:

Theorem 7.57 (Lifting theorem). If GHInf q is statically refutationally complete w.r.t.
(GHRedq

I ,GHRedC) for every parameter triple q ∈ Q, and if for every N ⊆ CH that
is saturated w.r.t. HInf and HRedI there exists a q ∈ Q such that GHInf q(G (N)) ⊆
G q(HInf (N))∪GHRedq

I (G (N)), then also HInf is statically refutationally complete
w.r.t. (HRedI,HRedC) and |=G .

Proof. This is almost an instance of Theorem 14 of the saturation framework. We
take CH for F, CGH for G. Clearly, the entailment relation |= on GH is a consequence
relation in the sense of the framework. By Lemma 7.55 and 7.56, (GHRedq

I ,GHRedC)
is a redundancy criterion in the sense of the framework, and G q are grounding
functions in the sense of the framework, for all q ∈ Q. The redundancy criterion
(HRedI,HRedC) matches exactly the intersected lifted redundancy criterion Red∩,=

of the saturation framework. Their Theorem 14 states the theorem only for ==∅.
By their Lemma 16, it also holds if = 6=∅.

Let N ⊆ CH be a clause set saturated w.r.t. HInf and HRedI. For the above
theorem to apply, we need to show that there exists a q ∈Q such that all inferences
ι ∈ GHInf q with prems(ι) ∈ G (N) are liftable or redundant. Here, ι’s being liftable
means that ι is a G q-ground instance of a HInf -inference from N; ι’s being redundant
means that ι ∈GHRedq

I (G (N)).
To choose the right q ∈ Q, we observe that each ground clause C ∈ G (N) must

have at least one corresponding clause D ∈ N such that C is a ground instance of
D. We choose one of them for each C ∈G (N), which we denote by G−1(C). Then we
choose GHLitSel and GHBoolSel such that the selections in C correspond to those
in G−1(C).

To choose the witness function GHWit, let C ∈CGH and let p a green position of
a quantifier-headed term C|p = Q〈τ〉t. Let D = G−1(C) and let θ be the grounding
substitution such that Dθ = C. Let p′ be the corresponding green position in D. If
there exists no such position p′, we define GHWit(C, p) to be some arbitrary term
that fulfills the order requirements of a witness function. Otherwise, let β and
y be fresh variables and we extend θ to a substitution θ′ by defining βθ′ = τ and
yθ′ = t. Then θ′ is a unifier of Q〈β〉y and D|p′ and hence there exists an idempotent
σ ∈CSU(Q〈β〉y,D|p′) such that for some substitution ρ and for all variables x in D
and for x ∈ {y,β}, we have xσρ = xθ′. We let GHWit(C, p) be skΠᾱ.∀x̄.∃z.¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬(yσ z)〈ᾱ〉 x̄θ if
the quantifier-headed term is a ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀-term and skΠᾱ.∀x̄.∃z. (yσ z)〈ᾱ〉 x̄θ if the quantifier-
headed term is an ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃-term where ᾱ are the free type variables and x̄ are the free
variables occurring in D|p′ in order of first appearance.

By definition of G (Definition 7.29), for all variables x occurring in D the only
Boolean green subterms of xθ are >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. The term Q〈τ〉 t must be Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal
because it occurs in C ∈CGH. Hence Q〈τ〉t Â t GHWit(C, p) by order condition (O4).

With respect to this parameter triple q = (GHLitSel,GHBoolSel,GHWit), we can
show that all inferences from G (N) are liftable or redundant:

Lemma 7.58. Let Cθ ∈ CGH and C = G−1(Cθ). Let σ and ρ be substitutions such
that xσρ = xθ for all variables in C. (This holds for example if σ is an element of a

7.4. Refutational Completeness

7

177

CSU corresponding to a unifier θ.) If a literal in a clause Cθ is (strictly) º-eligible
w.r.t. GHLitSel, then the corresponding literal in C is (strictly) %-eligible w.r.t. σ and
HLitSel. If a green position in a clause Cθ is º-eligible w.r.t. GHBoolSel and there
exists a corresponding green position in C, then the corresponding position in C is
%-eligible w.r.t. σ and HBoolSel.

Proof. LITERALS: If the literal in Cθ is selected w.r.t. GHLitSel, then the correspond-
ing literal is also selected in C =G−1(Cθ) w.r.t. HLitSel by definition of GHLitSel. If
Lθ is (strictly) º-maximal in Cθ, then Lσ is (strictly) %-maximal in Cσ.
POSITIONS: Let p be the position in Cθ and let p′ be the corresponding position in
C. We proceed by induction over the definition of eligible positions. If p is selected in
Cθ w.r.t. GHBoolSel, then p′ is selected in C =G−1(Cθ) w.r.t. HBoolSel by definition
of GHBoolSel. Otherwise, if p is at the top level of a literal Lθ = sθ ≈̇ tθ, then sθ 6¹ tθ
implies sσ 6- tσ, (strict) º-eligibility of Lθ implies (strict) %-eligibility of L w.r.t. σ
(as shown above), and hence p′ eligible in C w.r.t. σ. Otherwise, the position p is
neither selected nor at the top level. Let q be the position directly above p and q′ be
the position directly above p′. By the induction hypothesis, q and q′ are eligible. If
the head of Cθp is not ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ or 6≈, then the head of Cp′ cannot be ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ or 6≈ either. If the
head Cθp is ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ or 6≈, then Cp′ must also be ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ or 6≈ because the position p′ is green.
Hence, p′ is eligible because sθ 6º tθ implies sσ 6% tσ.

In some edge cases, it is ambiguous what “the corresponding” literal is. When
Cθ contains multiple occurrences of a literal that correspond to different literals in
C, the %-larger one must be chosen as the corresponding literal to make the lemma
above work. In the following, we will implicitly assume that the correct literal is
chosen when we refer to “the corresponding” literal.

Lemma 7.59. All ERES, EFACT, GARGCONG, GEXT, GCHOICE, BOOLHOIST, and
FALSEELIM inferences are liftable.

Proof. For ERES, EFACT, GARGCONG, and GEXT, the proof is as in Lemma 5.44.
For GCHOICE, the proof is analogous to GEXT.

BOOLHOIST: Let ι ∈ GHInf be an BOOLHOIST inference with prems(ι) ∈ G (N).
Then ι is of the form

Cθ u p
BOOLHOIST

Cθ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ p ∨ u ≈>>>>>>>>>>>>>>>>>>>>>>>>>
where G−1(Cθ)= C.

If p corresponds to a position at or below an unapplied variable in C, u could
only be >>>>>>>>>>>>>>>>>>>>>>>>> or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, contradicting the condition of BOOLHOIST that the head of u is not
a fully applied logical symbol.

If p corresponds to a position at or below a fluid term in C, we will lift to a
FLUIDBOOLHOIST inference. Let p = p1.p2 such that p1 is the longest prefix of
p that corresponds to a green position p′

1 in C. Let v = C|p′
1
. Then v is fluid.

Let z and x be fresh variables. Define a substitution θ′ that maps the variable
z to λy.(vθ) y p2 , the variable x to vθ|p2 , and all other variables w to wθ. Then
(z x)θ′ = (vθ) vθ|p2 p2 = vθ = vθ′. So θ′ is a unifier of z x and v and thus there exists
an idempotent σ ∈CSU(z x,v) such that for some substitution ρ, for all variables y

7

178 7. Superposition for Full Higher-Order Logic

in C, and for y ∈ {x, z}, we have yσρ = yθ′. By the conditions of BOOLHOIST, u 6= >>>>>>>>>>>>>>>>>>>>>>>>>
and u 6= ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Then xσ 6= >>>>>>>>>>>>>>>>>>>>>>>>> and xσ 6= ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ because u = vθ|p2 = xθ′ = xσρ. Hence, we have
(z⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)θ′ = (vθ) ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ p2 6= (vθ) xθ′ p2 = (z x)θ′ and thus (z⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)σ 6= (z x)σ. The position p1
must be eligible in Cθ because p is eligible in Cθ and p1 is the longest prefix of p that
corresponds to a green position p′

1 in C. Eligibility of p1 in Cθ implies eligibility of
p′

1 in C by Lemma 7.58. Thus there exists the following FLUIDBOOLHOIST inference
ι′:

C v p′
1 FLUIDBOOLHOIST

(C z⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ p′
1
∨ x ≈>>>>>>>>>>>>>>>>>>>>>>>>>)σ

The inference ι is the σρ-ground instance of ι′ and is therefore liftable.
Otherwise, we will lift to a BOOLHOIST inference. Since u is not at or below a

variable-headed term, there is a subterm u′ of C at position p′ corresponding to the
subterm u of Cθ at position p. Since u is a Boolean term, there is a type unifier σ of
the type of u′ with the Boolean type. Eligibility of u in Cθ implies eligibility of u′ in
C by Lemma 7.58. Since the occurrence of u in Cθ is not at the top level of a positive
literal, the corresponding occurrence of u′ in C is not at the top level of a positive
literal either. Thus there exists the following BOOLHOIST inference ι′:

C u′
p′

BOOLHOIST
(C ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ p′ ∨ u′ ≈>>>>>>>>>>>>>>>>>>>>>>>>>)σ

Then ι is a ground instance of ι′ and is therefore liftable.
FALSEELIM: Let ι ∈ GHInf be an FALSEELIM inference with prems(ι) ∈ G (N).

Then ι is of the form
Cθ = C′θ ∨ sθ ≈ s′θ

FALSEELIM
C′θ

where G−1(Cθ) = C = C′ ∨ s ≈ s′ and the literal sθ ≈ s′θ is strictly º-eligible w.r.t.
GHLitSel. Since sθ ≈ s′θ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥≈>>>>>>>>>>>>>>>>>>>>>>>>> are unifiable and ground, we have sθ =⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and
s′θ =>>>>>>>>>>>>>>>>>>>>>>>>>. Thus, there exists an idempotent σ ∈CSU(s ≈ s′,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥≈>>>>>>>>>>>>>>>>>>>>>>>>>) such that for some
substitution ρ and for all variables x in C, we have xσρ = xθ. Then s ≈ s′ is strictly
%-eligible in C w.r.t. σ. Hence, the following inference ι′ ∈HInf is applicable:

C′ ∨ s ≈ s′
FALSEELIM

C′σ

Then ι is the σρ-ground instance of ι′ and is therefore liftable.

Lemma 7.60. All SUP inferences are liftable or redundant.

Proof. The proof is as for Lemmas 5.46 and 5.47. The proof works with the altered
definition of deeply occurring variables because congruence holds below quantifiers
on the GF level.

Lemma 7.61. All EQHOIST, NEQHOIST, GFORALLHOIST, GEXISTSHOIST, GFOR-
ALLRW, GEXISTSRW, and BOOLRW inferences from G (N) are liftable or redundant.

7.4. Refutational Completeness

7

179

Proof. Let ι ∈GHInf be a EQHOIST, NEQHOIST, GFORALLHOIST, GEXISTSHOIST,
GFORALLRW, GEXISTSRW, or BOOLRW inference from G (N). Let Cθ = prems(ι)
where C =G−1(Cθ) ∈ N. Let p be the position of the affected subterm in Cθ.

We distinguish two cases. We will show that ι is liftable if
(A) p corresponds to a position in C that is not at or below a fluid term, or
(B) p is the position of a term v in a literal v ≈>>>>>>>>>>>>>>>>>>>>>>>>> or v ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ in Cθ.

Otherwise, we will show that ι is redundant.

LIFTABLE CASES: If condition (A) or (B) holds, p corresponds to some position p′
in C. Let u = C|p′ . By the definition of the grounding function G , for all variables x
occurring in C, the only Boolean green subterms of xθ are >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Since uθ is a
fully applied logical symbol different from >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, the term u cannot be a variable.
Eligibility of p in Cθ implies eligibility of p′ in C by Lemma 7.58. If u is a fluid term,
by conditions (A) and (B), it must be in a literal u ≈>>>>>>>>>>>>>>>>>>>>>>>>> or u ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ or u ≈ v of C, for some
variable-headed term v.

– BOOLRW: Let t ≈ t′ the equation used among the equations listed for BOOLRW.
Then we can extend θ′ to the variables in t such that the resulting substitution
θ′ is a unifier of t and u. Therefore, there exists an idempotent σ ∈CSU(t,u)
such that for some substitution ρ and for all variables x in C, we have xσρ = xθ′.
Thus, there is the following BOOLRW inference ι′ ∈HInf :

C u
BOOLRW

C t′ σ

Then ι is the σρ-ground instance of ι′ and is therefore liftable.
– GFORALLRW: Then uθ =∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈τ〉v and the inference ι is of the form

Cθ ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈τ〉v p
GFORALLRW

Cθ v GHWit(Cθ, p) p

for some term v and some type τ.
Let β be a type variable and y a variable of type β→ o. We define a substitution
θ′ mapping y to v, β to τ, and all other variables x to xθ. Then (∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈β〉 y)θ′ =
∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈τ〉v = uθ = uθ′ and hence θ′ is a unifier of ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈β〉 y and u. Hence, there
exists an idempotent σ ∈CSU(∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈β〉y,u) such that for some substitution ρ, for
all variables x in C, and for x ∈ {β, y}, we have xσρ = xθ′. If F (Cθ >>>>>>>>>>>>>>>>>>>>>>>>> p) =
F (C >>>>>>>>>>>>>>>>>>>>>>>>> p′θ) is not a tautology, the affected literal in C cannot be of the form
u ≈>>>>>>>>>>>>>>>>>>>>>>>>>. Thus there exists the following inference ι′ ∈HInf :

C u
FORALLRW

C y (skΠᾱ.∀x̄.∃z.¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬(yσ z)〈ᾱ〉 x̄) σ

We have GHWit(Cθ, p) = skΠᾱ.∀x̄.∃z.¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬(yσ z)〈ᾱ〉 x̄θ by definition of the witness
function, where ᾱ are the free type variables and x̄ are the free variables
occurring in yσ in order of first appearance. Hence, ι is the σρ-ground instance
of ι′ and is therefore liftable.

– GEXISTSRW: Analogous to GFORALLRW.

7

180 7. Superposition for Full Higher-Order Logic

– EQHOIST: Let x and y be fresh variables. Then we can extend θ to a x and y
such that the resulting substitution θ′ is a unifier of u and x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y. Thus, there
exists an idempotent σ ∈CSU(u, x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y) such that for some substitution ρ, for
all variables z in C, and for z ∈ {x, y}, we have zσρ = zθ′. Hence, there is the
following EQHOIST inference ι′ ∈HInf :

C u
EQHOIST

(C ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ x ≈ y)σ

Then ι is the σρ-ground instance of ι′ and is therefore liftable.
– NEQHOIST: Analogous to EQHOIST.
– GFORALLHOIST: Let y be a fresh variable. Then we can extend θ to y such

that the resulting substitution θ′ is a unifier of u and ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈α〉y. Thus, there exists
an idempotent σ ∈ CSU(u,∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈α〉 y) such that for some substitution ρ, for all
variables x in C, and for x = y, we have xσρ = xθ′. Thus, there is the following
FORALLHOIST inference ι′ ∈HInf :

C u
FORALLHOIST

(C ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ y x ≈>>>>>>>>>>>>>>>>>>>>>>>>>)σ

Then ι is the σρ-ground instance of ι′ and is therefore liftable.
– GEXISTSHOIST: Analogous to GFORALLHOIST.

REDUNDANT CASE: Neither condition (A) nor (B) holds. Then p corresponds to a
position in C at or below a fluid term, but p is not the position of v in a literal v ≈>>>>>>>>>>>>>>>>>>>>>>>>>
or v ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Let p = p1.p2 such that p1 is the longest prefix of p that corresponds to
a green position p′

1 in C. Let u = C|p′
1
. Let z and x be fresh variables. Define a

substitution θ′ that maps the variable z to λy.(uθ) y p2 , the variable x to uθ|p2 ,
and all other variables w to wθ. Then (z x)θ′ = (uθ) uθ|p2 p2 = uθ = uθ′. So θ′ is a
unifier of z x and u. Thus, there exists an idempotent σ ∈CSU(z x,u) such that for
some substitution ρ, for all variables y in C, and for y ∈ {z, x}, we have yσρ = yθ′.
For all of the inference rules, Cθ|p = uθ|p2 cannot be ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ or >>>>>>>>>>>>>>>>>>>>>>>>>. Thus, xθ′ 6= ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥,>>>>>>>>>>>>>>>>>>>>>>>>> and
therefore xσ 6= ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥,>>>>>>>>>>>>>>>>>>>>>>>>>. Hence, we have (z⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)θ′ = (uθ) ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ p2 6= (uθ) xθ′ p2 = (z x)θ′ and
therefore (z⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)σ 6= (z x)σ. Analogously, we have (z>>>>>>>>>>>>>>>>>>>>>>>>>)σ 6= (z x)σ. The position p1 must
be eligible in Cθ because p is eligible in Cθ and p1 is the longest prefix of p that
corresponds to a green position p′

1 in C. Eligibility of p1 in Cθ implies eligibility
of p′

1 in C by Lemma 7.58. Then there are the following inferences ιbool and ιloob
from C:

C u p′
1 FLUIDBOOLHOIST

(C z⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ p′
1
∨ x ≈>>>>>>>>>>>>>>>>>>>>>>>>>)σ

C u p′
1 FLUIDLOOBHOIST

(C z>>>>>>>>>>>>>>>>>>>>>>>>> p′
1
∨ x ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)σ

Since N is saturated w.r.t. HInf and HRedI, these inferences are in HRedI(N). We

7.4. Refutational Completeness

7

181

have

F ((C z⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ p′
1
∨ x ≈>>>>>>>>>>>>>>>>>>>>>>>>>)θ′)=F (Cθ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ p ∨ Cθ|p ≈>>>>>>>>>>>>>>>>>>>>>>>>>)

and F ((C z>>>>>>>>>>>>>>>>>>>>>>>>> p′
1
∨ x ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)θ′)=F (Cθ >>>>>>>>>>>>>>>>>>>>>>>>> p ∨ Cθ|p ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

These two clauses entail F (Cθ). Since p is not the position of v in a literal v ≈ >>>>>>>>>>>>>>>>>>>>>>>>>
or v ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, the two clauses are also smaller than F (Cθ). Since ιbool ∈ HRedI(N), we
have G q(ιbool)⊆GHRedI(G (N)) and therefore the clauses F (G (N)) that are smaller
than Cθ′ = Cθ entail F ((C z ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ p′

1
∨ x ≈ >>>>>>>>>>>>>>>>>>>>>>>>>)θ′). Similarly, since ιloob ∈ HRedI(N),

we have G (concl(ιloob))⊆G (N)∪GHRedC(G (N)). Therefore F ((C z>>>>>>>>>>>>>>>>>>>>>>>>> p′
1
∨ x ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)θ′)

is entailed by clauses in G (N) that are smaller than or equal to itself. Thus, Cθ
is redundant and therefore ι is redundant. Here, it is crucial that we consider
inferences with a redundant premise as redundant.

By the above lemmas, every HInf inference is liftable or redundant. Using these
lemmas, we can employ Theorem 7.57 to lift ground refutational completeness to
nonground refutational completeness.

Lemma 7.62 (Static refutational completeness w.r.t. |=G). The inference system HInf
is statically refutationally complete w.r.t. |=G and (HRedI,HRedC). In other words, if
N ⊆ CH is a clause set saturated w.r.t. HInf and HRedI, then N |=G ⊥ if and only if
⊥∈ N.

Proof. We want to apply Theorem 7.57. GHInf q is statically refutationally com-
plete for all q ∈ Q by Theorem 7.53. By Lemmas 7.59, 7.60, and 7.61, for every
saturated N ⊆ CH, there exists q ∈ G (Q) such that all inferences ι ∈ GHInf q with
prems(ι) ∈G (N) either are G q-ground instances of HInf -inferences from N or belong
to GHRedq

I (G (N)). Thus, Theorem 7.57 applies.

Dynamic refutational completeness is easy to derive from static refutational
completeness.

Lemma 7.63 (Dynamic refutational completeness w.r.t. |=G). The inference system
HInf is dynamically refutationally complete w.r.t. |=G and (HRedI,HRedC), as per
Definition 3.26.

Proof. By Theorem 17 of Waldmann et al., this follows from Lemma 7.62.

To derive a corresponding result for the entailment relation |=, we employ the
following lemma, which states equivalence of Herbrand entailment |=G and Tarski
entailment |= on Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal clauses.

Lemma 7.64. Let N ⊆CH be Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal. Then we have N |=G ⊥ if and only if N |=⊥.

Proof. By Lemma 7.27, any model of N is also a model of G (N). So N |=G ⊥ implies
N |=⊥.

For the other direction, let I be a model of G (N). We must show that there
exists a model of N. Let I′ be the interpretation obtained from I by removing all
domains that cannot be expressed as JτKIty for some ground type τ and by removing

7

182 7. Superposition for Full Higher-Order Logic

all domain elements that cannot be expressed as JtKI for some ground term t. We
restrict the type interpretation function Jty, the interpretation function J, and the
λ-designation function L of I accordingly.

The restriction J′ of J still maps the logical symbols correctly: For most logical
symbols, this is obvious. Only ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀ and ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃ deserve some further explanations. For
all domains D of I, we have J(∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃,D)(f) = max { f (a) | a ∈D}. For the corresponding
domain D′ ⊆D, if it has not been removed entirely, we have just defined J′(∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃,D′)(f)=
J(∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃,D)(f). We must show that J′(∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃,D′)(f) = max { f (a) | a ∈D′} for all f that can be
expressed as JtKI for some ground term t. This claim can only be violated if there
exist a ∈D with f (a)= 1 and if all of them have been removed in D′. But we have not
removed all such elements a because one of them can be expressed as Jε tKI where t
is the ground term such that f = JtKI. We can argue similarly for ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀.

Clearly, all terms have the same denotation in I′ as in I. Thus, the truth values
of ground clauses are identical in I and I′. Since I is proper, I′ is also proper. Hence,
I |=G (N) implies I′ |=G (N).

It remains to show that I′ |= N. Let C ∈ N and let ξ be a valuation for I′. We must
show that C is true in I under ξ. By assumption, C is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal.

By the construction of I′, there is a grounding substitution θ such that for all
type variables α and all term variables x occurring in C, we have ξ(α)= JαθKJ′

ty
and

ξ(x)= JxθKI′ . Then, by Lemma 7.26, JtθKI′ = JtKξI′ for all subterms t of C. Moreover,
we can choose θ such that for all variables x, the only Boolean green subterms of
xθ are >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and such that xθ is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal. If xθ contains a Boolean green
subterm different from >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, we can replace it by >>>>>>>>>>>>>>>>>>>>>>>>> or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ while preserving its
denotation and thus the property that JtθKI′ = JtKξI′ for all subterms t of C. If xθ
is not Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, we Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normalize it, which preserves the denotation of terms by
Lemma 7.46.

By Lemma 7.8, it follows that Cθ is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal. Thus, Cθ ∈G (C). Since I′ |=G (C)
and thus Cθ is true in I′, also C is true in I′ under ξ because JtθKI′ = JtKξI′ for all
subterms t of C.

Using this lemma, we can derive the following theorem, which is essentially
dynamic refutational completeness with the caveat that the initial clause set must be
Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, which in practice can be fulfilled by Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normalizing the input problem
in preprocessing.

Theorem 7.65 (Dynamic refutational completeness w.r.t. |=). Let (Ni)i be a deriva-
tion w.r.t. HRedC, as defined in Definition 3.26, such that N0 is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal and
N0 |= ⊥. Moreover, assume that (Ni)i is fair w.r.t. HInf and HRedI. Then we have
⊥∈ Ni for some i.

Proof. This is a consequence of Lemmas 7.63 and 7.64.

To derive a similar result for |≈, we need the following lemma:

Lemma 7.66. Let N0 ⊆ CH be a clause set that does not contain any sk symbols. If
N0 |≈⊥, then N0 |=⊥.

7.5. Clausification

7

183

Proof. Equivalently, the lemma statement can be formulated as follows: If N0 does
not have Skolem-aware models, it does not have models at all. We assume that N0
has a model I and must show that there exists a Skolem-aware model I′ of N0.

To transform the model I = (Ity,J,L) into an interpretation I′ = (I′ty,J′,L′), we
redefine the interpretation of the Skolem symbol skΠᾱ.∀x̄.∃z. t z :Πᾱ. τ̄→ υ as follows.
Given some domains D̄, let ξ(ᾱ) = D̄. Then define J′(skΠᾱ.∀x̄.∃z. t z,D̄) = Jλx̄.ε〈υ〉tKξI
and L′(ξ,λx.s)=L(ξ,λx.s′) where s′ is obtained from s by replacing each occurrence
of a subterm skΠᾱ.∀x̄.∃z. t z〈ῡ〉 by (λx̄. ε〈υ〉 t){ᾱ 7→ ῡ}. This modification of I yields a
new interpretation I′, which is still a model of N0 because N0 does not contain any
sk symbols. Moreover, it is a Skolem-aware model of N0 because our redefinition
ensures I′ |= (∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈υ〉(λz. t z))≈ t (skΠᾱ.∀x̄.∃z. t z〈ᾱ〉 x̄).

Using this lemma, we can derive dynamic refutational completeness for |≈ with
additional assumptions on Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normality and the absence of sk-symbols. These
assumptions can be fulfilled by Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-preprocessing and by making the sk symbols
internal such that they can not be expressed by the input language of the prover.

Theorem 7.67 (Dynamic refutational completeness w.r.t. |≈). Let (Ni)i be a deriva-
tion w.r.t. HRedC, as defined in Definition 3.26, such that N0 is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, N0 does
not contain any sk symbols, and N0 |≈ ⊥. Moreover, assume that (Ni)i is fair w.r.t.
HInf and HRedI. Then we have ⊥∈ Ni for some i.

Proof. By Lemma 7.66, N0 |=⊥. Hence, Theorem 7.65 applies.

7.5. Clausification
Our calculus does not require the input problem to be clausified in preprocessing.
Instead, it supports higher-order analogues of the three inprocessing clausification
methods of my ongoing work with Nummelin, Tourret, and Vukmirović. Inner
delayed clausification relies on our core calculus rules to destruct logical symbols.
Outer delayed clausification adds the following clausification rules to the calculus:

s ≈>>>>>>>>>>>>>>>>>>>>>>>>>∨C
POSOUTERCLAUS

oc(s,C)

s ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∨C
NEGOUTERCLAUS

oc(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬s,C)

s ≈ t∨C
EQOUTERCLAUS

s ≈⊥∨ t ≈>∨C s ≈>∨ t ≈⊥∨C

s 6≈ t∨C
NEQOUTERCLAUS

s ≈⊥∨ t ≈⊥∨C s ≈>∨ t ≈>∨C

The double bars mark simplification rules—i.e., the conclusion makes the premise
redundant and can replace it. The first two rules require that s has a logical symbol
as its head, whereas the last two require that s and t are Boolean terms other than
> and ⊥. The function oc distributes the logical symbols over the clause C as follows:

oc(s∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ t,C)= {s ≈>∨C, t ≈>∨C}

oc(s∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ t,C)= {s ≈>∨ t ≈>∨C}

7

184 7. Superposition for Full Higher-Order Logic

oc(s →→→→→→→→→→→→→→→→→→→→→→→→→ t,C)= {s ≈⊥∨ t ≈>∨C}

oc(s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t,C)= {s ≈ t∨C}

oc(s 6≈ t,C)= {s 6≈ t∨C}

oc(∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈τ〉s,C)= {s y≈>∨C}

oc(∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈τ〉s,C)= {s (skΠᾱ.∀x̄.∃z. (s z)〈ᾱ〉 x̄)≈>∨C}

oc(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬(s∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ t),C)= {s ≈⊥∨ t ≈⊥∨C}

oc(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬(s∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ t),C)= {s ≈⊥∨C, t ≈⊥∨C}

oc(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬(s →→→→→→→→→→→→→→→→→→→→→→→→→ t),C)= {s ≈>∨C, t ≈⊥∨C}

oc(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬(s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t),C)= {s 6≈ t∨C}

oc(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬(s 6≈ t),C)= {s ≈ t∨C}

oc(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬s),C)= oc(s,C)

oc(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬(∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈τ〉s),C)= {s (skΠᾱ.∀x̄.∃z.¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬(s z)〈ᾱ〉 x̄)≈⊥∨C}

oc(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬(∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈τ〉s),C)= {s y≈⊥∨C}

In the equations for ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈τ〉s and ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬(∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈τ〉s), y is a fresh variable. In the equations for
∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈τ〉s and ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬(∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈τ〉s), ᾱ are the free type variables and x̄ are the free term variables
occurring in s in order of first appearance.

It is easy to check that our redundancy criterion allows us to replace the premise
of the OUTERCLAUS rules with their conclusion. Nonetheless, we apply EQOUTER-
CLAUS and NEQOUTERCLAUS as inferences because the premises might be useful
in their original form.

Besides the two delayed clausification methods, a third inprocessing clausification
method is immediate clausification. This clausifies the input problem’s outer formula
structure in one swoop, resulting in a set of higher-order clauses. If unclausified
formulas rise to the top during saturation, the same algorithm is run to clausify
them. In contrast to delayed clausification, immediate clausification is monolithic—it
behaves as a black-box procedure and it is unaware of the proof state other than
the formula it is applied to. Delayed clausification, on the other hand, clausifies
formula step by step and at each step full superposition simplification machinery is
at disposal.

Many rules of our calculus replace subterms with >>>>>>>>>>>>>>>>>>>>>>>>> or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. After such a replace-
ment, the term containing >>>>>>>>>>>>>>>>>>>>>>>>> or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ can be simplified using Boolean equivalences that
specify the behavior of logical operators on >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. To this end we use the rule
BOOLSIMP [138], which resembles the simp rule of Leo-III [125, Section 4.2.1.]:

C[s]
BOOLSIMP

C[t]

This rule replaces s with t whenever s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t is an instance of an equivalence u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ v. In

7.6. Implementation

7

185

addition to all equivalences that Leo-III uses in simp, we also use:

(>>>>>>>>>>>>>>>>>>>>>>>>>→→→→→→→→→→→→→→→→→→→→→→→→→ s) ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ s (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥→→→→→→→→→→→→→→→→→→→→→→→→→ s) ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈>>>>>>>>>>>>>>>>>>>>>>>>> (s →→→→→→→→→→→→→→→→→→→→→→→→→⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬s (s →→→→→→→→→→→→→→→→→→→→→→→→→>>>>>>>>>>>>>>>>>>>>>>>>>) ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈>>>>>>>>>>>>>>>>>>>>>>>>>
(s →→→→→→→→→→→→→→→→→→→→→→→→→¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬s) ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬s (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬s →→→→→→→→→→→→→→→→→→→→→→→→→ s) ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ s (s →→→→→→→→→→→→→→→→→→→→→→→→→ s) ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈>>>>>>>>>>>>>>>>>>>>>>>>>

(s1 →→→→→→→→→→→→→→→→→→→→→→→→→ ···→→→→→→→→→→→→→→→→→→→→→→→→→ si →→→→→→→→→→→→→→→→→→→→→→→→→ ···→→→→→→→→→→→→→→→→→→→→→→→→→¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬si →→→→→→→→→→→→→→→→→→→→→→→→→ ···→→→→→→→→→→→→→→→→→→→→→→→→→ t) ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈>>>>>>>>>>>>>>>>>>>>>>>>>
(s1 →→→→→→→→→→→→→→→→→→→→→→→→→ ···→→→→→→→→→→→→→→→→→→→→→→→→→ sn →→→→→→→→→→→→→→→→→→→→→→→→→ t1 ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨·· ·∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ si ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨·· ·∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ tn) ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈>>>>>>>>>>>>>>>>>>>>>>>>>
(s1 ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧·· ·∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ sn →→→→→→→→→→→→→→→→→→→→→→→→→ t1 ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨·· ·∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ si ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨·· ·∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ tn) ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈>>>>>>>>>>>>>>>>>>>>>>>>>

It is easy to check that applying any equivalence reduces the size of s w.r.t. the order
described in Section 7.3.8, assuming the weight of ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ is not greater than that of →→→→→→→→→→→→→→→→→→→→→→→→→.

With my colleagues, I am working on a more detailed account of this approach to
inprocessing clausification in the context of first-order logic with Booleans [109].

7.6. Implementation

We implemented our calculus in Zipperposition. Like the calculus, its implemen-
tation is an extension of the implementation of Boolean-free λ-superposition, as
presented in Chapter 5, and a preliminary implementation of superposition with
Booleans, as presented in Chapter 6. From the former, we inherit the given clause
loop which supports enumerating infinitely many inference conclusions, calculus
extensions, and higher-order heuristics. From the latter, we inherit the encoding of
negative predicate literals as s ≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and a basis for the implementation of FALSEELIM,
BOOLRW, FORALLRW, EXISTSRW, and all HOIST rules.

The implementation of superposition with Booleans heavily relies on BOOLSIMP

to simplify the proof state. We keep this rule as the basis of our Boolean simplification
machinery. This means that BOOLRW can be reduced to two cases: In the first case,
all arguments s̄n of u = h s̄n are variable-headed terms and thus we must unify si
with all combinations of > and ⊥. In the second case, either u = s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t or u = s 6≈ t and
thus we must compute the unifiers of s and t.

As in the implementation of Boolean-free λ-superposition, we approximate fluid
terms as terms that are either nonground λ-expressions or terms of the form x s̄n with
n > 0. We approximate deeply occurring variables by also counting occurrences below
quantifiers as deep. Moreover, we perform EFACT inferences even if the maximal
literal is selected. Since we expect FLUIDBOOLHOIST and FLUIDLOOBHOIST to be
highly explosive, we penalize their inference streams, as well as conclusions of these
inferences. In addition to the extensions of Boolean-free λ-superposition we also use
all rules for Boolean reasoning described by Vukmirović and Nummelin [138] except
for the BOOLEF rules.

As an optimization for the rules EQHOIST, NEQHOIST, FORALLHOIST, and
EXISTSHOIST, if the subterm u is not variable-headed, we observe that there is an
obvious most general unifier, which allows us to generate the conclusion directly,
without invoking the unification procedure.

7

186 7. Superposition for Full Higher-Order Logic

7.7. Evaluation
We evaluate our implementation and compare it with other higher-order provers.
Our experiments were performed on StarExec Miami servers equipped with Intel
Xeon E5-2620 v4 CPUs clocked at 2.10 GHz. We used all 2606 TH0 theorems from
the TPTP 7.3.0 library [130] and 1253 “Judgment Day” problems [40] generated
using Sledgehammer (SH) [111] as our benchmark set. An archive containing the
benchmarks and the raw evaluation results is publicly available.1 We divide the
evaluation in two parts: evaluation of the calculus rules and comparison with other
higher-order provers.

Calculus Evaluation In this first part, we evaluate selected parameters of Zipper-
position by varying only the studied parameter in a fixed well-performing config-
uration. This base configuration disables axioms (CHOICE) and (EXT) and the
FLUID- rules. It uses the complete unification algorithm of Vukmirović et al. [136].
It uses none of the early Boolean rules described by Vukmirović and Nummelin [138].
The preprocessor Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ is disabled as well. All of the completeness-preserving sim-
plification rules described in Section 7.3.7 are enabled, except for the simplifying
BOOLHOIST (combined with LOOBHOIST). The preprocessor Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ is disabled. Finally,
the configuration uses immediate clausification. We set the CPU limit to 30 s in each
of the three experiments.

In the first experiment, we assess the overhead incurred by our new rules. The
FLUID- rules unify with a term whose head is a fresh variable. Thus, we expected
that they need to be tightly controlled to achieve good performance. To test our hy-
pothesis, we simultaneously modified the parameters of these three rules. In Figure
7.1, the off mode simply disables the rules, the pragmatic mode uses a terminating
incomplete unification algorithm (the pragmatic variant of Vukmirović et al. [136]),
and the complete mode uses a complete unification algorithm. The results show
that disabling FLUID- rules altogether achieves the best performance. When the
complete variant of the unification algorithm is used, inferences are scheduled in
a queue designed to postpone explosive inferences, as described in Section 5.6. In
contrast, in the pragmatic variant, a terminating algorithm is employed, but still
flooding the proof state with FLUID- rules conclusions severely hinders performance.
Even though enabling FLUID- rules degrades performance overall, complete finds
35 proofs not found by off, and pragmatic finds 22 proofs not found by off. On Sledge-
hammer benchmarks, this effect is much weaker, likely because the Sledgehammer
benchmarks require less higher-order reasoning: complete finds only one new proof,
and pragmatic finds only four.

In the second experiment, we explore the clausification methods introduced at
the end of Section 7.3: inner delayed clausification, which relies on the core calcu-
lus to reason about logical symbols; outer delayed clausification, which clausifies
step-by-step guided by the outermost logical symbols; and immediate clausifica-
tion, which eagerly applies a monolithic clausification algorithm when encountering
top-level logical symbols. The modes inner and outer employ the RENAME rule
developed in my work with Nummelin et al. [109], which renames Boolean terms
1https://doi.org/10.5281/zenodo.4534759

https://doi.org/10.5281/zenodo.4534759

7.7. Evaluation

7

187

off pragmatic complete

TPTP 1642 1591 1619
SH 467 431 437

Figure 7.1: Evaluation of explosive calculus rules

inner outer immediate

TPTP 1323 1670 1642
SH 406 470 467

Figure 7.2: Evaluation of clausification method

off p = 64 p = 16 p = 4 p = 1

TPTP 1642 1617 1613 1615 1594
SH 467 458 458 459 445

Figure 7.3: Evaluation of axiom (CHOICE)

TPTP ofSH SH

CVC4 1796 680 619
Leo-III 2104 681 621
Satallax 2162 573 587
Vampire 2131 692 681
Zip 2301 734 736
New Zip 2320 724 720

Leo-III-uncoop 1619 223 240
Satallax-uncoop 2038 467 482
Zip-uncoop 2223 667 673
New Zip-uncoop 2236 640 644

Figure 7.4: Evaluation of all competitive
higher-order provers

headed by logical symbols using a Tseitin-like transformation if they occur at least
four times in the proof state. Vukmirović and Nummelin [138] observed that outer
clausification can greatly help prove higher-order problems and we expected it per-
form well for our calculus, too. The results are shown in Figure 7.2. The results
confirm our hypothesis: The outer mode outperforms immediate on both TPTP
and Sledgehammer benchmarks. The inner mode performs worst, but on Sledge-
hammer benchmarks, it proves 17 problems beyond the reach of the other two.
Looking at the proofs found by inner, we observed a pattern: in many cases (e.g., for
the benchmarks prob_295__3252866_1, prob_296__3252872_1, prob_366__5338-
318_1, prob_419__5371618_1) the problems contain axioms of the form φ →→→→→→→→→→→→→→→→→→→→→→→→→ ψ.
When such axioms are not clausified, superposition and demodulation can often
reduce either φ or ψ to >>>>>>>>>>>>>>>>>>>>>>>>> or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. At this point, simplification rules will act on the
resulting formula, simplifying it enough that the proof can easily be found.

In the third experiment, we investigate the effect of axiom (CHOICE), which is
necessary to achieve refutational completeness. To evaluate (CHOICE), we either
disabled it in a configuration labeled off or set the axiom’s penalty p to different
values. In Zipperposition, penalties are propagated through inference and simpli-
fication rules and are used to increase the heuristic weight of clauses, postponing
the selection of penalized clauses. The results are shown in Figure 7.3. As expected,
disabling (CHOICE), or at least penalizing it, improves performance. Yet enabling
(CHOICE) can be crucial: For 19 TPTP problems, the proofs are found when (CHOICE)
is enabled and p = 4, but not when the rule is disabled. On Sledgehammer problems,
this effect is weaker, with only two new problems proved for p = 4.

Prover Comparison In this second part, we compare Zipperposition’s perfor-
mance with other higher-order provers. Like at CASC-J10, the wall-clock timeout

7

188 7. Superposition for Full Higher-Order Logic

was 120 s, the CPU timeout was 960 s, and the provers were run on StarExec Miami.
We used the following versions of all systems that took part in the THF division:
CVC4 1.8 [14], Leo-III 1.5.2 [126], Satallax 3.5 [42], and Vampire 4.5 [28]. The devel-
opers of Vampire have informed us that its higher-order schedule is optimized for run-
ning on a single core. As a result, the prover suffers some degradation of performance
when running on multiple cores. We evaluate both the version of Zipperposition that
took part in CASC-J10 (Zip) and the updated version of Zipperposition that supports
our new calculus (New Zip). Zip’s portfolio of prover configurations is based on
Chapter 5 and techniques described by Vukmirović and Nummelin [138]. New Zip’s
portfolio is specially designed for our new calculus and optimized for TPTP problems.
Leo-III, Satallax, and Zipperposition are cooperative theorem provers: They invoke a
backend reasoner to finish the proof attempt. To test the performance of their calculi
in isolation, we also invoked them in uncooperative mode. To assess the performance
of Boolean reasoning, we used Sledgehammer benchmarks generated both with na-
tive Booleans (SH) and with an encoding into Boolean-free higher-order logic (ofSH).
For technical reasons, the encoding also performs λ-lifting, but this minor transforma-
tion should have little impact on results as our evaluation from Chapter 5 indicates.

The results are shown in Figure 7.4. The updated version of New Zip beats Zip
on TPTP problems but lags behind Zip on Sledgehammer benchmarks as we have
yet to further explore more general heuristics for our new calculus. The Sledgeham-
mer benchmarks fail to demonstrate the superiority of native Booleans reasoning
compared with an encoding, and in fact CVC4 and Leo-III perform dramatically
better on the encoded Boolean problems, suggesting that there is room for tuning.

The uncooperative versions of Zipperposition show strong performance on both
benchmark sets. This suggests that, with thorough parameter tuning, higher-order
superposition outperforms tableaux, which had been the state of the art in higher-
order reasoning for a decade. Without backend reasoners, Zipperposition proves
fewer Sledgehammer problems than Vampire. We conjecture that implementing our
calculus in Vampire or E would remove the need for a backend reasoner and make
the calculus even more useful in practice.

7.8. Conclusion
We have created a superposition calculus for higher-order logic and proved it to be
sound and refutationally complete. Most of the key ideas have been developed in the
previous chapters, but combining them in the right way has been a challenging task.
A key idea has been to eliminate quantified terms with inconvenient higher-order
features by Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normalization. Unlike earlier refutationally complete calculi for
full higher-order logic based on resolution or paramodulation, our calculus employs
a term order to steer proof search. Based on the term order, we can specify a
redundancy criterion that allows us to add various simplification rules without
compromising refutational completeness. We believe that this is a key ingredient to
the efficiency of the calculus.

The evaluation results show that our calculus is an excellent basis for higher-
order theorem proving. In future work, we will further experiment with the different
parameters of the calculus, for instance with Boolean subterm selection heuristics.

8
Conclusion

We have developed refutationally complete calculi for various formalisms between
first-order and higher-order logic, most notably a calculus for full higher-order logic
essentially as described by the TPTP TH1 standard. We have implemented all of
these calculi in the Zipperposition prover and evaluated them. The results show
that the implementation of our calculus for higher-order logic with some incomplete
optimizations outperforms all other modern provers and can thus substantially
improve the performance of Sledgehammer and similar applications by avoiding
encodings into first-order logic. The work was acclaimed in the higher-order theorem
proving community and reveals many promising directions for future work.

189

8

190 8. Conclusion

8.1. Results and Impact
For many years, the development of automated reasoning has been divided in two
branches: first-order reasoning and higher-order reasoning. The simpler term struc-
ture and semantics of first-order logic allowed the first-order logic community to
develop highly efficient calculi. The superposition calculus emerged already in the
early 1990s and is arguably still the most efficient calculus for first-order logic with
equality today. The different nature of higher-order logic—characterized by nonter-
minating unification, lack of a simple clausification procedure, and βη-conversion—
deterred researchers from investigating generalizations to higher-order logic.

The higher-order logic camp developed various strategies to keep their logic’s
high expressivity under control. Unfortunately many concepts that led to success
in first-order logic, such as term orders and redundancy criteria, seemed not to be
applicable to the higher-order calculi.

The work presented in this thesis brings these two worlds together. The guiding
principle has been that our calculus should operate on higher-order logic without
giving up what has been successful for first-order logic since the 1990s—we always
aimed for a graceful generalization. This principle has payed off: Since higher-order
problems always have some first-order component, our prover’s stable first-order
foundation allows it to outperform all other higher-order provers.

To achieve the goal of a higher-order superposition calculus, it was crucial to
divide the task into milestones, represented by intermediate logics. The main concern
of the first milestone, our calculi for λ-free higher-order logic, was how to support
nonmonotonic term orders. In this initial work, we have developed the approach
of dividing the completeness proof into three levels, nested like Russian dolls: the
ground first-order level GF, the ground higher-order level GH, and the nonground
higher-order layer H. This extends the common approach of dividing completeness
proofs into a ground and a nonground level. The three-level approach combines the
best of two worlds: The encoding into first-order logic allows us to reuse established
first-order concepts such as first-order term rewriting systems in the completeness
proof, and yet the implementation operates directly on higher-order logic without
any encodings. We found this approach useful for all three milestones.

In parallel, Vukmirović et al. [137] have implemented support for λ-free higher-
order logic in the E prover, but only for monotone term orders. Implementing our
calculi for nonmonotone orders in a highly optimized prover such as E seemed
to be a daunting task, which led me to develop the monotone order EPO as a
possible replacement for the nonmonotone RPO. However, in the long run, support
for nonmonotone orders is unavoidable, in particular regarding extensions to full
higher-order logic.

Next, we have developed Boolean-free λ-superposition calculus. Our central
discovery in this step was that we can eagerly normalize terms into η-short β-normal
form and still obtain a refutationally complete calculus. Unlike other higher-order
calculi, our approach relies on a full unification procedure; preunification is not
sufficient. Therefore, Vukmirović, Nummelin, and I have developed an efficient
higher-order unification procedure [136], improving on Jensen and Pietrzykowski’s
procedure [76]. Based on our calculus and an early version of our procedure, Zipper-

8.2. Future Work

8

191

position achieved the third place in the higher-order category of the CASC-27 prover
competition in 2019.

Shortly after the development of Boolean-free λ-superposition, Bhayat and
Reger [28] developed the closely related combinatory superposition calculus. It is
modeled on our intensional nonpurifying λ-free calculus and targets extensional poly-
morphic clausal higher-order logic. Both combinatory and λ-superposition gracefully
generalize the highly successful first-order superposition rules without sacrificing
refutational completeness, and both are equipped with a redundancy criterion. Com-
binatory superposition’s distinguishing feature is that it uses SK combinators to
represent λ-expressions. Combinators can be implemented more easily starting from
a first-order prover; β-reduction amounts to demodulation. However, according to its
developers, “Narrowing terms with combinator axioms is still explosive and results
in redundant clauses. It is also never likely to be competitive with higher-order unifi-
cation in finding complex unifiers.” Among the drawbacks of λ-superposition are the
need to solve flex–flex pairs eagerly and the explosion caused by the extensionality
axiom. We believe that this is a reasonable trade-off, especially for large problems
with a substantial first-order component.

Based on the Boolean-free λ-superposition calculus, Vukmirović and Nummelin
[138] have presented a pragmatic approach to Boolean reasoning for higher-order
logic and have implemented it in Zipperposition. These efforts led Zipperposition
to win the higher-order category of the CASC-J10 competition in 2020. Due to
this success, the prover has gained recognition in the community and as a result,
Zipperposition is included in the 2021 version of the Isabelle proof assistant.

In preparation for the final milestone, Nummelin, Tourret, Vukmirović, and I
have developed a calculus for first-order logic with an interpreted Boolean type.
Using the ground version of this calculus as the GF layer has then allowed us to
extend the Boolean-free λ-superposition calculus with Booleans, finally yielding
the λ-superposition calculus, a refutationally complete superposition calculus for
higher-order logic.

8.2. Future Work
In the past, first-order provers have been generalized to richer and richer logics.
For instance, many provers have been extended with support for sorts and some
have been extended with polymorphism. Our work on higher-order superposition
in Zipperposition, along with the higher-order extensions of Vampire and of the
SMT solvers CVC4 and veriT, is a further significant step towards richer logics.
From Isabelle user’s informal feedback, we hear that such developments lead to an
appreciable enhancement of Sledgehammer. Thus I expect that this trend towards
richer logics will continue in the future.

One direction in which we could extend our superposition calculus further is the
inclusion of theories such as arithmetic. For first-order logic, theory reasoning
can be achieved with hierarchic superposition [15], and hopefully its principles can
also be applied in higher-order logic.

A second direction is an extension of superposition to dependent type the-
ory. Many popular proof assistants such as Agda, Coq, and Lean are based on

8

192 8. Conclusion

dependently-typed logics. The core feature of dependent type theory is that types can
depend on terms. For instance, we can define a type vector n, representing vectors
of length n where n is a term. To improve hammers for such systems, it would be
desirable to extend superposition to dependent type theory, too. The state of the art
is to translate into first-order logic via an unsound and incomplete encoding [49].

We have various ideas to further improve our higher-order superposition
calculus. The evaluations show that some mechanisms required by the complete-
ness proofs such as the extensionality axiom and FLUIDSUP do not help in practice.
We want to explore other approaches to replace these mechanisms.

Possibly, the (EXT) axiom can be replaced by more restricted inference rules
resembling λSUP without compromising refutational completeness. The FLUIDSUP

rule could be improved by devising a specific unification procedure that produces only
unifiers that are actually required in the part of the completeness proof discussing
FLUIDSUP. We have not spent a lot of effort to avoid the inclusion of the (CHOICE)
axiom in our calculus. Possibly, it can be replaced by more efficient calculus rules.

The need of the calculus to solve the full unification problem might also hinder
performance. Existing procedures [76, 123], including the one I developed with
Vukmirović and Nummelin [137], enumerate redundant unifiers. This can probably
be avoided to some extent. It could also be useful to investigate unification proce-
dures that would delay imitation/projection choices via special schematic variables,
inspired by Libal’s representation of regular unifiers [99].

Alternatively, it seems possible to modify the calculus to work with preunification
and constraints, similar to Huet’s resolution calculus [73]. This would avoid the need
for full unification altogether.

Eventually, the our generalization of superposition should be implemented in
a high performance prover. Zipperposition has been a convenient vehicle for
experimenting and prototyping because it is easier to understand and modify than
highly optimized C or C++ provers. Arguably, implementing our calculi in modern
first-order provers such as E [119], SPASS [142], and Vampire [94] would lead to even
better results. The main challenge might be to extend the internal data structures
of such provers to allow for λ-expressions. A second challenge is to extend the prover
with polymorphism, which has already been done in Vampire [29].

Vukmirović, Blanchette, and Schulz have concrete plans to implement a variant
of our higher-order calculus based on Ehoh [137], the λ-free clausal higher-order
version of E. With its stratified architecture, Otter-λ [17] is perhaps the closest to
what they are aiming at, with the difference that Otter-λ is limited to second-order
logic and offers no completeness guarantees.

Finally, heuristics will be a fruitful area for future research in higher-order
reasoning. Proof assistants are an inexhaustible source of easy-looking benchmarks
that are beyond the power of today’s provers. Whereas “hard higher-order” may
remain forever out of reach, there is a substantial “easy higher-order” fragment that
awaits automation. By studying the behavior of our calculus on supposedly easy
problems originating from proof assistants, we will probably be able to improve the
success rate of hammers substantially.

References

[1] Andrews, P.B.: Resolution in type theory. J. Symb. Log. 36(3), 414–432 (1971)

[2] Andrews, P.B.: On connections and higher-order logic. J. Autom. Reason. 5(3),
257–291 (1989)

[3] Andrews, P.B.: Classical type theory. In: Robinson, J.A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, vol. II, pp. 965–1007. Elsevier and MIT
Press (2001)

[4] Andrews, P.B., Bishop, M., Issar, S., Nesmith, D., Pfenning, F., Xi, H.: TPS:
A theorem-proving system for classical type theory. J. Autom. Reason. 16(3),
321–353 (1996)

[5] Asperti, A., Tassi, E.: Superposition as a logical glue. In: Hirschowitz, T. (ed.)
TYPES 2009. EPTCS, vol. 53, pp. 1–15 (2009)

[6] Asperti, A., Tassi, E.: Smart matching. In: Autexier, S., Calmet, J., Delahaye,
D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) CICM 2010. LNCS,
vol. 6167, pp. 263–277. Springer (2010)

[7] Avenhaus, J., Denzinger, J., Fuchs, M.: DISCOUNT: A system for distributed
equational deduction. In: Hsiang, J. (ed.) RTA-95. LNCS, vol. 914, pp. 397–402.
Springer (1995)

[8] Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press (1998)

[9] Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with
selection and simplification. J. Log. Comput. 4(3), 217–247 (1994)

[10] Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 19–99.
Elsevier and MIT Press (2001)

[11] Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic paramodulation
and superposition. In: Kapur, D. (ed.) CADE-11. LNCS, vol. 607, pp. 462–476.
Springer (1992)

[12] Backes, J., Brown, C.E.: Analytic tableaux for higher-order logic with choice. J.
Autom. Reason. 47(4), 451–479 (2011)

[13] Barbosa, H., Reynolds, A., Ouraoui, D.E., Tinelli, C., Barrett, C.W.: Extending
SMT solvers to higher-order logic. In: Fontaine, P. (ed.) CADE-27. LNCS, vol.
11716, pp. 35–54. Springer (2019)

193

194 References

[14] Barrett, C.W., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: CAV 2011. LNCS, vol. 6806, pp. 171–177.
Springer (2011)

[15] Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstrac-
tion. In: Bonacina, M.P. (ed.) CADE-24. LNCS, vol. 7898, pp. 39–57. Springer
(2013)

[16] Becker, H., Blanchette, J.C., Waldmann, U., Wand, D.: A transfinite Knuth–
Bendix order for lambda-free higher-order terms. In: de Moura, L. (ed.) CADE-
26. LNCS, vol. 10395, pp. 432–453. Springer (2017)

[17] Beeson, M.: Lambda logic. In: Basin, D.A., Rusinowitch, M. (eds.) IJCAR 2004.
LNCS, vol. 3097, pp. 460–474. Springer (2004)

[18] Bentkamp, A.: Formalization of the embedding path order for lambda-free
higher-order terms. Archive of Formal Proofs (2018), http://isa-afp.org/
entries/Lambda_Free_EPO.html

[19] Benzmüller, C.: Extensional higher-order paramodulation and RUE-resolution.
In: Ganzinger, H. (ed.) CADE-16. LNCS, vol. 1632, pp. 399–413. Springer
(1999)

[20] Benzmüller, C., Kohlhase, M.: Extensional higher-order resolution. In: Kirch-
ner, C., Kirchner, H. (eds.) CADE-15. LNCS, vol. 1421, pp. 56–71. Springer
(1998)

[21] Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Siekmann,
J.H. (ed.) Computational Logic, Handbook of the History of Logic, vol. 9, pp.
215–254. Elsevier (2014)

[22] Benzmüller, C., Paulson, L.C.: Multimodal and intuitionistic logics in simple
type theory. Log. J. IGPL 18(6), 881–892 (2010)

[23] Benzmüller, C., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II—A cooperative
automatic theorem prover for higher-order logic. In: Armando, A., Baumgart-
ner, P., Dowek, G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 162–170. Springer
(2008)

[24] Benzmüller, C., Sultana, N., Paulson, L.C., Theiss, F.: The higher-order prover
LEO-II. J. Autom. Reason. 55(4), 389–404 (2015)

[25] Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Develop-
ment: Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science, Springer (2004)

[26] Bhayat, A.: Automated Theorem Proving in Higher-Order Logic. Ph.D. thesis,
University of Manchester (2020)

[27] Bhayat, A., Reger, G.: Restricted combinatory unification. In: Fontaine, P. (ed.)
CADE-27. LNCS, vol. 11716, pp. 74–93. Springer (2019)

http://isa-afp.org/entries/Lambda_Free_EPO.html
http://isa-afp.org/entries/Lambda_Free_EPO.html

References 195

[28] Bhayat, A., Reger, G.: A combinator-based superposition calculus for higher-
order logic. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020, Part I.
LNCS, vol. 12166, pp. 278–296. Springer (2020)

[29] Bhayat, A., Reger, G.: A polymorphic vampire - (short paper). In: Peltier, N.,
Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS, vol. 12167, pp. 361–368.
Springer (2020)

[30] Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomor-
phic and polymorphic types. Log. Meth. Comput. Sci. 12(4) (2016)

[31] Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards
QED. J. Formaliz. Reas. 9(1), 101–148 (2016)

[32] Blanchette, J.C., Paskevich, A.: TFF1: The TPTP typed first-order form with
rank-1 polymorphism. In: Bonacina, M.P. (ed.) CADE-24. LNCS, vol. 7898, pp.
414–420. Springer (2013)

[33] Blanchette, J.C., Waldmann, U., Wand, D.: A lambda-free higher-order recur-
sive path order. Tech. report, http://people.mpi-inf.mpg.de/~jblanche/
lambda_free_rpo_rep.pdf (2016)

[34] Blanchette, J.C., Waldmann, U., Wand, D.: A lambda-free higher-order recur-
sive path order. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS,
vol. 10203, pp. 461–479. Springer (2017)

[35] Blanqui, F.: Higher-order dependency pairs. CoRR abs/1804.08855 (2018)

[36] Blanqui, F., Jouannaud, J.P., Rubio, A.: The computability path ordering. Log.
Meth. Comput. Sci. 11(4) (2015)

[37] Bobot, F., Paskevich, A.: Expressing polymorphic types in a many-sorted
language. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS,
vol. 6989, pp. 87–102. Springer (2011)

[38] Bofill, M., Borralleras, C., Rodríguez-Carbonell, E., Rubio, A.: The recursive
path and polynomial ordering for first-order and higher-order terms. J. Log.
Comput. 23(1), 263–305 (2013)

[39] Bofill, M., Rubio, A.: Paramodulation with non-monotonic orderings and
simplification. J. Autom. Reason. 50(1), 51–98 (2013)

[40] Böhme, S., Nipkow, T.: Sledgehammer: Judgement Day. In: Giesl, J., Hähnle,
R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 107–121. Springer (2010)

[41] Brand, D.: Proving theorems with the modification method. SIAM J. Comput.
4, 412–430 (1975)

[42] Brown, C.E.: Satallax: An automatic higher-order prover. In: Gramlich,
B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 111–117.
Springer (2012)

http://people.mpi-inf.mpg.de/~jblanche/lambda_free_rpo_rep.pdf
http://people.mpi-inf.mpg.de/~jblanche/lambda_free_rpo_rep.pdf

196 References

[43] de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church–Rosser
theorem. Indag. Math 75(5), 381–392 (1972)

[44] Cervesato, I., Pfenning, F.: A linear spine calculus. J. Log. Comput. 13(5),
639–688 (2003)

[45] Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5(2),
56–68 (1940)

[46] Cruanes, S.: Extending Superposition with Integer Arithmetic, Structural
Induction, and Beyond. Ph.D. thesis, École polytechnique (2015)

[47] Cruanes, S.: Superposition with structural induction. In: Dixon, C., Finger, M.
(eds.) FroCoS 2017. LNCS, vol. 10483, pp. 172–188. Springer (2017)

[48] Czajka, Ł.: Improving automation in interactive theorem provers by efficient
encoding of lambda-abstractions. In: Avigad, J., Chlipala, A. (eds.) CPP 2016.
pp. 49–57. ACM (2016)

[49] Czajka, Ł., Kaliszyk, C.: Hammer for Coq: Automation for dependent type
theory. J. Autom. Reason. 61(1-4), 423–453 (2018)

[50] Dershowitz, N., Manna, Z.: Proving termination with multiset orderings.
Commun. ACM 22(8), 465–476 (1979)

[51] Digricoli, V.J., Harrison, M.C.: Equality-based binary resolution. J. ACM 33(2),
253–289 (1986)

[52] Dougherty, D.J.: Higher-order unification via combinators. Theor. Comput. Sci.
114(2), 273–298 (1993)

[53] Dowek, G.: Higher-order unification and matching. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. II, pp. 1009–1062.
Elsevier and MIT Press (2001)

[54] Dowek, G., Hardin, T., Kirchner, C.: Higher-order unification via explicit
substitutions (extended abstract). In: LICS ’95. pp. 366–374. IEEE (1995)

[55] Eguchi, N.: A lexicographic path order with slow growing derivation bounds.
Math. Log. Q. 55(2), 212–224 (2009)

[56] Ferreira, M.C.F., Zantema, H.: Well-foundedness of term orderings. In: Der-
showitz, N., Lindenstrauss, N. (eds.) CTRS-94. LNCS, vol. 968, pp. 106–123.
Springer (1994)

[57] Filliâtre, J., Paskevich, A.: Why3 - where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer
(2013)

[58] Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer-
Verlag, 2nd edn. (1996)

References 197

[59] Fitting, M.: Types, Tableaus, and Gödel’s God. Kluwer (2002)

[60] Fuhs, C., Kop, C.: A static higher-order dependency pair framework. In: Caires,
L. (ed.) ESOP 2019. LNCS, vol. 11423, pp. 752–782. Springer (2019)

[61] Ganzinger, H., Stuber, J.: Superposition with equivalence reasoning and
delayed clause normal form transformation. Information and Computation
199(1–2), 3–23 (2005)

[62] Ganzinger, H., Stuber, J.: Superposition with equivalence reasoning and
delayed clause normal form transformation. Inf. Comput. 199(1-2), 3–23 (2005)

[63] Giesl, J., Rubio, A., Sternagel, C., Waldmann, J., Yamada, A.: The termination
and complexity competition. In: Beyer, D., Huisman, M., Kordon, F., Steffen,
B. (eds.) TACAS 2019. LNCS, vol. 11429, pp. 156–166. Springer (2019)

[64] Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and
improving dependency pairs. J. Autom. Reason. 37(3), 155–203 (2006)

[65] Gonthier, G.: Formal proof—The four-color theorem. Notices of the AMS 55(11),
1382–1393 (2008)

[66] Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Le Roux,
S., Mahboubi, A., O’Connor, R., Biha, S.O., et al.: A machine-checked proof of
the odd order theorem. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.)
ITP 2013. LNCS, vol. 7998, pp. 163–179. Springer (2013)

[67] Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press (1993)

[68] Gupta, A., Kovács, L., Kragl, B., Voronkov, A.: Extensional crisis and proving
identity. In: Cassez, F., Raskin, J. (eds.) ATVA 2014. LNCS, vol. 8837, pp.
185–200. Springer (2014)

[69] Hales, T.C.: Developments in formal proofs. CoRR abs/1408.6474 (2014)

[70] Hales, T.C., Adams, M., Bauer, G., Dang, D.T., Harrison, J., Hoang, T.L.,
Kaliszyk, C., Magron, V., McLaughlin, S., Nguyen, T.T., Nguyen, T.Q., Nipkow,
T., Obua, S., Pleso, J., Rute, J.M., Solovyev, A., Ta, A.H.T., Tran, T.N., Trieu,
D.T., Urban, J., Vu, K.K., Zumkeller, R.: A formal proof of the Kepler conjecture.
CoRR abs/1501.02155 (2015)

[71] Henkin, L.: Completeness in the theory of types. J. Symb. Log. 15(2), 81–91
(1950)

[72] Hirokawa, N., Middeldorp, A., Zankl, H.: Uncurrying for termination and
complexity. J. Autom. Reason. 50(3), 279–315 (2013)

[73] Huet, G.P.: A mechanization of type theory. In: Nilsson, N.J. (ed.) IJCAI-73.
pp. 139–146. William Kaufmann (1973)

198 References

[74] Huet, G.P.: A unification algorithm for typed lambda-calculus. Theor. Comput.
Sci. 1(1), 27–57 (1975)

[75] Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In:
Archer, M., Di Vito, B., Muñoz, C. (eds.) Design and Application of Strate-
gies/Tactics in Higher Order Logics. pp. 56–68. NASA Technical Reports (2003)

[76] Jensen, D.C., Pietrzykowski, T.: Mechanizing ω-order type theory through
unification. Theor. Comput. Sci. 3(2), 123–171 (1976)

[77] Jouannaud, J.P., Rubio, A.: Rewrite orderings for higher-order terms in eta-
long beta-normal form and recursive path ordering. Theor. Comput. Sci. 208(1–
2), 33–58 (1998)

[78] Jouannaud, J.P., Rubio, A.: Polymorphic higher-order recursive path orderings.
J. ACM 54(1), 2:1–2:48 (2007)

[79] Kaliszyk, C., Sutcliffe, G., Rabe, F.: TH1: The TPTP typed higher-order form
with rank-1 polymorphism. In: Fontaine, P., Schulz, S., Urban, J. (eds.) PAAR-
2016. CEUR Workshop Proceedings, vol. 1635, pp. 41–55. CEUR-WS.org (2016)

[80] Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck.
J. Autom. Reason. 53(2), 173–213 (2014)

[81] Kaliszyk, C., Urban, J.: HOL(y)Hammer: Online ATP service for HOL Light.
Math. Comput. Sci. 9(1), 5–22 (2015)

[82] Kamin, S., Lévy, J.J.: Two generalizations of the recursive path ordering.
Unpublished manuscript, University of Illinois (1980)

[83] Kennaway, R., Klop, J.W., Sleep, M.R., de Vries, F.: Comparing curried and
uncurried rewriting. J. Symb. Comput. 21(1), 15–39 (1996)

[84] Kerber, M.: How to prove higher order theorems in first order logic. In: My-
lopoulos, J., Reiter, R. (eds.) IJCAI-91. pp. 137–142. Morgan Kaufmann (1991)

[85] Kőnig, D.: Über eine Schlussweise aus dem Endlichen ins Unendliche. Acta
Sci. Math. (Szeged) 3499/2009(3:2–3), 121–130 (1927)

[86] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: formal verification of an OS kernel. In: Matthews, J.N.,
Anderson, T.E. (eds.) SOSP 2009. pp. 207–220. ACM (2009)

[87] Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In:
Leech, J. (ed.) Computational Problems in Abstract Algebra. pp. 263–297.
Pergamon Press (1970)

[88] Kohlhase, M.: Higher-order tableaux. In: Baumgartner, P., Hähnle, R.,
Posegga, J. (eds.) TABLEAUX ’95. LNCS, vol. 918, pp. 294–309. Springer
(1995)

References 199

[89] Konrad, K.: HOT: A concurrent automated theorem prover based on higher-
order tableaux. In: Grundy, J., Newey, M.C. (eds.) TPHOLs ’98. LNCS,
vol. 1479, pp. 245–261. Springer (1998)

[90] Kop, C.: Higher Order Termination: Automatable Techniques for Proving
Termination of Higher-Order Term Rewriting Systems. Ph.D. thesis, Vrije
Universiteit Amsterdam (2012)

[91] Kop, C., van Raamsdonk, F.: A higher-order iterative path ordering. In: LPAR
2008. pp. 697–711 (2008)

[92] Kotelnikov, E., Kovács, L., Suda, M., Voronkov, A.: A clausal normal form
translation for FOOL. In: Benzmüller, C., Sutcliffe, G., Rojas, R. (eds.) GCAI
2016. EPiC, vol. 41, pp. 53–71. EasyChair (2016)

[93] Kotelnikov, E., Kovács, L., Voronkov, A.: A first class Boolean sort in first-order
theorem proving and TPTP. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F.,
Sorge, V. (eds.) CICM 2015. LNCS, vol. 9150, pp. 71–86. Springer (2015)

[94] Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer
(2013)

[95] Kusakari, K.: On proving termination of term rewriting systems with higher-
order variables. IPSJ Transactions on Programming 42(7), 35–45 (2001)

[96] Kusakari, K., Sakai, M.: Static dependency pair method for simply-typed term
rewriting and related techniques. IEICE Transactions 92-D(2), 235–247 (2009)

[97] Leivant, D.: Higher order logic. In: Gabbay, D.M., Hogger, C.J., Robinson,
J.A., Siekmann, J.H. (eds.) Handbook of Logic in Artificial Intelligence and
Logic Programming, Volume 2, Deduction Methodologies, pp. 229–322. Oxford
University Press (1994)

[98] Leroy, X.: Formal verification of a realistic compiler. Communications of the
ACM 52(7), 107–115 (2009)

[99] Libal, T.: Regular patterns in second-order unification. In: Felty, A.P., Middel-
dorp, A. (eds.) CADE-25. LNCS, vol. 9195, pp. 557–571. Springer (2015)

[100] Lifantsev, M., Bachmair, L.: An LPO-based termination ordering for higher-
order terms without λ-abstraction. In: Grundy, J., Newey, M.C. (eds.) TPHOLs
’98. LNCS, vol. 1479, pp. 277–293. Springer (1998)

[101] Lindblad, F.: A focused sequent calculus for higher-order logic. In: Demri, S.,
Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 61–75.
Springer (2014)

[102] Löchner, B.: Things to know when implementing KBO. J. Autom. Reason.
36(4), 289–310 (2006)

200 References

[103] Löchner, B.: Things to know when implementing LPO. Internat. J. Artificial
Intelligence Tools 15(1), 53–80 (2006)

[104] Ludwig, M., Waldmann, U.: An extension of the Knuth-Bendix ordering with
LPO-like properties. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS,
vol. 4790, pp. 348–362. Springer (2007)

[105] Mayr, R., Nipkow, T.: Higher-order rewrite systems and their confluence. Theor.
Comput. Sci. 192(1), 3–29 (1998)

[106] Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses.
J. Autom. Reason. 40(1), 35–60 (2008)

[107] Miller, D.A.: A compact representation of proofs. Studia Logica 46(4), 347–370
(1987)

[108] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

[109] Nummelin, V., Bentkamp, A., Tourret, S., Vukmirović, P.: Superposition with
first-class Booleans and inprocessing clausification, submitted

[110] Obermeyer, F.H.: Automated Equational Reasoning in Nondeterministic λ-
Calculi Modulo Theories H ∗. Ph.D. thesis, Carnegie Mellon University (2009)

[111] Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer,
a practical link between automatic and interactive theorem provers. In: Sut-
cliffe, G., Schulz, S., Ternovska, E. (eds.) IWIL-2010. EPiC, vol. 2, pp. 1–11.
EasyChair (2012)

[112] Peltier, N.: A variant of the superposition calculus. Archive of Formal Proofs
(2016), https://www.isa-afp.org/entries/SuperCalc.shtml

[113] Reich, J.S., Naylor, M., Runciman, C.: Advances in Lazy SmallCheck. In:
Hinze, R. (ed.) IFL. LNCS, vol. 8241, pp. 53–70. Springer (2012)

[114] Robinson, J.: Mechanizing higher order logic. In: Meltzer, B., Michie, D. (eds.)
Machine Intelligence, vol. 4, pp. 151–170. Edinburgh University Press (1969)

[115] Robinson, J.: A note on mechanizing higher order logic. In: Meltzer, B., Michie,
D. (eds.) Machine Intelligence, vol. 5, pp. 121–135. Edinburgh University Press
(1970)

[116] Schmidt-Schauß, M.: Unification in a combination of arbitrary disjoint equa-
tional theories. J. Symb. Comput. 8, 51–99 (1989)

[117] Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2-3), 111–126 (2002)

[118] Schulz, S.: Fingerprint indexing for paramodulation and rewriting. In: Gram-
lich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 477–483.
Springer (2012)

https://www.isa-afp.org/entries/SuperCalc.shtml

References 201

[119] Schulz, S.: System description: E 1.8. In: McMillan, K.L., Middeldorp, A.,
Voronkov, A. (eds.) LPAR-19. LNCS, vol. 8312, pp. 735–743. Springer (2013)

[120] Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In:
Fontaine, P. (ed.) CADE-27. LNCS, vol. 11716, pp. 495–507. Springer (2019)

[121] Schulz, S., Sutcliffe, G., Urban, J., Pease, A.: Detecting inconsistencies in
large first-order knowledge bases. In: de Moura, L. (ed.) CADE-26. LNCS, vol.
10395, pp. 310–325. Springer (2017)

[122] Snyder, W.: Higher order E-unification. In: Stickel, M.E. (ed.) CADE-10. LNCS,
vol. 449, pp. 573–587. Springer (1990)

[123] Snyder, W., Gallier, J.H.: Higher-order unification revisited: Complete sets of
transformations. J. Symb. Comput. 8(1/2), 101–140 (1989)

[124] Snyder, W., Lynch, C.: Goal directed strategies for paramodulation. In: Book,
R.V. (ed.) RTA-91. LNCS, vol. 488, pp. 150–161. Springer (1991)

[125] Steen, A.: Extensional Paramodulation for Higher-order Logic and Its Ef-
fective Implementation Leo-III. Dissertationen zur künstlichen Intelligenz,
Akademische Verlagsgesellschaft AKA GmbH (2018)

[126] Steen, A., Benzmüller, C.: The higher-order prover Leo-III. In: Galmiche, D.,
Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS, vol. 10900, pp. 108–116.
Springer (2018)

[127] Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A cross-community infrastruc-
ture for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR
2014. LNCS, vol. 8562, pp. 367–373. Springer (2014)

[128] Sultana, N., Blanchette, J.C., Paulson, L.C.: LEO-II and Satallax on the
Sledgehammer test bench. J. Applied Logic 11(1), 91–102 (2013)

[129] Sutcliffe, G.: The CADE-26 automated theorem proving system competition—
CASC-26. AI Commun. 30(6), 419–432 (2017)

[130] Sutcliffe, G.: The TPTP problem library and associated infrastructure—from
CNF to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)

[131] Sutcliffe, G., Benzmüller, C., Brown, C.E., Theiss, F.: Progress in the develop-
ment of automated theorem proving for higher-order logic. In: Schmidt, R.A.
(ed.) CADE-22. LNCS, vol. 5663, pp. 116–130. Springer (2009)

[132] Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed
first-order form with arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18.
LNCS, vol. 7180, pp. 406–419. Springer (2012)

[133] Terese: Term rewriting systems, Cambridge tracts in theoretical computer
science, vol. 55. Cambridge University Press (2003)

202 References

[134] Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar
formalizations. J. Autom. Reason. 50(2), 229–241 (2013)

[135] Väänänen, J.: Second-order and higher-order logic. In: Zalta, E.N. (ed.) The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford
University, fall 2019 edn. (2019)

[136] Vukmirović, P., Bentkamp, A., Nummelin, V.: Efficient full higher-order unifi-
cation. In: Ariola, Z.M. (ed.) FSCD 2020. LIPIcs, vol. 167, pp. 5:1–5:17. Schloss
Dagstuhl—Leibniz-Zentrum für Informatik (2020)

[137] Vukmirović, P., Blanchette, J.C., Cruanes, S., Schulz, S.: Extending a brainiac
prover to lambda-free higher-order logic. In: Vojnar, T., Zhang, L. (eds.) TACAS
2019. LNCS, vol. 11427, pp. 192–210. Springer (2019)

[138] Vukmirović, P., Nummelin, V.: Boolean reasoning in a higher-order superposi-
tion prover. In: Fontaine, P., Korovin, K., Kotsireas, I.S., Rümmer, P., Tourret,
S. (eds.) PAAR-2020. CEUR Workshop Proceedings, vol. 2752, pp. 148–166.
CEUR-WS.org (2020)

[139] Vukmirović, P., Blanchette, J., Cruanes, S., Schulz, S.: Extending a brainiac
prover to lambda-free higher-order logic. In: Vojnar, T., Zhang, L. (eds.) TACAS
2019. LNCS, vol. 11427, pp. 192–210. Springer (2019)

[140] Waldmann, U., Tourret, S., Robillard, S., Blanchette, J.: A comprehen-
sive framework for saturation theorem proving. In: Peltier, N., Sofronie-
Stokkermans, V. (eds.) IJCAR 2020, Part I. LNCS, vol. 12166, pp. 316–334.
Springer (2020)

[141] Wand, D.: Superposition: Types and Polymorphism. Ph.D. thesis, Universität
des Saarlandes (2017)

[142] Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski,
P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp.
140–145. Springer (2009)

[143] Zantema, H.: Termination. In: Bezem, M., Klop, J.W., de Vrijer, R. (eds.)
Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Science,
vol. 55, pp. 181–259. Cambridge University Press (2003)

Titles in the IPA Dissertation Series since 2018

A. Amighi. Specification and Verifica-
tion of Synchronisation Classes in Java:
A Practical Approach. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2018-01

S. Darabi. Verification of Program Par-
allelization. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2018-02

J.R. Salamanca Tellez. Coequations
and Eilenberg-type Correspondences.
Faculty of Science, Mathematics and
Computer Science, RU. 2018-03

P. Fiterău-Broştean. Active Model
Learning for the Analysis of Network
Protocols. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2018-04

D. Zhang. From Concurrent State Ma-
chines to Reliable Multi-threaded Java
Code. Faculty of Mathematics and Com-
puter Science, TU/e. 2018-05

H. Basold. Mixed Inductive-
Coinductive Reasoning Types, Pro-
grams and Logic. Faculty of Science,
Mathematics and Computer Science,
RU. 2018-06

A. Lele. Response Modeling: Model Re-
finements for Timing Analysis of Run-
time Scheduling in Real-time Streaming
Systems. Faculty of Mathematics and
Computer Science, TU/e. 2018-07

N. Bezirgiannis. Abstract Behavioral
Specification: unifying modeling and
programming. Faculty of Mathematics
and Natural Sciences, UL. 2018-08

M.P. Konzack. Trajectory Analysis:
Bridging Algorithms and Visualization.
Faculty of Mathematics and Computer
Science, TU/e. 2018-09

E.J.J. Ruijters. Zen and the art of rail-
way maintenance: Analysis and opti-
mization of maintenance via fault trees
and statistical model checking. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2018-10

F. Yang. A Theory of Executability: with
a Focus on the Expressivity of Process
Calculi. Faculty of Mathematics and
Computer Science, TU/e. 2018-11

L. Swartjes. Model-based design of
baggage handling systems. Faculty of
Mechanical Engineering, TU/e. 2018-12

T.A.E. Ophelders. Continuous Simi-
larity Measures for Curves and Surfaces.
Faculty of Mathematics and Computer
Science, TU/e. 2018-13

M. Talebi. Scalable Performance Anal-
ysis of Wireless Sensor Network. Faculty
of Mathematics and Computer Science,
TU/e. 2018-14

R. Kumar. Truth or Dare: Quan-
titative security analysis using attack
trees. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2018-15

M.M. Beller. An Empirical Evaluation
of Feedback-Driven Software Develop-
ment. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2018-16

M. Mehr. Faster Algorithms for Ge-
ometric Clustering and Competitive
Facility-Location Problems. Faculty of
Mathematics and Computer Science,
TU/e. 2018-17

M. Alizadeh. Auditing of User Behav-
ior: Identification, Analysis and Un-
derstanding of Deviations. Faculty of
Mathematics and Computer Science,
TU/e. 2018-18

P.A. Inostroza Valdera. Structuring
Languages as Object-Oriented Libraries.
Faculty of Science, UvA. 2018-19

M. Gerhold. Choice and Chance -
Model-Based Testing of Stochastic Be-
haviour. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2018-20

A. Serrano Mena. Type Error
Customization for Embedded Domain-
Specific Languages. Faculty of Science,
UU. 2018-21

S.M.J. de Putter. Verification of
Concurrent Systems in a Model-Driven
Engineering Workflow. Faculty of
Mathematics and Computer Science,
TU/e. 2019-01

S.M. Thaler. Automation for Informa-
tion Security using Machine Learning.
Faculty of Mathematics and Computer
Science, TU/e. 2019-02

Ö. Babur. Model Analytics and Man-
agement. Faculty of Mathematics and
Computer Science, TU/e. 2019-03

A. Afroozeh and A. Izmaylova. Prac-
tical General Top-down Parsers. Faculty
of Science, UvA. 2019-04

S. Kisfaludi-Bak. ETH-Tight Algo-
rithms for Geometric Network Problems.
Faculty of Mathematics and Computer
Science, TU/e. 2019-05

J. Moerman. Nominal Techniques and
Black Box Testing for Automata Learn-
ing. Faculty of Science, Mathematics
and Computer Science, RU. 2019-06

V. Bloemen. Strong Connectivity
and Shortest Paths for Checking Mod-
els. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2019-07

T.H.A. Castermans. Algorithms for Vi-
sualization in Digital Humanities. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2019-08

W.M. Sonke. Algorithms for River Net-
work Analysis. Faculty of Mathematics
and Computer Science, TU/e. 2019-09

J.J.G. Meijer. Efficient Learning and
Analysis of System Behavior. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2019-10

P.R. Griffioen. A Unit-Aware Matrix
Language and its Application in Con-
trol and Auditing. Faculty of Science,
UvA. 2019-11

A.A. Sawant. The impact of API evo-
lution on API consumers and how this
can be affected by API producers and
language designers. Faculty of Electri-
cal Engineering, Mathematics, and Com-
puter Science, TUD. 2019-12

W.H.M. Oortwijn. Deductive Tech-
niques for Model-Based Concurrency
Verification. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2019-13

M.A. Cano Grijalba. Session-Based
Concurrency: Between Operational and
Declarative Views. Faculty of Science
and Engineering, RUG. 2020-01

T.C. Nägele. CoHLA: Rapid Co-
simulation Construction. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2020-02

R.A. van Rozen. Languages of Games
and Play: Automating Game Design &
Enabling Live Programming. Faculty of
Science, UvA. 2020-03

B. Changizi. Constraint-Based Analy-
sis of Business Process Models. Faculty
of Mathematics and Natural Sciences,
UL. 2020-04

N. Naus. Assisting End Users in
Workflow Systems. Faculty of Science,
UU. 2020-05

J.J.H.M. Wulms. Stability of Geomet-
ric Algorithms. Faculty of Mathematics
and Computer Science, TU/e. 2020-06

T.S. Neele. Reductions for Parity
Games and Model Checking. Faculty
of Mathematics and Computer Science,
TU/e. 2020-07

P. van den Bos. Coverage and Games
in Model-Based Testing. Faculty of Sci-
ence, RU. 2020-08

M.F.M. Sondag. Algorithms for Coher-
ent Rectangular Visualizations. Faculty
of Mathematics and Computer Science,
TU/e. 2020-09

D.Frumin. Concurrent Separation Log-
ics for Safety, Refinement, and Security.
Faculty of Science, Mathematics and
Computer Science, RU. 2021-01

A. Bentkamp. Superposition for
Higher-Order Logic. Faculty of Sci-
ences, Department of Computer Science,
VUA. 2021-02

	Summary
	Samenvatting
	Acknowledgements
	Introduction
	Motivation
	Contributions
	Related Work
	Implementations
	Publications
	Structure of This Thesis

	Preliminaries
	First-Order Logic
	The Superposition Calculus
	Clausal Normal Form
	The Term Order
	The Inference Rules
	Redundancy and Simplification

	Term Rewriting

	Superposition for Lambda-Free Higher-Order Logic
	Introduction
	Logic
	Syntax
	Semantics

	The Calculi
	The Inference Rules
	Rationale for the Inference Rules
	Soundness
	The Redundancy Criterion
	Simplification Rules

	Refutational Completeness
	Outline of the Proof
	The Ground First-Order Level
	The Ground Higher-Order Level
	The Nonground Higher-Order Level

	Implementation
	Evaluation
	Discussion and Related Work
	Conclusion

	The Embedding Path Order for Lambda-Free Higher-Order Terms
	Introduction
	Preliminaries
	Extension Operators
	The Order
	Properties of the Order
	Examples
	Implementation
	Evaluation
	Conclusion

	Superposition with Lambdas
	Introduction
	Logic
	The Calculus
	The Core Inference Rules
	Rationale for the Rules
	Soundness
	The Redundancy Criterion
	A Derived Term Order

	Refutational Completeness
	Outline of the Proof
	The Ground Higher-Order Level
	The Nonground Higher-Order Level

	Extensions
	Implementation
	Evaluation
	Conclusion

	Superposition with Interpreted Booleans
	Introduction
	Logic
	The Calculus
	Parameters of Our Calculus
	The Inference Rules

	Refutational Completeness
	Viewing Term Rewriting Systems as Interpretations
	Construction of the Candidate Model
	Reduction of Counterexamples

	Conclusion

	Superposition for Full Higher-Order Logic
	Introduction
	Logic
	The Calculus
	Preprocessing
	Term Orders and Selection Functions
	The Core Inference Rules
	Rationale for the Rules
	Soundness
	The Redundancy Criterion
	Simplification Rules
	A Concrete Term Order

	Refutational Completeness
	Outline of the Proof
	The Ground First-Order Level
	The Ground Higher-Order Level
	The Nonground Higher-Order Level

	Clausification
	Implementation
	Evaluation
	Conclusion

	Conclusion
	Results and Impact
	Future Work

	References

