
Zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften (Dr. rer. pol.)

von der Fakultät für Wirtschaftswissenschaften
der Universität Fridericiana zu Karlsruhe

genehmigte Dissertation.

Reasoning in Description Logics using
Resolution and Deductive Databases

M.Sc. Boris Motik

Tag der mündlichen Prüfung: 09. Januar 2006
Referent:

Prof. Dr. Rudi Studer, Universität Karlsruhe (TH)
Korreferentin 1:

Dr. habil. Ulrike Sattler, University of Manchester
Korreferent 2:

Prof. Dr. Karl-Heinz Waldmann, Universität Karlsruhe (TH)

2006 Karlsruhe

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197563899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Abstract

Description logics (DLs) are knowledge representation formalisms with well-understood
model-theoretic semantics and computational properties. The DL SHIQ(D) provides
the logical underpinning for the family of Semantic Web ontology languages. Metadata
management applications, such as the Semantic Web, often require reasoning with large
quantities of assertional information; however, existing algorithms for DL reasoning
have been optimized mainly for efficient terminological reasoning. Although techniques
for terminological reasoning can be used for assertional reasoning as well, they often
do not exhibit good performance in practice.

Deductive databases are knowledge representation systems specifically designed to
efficiently reason with large data sets. To see if deductive database techniques can
be used to optimize assertional reasoning in DLs, we studied the relationship between
the two formalisms. Our main result is a novel algorithm that reduces a SHIQ(D)
knowledge base KB to a disjunctive datalog program DD(KB) such that KB and
DD(KB) entail the same set of ground facts. In this way, we allow DL reasoning to be
performed in DD(KB) using known, optimized algorithms.

The reduction algorithm is based on several novel results. In particular, we devel-
oped a resolution-based algorithm for deciding satisfiability of SHIQ knowledge bases.
Furthermore, to enable representation of concrete data, such as strings or integers, we
developed a general approach for reasoning with concrete domains in the framework of
resolution, and we use it to extend our algorithms to SHIQ(D). For unary coding of
numbers, these algorithms run in exponential time, and are thus worst-case optimal.

These results allowed us to derive tighter data complexity bounds. Namely, assum-
ing that the size of the assertional knowledge dominates the size of the terminological
knowledge, the reduction algorithm runs in nondeterministic polynomial time; further-
more, if disjunctions are not used, it runs in deterministic polynomial time.

Finally, we extended these algorithms in several ways. First, we showed that so-
called DL-safe rules can be combined with disjunctive programs obtained by the re-
duction to increase the expressivity of the logic, without affecting decidability. Second,
we derived an algorithm for answering conjunctive queries. Third, we extended the
algorithms to support metamodeling.

To estimate the practicability of our algorithms, we implemented KAON2—a new
DL reasoning system. Our experiments show a performance increase in query answer-
ing over existing DL systems of one or more orders of magnitude.

iii

iv

Contents

I Foundations 1

1 Introduction 3

2 Preliminary Definitions 9
2.1 Multi-Sorted First-Order Logic . 9
2.2 Relations and Orderings . 13
2.3 Rewrite Systems . 14
2.4 Ordered Resolution . 14
2.5 Basic Superposition . 16
2.6 Splitting . 23
2.7 Disjunctive Datalog . 24

3 Introduction to Description Logics 27
3.1 The Description Logic SHIQ . 27

3.1.1 Example . 33
3.2 Description Logics with Concrete Domains 35

3.2.1 Concrete Domains . 36
3.2.2 The Description Logic SHIQ(D) 37
3.2.3 Example . 39

II From Description Logics to Disjunctive Datalog 41

4 Reduction Algorithm at a Glance 43
4.1 The Main Difficulty in Reducing DLs to Datalog 43
4.2 The General Idea . 44
4.3 Translating KB into Clauses . 45
4.4 Deciding Satisfiability of Ξ(KB) by R 47
4.5 Translating ALC to Disjunctive Datalog 50
4.6 Examples . 52
4.7 Extending the Algorithms to SHIQ(D) 55
4.8 Discussion . 56

4.8.1 Independence of the Reduction and the Query 56

v

vi CONTENTS

4.8.2 Minimal vs. Arbitrary Models . 56
4.8.3 Complexity . 57
4.8.4 Descriptive vs. Minimal-Model Semantics 58
4.8.5 Unique Name Assumption . 59
4.8.6 The Size of DD(KB) . 60
4.8.7 The Benefits of Reducing DLs to Disjunctive Datalog 61

5 Deciding SHIQ by Basic Superposition 63
5.1 Decision Procedure Overview . 63
5.2 Eliminating Transitivity Axioms . 65
5.3 Deciding ALCHIQ− . 68

5.3.1 Preprocessing . 68
5.3.2 Parameters for Basic Superposition 70
5.3.3 Closure of ALCHIQ−-Closures under Inferences by BSDL 71
5.3.4 Termination and Complexity Analysis 77

5.4 Removing the Restriction to Very Simple Roles 79
5.4.1 Transformation by Decomposition 80
5.4.2 Deciding ALCHIQ by Decomposition 85
5.4.3 Safe Role Expressions . 87

5.5 Example . 91
5.6 Related Work . 96

6 Reasoning with a Concrete Domain 99
6.1 Resolution with a Concrete Domain . 100

6.1.1 Preliminaries . 100
6.1.2 d-Satisfiability . 101
6.1.3 Concrete Domain Resolution with Ground Clauses 103
6.1.4 Most General Partitioning Unifiers 107
6.1.5 Concrete Domain Resolution with General Clauses 108
6.1.6 Deleting D-Tautologies . 110
6.1.7 Combining Concrete Domains with Other Resolution Calculi . . 112

6.2 Deciding SHIQ(D) . 113
6.2.1 Closures with Concrete Predicates 114
6.2.2 Closure of ALCHIQ(D)-Closures under Inferences 115
6.2.3 Termination and Complexity Analysis 116

6.3 Example . 118
6.4 Related Work . 120

7 Reducing Description Logics to Disjunctive Datalog 123
7.1 Overview . 123
7.2 Eliminating Function Symbols . 124
7.3 Removing Irrelevant Clauses . 130
7.4 Reduction to Disjunctive Datalog . 131

CONTENTS vii

7.5 Equality Reasoning in DD(KB) . 132
7.6 Answering Queries in DD(KB) . 134
7.7 Example . 137
7.8 Related Work . 145

8 Data Complexity of Reasoning 147
8.1 Data Complexity of Satisfiability . 148
8.2 A Horn Fragment of SHIQ(D) . 150
8.3 Discussion . 156
8.4 Related Work . 157

III Extensions 159

9 Integrating Description Logics with Rules 161
9.1 Reasons for Undecidability of SHIQ(D) with Rules 162
9.2 Combining Description Logics and Rules 164
9.3 DL-Safety Restriction . 165
9.4 Expressivity of DL-Safe Rules . 166
9.5 Query Answering for DL-Safe Rules . 168
9.6 Related Work . 170

10 Answering Conjunctive Queries 173
10.1 Definition of Conjunctive Queries . 173
10.2 Answering Conjunctive Queries . 175
10.3 Deciding Conjunctive Query Containment 180
10.4 Related Work . 181

11 The Semantics of Metamodeling 183
11.1 Undecidability of Metamodeling in OWL-Full 184
11.2 Extending DLs with Decidable Metamodeling 188

11.2.1 Metamodeling Semantics for ALCHIQ(D) 188
11.2.2 Deciding ν-Satisfiability . 191
11.2.3 Metamodeling and Transitivity 195

11.3 Expressivity of Metamodeling . 197
11.4 Related Work . 198

IV Practical Considerations 201

12 Implementation of KAON2 203
12.1 KAON2 Architecture . 203
12.2 Ontology Clausification . 204

12.2.1 Reusing Replacement Predicates 205

viii CONTENTS

12.2.2 Optional Positions . 205
12.2.3 Handling Functional Roles . 207
12.2.4 Discussion . 207

12.3 The Theorem Prover for BS . 208
12.3.1 Inference Loop . 209
12.3.2 Representing ALCHIQ-Closures 209
12.3.3 Inference Rules . 211
12.3.4 Redundancy Elimination Rules 211
12.3.5 Optimizing Number Restrictions 214
12.3.6 Tuning the Calculus Parameters 214
12.3.7 Choosing the Given Closure . 215
12.3.8 Indexing Terms and Closures . 215

12.4 Disjunctive Datalog Engine . 217
12.4.1 Magic Sets . 218
12.4.2 Bottom-Up Saturation . 219

13 Performance Evaluation 221
13.1 Test Setting . 221
13.2 Test Ontologies . 223
13.3 Querying Large ABoxes . 225

13.3.1 VICODI . 225
13.3.2 SEMINTEC . 226
13.3.3 LUBM . 226
13.3.4 Wine . 228

13.4 TBox Reasoning . 228

14 Conclusion 231

List of Figures

9.1 Two Similar Models . 163

11.1 Grid Structure in a Model of KBD . 187
11.2 π- and ν-models of the Example Knowledge Base 191

12.1 KAON2 Architecture . 204

13.1 VICODI Ontology Test Results . 225
13.2 SEMINTEC Ontology Test Results . 226
13.3 LUBM Ontology Test Results . 227
13.4 Wine Ontology Test Results . 228
13.5 TBox Test Results . 229

ix

x LIST OF FIGURES

List of Tables

3.1 Semantics of SHIQ by Mapping to FOL 30
3.2 Direct Model-Theoretic Semantics of SHIQ 31
3.3 Example Terminology Used in ACME’s Catalog 34
3.4 Semantics of SHIQ(D) by Mapping to FOL 39
3.5 Direct Model-Theoretic Semantics of SHIQ(D) 40

4.1 Clause Types after Preprocessing . 47
4.2 Types of ALC-Clauses . 49
4.3 Possible Inferences by RDL on ALC-Clauses 50

5.1 Closure Types after Preprocessing . 70
5.2 Types of ALCHIQ−-Closures . 72
5.3 Semantics of Role Expressions . 88

6.1 Closures after Preprocessing Stemming from Concrete Datatypes 114
6.2 Types of ALCHIQ(D)-Closures . 115

8.1 Definitions of pl+ and pl− . 152

9.1 Example Knowledge Base . 162
9.2 Example with DL-Safe Rules . 167

11.1 Semantics of ALC-Full . 185
11.2 Two Semantics for SHIQ(D) with Metamodeling 190
11.3 Semantics of Metamodeling by Mapping into First-Order Logic 192

13.1 Statistics of Test Ontologies . 223

xi

xii LIST OF TABLES

Part I

Foundations

1

Chapter 1

Introduction

Description Logics (DLs) are a family of knowledge representation formalisms that
allow representation of domain knowledge and reasoning with it in a formally well-
understood way. The first description logic KL-ONE [24] was proposed in order to
address the deficiencies of semantic networks [111] and frame-based knowledge rep-
resentation systems [94]. KL-ONE is based on a model-theoretic semantics, which
provides a formal foundation for the vague and imprecise semantics of earlier systems.

Although there are DLs that do not fall into this category, most DLs are fragments
of first-order logic. A description logic terminology (also called a TBox) describes
concepts (that is, unary predicates representing sets of individuals) and roles (that is,
binary predicates representing links between individuals). Concepts can be atomic,
which means that they are denoted by name, or complex, built using constructors
that specify necessary and sufficient conditions for concept membership. Apart from
a terminology, a description logic knowledge base usually has an assertional compo-
nent (also called an ABox), which specifies the membership of individuals or pairs of
individuals in concepts and roles, respectively. Historically, the fundamental reasoning
problem in description logics is to determine whether one concept subsumes another,
which is the case if the extension of the former necessarily includes the extension of the
latter concept. Apart from subsumption, other reasoning problems, such as checking
satisfiability of a knowledge base or retrieving concept individuals, are also important
in many applications.

Soon after KL-ONE was introduced, the subsumption problem for KL-ONE con-
cepts was found to be undecidable [130]. From this point on, a large body of description
logic research focused on investigating the fundamental trade-offs between expressivity
and computational complexity. This line of research culminated in a detailed taxonomy
of complexity and undecidability results for various DLs; an overview can be found in
[4, Chapter 5].

In parallel, an important goal of description logic research was to develop practical
reasoning algorithms and to implement them in practical knowledge representation
and reasoning systems. Initially, reasoning algorithms were based on structural sub-
sumption. Roughly speaking, such algorithms transform each concept description to

3

4 1. Introduction

a certain normal form; the structures of normal forms are then compared to decide
concept subsumption. After initial experiments with systems based on structural sub-
sumption, such as CLASSIC [22] and LOOM [91], it became evident that sound and
complete structural subsumption algorithms are possible only for inexpressive logics.

As a reaction to these deficiencies, tableau algorithms were proposed in [131] as
an alternative for description logic reasoning. A tableau algorithm demonstrates sat-
isfiability of a knowledge base by trying to build a model.1 If such a model can be
built, the knowledge base is evidently satisfiable, and if it cannot, the knowledge base
is unsatisfiable. Most other reasoning problems can be reduced to satisfiability check-
ing. Tableau algorithms have been built for very expressive logics, so that they are
nowadays considered the state of the art for DL reasoning.
SHIQ [73] is a very expressive description logic, which, apart from the usual

Boolean operations on concepts and existential and universal quantification on roles,
supports advanced features, such as inverse and transitive roles, role hierarchies, and
number restrictions. SHIQ(D) is an extension of SHIQ with datatypes—a simplified
variant of concrete domains [5]—, which allow reasoning with concrete data, such as
strings or integers. A tableau algorithm for SHIQ was presented in [73, 74], and it can
be easily extended with datatypes in the same way as this was done for the related logic
SHOQ(D) [70]. SHIQ(D) is important, since it provides the basis of OWL-DL [106]—
a W3C recommendation language for ontology representation in the Semantic Web.
Namely, OWL-DL is a notational variant of the SHOIN (D) description logic, which
differs from SHIQ(D) mainly by supporting nominals—singleton concepts containing
only the specified individual.

Reasoning in SHIQ is ExpTime-complete [144]. Moreover, tableau algorithms
for SHIQ run in 2NExpTime. Because of their high worst-case complexity, effective
optimization techniques are essential to make tableau algorithms usable in practice.
Numerous optimization techniques were presented in [66], along with practical evidence
of their usefulness. These techniques were implemented in the SHIQ reasoner FaCT
[67], allowing the latter to be successfully applied to practical problems. Another state-
of-the-art reasoner for SHIQ(D) is Racer [59], distinguished from FaCT mainly by
supporting assertional knowledge. The reasoner Pellet [105] was implemented recently
with the goal of faithfully realizing all the intricacies of the OWL-DL standard.

Description logics were successfully applied to numerous problems, such as informa-
tion integration [4, Chapter 16] [85, 19, 51], software engineering [4, Chapter 11], and
conceptual modeling [4, Chapter 10] [31]. The performance of reasoning algorithms
was found to be quite adequate for applications mainly requiring terminological rea-
soning. However, new applications, such as metadata management in the Semantic
Web, require efficient query answering over large ABoxes. So far, attempts have been
made to answer queries by a reduction to ABox consistency checking, which can be
performed using tableau algorithms. From a theoretical point of view, this approach

1For some logics, tableau algorithms actually build finite abstractions of possibly infinite models.

5

is quite elegant, but from a practical point of view, it has a significant drawback: as
the number of ABox individuals increases, the performance becomes quite poor.

We believe that there are two main reasons why tableau algorithms scale poorly to
ABox reasoning. First, tableau algorithms treat all individuals separately: to answer
a query, a tableau check is needed for each individual to see whether it is an answer
to the query. Second, only a small subset of ABox information is usually needed to
compute the query answer. These deficiencies have already been acknowledged by the
research community, and certain optimization techniques for instance retrieval have
been developed [60, 61]. However, the performance of query answering is still not
satisfactory in practice.

In parallel to description logic research, many techniques were developed to opti-
mize query answering in deductive databases—a family of knowledge representation
formalisms that extend the relational model with deductive features [1, 42]. For exam-
ple, the first deficiency outlined in the previous paragraph is addressed by managing
individuals in sets [1]. This opens the door to various optimization techniques, such
as the join-order optimization. Consider the query worksAt(P, I), hasName(I, ‘FZI’).
It is reasonable to evaluate hasName(I, ‘FZI’) first, and then join the result with the
tuples in the worksAt relation: the second conjunct contains a constant, so evaluating
it should return a small number of tuples. Join-order optimizations are usually based
on database statistics and are very effective in practice.

The second deficiency can be addressed by identifying the subset of the ABox that
is relevant to the query, and then running the reasoning algorithm only on this subset.
Magic sets transformation [18] is the primary technique developed to achieve this goal,
and it has been used mainly in the context of Horn deductive databases to optimize
evaluation of recursive queries. Roughly speaking, the query is modified to ensure that
a set of relevant facts is derived during query evaluation; the original query is then
evaluated only within this set. The magic sets transformation for disjunctive programs
has been presented in [55, 34], along with empirical evidence of its usefulness.

Since techniques for reasoning in deductive databases are now mature, it is natural
to investigate whether they can be used to improve query answering over large ABoxes.
To facilitate that, we studied the relationship between DLs and disjunctive datalog,
with the goal of deriving an algorithm for reducing a SHIQ(D) knowledge base to
a disjunctive datalog program [42] that entails the same set of ground facts as the
original knowledge base. Thus, ABox reasoning is reduced to query answering in
disjunctive datalog, which allows reusing existing techniques and optimizations for
query answering in deductive databases.

The reduction algorithm is based on several novel results, which are interesting in
their own right. Next, we overview our contributions:

• In Chapter 5 we present a decision procedure for checking satisfiability of SHIQ
knowledge bases based on basic superposition [14, 96]—a clausal refutation cal-
culus optimized for theorem proving with equality. Parameterized by a suit-
able term ordering and a selection function, basic superposition decides only a

6 1. Introduction

slightly weaker logic SHIQ−, in which number restrictions are allowed only on
roles not having subroles. For full SHIQ, saturation by basic superposition does
not necessarily terminate. To remedy that, we introduce a decomposition rule,
which transforms certain clauses into simpler ones, thus ensuring termination.
We show that decomposition is a very general rule that can be used with any
calculus compatible with the standard notion of redundancy [13]. This decision
procedure runs in worst-case exponential time, provided that numbers are coded
in unary. Unary coding of numbers is standard in description logic algorithms,
and, to the best of our knowledge, it is used in all existing reasoning systems.
Hence, our algorithms are worst-case optimal under common assumptions.

• Until now, reasoning with concrete domains was predominantly studied in the
context of tableau algorithms. Since our algorithms are based on a clausal calcu-
lus, existing approaches are not directly applicable to our setting. Therefore, in
Chapter 6 we present a general approach for reasoning with a concrete domain
in the framework of resolution. Our approach is applicable to any calculus whose
completeness proof is based on the model generation method [13], so it can be
combined with basic superposition. We apply this approach to the algorithm
from Chapter 5 to obtain a procedure for deciding satisfiability of SHIQ(D)
knowledge bases. We show that, assuming a bound on the arity of concrete
predicates and an exponential bound on the oracle for concrete domain reason-
ing, adding datatypes does not increase the complexity of reasoning.

• In Chapter 7 we present an algorithm for reducing a SHIQ(D) knowledge base to
a disjunctive datalog program. Roughly speaking, the algorithms from Chapter
5 and Chapter 6 are first used to compute all nonground consequences of a
knowledge base, which are then transformed in a way that allows simulating all
remaining ground inferences by basic superposition in disjunctive datalog.

• Based on the algorithm from Chapter 7, in Chapter 8 we analyze the data com-
plexity of reasoning in SHIQ(D)—that is, the complexity measured only in the
size of the ABox, while assuming that the TBox is fixed in size. In applications
where the size of the ABox is much larger than the size of the TBox, data com-
plexity provides a better estimate of the practical applicability of an algorithm.
Surprisingly, the data complexity of satisfiability checking in SHIQ(D) turns
out to be NP-complete, which is better than the ExpTime combined complexity
(assuming NP ⊂ ExpTime). Moreover, we identify the Horn-SHIQ(D) frag-
ment of SHIQ(D), which does not provide for modeling disjunctive knowledge,
but exhibits polynomial data complexity. This provides theoretical justification
for hoping that efficient reasoning with large ABoxes is possible in practice.

• In Chapter 9 we consider a hybrid knowledge representation system consisting of
SHIQ(D) extended with rules. The integration of rules and description logics is
achieved by allowing concepts and roles to occur as unary and binary predicates,

7

respectively, in the atoms of the rule head or body. To achieve decidability,
the rules are required to be DL-safe: each variable in the rule must occur in
a body atom whose predicate is neither a concept nor a role. Intuitively, this
makes query answering decidable, since it ensures that rules are applicable only
to individuals explicitly occurring in the knowledge base. We show that query
answering in such a logic can be performed simply by appending DL-safe rules
to the disjunctive datalog program obtained by the reduction.

• In Chapter 10 we extend our algorithms to handle answering and checking sub-
sumption of conjunctive queries [32] over SHIQ(D) knowledge bases. It is widely
believed that conjunctive queries provide a formal foundation for the vast ma-
jority of commonly used database queries, so they lend themselves naturally as
an expressive query language for description logics.

• In Chapter 11 we consider the problems of extending description logics with
metamodeling—a style of modeling that allows concepts to be treated as indi-
viduals and vice versa. We show that extending the basic description logic ALC
with metamodeling in the way as this was done in the Semantic Web language
OWL-Full [106] leads to undecidability of basic reasoning problems. Therefore,
we propose an alternative approach based on HiLog [33]—a logic that aims to
simulate second-order reasoning in a first-order framework. We show that, un-
der some minor restrictions, our algorithms can easily be extended to provide a
decision procedure for SHIQ(D) extended with metamodeling.

• To estimate the applicability of our algorithms in practice, we implemented a
new DL reasoner KAON2. In Chapter 12 we describe the system architecture,
as well as several optimizations required to obtain a system offering competitive
performance of reasoning.

• In Chapter 13 we present an evaluation of the performance of KAON2. For
answering queries over large ABoxes, our system exhibits performance improve-
ments over Pellet and RACER of one or more orders of magnitude. For TBox
reasoning, our system does not match the performance of tableau-based systems;
however, it is still capable of solving certain nontrivial problems.

Many of our results were published previously: the resolution decision procedure
and the reduction to disjunctive datalog for SHIQ− were published in [151]; the
decomposition rule and the algorithm for answering conjunctive queries over SHIQ
knowledge bases were published in [152]; the algorithms for reasoning with a concrete
domain were published in [150]; reasoning with DL-safe rules was published in [155]
and [156]; the results on data complexity were published in [153]; and the results
related to metamodeling were published in [154].

8 1. Introduction

Chapter 2

Preliminary Definitions

In this chapter we introduce all necessary terminology and recapitulate relevant de-
finitions and results. This chapter is not intended to be of a tutorial nature; please
consult the references for a more detailed presentation.

2.1 Multi-Sorted First-Order Logic

We recapitulate standard definitions of first-order logic ([46] is a good textbook) ex-
tended with multi-sorted signatures.

A multi-sorted first-order signature Σ is a 4-tuple (P,F ,V,S), where P is a finite
set of predicate symbols, F a finite set of general function symbols, V a countable set
of variables, and S a finite set of sorts. Each predicate and general function symbol is
associated with a nonnegative arity n. General function symbols of zero arity are called
constants; all other general function symbols are called simply function symbols.1

Each n-ary general function symbol f ∈ F is associated with a sort signature
r1 × . . . × rn → r, and each n-ary predicate symbol P ∈ P is associated with a sort
signature r1 × . . . × rn, for r(i) ∈ S. The sort of each variable is determined by the
function sort : V → S.

The set of terms T (Σ) and the extension of the function sort to terms are defined
as follows: T (Σ) is the smallest set such that (i) V ⊆ T (Σ), and (ii) if f ∈ F has
the signature r1 × . . . × rn → r and ti ∈ T (Σ) with sort(ti) = ri for 1 ≤ i ≤ n, then
t = f(t1, . . . , tn) ∈ T (Σ) with sort(t) = r. The set of atoms A(Σ) is the smallest set
such that, if P ∈ P has the signature r1 × . . . × rn and ti ∈ T (Σ) with sort(ti) = ri
for 1 ≤ i ≤ n, then P (t1, . . . , tn) ∈ A(Σ). Terms (atoms) not containing variables are
called ground terms (atoms).

A position p is a finite sequence of integers and is usually written as i1.i2 . . . in.
The empty position is denoted with ε. If a position p1 is a proper prefix of a position

1Many authors do not distinguish constants from function symbols, because this makes the pre-
sentation of first-order logic simpler. However, for our results presented in subsequent chapters, this
distinction is essential.

9

10 2. Preliminary Definitions

p2, then p1 is above p2, and p2 is below p1. A subterm of t at position p, written t|p, is
defined inductively as t|ε = t and, if t = f(t1, . . . , tn), then t|i.p = ti|p. A replacement
of a subterm of t at position p with the term s, written t[s]p, is defined inductively as
t[s]ε = s and, if t = f(t1, . . . , tn), then t[s]i.p = f(t1, . . . , ti[s]p, . . . , tn).

The set of formulae L(Σ) defined over the signature Σ is the smallest set such that
> and ⊥ are in L(Σ), A(Σ) ⊆ L(Σ), and, if ϕ,ϕ1, ϕ2 ∈ L(Σ) and x ∈ V, then ¬ϕ,
ϕ1 ∧ϕ2, ϕ1 ∨ϕ2, ∃x : ϕ, and ∀x : ϕ are in L(Σ). As usual, ϕ1 → ϕ2 is an abbreviation
for ¬ϕ1∨ϕ2, ϕ1 ← ϕ2 is an abbreviation for ϕ1∨¬ϕ2, and ϕ1 ↔ ϕ2 is an abbreviation
for (ϕ1 → ϕ2) ∧ (ϕ1 ← ϕ2). A variable x in a formula ϕ is free if it does not occur
under the scope of a quantifier. If ϕ does not have free variables, it is closed.

The notion of a subformula of ϕ at position p, written ϕ|p, is defined inductively
as ϕ|ε = ϕ; (ϕ1 ◦ ϕ2)|i.p = ϕi for ◦ ∈ {∧,∨,←,→,↔} and i ∈ {1, 2}; and ϕ|1.p = ψ for
ϕ = ¬ψ, ϕ = ∀x : ψ, or ϕ = ∃x : ψ. A replacement of the subformula ϕ|p in a formula
ϕ with a formula ψ is denoted with ϕ[ψ]p, and is defined in the obvious way.

The polarity of the subformula ϕ|p at position p in a formula ϕ, written pol(ϕ, p),
is defined as follows: pol(ϕ, ε) = 1; pol(¬ϕ, 1.p) = −pol(ϕ, p); pol(ϕ1 ◦ ϕ2, i.p) =
pol(ϕi, p) for ◦ ∈ {∧,∨} and i ∈ {1, 2}; pol(ϕ, 1.p) = pol(ψ, p) for ϕ = ∃x : ψ or
ϕ = ∀x : ψ; pol(ϕ, 1.p) = −pol(ϕ1, p) and pol(ϕ, 2.p) = pol(ϕ2, p) for ϕ = ϕ1 → ϕ2;
finally, pol(ϕ1 ↔ ϕ2, i.p) = 0 for i ∈ {1, 2}.

A substitution σ is a function from V into T (Σ) such that σ(x) 6= x only for a finite
number of variables x and, if σ(x) = t, then sort(x) = sort(t). We often write a substitu-
tion σ as a finite set of mappings {x1 7→ t1, . . . , xn 7→ tn}. The empty substitution (also
known as the identity substitution), denoted with {}, is the substitution σ such that
xσ = x for each variable x. The result of applying a substitution σ to a term t, written
tσ, is defined recursively as follows: xσ = σ(x) and f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ).
For a substitution σ and a variable x, the substitution σx is defined as follows:

yσx =
{
yσ if y 6= x
y if y = x

An application of a substitution σ to a formula ϕ, written ϕσ, is defined as follows:
P (t1, . . . , tn)σ = P (t1σ, . . . , tnσ); (ϕ1 ◦ ϕ2)σ = ϕ1σ ◦ ϕ2σ for ◦ = {∧,∨,←,→,↔};
(¬ϕ)σ = ¬(ϕσ); (∀x : ϕ)σ = ∀x : (ϕσx); and (∃x : ϕ)σ = ∃x : (ϕσx).

A composition of substitutions τ and σ, written στ , is defined as xστ = (xσ)τ . A
substitution σ is called a variable renaming if it contains only mappings of the form
x 7→ y. A substitution σ is equivalent to θ up to variable renaming if there is a variable
renaming η such that θ = ση; in such a case, θ is also equivalent to σ up to variable
renaming [7]. A substitution σ is more general than a substitution θ if there is a
substitution η such that θ = ση.

A substitution σ is a unifier of terms s and t if sσ = tσ. A unifier σ of s and t
is called a most general unifier if it is more general than any other unifier of s and t.
The notion of unifiers extends to atoms in the obvious way. If a most general unifier σ
of s and t exists, it is unique up to variable renaming [7], so we write σ = MGU(s, t).

2.1 Multi-Sorted First-Order Logic 11

The semantics of multi-sorted first-order logic is defined as follows. An interpre-
tation is a pair I = (D, ·I) where (i) D is a function assigning to each sort s ∈ S an
interpretation domain Ds such that, if ri, rj ∈ S and ri 6= rj , then Dri ∩ Drj = ∅; and
(ii) ·I is a function assigning to each predicate symbol A with a signature r1× . . .× rn
an interpretation relation AI ⊆ Dr1× . . .×Drn , and to each general function symbol f
with a signature r1× . . .×rn → r an interpretation function f I : Dr1× . . .×Drn → Dr.
A variable assignment is a function B assigning to each variable x ∈ V a value from
Dsort(x). An x-variant of B, denoted with Bx, is a variable assignment assigning the
same values as B to all variables, except possibly to the variable x. The value of a term
t ∈ T (Σ) under I and B, written tI,B, is defined as follows: if t = x, then tI,B = B(x),
and, if t = f(t1, . . . , tn), then tI,B = f I(tI,B

1 , . . . , tI,B
n). The truth value of a formula

ϕ under I and B, written ϕI,B, is defined as follows: [>]I,B = true, [⊥]I,B = false,
[P (t1, . . . , tn)]I,B = true if and only if (tI,B

1 , . . . , tI,B
n) ∈ AI ; [¬ϕ]I,B = true if and

only if ϕI,B = false; [ϕ1 ∧ ϕ2]I,B = true if and only if ϕI,B
1 = true and ϕI,B

2 = true;
[ϕ1 ∨ϕ2]I,B = true if and only if ϕI,B

1 = true or ϕI,B
2 = true; [∃x : ϕ]I,B = true if and

only if ϕI,Bx = true for some Bx; and [∀x : ϕ]I,B = true if and only if ϕI,Bx = true for
all Bx. If ϕ is closed, then ϕI,B does not depend on B, so we simply write ϕI . For a
closed formula ϕ, an interpretation I is a model of ϕ, written I |= ϕ, if ϕI = true. A
closed formula ϕ is valid, written |= ϕ, if I |= ϕ for all interpretations I; such formu-
lae are also called tautologies. Furthermore, ϕ is satisfiable if I |= ϕ for at least one
interpretation I, and ϕ is unsatisfiable if no interpretation I exists such that I |= ϕ.
A closed formula ϕ1 entails a formula ϕ2, written ϕ1 |= ϕ2, if I |= ϕ2 for each inter-
pretation I such that I |= ϕ1. It is well known that ϕ1 |= ϕ2 if and only if ϕ1 ∧ ¬ϕ2

is unsatisfiable. Formulae ϕ1 and ϕ2 are equisatisfiable if ϕ1 is satisfiable if and only
if ϕ2 is satisfiable; ϕ1 and ϕ2 are equivalent if the formula ϕ1 ↔ ϕ2 is valid.

We often assume that a first-order signature Σ contains equality; that is, for each
sort r ∈ S, there is a predicate ≈r with a sort signature r× r. If the sort is clear from
the context, we do not state it explicitly, and simply write ≈. An atom ≈(s, t) is usually
written as s ≈ t, and a negated atom ¬≈(s, t) is usually written as s 6≈ t. Models,
(un)satisfiability and entailment w.r.t. an equational theory are defined as usual, by
considering only such models I where all ≈I

r are equality relations. The latter is the
case if (α, β) ∈ ≈I

r if and only if α = β, for each α, β ∈ Dr.
Let ϕ be a closed first-order formula and Λ a set of positions in ϕ. Then DefΛ(ϕ)

is the definitional normal form of ϕ with respect to Λ and is defined inductively as
follows, where p is maximal in Λ∪{p} with respect to the prefix ordering on positions,
Q is a new predicate not occurring in ϕ, the variables x1, . . . , xn are the free variables
of ϕ|p, and ◦ is → if pol(ϕ, p) = 1, ← if pol(ϕ, p) = −1, and ↔ if pol(ϕ, p) = 0:

Def∅(ϕ) = ϕ
DefΛ∪{p}(ϕ) = DefΛ(ϕ[Q(x1, . . . , xn)]p) ∧ ∀x1, . . . , xn : Q(x1, . . . , xn) ◦ ϕ|p

It is well known [108, 8, 99] that, for any Λ, the formulae ϕ and DefΛ(ϕ) are equisat-
isfiable, and that DefΛ(ϕ) can be computed in polynomial time.

12 2. Preliminary Definitions

Let ϕ be a formula and p a position in ϕ such that either pol(ϕ, p) = 1 and
ϕ|p = ∃x : ψ, or pol(ϕ, p) = −1 and ϕ|p = ∀x : ψ, where x, x1, . . . , xn are exactly
the free variables of ψ. Then ϕ[ψ{x 7→ f(x1, . . . , xn)}]p, where f is a new general
Skolem function symbol not occurring in ϕ, is a formula obtained by skolemization
of ϕ at position p. With sk(ϕ) we denote the formula obtained from ϕ iterative by
skolemization at all positions where this is possible. Usually, we assume that sk(ϕ)
is computed by outer skolemization, by skolemizing a position p before any position
below it. The result of skolemization is unique up to renaming of Skolem function
symbols. Formulae ϕ and sk(ϕ) are equisatisfiable [46].

The subset of ground terms of F(Σ) is called the Herbrand universe HU of Σ. Let
HU r be the subset of HU containing exactly those ground terms t such that sort(t) = r.
A Herbrand interpretation I is an interpretation such that (i) Dr = HU r; (ii) general
function symbols are interpreted by themselves—that is, for each f ∈ F and ti ∈ HU ,
we have f I(t1, . . . , tn) = f(t1, . . . , tn); and (iii) ≈I

r are reflexive, symmetric, transitive,
and satisfy the usual equality replacement axioms [46]. The Herbrand base HB of
Σ is the set of all ground atoms built over the Herbrand universe of Σ. A Herbrand
interpretation can equivalently be considered a subset of the Herbrand base. A formula
ϕ is satisfiable if and only if sk(ϕ) is satisfiable in a Herbrand interpretation [46].

A multiset M over a set N is a function M : N → N0, where N0 is the set of all
nonnegative integers. A multiset M is finite if M(x) 6= 0 for a finite number of x; in
the remaining sections, we consider only finite multisets. M is empty, written M = ∅,
if M(x) = 0 for all x ∈ N . The cardinality of M is defined as |M | = Σx∈N M(x).
For two multisets M1 and M2, M1 ⊆ M2 if M1(x) ≤ M2(x) for each x ∈ N , and
M1 = M2 if M1 ⊆M2 and M2 ⊆M1. The union of multisets M1 and M2 is defined as
(M1∪M2)(x) = M1(x)+M2(x), the intersection as (M1∩M2)(x) = min(M1(x),M2(x)),
and the difference as (M1 \M2)(x) = max(0,M1(x)−M2(x)).

A literal is an atom A or a negated atom ¬A. For a literal L, we define L = A
if L = ¬A, and L = ¬A if L = A; that is, L is the complement of L. A clause is
a multiset of literals and is usually written as C = L1 ∨ . . . ∨ Ln. For n = 1, C is
called a unit clause; for n = 0, C is the empty clause, and is written as �. A clause
C is semantically equivalent to ∀x : C, where x is the set of the free variables of C.
Satisfiability of clauses is usually considered in a Herbrand interpretation I as follows:
for a ground clause CG, I |= CG if a literal Ai ∈ CG exists such that Ai ∈ I, or else
a literal ¬Aj ∈ CG exists such that Aj /∈ I; for a nonground clause C, I |= C if and
only if I |= CG for each ground instance CG of C. For a first-order formula ϕ, Cls(ϕ)
is the set of clauses obtained by clausifying ϕ—that is, by transforming sk(ϕ) into
conjunctive normal form by exhaustive application of well-known logical equivalences.
The formula ϕ is satisfiable if and only if Cls(ϕ) is satisfiable in a Herbrand model [46].
A variable x in a clause C is safe if it occurs in a negative literal of C; moreover, C is
safe if all its variables are safe.

Unless otherwise noted, we denote atoms by letters A and B, clauses by C and D,
literals by L, predicates by P , R, S, T , and U , constants by a, b, c, and d, variables
by x, y, and z, and terms by s, t, u, v, and w.

2.2 Relations and Orderings 13

2.2 Relations and Orderings

For a set of objects D, a binary relation R on D is a subset of D × D. The inverse
of a relation R is defined as R− = {(y, x) | (x, y) ∈ R}. A relation R is (i) reflexive if
x ∈ D implies (x, x) ∈ R; (ii) irreflexive if x ∈ D implies (x, x) /∈ R; (iii) symmetric
if R− ⊆ R; (iv) asymmetric if (x, y) ∈ R implies (y, x) /∈ R; (v) antisymmetric if
(x, y) ∈ R and (y, x) ∈ R imply x = y; (vi) transitive if (x, y) ∈ R and (y, z) ∈ R imply
(x, z) ∈ R; and (vii) total if, for each x, y ∈ D, at least one of (x, y) ∈ R, (y, x) ∈ R, or
x = y holds. A ◦-closure (where ◦ is a combination of the relation properties), written
R◦, is the smallest relation on D such that R ⊆ R◦ and ◦ is satisfied for R◦. The
transitive closure of R is usually written as R+, and the reflexive–transitive closure of
R is usually written as R∗.

A relation R is well-founded if there is no infinite sequence (α0, α1), (α1, α2), . . . of
pairs in R. An object α ∈ D is in normal form w.r.t. R if R does not contain a pair
(α, β) for any β; we also say that α is irreducible w.r.t. R. Reducible is the opposite
of irreducible. An object β is a normal form of α w.r.t. R if β is in normal form w.r.t.
R and (α, β) ∈ R∗. For a general relation R, an object can have none, one, or more
normal forms.

A partial ordering � over D is a relation on D that is reflexive, antisymmetric,
and transitive. A strict ordering � over D is a relation on D that is irreflexive and
transitive. A strict ordering � on D can be extended to a strict ordering �mul on
finite multisets on D, called the multiset extension of �, as follows: M �mul N if
(i) M 6= N , and (ii) if N(x) > M(x) for some x, then there is some y � x such that
M(y) > N(y). If � is total, then �mul is total as well.

For �i orderings on sets Di, 1 ≤ i ≤ n, a lexicographic combination of �i, de-
noted with �lex, is an ordering on D = D1 × . . . × Dn that is defined as follows:
(a1, . . . , an) �lex (b1, . . . , bn) if and only if an index i exists, 1 ≤ i ≤ n, such that
aj = bj for j < i and ai �i bi.

A term ordering is an ordering where D is the set of terms T (Σ) for some multi-
sorted first-order signature Σ. A term ordering � is stable under substitutions if s � t
implies sσ � tσ for all terms s and t, and all substitutions σ; it is stable under contexts
if s � t implies u[s]p � u[t]p for all terms s, t, and u, and all positions p; it satisfies
the subterm property if u[s]p � s for all terms u and s, and all positions p 6= ε. A
rewrite ordering is an ordering stable under contexts and stable under substitutions;
a reduction ordering is a well-founded rewrite ordering; and a simplification ordering
is a reduction ordering with a subterm property.

The lexicographic path ordering (LPO) [38, 6] is a term ordering induced by a well-
founded strict ordering over general function symbols > (the latter is also called a
precedence). Each LPO has the subterm property; furthermore, if > is total, the LPO
induced by > is total on ground terms. It is defined as follows:

14 2. Preliminary Definitions

s �lpo t if

1. t is a variable occurring as a proper subterm of s, or

2. s = f(s1, . . . , sm), t = g(t1, . . . , tn), and at least one of the following holds:

(a) f > g and, for all i with 1 ≤ i ≤ n, we have s �lpo ti, or

(b) f = g and, for some j, we have (s1, . . . , sj−1) = (t1, . . . tj−1), sj �lpo tj , and
s �lpo tk for all k with j < k ≤ n, or

(c) sj �lpo t for some j with 1 ≤ j ≤ m.

2.3 Rewrite Systems

An excellent textbook introduction to rewrite systems can be found in [6], and an
overview of the major results can be found in [38]. A rewrite system R is a set of
rewrite rules s⇒ t where s and t are terms. A rewrite relation induced by R, denoted
with ⇒R, is the smallest relation such that s ⇒ t ∈ R implies u[sσ]p ⇒R u[tσ]p for
all terms s, t, and u, all substitutions σ, and all positions p. For two terms s and
t, we write s ⇓R t if there is a term u such that s ⇒∗

R u and t ⇒∗
R u, where ⇒∗

R

is the reflexive–transitive closure of ⇒R. A rewrite system R is confluent if ⇓R and
⇔∗

R coincide, where ⇔∗
R is the symmetric–reflexive–transitive closure of ⇒R. For a

confluent, well-founded rewrite system R, each element α has a unique normal form
w.r.t. ⇒R, which we denote with nfR(α).

For a confluent well-founded rewrite system R consisting of ground rewrite rules
only, R∗ is the smallest set of ground equalities s ≈ t such that, for all ground terms
s and t, if nfR(s) = nfR(t), then s ≈ t ∈ R∗.

2.4 Ordered Resolution

Ordered resolution [13] is one of the most widely used calculi for theorem proving
in first-order logic. The rules of the calculus are parameterized with an admissible
ordering � on literals and a selection function.

An ordering on literals � is admissible if (i) it is well-founded, stable under sub-
stitutions, and total on ground literals; (ii) ¬A � A for all ground atoms A; and
(iii) B � A implies B � ¬A for all atoms A and B. A literal L is (strictly) maximal
with respect to a clause C if there is no literal L′ ∈ C such that L′ � L (L′ � L).
A literal L ∈ C is (strictly) maximal in C if and only if L is (strictly) maximal with
respect to C \ L. By taking its multiset extension, each ordering on literals � can
be extended to an ordering on clauses, which we ambiguously denote with � as well.
Because the literal ordering is total and well-founded on ground literals, the clause
ordering is total and well-founded on ground clauses.

2.4 Ordered Resolution 15

A selection function S assigns to each clause C a possibly empty subset of negative
literals of C; the literals in S(C) are said to be selected. No other restrictions are
imposed on the selection function.

With R we denote the ordered resolution calculus, consisting of the following in-
ference rules, where the clauses C ∨A ∨B and D ∨ ¬B are called the main premises,
C ∨A is called the side premise, and Cσ ∨Aσ and Cσ ∨Dσ are called conclusions (as
usual in resolution theorem proving, we make a technical assumption that the premises
do not have variables in common):

Positive factoring:
C ∨A ∨B

Cσ ∨Aσ

where (i) σ = MGU(A,B), (ii) Aσ is strictly maximal with respect to Cσ ∨ Bσ, and
no literal is selected in Cσ ∨Aσ ∨Bσ.

Ordered resolution:
C ∨A D ∨ ¬B

Cσ ∨Dσ

where (i) σ = MGU(A,B), (ii) Aσ is strictly maximal with respect to Cσ, and no literal
is selected in Cσ∨Aσ, (iii) ¬Bσ is either selected in Dσ∨¬Bσ, or it is maximal with
respect to Dσ and no literal is selected in Dσ ∨ ¬Bσ.

It is important to distinguish an inference rule from an inference. An inference rule
can be understood as a template that specifies actions to be applied to any premises.
An inference is an application of an inference rule to concrete premises. An inference
ξ′ is an instance of an inference ξ if ξ′ is obtained by applying a substitution σ to all
premises and the conclusion of ξ; the inference ξ′ is also written as ξσ. An inference
is ground if all its clauses are ground.

Ordered resolution is compatible with powerful redundancy elimination techniques,
which allow deleting certain clauses during the theorem proving process without loss of
completeness. A ground clause C is redundant in a set of ground clauses N if there are
clauses Di ∈ N , 1 ≤ i ≤ n, such that C � Di for all i, and D1, . . . , Dn |= C. A ground
inference ξ of R with premises C1 and C2, and a conclusion C is redundant in a set of
ground clauses N if there are clauses Di ∈ N , 1 ≤ i ≤ n, such that max(C1, C2) � Di

and C1, C2, D1, . . . , Dn |= C, where max(C1, C2) is the larger clause of C1 and C2 w.r.t.
�. A nonground clause C (inference ξ) is redundant in a nonground set of clauses N if
each ground instance of C (ξ) is redundant in the set of ground instances of N . A set
of clauses N is saturated by R up to redundancy if each inference by R from premises
in N is redundant in N . Ordered resolution is sound and complete: if a set of clauses
N is saturated up to redundancy by R, then N is satisfiable if and only if it does not
contain the empty clause.

If a clause C is a tautology, then C is redundant in any set of clauses N . A
sound and complete tautology check would itself require theorem proving, and would
therefore be difficult to realize. Therefore, in practice one usually only checks for
syntactic tautologies, which are clauses containing a pair of literals A and ¬A.

16 2. Preliminary Definitions

A clause C subsumes a clause D if there is a substitution σ such that Cσ ⊆ D and
|C| < |D|. If a clause C is subsumed by a clause from a set of clauses N , then C is
redundant in N .

A theorem proving derivation by R from a set of clauses N is a sequence of sets of
clauses N = N0, N1, . . . such that, for each i > 0, either (i) Ni+1 = Ni ∪ {C} where
C is the conclusion of an inference by R from premises in Ni, or (i) Ni+1 = Ni \ {C}
where C is redundant in Ni. A refutation for N is a derivation from N such that some
Nj contains the empty clause. A derivation is fair with limit N∞ =

⋃
j

⋂
k≥j Nk if

each clause C that can be deduced from nonredundant premises in N∞ is contained in
some set Nj . In [13] it was shown that under the standard notion of redundancy, each
inference from premises in N∞ is redundant in N∞.

Hence, unsatisfiability of a set of clauses N can be demonstrated by a fair derivation
from N . If N is unsatisfiable, then we shall eventually derive the empty clause; if N
is satisfiable, then the limit of the derivation N∞ does not contain the empty clause.

2.5 Basic Superposition

In order to deal with first-order theories containing equality, ordered resolution was
extended in [120] to paramodulation—a calculus with explicit rules for equality rea-
soning. A refinement of paramodulation, known as superposition, was presented in [9],
where ordering restrictions restrict certain unnecessary inferences. Further optimiza-
tions of paramodulation and superposition were presented in [14]. These optimizations
are very general, but a simplified version of the calculus, called basic superposition, was
presented in [10, 12]. A very related calculus, based on an inference model with con-
strained clauses, was presented in [96].

The idea of basic superposition is to render superposition inferences into terms
introduced by previous unification steps redundant. In practice, this technique has
been shown essential for solving some particularly difficult problems in first-order logic
with equality [92]. Furthermore, basic superposition shows that superposition into
arguments of Skolem function symbols is not necessary for completeness. Namely, any
Skolem function symbol f occurs in the initial clause set with variable arguments, so,
in any term f(t), if t is not a variable, it was introduced by a previous unification step.

It is common practice in equational theorem proving to consider logical theories
containing only the equality predicate. This simplifies the theoretical treatment with-
out loss of generality. Literals P (t1, . . . , tn), where P is not the equality predicate, are
encoded as P (t1, . . . , tn) ≈ T, where T is a new propositional symbol. Thus, predicate
symbols actually become general function symbols. It is well known that this trans-
formation preserves satisfiability. To avoid considering terms where predicate symbols
occur as proper subterms, one usually employs a multi-sorted framework, where all
predicate symbols and the symbol T are of one sort, which is different from the sort
of general function symbols and variables. We consider P (t1, . . . , tn) to be a syntactic
shortcut for P (t1, . . . , tn) ≈ T. To avoid ambiguity, we use the following terminol-
ogy: first-order terms (general function symbols) obtained by the encoding are called

2.5 Basic Superposition 17

E-terms (E-general function symbols), predicate symbols are ≈ and the E-general func-
tion symbols corresponding to predicate symbols before encoding, whereas constants
(function symbols) are E-general function symbols corresponding to constants (func-
tion symbols) before encoding. For example, the literal P (c, f(x)) is a shortcut for
P (c, f(x)) ≈ T; furthermore, P (c, f(x)) is an E-term containing E-general function
symbols P , c, and f ; however, P is a predicate symbol, f is a function symbol, c is a
constant, and only c, f(x), and x are terms.

Furthermore, it is common to assume that the predicate ≈ has built-in symmetry:
a literal s ≈ t should also be interpreted as t ≈ s (the same holds for negative equality
literals as well).

The inference rules of basic superposition are formulated by breaking a clause
into two parts: (i) the skeleton clause C and (ii) the substitution σ representing the
cumulative effects of previous unifications. These two components together are called
a closure, which is written as C · σ and is logically equivalent to a clause Cσ. A
closure C · σ can, for convenience, equivalently be represented as Cσ, where the terms
occurring at variable positions of C are marked2 by []. Any position at or below a
marked position is called a substitution position. Note that all variables of Cσ occur
at substitution positions, so we do not mark them for readability purposes.

The following closure is logically equivalent to the clause P (f(y)) ∨ g(b) ≈ b. On
the left-hand side, the closure is represented by a skeleton and a substitution explicitly,
whereas, on the right-hand side, it is represented by marking the positions of variables
in the skeleton.

(P (x) ∨ z ≈ b) · {x 7→ f(y), z 7→ g(b)} ≡ P ([f(y)]) ∨ [g(b)] ≈ b(2.1)

A closure C ·σ is ground if Cσ is ground. To technically simplify the presentation,
we consider each closure to be in the standard form, which is the case if (i) the sub-
stitution σ does not contain trivial mappings of the form x 7→ y, and (ii) all variables
from dom(σ) occur in C. A closure C ·σ can be brought into the standard form in the
following way: if x 7→ t is a mapping in σ that violates the conditions of the standard
form, then let σ′ be σ \ {x 7→ t}, and replace C · σ with C{x 7→ t} · σ′{x 7→ t}.

A closure (Cσ1) · σ2 is a retraction of a closure C · σ if σ = σ1σ2. Intuitively,
a retraction is obtained by moving some marked positions lower in the closure. For
example, the following is a retraction of the closure (2.1):

(P (x) ∨ g(z) ≈ b) · {x 7→ f(y), z 7→ b} ≡ P ([f(y)]) ∨ g([b]) ≈ b(2.2)

Parameters for Basic Superposition. Basic superposition is parameterized with
a selection function S, which is defined exactly as for ordered resolution. However,
whereas ordered resolution is parameterized with an ordering on literals, basic su-
perposition is parameterized with an ordering � on E-terms. Such an ordering is

2In [14], terms at marked positions are enclosed in a frame. We decided to use a different notation,
because framing introduced problems with text layout. Our notation should not be confused with the
notation for modalities in multi-modal logic.

18 2. Preliminary Definitions

admissible for basic superposition if it is a reduction ordering total on ground terms
and T is the smallest element. An ordering � can be extended to an ordering on
literals (ambiguously denoted with � as well) by identifying each positive literal s ≈ t
with a multiset {{s}, {t}} and each negative literal s 6≈ t with a multiset {{s, t}}, and
by comparing these multisets using a two-fold multiset extension (�mul)mul of �. The
literal ordering obtained in such a way is total on ground literals. The literal L · σ
is (strictly) maximal with respect to a closure C · σ if there is no literal L′ ∈ C such
that L′σ � Lσ (L′σ � Lσ) (observe that this definition does not assume that L ∈ C).
Similarly, for a closure C · σ and a literal L ∈ C, the literal L · σ is (strictly) maximal
in C · σ if and only if it is (strictly) maximal with respect to (C \ L) · σ.

Inference Rules. In the rules of basic superposition, we make the technical assump-
tion that all premises are variable disjoint, and that they are expressed using the same
substitution. A literal L · θ is (strictly) eligible for superposition in a closure (C ∨L) · θ
if there are no selected literals in (C ∨L) · θ and L · θ is (strictly) maximal with respect
to C · θ. A literal L · θ is eligible for resolution in a closure (C ∨L) · θ if it is selected in
(C∨L) ·θ, or there are no selected literals in (C∨L) ·θ and L ·θ is maximal with respect
to C · θ. The basic superposition calculus, BS for short, consists of the following rules:

Positive superposition:
(C ∨ s ≈ t) · ρ (D ∨ w ≈ v) · ρ

(C ∨D ∨ w[t]p ≈ v) · θ

where (i) σ = MGU(sρ, wρ|p) and θ = ρσ, (ii) tθ � sθ and vθ � wθ, (iii) (s ≈ t) · θ is
strictly eligible for superposition in (C ∨ s ≈ t) · θ, (iv) (w ≈ v) · θ is strictly eligible
for superposition in (D ∨w ≈ v) · θ, (v) sθ ≈ tθ � wθ ≈ vθ, (vi) w|p is not a variable.

Negative superposition:
(C ∨ s ≈ t) · ρ (D ∨ w 6≈ v) · ρ

(C ∨D ∨ w[t]p 6≈ v) · θ

where (i) σ = MGU(sρ, wρ|p) and θ = ρσ, (ii) tθ � sθ and vθ � wθ, (iii) (s ≈ t) · θ
is strictly eligible for superposition in (C ∨ s ≈ t) · θ, (iv) (w 6≈ v) · θ is eligible for
resolution in (D ∨ w 6≈ v) · θ, (v) w|p is not a variable.

Reflexivity resolution:
(C ∨ s 6≈ t) · ρ

C · θ

where (i) σ = MGU(sρ, tρ) and θ = ρσ, (ii) (s 6≈ t) · θ is eligible for resolution in
(C ∨ s 6≈ t) · θ.

Equality factoring:
(C ∨ s ≈ t ∨ s′ ≈ t′) · ρ

(C ∨ t 6≈ t′ ∨ s′ ≈ t′) · θ

where (i) σ = MGU(sρ, s′ρ) and θ = ρσ, (ii) tθ � sθ and t′θ � s′θ, (iii) (s ≈ t) · θ is
eligible for superposition in (C ∨ s ≈ t ∨ s′ ≈ t′) · θ.

2.5 Basic Superposition 19

Ordered Hyperresolution:
E1 . . . En N

(C1 ∨ . . . ∨ Cn ∨D) · θ

where (i) Ei are of the form (Ci ∨ Ai) · ρ, for 1 ≤ i ≤ n, (ii) N is of the form
(D ∨¬B1 ∨ . . .∨¬Bn) · ρ, (iii) σ is the most general substitution such that Aiθ = Biθ
for 1 ≤ i ≤ n and θ = ρσ, (iv) each Ai · θ is strictly eligible for superposition in Ei,
(v) either ¬Bi · θ are selected, or nothing is selected, n = 1, and ¬B1 · θ is maximal
w.r.t. D · θ.

In an inference by ordered hyperresolution, the closures Ei are called the electrons
or the side premises, and the closure N is called the nucleus or the main premise.
BS was presented in [14, 96] without the hyperresolution rule. However, as noted
in [9], hyperresolution is analogous to a macro: it combines the effects of n negative
superpositions of (Ai ≈ T) · ρ from Ei into (Bi 6≈ T) · ρ of N , resulting in (T 6≈ T) · θ,
which is immediately eliminated by reflexivity resolution. Furthermore, note that a
positive superposition of a main premise into a positive literal (B ≈ T) · ρ results
in a tautology (T ≈ T) · θ, which can be deleted. Hence, ordered hyperresolution
captures all inferences involving several premises and literals with predicates other
than ≈. One might also consider ordered factoring, which combines equality resolution
on (C ∨ A ≈ T ∨ B ≈ T) · ρ with reflexivity resolution. We decided not to do this to
keep the presentation simpler.

Basic superposition is a sound and complete refutation calculus: for N a set of
closures saturated up to redundancy, N is unsatisfiable if and only if it contains the
empty closure.

Completeness of Basic Superposition. We now briefly overview the completeness
proof of basic superposition. We base our presentation on the proof by Nieuwenhuis
and Rubio from [96, 97], which is compatible with the one from [14].

The literal ordering � is extended to closures by a multiset extension, where clo-
sures are treated as multisets of literals. We denote such an ordering on closures by �
as well. Because the literal ordering is total on ground literals, the closure ordering is
total on ground closures.

Let C · σ be a closure and τ a ground substitution. The set of succedent-top-left
variables of C ·σ w.r.t. τ , written stlvars(C ·σ, τ), is the set of all variables x occurring
in a literal x ≈ s ∈ C such that xστ � sστ .

Let R be a ground and convergent rewrite system and τ a ground substitution. A
variable x occurring in the skeleton C of a closure C · σ is variable irreducible w.r.t.
R if (i) xστ is irreducible by R, or (ii) x ∈ stlvars(C · σ, τ) and, for all x ≈ s ∈ C,
xστ is irreducible by those rules l ⇒ r from R for which xστ ≈ sστ � l ≈ r. A
ground instance C · στ is variable irreducible w.r.t. R if all variables x from C are
variable irreducible w.r.t. R. Let irredR(C · σ) be the set of all variable irreducible
ground instances of C · σ w.r.t. R. For a set of closures N , let irredR(N) be the
set of all variable irreducible ground instances of closures in N w.r.t. R. Finally, let

20 2. Preliminary Definitions

irredR(N)≺D be the subset of closures of irredR(N) smaller than a ground closure D
(w.r.t. the ordering ≺ on closures).

Let ξ be a BS inference with premises D1 · σ and D2 · σ, and a conclusion C · ρ; R
a rewrite system; and τ a ground substitution such that ξτ is a ground instance of ξ.
Then, ξτ is variable irreducible w.r.t. R if all D1 · στ , D2 · στ , and C · ρτ are variable
irreducible w.r.t. R.

The notion of redundancy for BS is defined as follows. A closure C ·σ is redundant in
N if, for all rewrite systems R and all ground substitutions τ such that C ·στ is variable
irreducible w.r.t. R, we have R∪irredR(N)≺C·στ |= C ·στ . An inference ξ with premises
D1 ·σ and D2 ·σ, and a conclusion C · ρ is redundant in N if, for all rewrite systems R
and all ground substitutions τ such that ξτ is a variable irreducible ground instance
of ξ w.r.t. R, we have R ∪ irredR(N)≺D |= C · ρτ , for D = max(D1 · στ,D2 · στ). The
set of closures N is saturated up to redundancy by BS if all inferences from premises
in N are redundant in N .

A set of closures N is well-constrained if irredR(N)∪R |= N for any rewrite system
R. If, for all C · ρ ∈ N , ρ is the empty substitution, then N is well-constrained: any
variable reducible position of a ground instance of C ·ρ can be reduced with rules from
R to a closure in irredR(N). Furthermore, if N ′ is obtained from a well-constrained set
N by a sound inference rule, then N ′ is also well-constrained.

Let N be the set of closures obtained by saturating a well-constrained set N0

up to redundancy by BS. Then, N is satisfiable if it does not contain the empty
closure. Namely, using a variant of the model building technique [14, 96], one can
generate a ground convergent rewrite system RN , which uniquely defines the Herbrand
interpretation RN

∗ such that RN
∗ |= irredRN

(N). Finally, since N0 is well-constrained,
N is well-constrained as well. Since RN ⊆ RN

∗, it follows that RN
∗ |= N . Hence, N

is satisfiable, and so is N0.

Redundancy Elimination. Based on the general redundancy notion for basic su-
perposition, several effective redundancy elimination rules were presented in [14]. They
allow deleting certain closures or replacing them with simpler ones in a derivation, with-
out jeopardizing completeness. Next, we overview the most important redundancy
elimination rules from [14].

A closure C ·σ is reduced modulo substitution η relative to a closure D ·θ if, for each
rewrite systems R and each ground substitution τ , C ·σητ is variable irreducible w.r.t.
R whenever D · θτ is variable irreducible w.r.t. R. Checking this condition is difficult,
since one needs to consider all ground substitutions and all rewrite systems; however,
approximate checks suitable for practice are known. One such check is based on the
notion of η-domination: for two terms s · σ and t · θ, we say that s is η-dominated by
t, written s · σ vη t · θ, if and only if (i) sση = tθ, and (ii) whenever some variable x
from σ occurs in s at position p, then p is in t at or below a position of a variable.

For example, let s · σ = f(g(x), [g(y)]) and t · θ = f([g(c)] , [g(h(z))]). For a
substitution η = {x 7→ c, y 7→ h(z)}, obviously sση = tθ. Also, each marked position
from s · σ can be overlaid at or inside a marked position of t · θ, so s · σ vη t · θ.

2.5 Basic Superposition 21

This notion can be extended to literals as follows: (s ≈ t) · σ vη (w ≈ v) · θ if and
only if s · σ vη w · θ and t · σ vη v · θ, or s · σ vη v · θ and t · σ vη w · θ. The definition
is analogous for negative literals. Furthermore, a positive literal does not η-dominate
a negative literal and vice versa. The extension to closures is performed as follows:
C · σ vη D · θ if and only if, for each literal L1 · σ from C · σ, there exists a distinct
literal L2 · θ from D · θ such that L1 · σ vη L2 · θ. Note that D · θ is allowed to have
more literals than C · σ.

Now if C · σ vη D · θ, then C · σ is reduced relative to D · θ modulo η. For some η,
it can happen that L′ση = Lθ holds, but L′ · σ vη L · θ does not. Then, L′ · σ can be
made reduced relative to L · θ by retracting those positions in L ·σ that do not overlay
into a substitution position of L′. Such a transformation enables an application of a
simplification or deletion rule, while retracting as little information in L′ ·σ as possible.

A closure C · σ is a basic subsumer of D · θ if there is a substitution η such that
Cση ⊆ Dθ and C · σ is reduced relative to D · θ modulo η. Additionally, if C · σ has
fewer literals than D · θ, then D · θ can be deleted.

A closure (C ∨ A ∨ B) · σ can be replaced with (C ∨ A) · σ if A · σ v{} B · σ; this
rule is called duplicate literal deletion.

A closure C · σ can be deleted if Cσ is a tautology; this rule is called tautology
deletion. Testing whether Cσ is a tautology itself requires theorem proving, so a
semantic check is practically unfeasible. However, the following simple syntactic checks
are effective in practice: C · σ is a syntactic tautology if it contains a pair of literals
(s ≈ t) · σ and (s′ 6≈ t′) · σ such that sσ = s′σ and tσ = t′σ, or a literal of the form
(s ≈ t) · σ such that sσ = tσ.

A closure (C ∨ x 6≈ s) · σ with xσ � sσ is called a basic tautology and can be
safely deleted. For example, if f(x) � g(x), then the closure [f(x)] 6≈ g(x) is a basic
tautology. Note that f(x) 6≈ g(x) is not a basic tautology, since f(x) does not occur
at a substitution position.

All presented redundancy elimination rules are decidable. In fact, duplicate literal
deletion and tautology deletion can be performed in polynomial time. The subsump-
tion check is NP-complete in the number of literals [53], and η-domination can be
checked in polynomial time. The complexity of basic tautology deletion is determined
by the complexity of checking ordering constraints. Finally, terms s and t can be
compared by a lexicographic path ordering in time O(|s| · |t|) [86, 138].

Examples. We now give several examples of BS inferences. We first consider a
resolution inference, with an assumption that the parameters of BS make the literal
R(x, f(x)) maximal in the first, and the literal ¬R(x, y) selected in the second premise.
The E-terms that participate in an inference are denoted like this . The closure on the
left-hand side is the side premise, whereas the closure on the right-hand side is the main
premise. To apply the inference rule, we separate the variables in premises, compute the
most general unifier σ = MGU(R(x, f(x)), R(x′, y)) = {x′ 7→ x, y 7→ f(x)}, and apply
it to the premises. By doing so, the literals on which the resolution takes place become

22 2. Preliminary Definitions

identical to R(x, f(x)), which allows the resolution to be performed. However, note
that we actually apply σ to the substitution part of the premises, so the substitution
part effectively accumulates the terms introduced by unification. After resolution, the
obtained closure is not in the standard form, since the substitution contains a trivial
mapping x′ 7→ x; we bring the closure into standard form by applying the mapping to
the skeleton and the substitution.

C(x) ∨ R(x, f(x)) · {} ¬D(x) ∨ ¬R(x, y) ∨ E(y) · {}
⇓ ⇓

C(x) ∨ R(x, f(x)) · {} ¬D(x′) ∨ ¬R(x′, y) ∨ E(y) · {}
⇓ ⇓

C(x) ∨ R(x, f(x)) · {} ¬D(x′) ∨ ¬R(x′, y) ∨ E(y) · {x′ 7→ x, y 7→ f(x)}

C(x) ∨ ¬D(x′) ∨ E(y) · {x′ 7→ x, y 7→ f(x)}
⇓

C(x) ∨ ¬D(x) ∨ E(y) · {y 7→ f(x)}

The previous inference is written using the notation that explicitly distinguishes
the skeleton from the substitution part of a closure. Next, we show the same inference
written using the convenient notation, where terms occurring at positions of skeleton
variables are marked. Note that, in the second step, the term f(x) in the literal
E([f(x)]) is introduced by unification and is therefore marked.

C(x) ∨ R(x, f(x)) ¬D(x) ∨ ¬R(x, y) ∨ E(y)

⇓ ⇓

C(x) ∨ R(x, f(x)) ¬D(x′) ∨ ¬R(x′, y) ∨ E(y)

⇓ ⇓

C(x) ∨ R(x, f(x)) ¬D(x) ∨ ¬R(x, [f(x)]) ∨ E([f(x)])

C(x) ∨ ¬D(x) ∨ E([f(x)])

Next, we give an example of a positive superposition inference. We assume that no
literal in either premise is selected, that literals y1 ≈ y2 · {y1 7→ f(x), y2 7→ g(x)} and
C(f(y)) · {y 7→ f(x)} are maximal, and that f(x) � g(x). Superposition is performed
from y1 into f(y). To apply the inference rule, we separate the variables in the premises,
compute the most general unifier σ = MGU(f(x′), f(f(x))) = {x′ 7→ f(x)}, and apply
it to the premises. We then perform superposition, after which we remove from the
substitution all mappings of variables that do not occur in the skeleton. Observe that
the literal C(f(y)) · {y 7→ f(x)} is equivalent to C(f(f(x))), so one might attempt
to perform superposition into inner f(x). However, this is not allowed: the skeleton
contains the variable y at the position of inner f(x), and, by superposition conditions,
the term into which superposition is performed should not be a variable.

2.6 Splitting 23

C(x) ∨ y1 ≈ y2 · {y1 7→ f(x), y2 7→ g(x)} ¬D(x) ∨ C(f(y)) · {y 7→ f(x)}
⇓ ⇓

C(x′) ∨ y1 ≈ y2 · {y1 7→ f(x′), y2 7→ g(x′)} ¬D(x) ∨ C(f(y)) · {y 7→ f(x)}
⇓ ⇓

C(x′) ∨ y1 ≈ y2 · {x′ 7→ f(x), y1 7→ f(f(x)), y2 7→ g(f(x))} ¬D(x) ∨ C(f(y)) · {y 7→ f(x)}

C(x′) ∨ ¬D(x) ∨ C(y2) · {x′ 7→ f(x), y1 7→ f(f(x)), y2 7→ g(f(x)), y 7→ f(x)}
⇓

C(x′) ∨ ¬D(x) ∨ C(y2) · {x′ 7→ f(x), y2 7→ g(f(x))}

We now present the same inference using the convenient notation. That superpo-
sition into positions of skeleton variables is not allowed now means that superposition
into terms which are under a marker is not allowed. For example, since the inner f(x)
in E(f([f(x)])) is marked, superposition into it is not allowed.

C(x) ∨ [f(x)] ≈ [g(x)] ¬D(x) ∨ C(f([f(x)]))

⇓ ⇓

C(x′) ∨ [f(x′)] ≈ [g(x′)] ¬D(x) ∨ C(f([f(x)]))

⇓ ⇓

C([f(x)]) ∨ [f(f(x))] ≈ [g(f(x))] ¬D(x) ∨ C(f([f(x)]))

C([f(x)]) ∨ ¬D(x) ∨ C([g(f(x))])

We finish with an example of closure subsumption. Consider C1 = C(x)∨D(f(x))
and C2 = C([g(y)])∨D([f(g(y))])∨E(h(y)). It is easy to see that C1 subsumes C2 by
substitution η = {x 7→ g(y)}: (i) C1η = C([g(y)]) ∨D(f([g(y)])), so, by disregarding
markers, C1η ⊆ C2, and (ii) each marked subterm from C1η can be overlaid into a
marked subterm in C2. However, for C3 = C([g(y)]) ∨D(f(g(y))) ∨ E(h(y)), we can
see that C1 does not subsume C3 by η: the marked subterm [g(y)] from D(f([g(y)]))
cannot be overlaid into a marked term in C3, since in the latter closure the term g(y)
in literal D(f(g(y))) occurs unmarked. Actually, C1 does not subsume C3 under any
substitution.

2.6 Splitting

In some proofs in the following chapters we use an additional splitting inference rule,
which is borrowed from the semantic tableau calculus. If a closure consists of two parts
not sharing common variables, one can separately assume that either part is true. If
unsatisfiability is proved in both cases, the initial closure set is evidently unsatisfiable.
Hence, splitting performs an explicit case analysis.

24 2. Preliminary Definitions

Splitting:
N ∪ {C ∨D}

N ∪ {C} | N ∪ {D}

where (i) N is a set of closures, (ii) C and D do not have variables in common.
Splitting changes the nature of resolution significantly: a derivation is now not

unique, but is computed nondeterministically, and is called a branch. A set of closures
N is satisfiable if a branch exists that is saturated up to redundancy and does not
contain the empty closure.

2.7 Disjunctive Datalog

The following presentation of the syntax and the semantics of disjunctive datalog is
based on [42, 55]. Let Σ be a first-order signature such that (i) F(Σ) contains only
constants, and (ii) ≈ ∈ P(Σ) is a special equality predicate with the arity of two. A
disjunctive datalog program with equality P is a finite set of rules of the form

A1 ∨ ... ∨An ← B1, ..., Bm

where n ≥ 0, m ≥ 0, and Ai and Bi are atoms defined over Σ. Furthermore, each rule
must be safe; that is, each variable occurring in a head literal must occur in a body
literal as well. For a rule r, the set of atoms head(r) = {Ai | 1 ≤ i ≤ n} is called the
rule head, whereas the set of atoms body(r) = {Bi | 1 ≤ i ≤ m} is called the rule body.
A rule with an empty body is called a fact.

Typical definitions of a disjunctive datalog program, such as [42, 55], allow negated
atoms in the body. This negation is usually nonmonotonic, and is thus different from
negation in first-order logic. Our algorithms from the following chapters produce only
positive disjunctive datalog programs, so we omit nonmonotonic negation from the
definitions. Disjunctive datalog programs without negation-as-failure are often called
positive programs.

The ground instance of P over the Herbrand universe of P , written ground(P,HU),
is the set of ground rules obtained by replacing all variables in each rule of P with
constants from HU in all possible ways. The Herbrand base HB of P is the set of
all ground atoms defined over predicates from P(Σ). An interpretation M of P is a
subset of HB . An interpretation M is a model of P if the following conditions are
satisfied: (i) body(r) ⊆M implies head(r) ∩M 6= ∅, for each rule r ∈ ground(P,HU);
and (ii) all atoms from M with the ≈ predicate yield a congruence relation—that is,
a relation that is reflexive, symmetric, transitive, and R(a1, . . . , ai, . . . , an) ∈ M and
ai ≈ bi ∈M imply R(a1, . . . , bi, . . . , an) ∈M , for each predicate symbol R ∈ P(Σ).

A model M of P is minimal if no subset of M is a model of P . The semantics
of P is defined as the set of all minimal models of P , denoted by MM(P). Finally,
the notion of query answering is defined as follows. A ground literal A is a cautious
answer of P , written P |=c A, if A ∈M for all M ∈MM(P); A is a brave answer of
P , written P |=b A, if A ∈ M for at least one M ∈ MM(P). First-order entailment
coincides with cautious entailment for positive ground atoms on positive programs.

2.7 Disjunctive Datalog 25

The size of a rule r is defined as |r| = 1 +
∑

1≤i≤n |Ai| +
∑

1≤j≤m |Bj |, where the
size of atoms Ai and Bj is defined as |S(t1, . . . , tn)| = 1 + n: predicates and terms
are encoded with one symbol, and the leading 1 in the definition of |r| accounts for
the implication symbol separating the head from the body. The size of a program P ,
written |P |, is the sum of the sizes of all its rules.

26 2. Preliminary Definitions

Chapter 3

Introduction to Description
Logics

In this chapter, we present a formal definition of the syntax and the semantics of
description logics, as well as of the interesting inference problems. We introduce the
basic description logic SHIQ in Section 3.1, and extend it to SHIQ(D) in Section 3.2
by adding datatypes. We also give examples of SHIQ and SHIQ(D) knowledge bases,
and of interesting conclusions that can be drawn from them. We use these examples
in the latter chapters to demonstrate our reasoning algorithms.

3.1 The Description Logic SHIQ
The syntax of the description logic SHIQ [73] is defined as follows.

Definition 3.1.1. For a set of abstract role names NRa, the set of SHIQ abstract
roles is NRa ∪ {R− | R ∈ NRa}. Let Inv(R) = R− and Inv(R−) = R for R ∈ NRa. A
SHIQ RBox KBR over NRa is a finite set of transitivity axioms Trans(R) and abstract
role inclusion axioms R v S such that R v S ∈ KBR implies Inv(R) v Inv(S) ∈ KBR,
and Trans(R) ∈ KBR implies Trans(Inv(R)) ∈ KBR.

Let v∗ be the reflexive–transitive closure of v. A role R is transitive if there is a
role S such that Trans(S) ∈ R with S v∗ R and R v∗ S; R is simple if there is no
role S such that S v∗ R and S is transitive; and R is complex if it is not simple.

Let NC be a set of atomic concepts. The set of SHIQ concepts over NC and NRa

is defined inductively as the minimal set for which the following holds: > and ⊥ are
SHIQ concepts; each atomic concept A ∈ NC is a SHIQ concept; and, if C and D
are SHIQ concepts, R is an abstract role, S is an abstract simple role, and n is an
integer, then ¬C, C uD, C tD, ∃R.C, ∀R.C, ≤ nS.C, and ≥ nS.C are also SHIQ
concepts. Concepts that are not in NC are called complex. Possibly negated atomic
concepts are called literal concepts. A concept C is a subconcept of a concept D if C
syntactically occurs in D.

27

28 3. Introduction to Description Logics

A SHIQ TBox KBT over NC and KBR is a finite set of concept inclusion axioms
C v D or concept equivalence axioms C ≡ D, where C and D are SHIQ concepts.

Let NIa be a set of abstract individuals. A SHIQ ABox KBA is a set of concept
and abstract role membership axioms C(a), R(a, b), ¬S(a, b), and (in)equality axioms
a ≈ b and a 6≈ b, where C is a SHIQ concept, R is an abstract role, S is an abstract
simple role, and a and b are abstract individuals. An ABox is extensionally reduced if
all ABox axioms contain only literal concepts.

A SHIQ knowledge base KB is a triple (KBR,KBT ,KBA), where KBR is an
RBox, KBT is a TBox, KBA is an ABox, and where the sets NRa, NC , and NIa are
mutually disjoint.

Definition 3.1.1 differs from typical definitions in two aspects. First, OWL-DL
lacks the unique name assumption (UNA), so we do not incorporate UNA into the
definition of SHIQ, but allow the user to axiomatize it by including an inequality
axiom ai 6≈ aj for each pair of distinct abstract individuals [4, page 60]. Second, usual
definitions do not provide for ABox axioms involving negative roles. We allow such
assertions, because they allow checking entailment of ground role facts. Third, it would
be possible to allow complex roles in negative role membership axioms. However, our
approach for dealing with transitivity from Section 5.2 cannot handle such axioms, so
we adopt this weaker definition.

Definition 3.1.2. The semantics of a SHIQ knowledge base KB is given by the map-
ping π that transforms KB axioms into a first-order formula, as shown in Table 3.1.
An atomic concept is mapped into a unary predicate, an abstract role is mapped into
a binary predicate, and an abstract individual is mapped into a constant.

The basic inference problem for SHIQ is checking satisfiability of KB—that is,
determining whether a first-order model of π(KB) exists. Other interesting inference
problems can be reduced to satisfiability as follows, where ι is a new abstract individual
not occurring in the knowledge base:

• Concept satisfiability: A concept C is satisfiable with respect to KB if and only
if there exists a model of KB in which the interpretation of C is not empty. This
is the case if and only if KB ∪ {C(ι)} is satisfiable.

• Subsumption: A concept C is subsumed by a concept D with respect to KB,
written KB |= C v D, if and only if π(KB) |= π(C v D). This is the case if
and only if KB ∪ {(C u ¬D)(ι)} is unsatisfiable.

• Concept equivalence: A concept C is equivalent to a concept D with respect to
KB, written KB |= C ≡ D, if and only if C subsumes D with respect to KB and
vice versa.

• Instance checking: An individual a is an instance of a concept C with respect to
KB, written KB |= C(a), if and only if π(KB) |= π(C(a)). This is the case if
and only if KB ∪ {¬C(a)} is unsatisfiable.

3.1 The Description Logic SHIQ 29

• Role checking: A simple abstract role S relates abstract individuals a and b with
respect to KB, written KB |= R(a, b), if and only if π(KB) |= π(S(a, b)). This
is the case if and only if KB ∪ {¬S(a, b)} is unsatisfiable.

The semantics of description logics is usually given by a direct model-theoretic
semantics. An interpretation I = (4I , ·I) consists of a nonempty domain set 4I and
an interpretation function ·I that assigns an element aI ∈ 4I to each individual a, a set
AI ⊆ 4I to each atomic concept A, and a relation RI ⊆ 4I ×4I to each role R. The
semantics of complex concepts and axioms is given in Table 3.2, where C and D are
concepts, R and S are roles, a and b are individuals, and]N is the number of elements
in a set N . The direct model-theoretic semantics and the semantics by translation into
first-order logic coincide, as first shown by Borgida [21]. For a role R and an object
x ∈ 4I , an object y ∈ 4I is called an R-successor of x in I if (x, y) ∈ RI .

Often, we need a way to compare the expressivity of different description logics.
The following definition provides means for that by a simple syntactic comparison.

Definition 3.1.3. Let L, L1, and L2 be three description logics.

• The logic L is a fragment of L1 if each axiom of L is also an axiom of L1.

• The logic L is between L1 and L2 if L1 is a fragment of L, and L is a fragment
of L2.

We now define several fragments of SHIQ, which we use in the following chapters.

Definition 3.1.4. For a knowledge base KB, a role R is called very simple if no role S
exists such that S v R ∈ KBR. The description logic SHIQ− is a fragment of SHIQ,
where only very simple roles are allowed to occur in number restrictions ≤ nR.C and
≥ nR.C.
ALCHIQ (ALCHIQ−) is a fragment of SHIQ (SHIQ−) that does not allow

transitivity axioms in RBoxes. ALC is the fragment of ALCHIQ that does not provide
for role inclusion axioms, inverse roles, and number restrictions.

Observe that, if KB is not extensionally reduced, it can be easily transformed into
an extensionally reduced knowledge base: for each axiom C(a) where C is not a literal
concept, one can introduce a new atomic concept AC , add the axiom AC v C to the
TBox, and replace C(a) with AC(a). Such a transformation is obviously polynomial
in the number of individuals, so, without loss of generality, it is safe to assume that a
knowledge base is extensionally reduced.

Note that, by Definition 3.1.1, the relation v∗ can be cyclic in general. In [144]
it was shown that we can reduce each SHIQ knowledge base KB with a cyclic role
hierarchy to a SHIQ knowledge base KB ′ with an acyclic role hierarchy using the
following algorithm. First, we compute the set of maximal, strongly connected com-
ponents (or maximal cycles) of the role inclusion relation v of KB . For each strongly
connected component Γ, we select one representative role, denoted with role(Γ), such

30 3. Introduction to Description Logics

Table 3.1: Semantics of SHIQ by Mapping to FOL

Mapping Concepts to FOL
πy(>, X) = >
πy(⊥, X) = ⊥
πy(A,X) = A(X)
πy(¬C,X) = ¬πy(C,X)

πy(C uD,X) = πy(C,X) ∧ πy(D,X)
πy(C tD,X) = πy(C,X) ∨ πy(D,X)
πy(∀R.C,X) = ∀y : R(X, y)→ πx(C, y)
πy(∃R.C,X) = ∃y : R(X, y) ∧ πx(C, y)

πy(≤ nR.C,X) = ∀y1, . . . , yn+1 :
∧n+1

i=1 [R(X, yi) ∧ πx(C, yi)]→
∨n+1

i=1
n+1
j=i+1 yi ≈ yj

πy(≥ nR.C,X) = ∃y1, . . . , yn :
∧n

i=1[R(X, yi) ∧ πx(C, yi)] ∧
∧n

i=1
n
j=i+1 yi 6≈ yj

Mapping Axioms to FOL
π(C v D) = ∀x : πy(C, x)→ πy(D,x)
π(C ≡ D) = ∀x : πy(C, x)↔ πy(D,x)
π(R v S) = ∀x, y : R(x, y)→ S(x, y)

π(Trans(R)) = ∀x, y, z : R(x, y) ∧R(y, z)→ R(x, z)
π(C(a)) = πy(C, a)

π(R(a, b)) = R(a, b)
π(¬S(a, b)) = ¬S(a, b)

π(a ◦ b) = a ◦ b for ◦ ∈ {≈, 6≈}
Mapping KB to FOL

π(R) = ∀x, y : R(x, y)↔ R−(y, x)
π(KBR) =

∧
α∈KBR

π(α) ∧
∧

R∈NRa
π(R)

π(KBT) =
∧

α∈KBT
π(α)

π(KBA) =
∧

α∈KBA
π(α)

π(KB) = π(KBR) ∧ π(KBT) ∧ π(KBA)
Notes:
(i): X is a meta-variable and is substituted by the actual term;
(ii): πx is obtained from πy by simultaneously substituting in the definition

all y(i) with x(i), πy with πx, and vice versa.

3.1 The Description Logic SHIQ 31

Table 3.2: Direct Model-Theoretic Semantics of SHIQ

Interpreting Concepts
>I = 4I

⊥I = ∅
(¬C)I = 4I \ CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(∀R.C)I = {x | ∀y : (x, y) ∈ RI → y ∈ CI}
(∃R.C)I = {x | ∃y : (x, y) ∈ RI ∧ y ∈ CI}

(≤ nR.C)I = {x |]{y | (x, y) ∈ RI ∧ y ∈ CI} ≤ n}
(≥ nR.C)I = {x |]{y | (x, y) ∈ RI ∧ y ∈ CI} ≥ n}

Semantics of Axioms
C v D CI ⊆ DI

C ≡ D CI = DI

R v S RI ⊆ SI

Trans(R) (RI)+ ⊆ RI

C(a) aI ∈ CI

R(a, b) (aI , bI) ∈ RI

¬S(a, b) (aI , bI) /∈ SI

a ≈ b aI = bI

a 6≈ b aI 6= bI

that, if R ∈ Γ and Inv(R) ∈ Γ′ (where Γ′ is a strongly connected component pos-
sibly different from Γ) and role(Γ) = R, then role(Γ′) = Inv(R). Since we assume
that R v S ∈ KBR implies Inv(R) v Inv(S) ∈ KBR, we have that, if R,S ∈ Γ and
Inv(R) ∈ Γ′, then Inv(S) ∈ Γ′, so the definition of role(Γ) is correct. Next, we form
the new TBox KB ′

T and ABox KB ′
A by replacing, in all axioms of KBA and KBT ,

each role R with role(Γ), where Γ is the maximal, strongly connected component that
R belongs to. Finally, we construct the new RBox KB ′

R as follows. For each pair
of strongly connected components Γ 6= Γ′, if there are roles R ∈ Γ and R′ ∈ Γ′ with
R v R′, we add the axiom role(Γ) v role(Γ′) to KB ′

R. Next, for each strongly con-
nected component Γ, we add the axiom Inv(role(Γ)) v role(Γ) to KB ′

R if there is a role
R ∈ Γ such that Inv(R) ∈ Γ. Since the strongly connected components of v can be
computed in time quadratic in the number of roles, this reduction can be performed in
polynomial time. Hence, we can assume without loss of generality that v∗ is acyclic.

A concept C is in negation-normal form if all negations in C occur in front of
atomic concepts only. A concept C can be transformed in time linear in the size of C
into an equivalent concept in negation-normal form, written NNF(C), by exhaustively
applying the following rewrite rules to subconcepts of C:

32 3. Introduction to Description Logics

¬> ⊥ ¬⊥ >
¬(C1 u C2) ¬C1 t ¬C2 ¬(C1 t C2) ¬C1 u ¬C2

¬(∃R.C) ∀R.¬C ¬(∀R.C) ∃R.¬C
¬(≥ (n+ 1)R.C) ≤ nR.C ¬(≤ nR.C) ≥ (n+ 1)R.C

¬(≥ 0R.C) ⊥

With |KB | we denote the size of the knowledge base assuming unary coding of
numbers, which is computed recursively in the following way, for C and D concepts,
A an atomic concept, and R and S roles:

|>| = 1 |⊥| = 1
|A| = 1 |¬C| = 1 + |C|

|C tD| = |C|+ |D|+ 1 |C uD| = |C|+ |D|+ 1
|∃R.C| = 2 + |C| |∀R.C| = 2 + |C|

|≥ nR.C| = n+ 2 + |C| |≤ nR.C| = n+ 2 + |C|
|C v D| = |C|+ |D|+ 1 |C ≡ D| = |C|+ |D|+ 1
|R v S| = 3 |Trans(R)| = 2
|C(a)| = |C|+ 1 |R(a, b)| = 3
|KBR| =

∑
α∈KBR

|α| |KBT | =
∑

α∈KBT
|α|

|KBA| =
∑

α∈KBA
|α| |KB | = |KBR|+ |KBT |+ |KBA|

Intuitively, |KB | is the number of symbols needed to encode KB on the input
tape of a Turing machine. We use a single symbol for each atomic concept, role, and
individual. The n in the definition of the length of concepts ≥ nR.C and ≤ nR.C
stems from the assumption on number coding: a number n can be encoded in unary
with n bits.

The notion of positions is extended to SHIQ concepts and axioms in the obvious
way:

• α|ε = α for α a concept or an axiom;

• (¬D)|1.p = D|p;

• (D1 ◦D2)|i.p = Di|p for ◦ ∈ {u,t,v,≡} and i ∈ {1, 2};

• For C = ./ R.D with ./ ∈ {∃,∀}, C|1 = R, and C|2.p = D|p;

• For C = ./ nR.D with ./ ∈ {≤,≥}, C|1 = n, C|2 = R, and C|3.p = D|p;

• Trans(R)|1 = R;

• For α = C(a), α|1.p = C|p, and α|2 = a;

• For α = R(a, b), α|1 = R, α|2 = a, and α|3 = b;

• (¬S(a, b))|1.p = S(a, b)|p;

• (a1 ◦ a2)|i = ai for ◦ ∈ {≈, 6≈} and i ∈ {1, 2}.

3.1 The Description Logic SHIQ 33

For α a SHIQ concept or axiom and p a position in α, replacing α|p with β is
denoted with α[β]p, and is defined in the obvious way (we assume that the result is
a syntactically correct term). Furthermore, if α|p is a concept, then the polarity of p
is defined to agree with the polarity of the corresponding position in translation of α
into first-order logic, and is defined as follows:

pol(C, ε) = 1 pol(¬C, 1.p) = −pol(C, p)
pol(C1 u C2, i.p) = pol(Ci, p) for i ∈ {1, 2} pol(∃R.C, 2.p) = pol(C, p)
pol(C1 t C2, i.p) = pol(Ci, p) for i ∈ {1, 2} pol(∀R.C, 2.p) = pol(C, p)

pol(≤ nR.C, 3.p) = −pol(C, p) pol(≥ nR.C, 3.p) = pol(C, p)
pol(C1 v C2, 1.p) = −pol(C1, p) pol(C1 v C2, 2.p) = pol(C2, p)
pol(C1 ≡ C2, i.p) = 0 for i ∈ {1, 2} pol(C(a), 1.p) = pol(C, p)

3.1.1 Example

In this subsection, we give an example of a SHIQ knowledge base and show some
inferences that can be drawn from it. DLs were often used for solving configuration
problems [93]. Configurations are usually consist of many different parts, catalogs
of parts that configurations are assembled from are usually hierarchical, and valid
configurations can, to a large degree, be described using logical assertions. Hence, we
embed our example in a configuration scenario.

Let ACME be a computer manufacturing company. As all modern suppliers of
computer equipment, ACME allows its customers to assemble a computer configura-
tion that best suits their needs. However, assembling a configuration is a nontrivial
task, due to interdependencies among different components. For example, the choice
of the motherboard usually constrains the types of compatible memory chips, disk
controllers, and other components. To aid its customers in assembling a valid config-
uration, ACME creates a formal ontology of catalog parts. This ontology can be used
in an application that guides the users in choosing their components, thus ensuring
that chosen components work together correctly in an assembled computer.

To represent objects from the ACME catalog and the relationships between them,
we use the concepts and roles from Table 3.3.

We now describe some relations that hold for all computers in all configurations.
First, we would like to constrain the role hasAdpt to point only to instances of the
Adpt concept; we often say that the range of the hasAdpt role is the Adpt concept.
Similarly, the range of has3DAcc is 3DAcc. These constraints can be specified using
these axioms:

> v ∀ hasAdpt .Adpt(3.1)
> v ∀ has3DAcc.3DAcc(3.2)

Next, we specify taxonomical relationships that hold between items in the catalog.
Axiom (3.3) states that things that are adapters and 3D accelerators are adapters
with built-in 3D accelerators. Furthermore, (3.4) and (3.5) state that adapters and 3D

34 3. Introduction to Description Logics

Concepts
PC all personal computers

GrWS all graphics workstations
GaPC all computers mainly used for playing computer games
Adpt all video adapters in the catalog

3DAcc all 3D video accelerators
Adpt3DAcc all video adapters with built-in 3D accelerators

VD all video devices
PCI all devices built for the PCI bus

Roles
hasAdpt computer has a video adapter

has3DAcc computer has a 3D accelerator
hasVD computer has a video device
contains some object contains other objects

Table 3.3: Example Terminology Used in ACME’s Catalog

accelerators are video devices, respectively. Finally, (3.6) states that graphic worksta-
tions are PCs, and (3.7) states that gaming PCs are PCs and graphics workstations.
(Namely, to play modern computer games, one usually needs more graphics power
than for many business applications of computer graphics.)

Adpt u 3DAcc v Adpt3DAcc(3.3)
Adpt v VD(3.4)

3DAcc v VD(3.5)
GrWS v PC(3.6)

GaPC v GrWS u PC(3.7)

Next, we specify relationships among roles. Axiom (3.8) states that “having a
video adapter” is a kind of “having a video device,” and (3.9) states that “having a 3D
accelerator” is also a kind of “having a video device.” Finally, “having a video device”
is a kind of containment relationship, as specified by (3.10); the latter relationship is
transitive by (3.11).

hasAdpt v hasVD(3.8)
has3DAcc v hasVD(3.9)
hasVD v contains(3.10)

Trans(contains)(3.11)

Finally, we specify what permitted configurations look like. A personal computer
usually requires at least one video adapter, as stated by (3.12). Intuitively, one might
expect the right-hand side of the axiom to be ∃ hasAdpt .Adpt instead of ∃ hasAdpt .>.

3.2 Description Logics with Concrete Domains 35

However, since the range of hasAdpt is Adpt by (3.1), the axiom (3.12) is sufficient.
Next, (3.13) states that graphics workstations require a 3D accelerator. Axiom (3.14)
states that gaming PCs, being destined for the lower market segment, should have at
most one video device. Finally, (3.15) ensures that all parts of a PCI-based computer
are really built for the PCI bus.

PC v ∃ hasAdpt .>(3.12)
GrWS v ∃ has3DAcc.>(3.13)

GaPC v ≤ 1 hasVD .VD(3.14)
PCI v ∀ contains.PCI(3.15)

With KB1 we denote a SHIQ knowledge base that contains exactly the axioms
(3.1)–(3.15).

We now show how KB1 can be used to solve configuration tasks. Let us now assume
that a customer wants to buy a gaming PC, and that an ACME sales representative is
trying to help the customer to decide what kind of video or 3D accelerator should be
added to the computer. He represents the choices of the customer using the following
assertion:

GaPC (pc1)(3.16)

Axiom (3.16) gives a name, pc1 , to the computer that the customer wants to buy,
and states that it is a gaming PC; let KB2 be a SHIQ ABox containing only the
axiom (3.16).

The knowledge about the configuration and the user’s choices can now be used to
guide the construction of a valid configuration as follows. Namely, it is easy to see that
the following holds:

KB1 ∪KB2 |= ∃hasVD .Adpt3DAcc(pc1)(3.17)

In other words, the video device that the customer needs must be a video adapter
with a built-in 3D accelerator. Namely, since pc1 is a gaming PC by (3.16), it has
a video adapter by (3.12) and a 3D accelerator by (3.13). However, all gaming PCs
are allowed to have only one video device by (3.14), so the video adapter and the 3D
accelerator must be one and the same. Hence, the video device must be the video
adaptor and the 3D accelerator.

3.2 Description Logics with Concrete Domains

Practical applications of description logics often need to represent concrete proper-
ties, such as height, name, or age, which assume values from a fixed domain, such as
integers or strings. This requirement led to the extension of description logics with
concrete domains [5]. Informally, a concrete domain provides a set of predicates with

36 3. Introduction to Description Logics

a predefined interpretation. If a decision procedure for checking satisfiability of finite
conjunctions over concrete domain predicates exists, many DLs can be combined with
a concrete domain while retaining decidability. Unfortunately, in [89] it was shown that
a logic with general inclusion axioms and concrete domains is undecidable. Therefore,
in [70, 101, 62] several restrictions of the general approach were investigated; a survey
of the main results was presented in [88]. The cumulative results of this research have
influenced the design of OWL-DL [106], which supports datatypes—a basic form of
concrete domains.

3.2.1 Concrete Domains

With x we denote a vector of variables x1, . . . , xn, and for a function δ, with δ(x) we
denote the application of δ to each element xi of x—that is, a vector δ(x1), . . . , δ(xn).
A concrete domain is defined as follows:

Definition 3.2.1. A concrete domain D is a pair (4D,ΦD), where 4D is a set, called
the domain of D, and ΦD is a finite set of concrete predicate names. Each d ∈ ΦD

is associated with an arity n and an extension dD ⊆ 4n
D. A concrete domain D is

admissible if the following conditions hold:

• ΦD is closed under negation; that is, for each d ∈ ΦD, there exists d ∈ ΦD with
dD = 4n

D \ dD;

• ΦD contains a unary predicate >D interpreted as 4D;

• ΦD contains a binary predicate ≈D interpreted as {(x, y) | x = y};

• ΦD contains a unary predicate =α for each α ∈ 4D, interpreted as {α};

• D-satisfiability of finite conjunctions of the form
∧n

i=1 di(xi)—that is, checking
if an assignment δ of variables to elements of 4D exists such that δ(xi) ∈ dDi
for each 1 ≤ i ≤ n—is decidable.

The definition of admissibility from [5] does not require the existence of ≈D pred-
icate. However, the algorithms we develop in the subsequent chapters depend on this
predicate, so we extend the notion of admissibility appropriately. Furthermore, the
usual definition does not require the existence of predicates =α. We introduce this
restriction to allow accessing concrete domain individuals explicitly. Thus, we can
state that the age of Peter is 15 using the axiom hasAge(peter , 15); this is equivalent
to hasAge(peter , a15) ∧ =15(a15), where =15 is a concrete domain predicate with the
interpretation {15}.

Extending first-order logic with a concrete domain is significantly simplified if the
interpretation of concrete objects is separated from the interpretation of other objects.
Hence, we assume that the set of sorts S of a signature Σ contains the sort c for the
concrete objects, which is different from other abstract objects. When there is a need to
distinguish the sorts syntactically, we denote the variables (general function symbols)
of sort c with xc (f c).

3.2 Description Logics with Concrete Domains 37

Definition 3.2.2. A signature Σ = (P,F ,V,S) is compatible with an admissible
concrete domain D if it satisfies the following conditions:

• c ∈ S is a concrete sort;

• ΦD ⊆ P;

• The signature of each predicate from ΦD is c× . . .× c;

• For each general function symbol f with a signature r1 × . . . × rn → r, we have
ri 6= c for each i.

We assume that the concrete predicate ≈D is used in formulae instead of ≈c for
expressing equality between concrete terms. An interpretation I over the D-signature Σ
is a D-interpretation if Dc = 4D, and, for each concrete predicate d ∈ ΦD, dI = dD.
The usual notions of models, validity, satisfiability, and entailment are generalized to
D-models, D-validity, D-satisfiability, and D-entailment (written |=D) as usual.

When ambiguity does not arise, we do not stress D for satisfiability, equisatisfia-
bility, entailment, and so on. Next, we discuss the restrictions of Definition 3.2.2.

First, the concrete domain does not specify the interpretation for general func-
tion symbols of sort c. Hence, to simplify the treatment, we prohibit nesting of con-
crete terms into other (concrete or nonconcrete) terms. Hence, for a term t, we have
sort(t|p) = c only if p = ε.

Second, the equality and inequality between concrete terms are expressed only
using the concrete predicates ≈D and 6≈D, respectively. Note that both ≈D and 6≈D

are concrete predicates without any special status; also, a literal sc 6≈D tc is a positive
literal with a concrete predicate 6≈D. If a literal sc ◦ tc with ◦ ∈ {≈D, 6≈D} is to
be represented as an E-term (for example, in order to apply basic superposition), it
is encoded as a positive literal (sc ◦ tc) ≈ T. Therefore, ≈D and 6≈D are opaque
to equational calculi, such as basic superposition, and they are handled only by the
extensions we present in Subsection 6.1.1.

Third, practical applications require several different concrete domains at once. An
approach for combining two or more concrete domains into one concrete domain has
been presented in [5]. Therefore, without loss of generality we can consider only one
concrete domain at the time.

3.2.2 The Description Logic SHIQ(D)

We now present the formal definition of the description logic SHIQ(D), which is
obtained by combining SHIQ with concrete datatypes. The syntax of SHIQ from
Definition 3.1.1 is extended as follows:

38 3. Introduction to Description Logics

Definition 3.2.3. Let NRc be the set of concrete roles. Additionally to SHIQ RBox
axioms, a SHIQ(D) RBox KBR can contain a finite number concrete role inclusion
axioms T v U .1

Let D be an admissible concrete domain. In addition to SHIQ concepts, the set of
SHIQ(D) concepts contains ∃T1, . . . , Tm.d, ∀T1, . . . , Tm.d, ≤ nT , and ≥ nT , for T(i)

concrete roles, d an m-ary concrete domain predicate, and n an integer. A SHIQ(D)
TBox KBT is defined analogously to Definition 3.1.1.

Let NIc be a set of concrete individuals. Additionally to SHIQ ABox axioms, a
SHIQ(D) ABox KBA can contain a finite number of concrete role membership axioms
(¬)T (a, bc), and (in)equality axioms ac ≈ bc and ac 6≈ bc, where T is a concrete role,
a is an abstract individual, and ac and bc are concrete individuals.

A SHIQ(D) knowledge base is defined as in Definition 3.1.1, where the sets NRa,
NRc, NC , NIa, and NIc are mutually disjoint.

The semantics of SHIQ from Definition 3.1.2 is extended to SHIQ(D) as follows:

Definition 3.2.4. The semantics of a SHIQ(D) knowledge base KB is given by
extending the mapping π from Definition 3.1.2 to translate KB into a multi-sorted
first-order formula, as shown in Table 3.4. We assume the existence of a separate sort
a for abstract objects, which is different from c. Atomic concept predicates have the
signature a, abstract roles have the signature a × a, concrete roles have the signature
a× c, and n-ary concrete domain predicates have the signature c× . . .× c.

The basic inference problem for SHIQ(D) is checking satisfiability of KB—that
is, determining whether a D-model of π(KB) exists. The other inference problems are
defined analogously to Definition 3.1.2.

The direct model-theoretic semantics is easily extended to SHIQ(D), by extend-
ing the interpretation function ·I to assign an element (ac)I ∈ 4D to each concrete
individual ac, and a relation T I ⊆ 4I ×4D to each concrete role T . The semantics
of new concepts and axioms is given in Table 3.5, where T(i) and U are concrete roles
and d is a concrete predicate.
SHIQ(D) concepts can be rewritten into negation-normal form as follows:

¬(∃T1, . . . , Tn.d) ∀T1, . . . , Tn.d ¬(∀T1, . . . , Tn.d) ∃T1, . . . , Tn.d
¬(≥ (n+ 1)T) ≤ nT ¬(≤ nT) ≥ (n+ 1)T

¬(≥ 0T) ⊥

The size of a SHIQ(D) knowledge base KB is obtained by extending the definition
from Section 3.1 to handle the new constructs in the following way:

|∃T1, . . . , Tm.d| = 2 +m |≥ nT | = n+ 2
|∀T1, . . . , Tm.d| = 2 +m |≤ nT | = n+ 2

The notion of positions is extended to the new SHIQ(D) constructs as follows:
1Inverse concrete roles do not make sense semantically, so we do not distinguish between con-

crete roles and concrete role names. Furthermore, transitive concrete roles also do not make sense
semantically, so they are not allowed. Note that this makes all concrete roles simple.

3.2 Description Logics with Concrete Domains 39

Table 3.4: Semantics of SHIQ(D) by Mapping to FOL

Mapping Concepts to FOL
πy(∀T1, . . . , Tm.d,X) = ∀yc

1, . . . , y
c
m :

∧m
i=1 Ti(X, yc

i)→ d(yc
1, . . . , y

c
m)

πy(∃T1, . . . , Tm.d,X) = ∃yc
1, . . . , y

c
m :

∧m
i=1 Ti(X, yc

i) ∧ d(yc
1, . . . , y

c
m)

πy(≤ nT ,X) = ∀yc
1, . . . , y

c
n+1 :

∧n+1
i=1 T (X, yc

i)→
∨n+1

i=1
n+1
j=i+1 y

c
i ≈D yc

j

πy(≥ nT ,X) = ∃yc
1, . . . , y

c
n :

∧n
i=1 T (X, yc

i) ∧
∧n

i=1
n
j=i+1 y

c
i 6≈D yc

j

Mapping Axioms to FOL
π(T v U) = ∀x, yc : T (x, yc)→ U(x, yc)
π(T (a, bc)) = T (a, bc)

π(¬T (a, bc)) = ¬T (a, bc)
π(ac ◦ bc) = ac ◦D bc for ◦ ∈ {≈, 6≈}

• For C = ./ T1, . . . , Tm.d with ./ ∈ {∃,∀}, C|i = Ti for 1 ≤ i ≤ m, and C|m+1 = d;

• For C = ./ nT with ./ ∈ {≤,≥}, C|1 = n and C|2 = T .

Since the new constructs do not contain nested concepts, the notion of polarity
carries over from SHIQ to SHIQ(D) without change.

3.2.3 Example

To demonstrate how concrete domains can be applied in practice, we extend the con-
figuration example from Subsection 3.1.1 with a concrete domain N, where the domain
is the set of all nonnegative integers, and the predicates have the form ≥100 and are
interpreted in the obvious way.

An important aspect of any item catalog is the item’s price, which we represent
using the role price. In a more realistic scenario, one would probably represent a
price with the pair specifying the amount and the currency; however, for simplicity,
we assume that all prices are represented in euros. An item has at most one price, so
we declare price to be functional by (3.18).

> v ≤ 1 price(3.18)

We now represent additional classes of items in our catalog. For example, using
(3.19) we state that high-end PCs are either graphics workstations, or PCs with a price
higher than 2000 EUR.

HighEnd v GrWS t (PC u ∃price.≥2000)(3.19)

We denote with KB3 the knowledge base KB1 from Subsection 3.1.1 extended with
axioms (3.18) and (3.19).

40 3. Introduction to Description Logics

Table 3.5: Direct Model-Theoretic Semantics of SHIQ(D)

Interpreting Concepts
(∀T1, . . . , Tm.d)I = {x | ∀y1, . . . , ym : (x, y1) ∈ T I

1 ∧ . . . ∧ (x, ym) ∈ T I
m →

(y1, . . . , ym) ∈ dD}
(∃T1, . . . , Tm.d)I = {x | ∃y1, . . . , ym : (x, y1) ∈ T I

1 ∧ . . . ∧ (x, ym) ∈ T I
m∧

(y1, . . . , ym) ∈ dD}
(≤ nT)I = {x |]{y | (x, y) ∈ T I} ≤ n}
(≥ nT)I = {x |]{y | (x, y) ∈ T I} ≥ n}

Semantics of Axioms
T v U T I ⊆ U I

T (a, bc) (aI , (bc)I) ∈ T I

¬T (a, bc) (aI , (bc)I) /∈ T I

ac ≈ bc (ac)I = (bc)I

ac 6≈ bc (ac)I 6= (bc)I

Let us now assume that a customer wants to buy a high-end PC with a price of
1500 EUR at most. These choices are represented by axioms (3.20) and (3.21); let
KB4 be the knowledge base containing them.

HighEnd(pc2)(3.20)
∃price.≤1500(pc2)(3.21)

Based on the user’s choices, the configuration system can conclude that pc2 must
be a graphics workstation:

KB3 ∪KB4 |= GrWS (pc2)(3.22)

Namely, pc2 is declared to be a high-end PC with a price lower than 1500 EUR.
Since each PC has only one price, the price cannot be also higher than 2000 EUR;
formally stated, the conjunction of concrete domain predicates ≥2000(x) ∧ ≤1500(x) is
unsatisfiable. Hence, if axioms (3.19) and (3.19) are to be satisfied, pc2 must be a
graphics workstation.

Part II

From Description Logics to
Disjunctive Datalog

41

Chapter 4

Reduction Algorithm at a Glance

The algorithm for reducing a SHIQ(D) knowledge base to a disjunctive datalog pro-
gram is fairly complex and technical. This is so because SHIQ(D) encompasses
different features, each of which raises special concerns for resolution-based theorem
proving. For example, handling number restrictions requires equality reasoning, which
in turn requires a complex calculus, such as basic superposition. Similarly, a new
approach for reasoning with concrete domains is required to handle datatypes.

To make our work easier to follow, in this chapter we present a simpler version
of all algorithms, scaled down to the basic description logic ALC. Even though it
is quite simple, ALC is an ExpTime-complete logic [144], with features common to
most of the more complex DLs, such as existential and universal quantification, and
general concept inclusion axioms. The reduction algorithm for ALC conveys all the
basic ideas, without overloading the presentation with details. We hope that this will
help the reader to understand the intuition behind the algorithms presented in the
following chapters.

This chapter is of tutorial character, and as such we tried to make it self-contained
(apart from the general definitions that we presented in Chapter 2). However, it is not
strictly necessary for understanding the other chapters and may be skipped. To make
other chapters self-contained as well, some definitions and clarifications are repeated
in the latter chapters.

4.1 The Main Difficulty in Reducing DLs to Datalog

For an ALC knowledge base KB , our goal is to derive a disjunctive datalog program
DD(KB) such that KB |= α if and only if DD(KB) |= α for α of the form A(a) or
R(a, b). In other words, KB and DD(KB) should entail the same set of positive ground
facts. We can thus use DD(KB) instead of KB for query answering, and in doing so
we can apply all optimization techniques known in deductive databases.

43

44 4. Reduction Algorithm at a Glance

As shown by Definition 3.1.2 and [21], there is a close correspondence between
description logics and first-order logic. Consider the following knowledge base:

KB = {A v ∃R.A,∃R.∃R.A v B,A(a)}(4.1)

A näıve attempt to reduce KB into disjunctive datalog is to translate KB into first-
order logic as π(KB), skolemize it, translate it into conjunctive normal form, and
rewrite the obtained set of clauses into rules. On KB , such an approach produces the
following logic program LP(KB):

R(x, f(x))← A(x)(4.2)
A(f(x))← A(x)(4.3)

B(x)← R(x, y), R(y, z), A(z)(4.4)
A(a)(4.5)

Clearly, KB and LP(KB) entail the same set of ground facts. However, LP(KB)
contains a function symbol in a recursive rule (4.3). This raises the issue of how to
answer queries in LP(KB). Namely, well-known query evaluation techniques, such as
bottom-up saturation, will not terminate on LP(KB): using bottom-up saturation,
we shall derive A(f(a)), R(a, f(a)), A(f(f(a))), R(f(a), f(f(a))), B(a), and so on.
Obviously, such an algorithm will continue deriving ever deeper facts, and will therefore
never terminate. Note that we need all previously derived facts to derive B(a) from
LP(KB), and that we do not know a priori when all relevant ground facts have been
derived, so that we might stop the saturation.

This problem could be solved by employing an appropriate cycle detection mech-
anism. The authors use such an approach in [49] to derive a hyperresolution decision
procedure for a variant of the guarded fragment. However, using specialized algorithms
for evaluating queries in LP(KB) takes us further away from our original goal of apply-
ing deductive database optimization techniques to description logics. In a way, such
an algorithm could be understood as an alternative syntactic notation for the tableau
calculus, for which it is still unclear how to apply known optimization techniques, such
as magic sets.

To avoid potential problems with termination, our goal is to derive a true disjunc-
tive datalog program DD(KB) without function symbols. For such a program, queries
can be evaluated using any standard technique; furthermore, all existing optimization
techniques known in deductive databases can be applied directly. Hence, the main
problem that we deal with is the elimination of function symbols from LP(KB).

4.2 The General Idea

To obtain the reduction of an ALC knowledge base KB to a disjunctive datalog pro-
gram entailing the same set of ground facts, we start off with a slightly simpler task
of deriving a program DD(KB) that is satisfiable if and only if KB is satisfiable. The

4.3 Translating KB into Clauses 45

intuitive principle used to ensure the equisatisfiability of KB and DD(KB) is relatively
simple. Let us assume that unsatisfiability of KB can be demonstrated by a refutation
in some sound and complete calculus C. If it is possible to simulate inferences of C on
KB using a datalog program DD(KB), a refutation in KB by C can be reduced to a
refutation in DD(KB). Conversely, if DD(KB) is unsatisfiable, there is a refutation in
DD(KB). If it is possible to simulate inferences in DD(KB) by the calculus C on KB ,
then a refutation in DD(KB) can be reduced to a refutation in KB . To summarize, if
inferences can be simulated in both directions, DD(KB) and KB are equisatisfiable.

To obtain a sound, complete, and terminating algorithm from the high-level idea
outlined in the previous paragraph, it is necessary to select an appropriate calculus
C, capable of effectively deciding satisfiability of KB . Positive disjunctive datalog
is strongly related to clausal first-order logic. Intuitively, simulating inferences in
disjunctive datalog is easier if C is a clausal refutation calculus. Therefore, we first
derive a decision procedure for ALC based on the ordered resolution calculus R (for a
definition of R, see Section 2.4). In particular, we show in Section 4.3 how to translate
KB into an equisatisfiable set of clauses Ξ(KB), and in Section 4.4 that exhaustive
application of the inference rules of R on Ξ(KB) eventually terminates. Since R is
sound and complete, termination implies that R decides satisfiability of Ξ(KB), and
therefore of KB as well.

Based on such a procedure, we derive in Section 4.5 the desired reduction of KB
to a disjunctive datalog program. It turns out that, for ALC, simulating inferences of
R in disjunctive datalog and vice versa is quite straightforward.

After presenting several simple examples in Section 4.6, in Section 4.7 we summarize
the issues that need to be dealt with in order to extend the algorithms to SHIQ(D).
Finally, in Section 4.8 we discuss some interesting aspects of our algorithms.

4.3 Translating KB into Clauses

The first step in deciding satisfiability of an ALC knowledge base KB by R is to trans-
form KB into an equisatisfiable set of clauses Ξ(KB). A straightforward way of doing
so is to compute the formula π(KB) (where π is the operator from Definition 3.1.2),
and then to apply the clausification operator Cls to it (that is, to skolemize π(KB)
and to transform the result into conjunctive normal form using well-known identities,
as explained in Section 2.1).

However, such an algorithm has two important drawbacks. First, the size of
Cls(π(KB)) could be exponential in the size of π(KB), due to nesting of u and t
connectives. Second, since KB is an ALC knowledge base, the formula π(KB) is of
a particular syntactic structure, which we exploit to derive the decision procedure.
Direct clausification of π(KB) would destroy this structure, and thus make it difficult,
if not impossible, to obtain a decision procedure for ALC by R.

In order to avoid the exponential blowup and to preserve the structure of formulae,
we apply the structural transformation, introduced in [108, 99, 8]. Next, we present
an alternative, but equivalent definition.

46 4. Reduction Algorithm at a Glance

Definition 4.3.1. Let C be an ALC concept in negation-normal form. A position
p 6= ε in C is eligible for replacement if C|p is of form

⊔
Li,

d
Li, ∀R.L, or ∃R.L,

where L(i) are all literal concepts. The definitorial form of C, written Def(C), is defined
recursively as follows:

Def(C) =
{
{C} if C is a literal concept
{¬Q t C|p} ∪ Def(C[Q]p) if p is eligible for replacement in C

For example, Def(∃R.(∀S.¬A)) = {∃R.Q, ¬Q t ∀S.¬A}. Note that ¬Q t ∀S.¬A
can be interpreted as Q v ∀S.¬A, which allows us to use Q as a new name for ∀S.¬A
in ∃R.(∀S.¬A). Furthermore, as shown by the following lemma, this transformation
does not affect satisfiability: > v ∃R.(∀S.¬A) and {> v ∃R.Q,> v ¬Qt ∀S.¬A} are
equisatisfiable.

Lemma 4.3.2. For an ALC concept C in negation-normal form, the axiom > v C is
satisfiable if and only if the set of axioms {> v Di |Di ∈ Def(C)} is satisfiable.

Proof. The proof is by induction on the number of recursive invocations of Def. The
induction base is trivial, so we consider the induction step, which replaces the sub-
concept C|p in C with Q, resulting in D = C[Q]p. For the (⇒) direction, let I be
a model satisfying > v C. Obviously, an interpretation I ′, obtained by extending I
with QI′ = DI , satisfies > v D and > v ¬Q t C|p. For the (⇐) direction, let I be a
model of > v D and > v ¬Q tC|p. The following property can be shown by an easy
induction on the structure of D: for each position q in D, (D|q)I ⊆ (C|q)I . But then,
for q = ε, we have DI ⊆ CI . Since 4I ⊆ DI , we have that I is a model of > v C.

The set of clauses Ξ(KB), encoding an ALC knowledge base KB in first-order logic,
is defined as follows:

Definition 4.3.3. We extend the clausification operator Cls from Section 2.1 to ALC
concepts as follows:

Cls(C) =
⋃

D∈Def(NNF(C))

Cls(∀x : πy(D,x))

For an extensionally reduced ALC knowledge base KB, Ξ(KB) is the smallest set
of clauses satisfying the following conditions:

• For each ABox axiom α in KB, Cls(π(α)) ⊆ Ξ(KB);

• For each TBox axiom C v D in KB, Cls(¬C tD) ⊆ Ξ(KB);

• For each TBox axiom C ≡ D in KB, Cls(¬C tD) ⊆ Ξ(KB) and
Cls(¬D t C) ⊆ Ξ(KB).

If KB is not extensionally reduced, then Ξ(KB) = Ξ(KB ′), where KB ′ is an exten-
sionally reduced knowledge base obtained from KB as explained in Section 3.1.

4.4 Deciding Satisfiability of Ξ(KB) by R 47

Table 4.1: Clause Types after Preprocessing

1
∨

(¬)Ci(x) ∨R(x, f(x))
2

∨
(¬)Ci(x) ∨ (¬)D(f(x))

3
∨

(¬)Ci(x)
4

∨
(¬)C(x) ∨ ¬R(x, y) ∨ (¬)D(y)

5 (¬)C(a)
6 (¬)R(a, b)

We now show that clausification does not affect the semantics of a knowledge base,
and that it produces clauses of a certain syntactic structure:

Lemma 4.3.4. Let KB be an ALC knowledge base. Then, the following claims hold:

• KB is satisfiable if and only if Ξ(KB) is satisfiable.

• Ξ(KB) can be computed in time polynomial in |KB |.

• Each clause in Ξ(KB) is of one of the types given in Table 4.1.

Proof. Equisatisfiability of KB and Ξ(KB) is an easy consequence of Lemma 4.3.2.
Furthermore, the number of recursive invocations of Def and the number of new con-
cepts Q are linear in the number of subconcepts of C. Hence, |Def(C)| is linear in
|C|, so |Ξ(KB)| is polynomial in |KB |. Finally, observe that Def(C) can contain only
concepts of the form D or ¬QtD, where D is of the form

⊔
Li,

d
Li, ∀R.L, or ∃R.L,

and all L(i) are literal concepts. Hence, for D = ∃R.L, Cls(D) contains clauses of type
1 and 2; for D = ∀R.L a clause of type 4; and for D =

⊔
Li or D =

d
Li clauses of

type 3. Clauses of type 5 and 6 are obtained by clausifying ABox axioms.

4.4 Deciding Satisfiability of Ξ(KB) by R
SinceR is a sound and complete calculus, we can use it to check satisfiability of Ξ(KB).
To obtain a decision procedure, we just need to ensure that each saturation of Ξ(KB)
by R terminates. Joyner outlined the basic principle to achieve this in [80]: we simply
ensure that the number of clauses that can be derived in a saturation is bounded.

There are two main reasons why deriving an infinite number of clauses from a set
of clauses N might be possible. First, we might keep deriving clauses with deeper
and deeper terms. Consider N1 = {C(a), ¬C(x) ∨ C(f(x))}. If we select ¬C(x) in
the second clause and apply resolution, we derive C(f(a)), C(f(f(a))), and so forth.
Second, we might keep deriving clauses containing more and more variables. Consider
N2 = {¬R(x, y) ∨ ¬R(y, z) ∨ R(x, z), C(x) ∨ R(x, y) ∨ D(y), E(x) ∨ R(x, y) ∨ F (y)}.
If we select ¬R(x, y) and ¬R(y, z) in the first clause and apply resolution twice, we

48 4. Reduction Algorithm at a Glance

obtain C(x) ∨ D(y) ∨ E(y) ∨ F (z) ∨ R(x, z), which contains more variables than the
side premises involved in the inference. It is easy to see that further inferences with
this clause will additionally increase the number of variables.

The resolution inferences performed on certain clauses are determined by the para-
meters of the calculus—namely, the literal ordering and the selection function. Hence,
by choosing these parameters appropriately, we can often restrict the resolution infer-
ences in a way that allows us to establish a bound on the term depth and on the number
of variables. Consider again the set of clauses N1: instead of selecting ¬C(x), if we
ensure that C(f(x)) � ¬C(x), then the second clause can participate in an inference
only on literal C(f(x)). Furthermore, C(f(x)) and C(a) do not unify, so no inference
of R is applicable to N1. Hence, N1 is saturated, and, since it does not contain the
empty clause, it is satisfiable. In the following definition, we choose the parameters for
R that achieve such an effect on clauses from Ξ(KB).

Definition 4.4.1. Let RDL denote the calculus R parameterized as follows:

• The literal ordering is an admissible ordering � such that R(x, f(x)) � ¬C(x)
and D(f(x)) � ¬C(x), for all function symbols f , and predicates R, C, and D.

• The selection function selects every negative binary literal in each clause.

An ordering satisfying Definition 4.4.1 can be obtained by instantiating an ap-
propriate lexicographic path ordering. Technically speaking, negative literals are not
terms, but for the purposes of comparing literals by an LPO, we consider ¬ to be a
unary general function symbol. To make an LPO compatible with RDL, we choose
any precedence > over predicate and general function symbols such that f > P > ¬,
for each function symbol f and each predicate symbol P . Namely, LPOs have the
subterm property, so ¬A � A; furthermore, since ¬ is the smallest symbol in >, we
cannot have ¬A � B � A. Hence, such an LPO is admissible for R. Moreover, by the
definition of LPOs from Section 2.2, it is easy to check that D(f(x)) � f(x) � ¬C(x),
and R(x, f(x)) � f(x) � ¬C(x).

To obtain a decision procedure for ALC, we next identify the type of clauses that
can be derived in a saturation of Ξ(KB) by RDL. We generalize the clauses from
Table 4.1 to ALC-clauses, presented in Table 4.2. For a term t, with P(t) we denote
a possibly empty disjunction of the form (¬)P1(t) ∨ . . . ∨ (¬)Pn(t). With P(f(x)) we
denote a possibly empty disjunction of the form P1(f1(x)) ∨ . . . ∨ Pm(fm(x)). Note
that this definition allows each Pi(fi(x)) to contain positive and negative literals.

We now prove the following central lemma:

Lemma 4.4.2. Each RDL inference, when applied to ALC-clauses, produces an ALC-
clause.

Proof. The lemma can easily be proved by considering all possible RDL inferences on
all types of ALC-clauses, which are summarized in Table 4.3. For the sake of brevity,
we omit inferences in which participating literals are complemented. The notation

4.4 Deciding Satisfiability of Ξ(KB) by R 49

Table 4.2: Types of ALC-Clauses

1 P(x) ∨R(x, f(x))
2 P1(x) ∨P2(f(x))
3 P1(x) ∨ ¬R(x, y) ∨P2(y)
4 P(a)
5 (¬)R(a, b)

(n + m = k) next to each inference specifies that the inference premises are of types
n and m, and the conclusion is of type k. Observe that, due to the requirement
on the literal ordering �, a literal of the form (¬)A(x) occurring in a clause C can
participate in an inference only if C does not contain a literal of the form (¬)B(f(x))
or R(x, f(x)). Furthermore, a ground literal A(a) does not unify with a literal A(f(x)),
and R(a, b) does not unify with R(x, f(x)). Hence, ground clauses can participate only
in inferences with clauses not containing terms of the form f(x).

As shown by the following lemma, for a finite knowledge base KB , the number of
ALC-clauses is finite. In fact, the bound on the number of derivable clauses can be
used to estimate the complexity of the algorithm.

Lemma 4.4.3. For an ALC knowledge base KB, the longest ALC-clause over the
signature of Ξ(KB) is polynomial in |KB |, and the number of such clauses different
up to variable renaming is exponential in |KB |.

Proof. Let c be the number of unary predicates, f the number of unary function sym-
bols, and i the number of constants in the signature of Ξ(KB). Then, c is linear in
|KB |, since each concept introduced in Def(C) corresponds to one nonliteral subcon-
cept of C. Similarly, f is linear in |KB |, since each function symbol is introduced by
skolemizing one concept of the form ∃R.C. Finally, i is trivially linear in |KB |.

Consider now the maximal ALC-clause Cl2 of type 2. Such a clause contains
a possibly negated literal A(x) for each unary predicate A, and a possibly negated
literal A(f(x)) for each pair of unary predicate and function symbols, yielding at most
` = 2c + 2cf literals, which is polynomial in |KB |. Each ALC-clause of type 2 is a
subset of Cl2, so there are 2` such clauses; that is, the number of clauses is exponential
in |KB |. For other ALC-clause types, the bounds on the length and on the number of
clauses can be derived in an analogous way.

We now state the main result of this section:

Theorem 4.4.4. For an ALC knowledge base KB, saturating Ξ(KB) by RDL decides
satisfiability of KB and runs in time exponential in |KB |.

Proof. By Lemma 4.4.3, the number of clauses derivable by RDL from Ξ(KB) is ex-
ponential in |KB |. Each inference can be performed in time polynomial in the size of

50 4. Reduction Algorithm at a Glance

Table 4.3: Possible Inferences by RDL on ALC-Clauses

P1(x) ∨P2(f(x)) ∨ ¬A(g(x)) A(x) ∨P3(x)

P1(x) ∨P2(f(x)) ∨P3(g(x))
(2+2=2)

P1(x) ∨ ¬A(x) A(x) ∨P2(x)

P1(x) ∨P2(x)
(2+2=2)

P1(x) ∨P2(f(x)) ∨ ¬A(g(x)) A(g(x)) ∨P3(h(x)) ∨P4(x)

P1(x) ∨P2(f(x)) ∨P3(h(x)) ∨P4(x)
(2+2=2)

P(x) ∨R(x, f(x)) P1(x) ∨ ¬R(x, y) ∨P2(y)

P(x) ∨P1(x) ∨P2(f(x))
(1+3=2)

P1(a) ∨ ¬A(b) A(x) ∨P2(x)

P1(a) ∨P2(b)
(4+2=4)

P1(a) ∨ ¬A(b) A(b) ∨P2(c)

P1(a) ∨P2(c)
(4+4=4)

R(a, b) P1(x) ∨ ¬R(x, y) ∨P2(y)

P1(a) ∨P2(b)
(5+3=4)

R(a, b) ¬R(a, b)

�
(5+5=2)

clauses. Subsumption checking is NP-complete in the size of clauses [52], so it can be
performed in exponential time. Hence, the saturation terminates after performing at
most an exponential number of steps. Since RDL is sound and complete, it decides
satisfiability of Ξ(KB), and by Lemma 4.3.4 of KB as well, in time that is exponential
in |KB |.

4.5 Translating ALC to Disjunctive Datalog

Given a decision procedure for checking satisfiability of an ALC knowledge base KB ,
it is now easy to obtain the desired reduction to disjunctive datalog. From Table 4.3,
we see that (i) a ground clause cannot participate in an inference with a nonground
clause containing a function symbol, and (ii) as soon as one premise in an inference by
RDL is ground, the conclusion is ground as well. Hence, we can perform all inferences
among nonground clauses first, after which we can simply delete all nonground clauses
containing function symbols. The remaining clause set consists of clauses without
function symbols, which can easily be translated into a disjunctive datalog program,

4.5 Translating ALC to Disjunctive Datalog 51

by moving positive literals into rule heads and negative literals into rule bodies. A
minor problem arises if the resulting rules contain unsafe variables—that is, variables
occurring only in the head, but not in the body. We deal with such clauses by a
simple trick: we introduce a new predicate HU and add an assertion HU (a) for each
individual a; next, we append HU (x) to the body of each rule in which x is an unsafe
variable. We now present this algorithm formally.

Definition 4.5.1. Let KB be an extensionally reduced ALC knowledge base. Then,
Γ(KBT) is the set of clauses obtained by saturating Ξ(KBT) by RDL, and then deleting
all clauses containing function symbols. Furthermore, the operator λ maps clauses to
clauses as follows:

λ(C) = C ∪ {¬HU (x) | for each unsafe variable x in C }

For a set of clauses N , λ(N) is the set of clauses obtained by applying λ to each
element of N . The function-free version of KB is defined as follows:

FF(KB) = λ(Γ(KBT)) ∪ Ξ(KBA) ∪ {HU (a) | for each individual a occurring in KB}

Finally, a disjunctive datalog program DD(KB) is the set of rules obtained by mov-
ing in each clause from FF(KB) all positive literals into the rule head, and all negative
literals into the rule body.

If KB is not extensionally reduced, then DD(KB) = DD(KB ′), where KB ′ is an
extensionally reduced knowledge base obtained from KB as explained in Section 3.1.

We now state the properties of DD(KB):

Theorem 4.5.2. Let KB be an ALC knowledge base. Then, the following claims hold:

1. KB is unsatisfiable if and only if DD(KB) is unsatisfiable.

2. KB |= α if and only if DD(KB) |=c α, where α is of the form A(a) or R(a, b),
and A is an atomic concept.

3. KB |= C(a) for a nonliteral concept C if and only if, for Q a new atomic concept,
DD(KB ∪ {C v Q}) |=c Q(a).

4. The number of literals in each rule in DD(KB) is at most polynomial, the number
of rules in DD(KB) is at most exponential, and DD(KB) can be computed in time
exponential in |KB |.

Proof. (Claim 1.) Table 4.3 shows that each inference with at least one ground premise
always produces a ground conclusion. Hence, in saturating Ξ(KB) by RDL, it is pos-
sible to perform all inferences among nonground clauses first. Furthermore, Table 4.3
also shows that ground clauses can participate in inferences only with clauses not con-
taining function symbols. Hence, after performing all inferences among nonground
clauses of Ξ(KB), one can delete all clauses containing terms of the form f(x).

52 4. Reduction Algorithm at a Glance

By Definition 4.3.3, Ξ(KBT) is exactly the set of nonground clauses of Ξ(KB), so
Γ(KBT) is exactly the set of clauses obtained by saturating the nonground part of
Ξ(KB) and deleting the clauses containing function symbols. Furthermore, it is easy
to see that Γ = Γ(KBT) ∪ Ξ(KBA) is satisfiable if and only if FF(KB) is satisfiable.
Namely, both Γ and FF(KB) are function-free sets of clauses, whose sets of ground
instances differ only on clauses containing unsafe variables. However, for a clause
C ∈ Γ containing an unsafe variable x and a ground substitution τ = {x 7→ a}, FF(KB)
contains clauses C∨¬HU (x) and HU (a), which together imply Cτ . Hence, the ground
instances of FF(KB) imply all ground instances of Γ, so, if FF(KB) is satisfiable, Γ is
satisfiable as well. Furthermore, since HU is a new predicate not occurring in Γ, each
model of Γ can easily be extended to a model of FF(KB). Therefore, Γ and FF(KB)
are equisatisfiable.

Finally, DD(KB) is a positive datalog program whose rules are syntactic variants
of the clauses from FF(KB). Hence, DD(KB) is satisfiable if and only if FF(KB) is
satisfiable.

(Claim 2.) Simply observe that KB |= α if and only if KB ∪ {¬α} is unsatisfi-
able. The latter is the case if and only if DD(KB ∪ {← α}) = DD(KB) ∪ {← α} is
unsatisfiable, which is the case if and only if DD(KB) |=c α.

(Claim 3.) Follows in the same manner as Claim 2.
(Claim 4.) Follows immediately from Lemma 4.4.3.

4.6 Examples

We now present several rather simple examples that point out important properties of
the reduction algorithm.

Readers familiar with more common approaches to DL reasoning might ask them-
selves how role successors are encoded in datalog programs. As we show next, role
successors are not at all encoded in the datalog program. Let KB1 = {C v ∃R.D},
so Ξ(KB1) = {¬C(x) ∨ R(x, f(x)), ¬C(x) ∨ D(f(x))}. Now Ξ(KB1) is already sat-
urated by RDL, so after removing all clauses containing function symbols, we get
DD(KB1) = ∅. This may seem quite confusing: KB1 implies the existence of at least
one R-successor for each member of C, whereas DD(KB1) does not reflect that. How-
ever, Theorem 4.5.2 is not invalidated. Namely, the individuals introduced by the
existential quantifier in KB1 are unnamed, so they cannot be used in queries. Hence,
for an arbitrary extensionally reduced ABox KBA, KB1 ∪ KBA does not imply any
new facts of the form A(a) or R(a, b). Also, note that the models of DD(KB1) are
completely unrelated to the models of KB1. Intuitively, this is so because the reduction
algorithm is based on a proof-theoretic correspondence between refutations in Ξ(KB)
and DD(KB). The models of KB and DD(KB) coincide only on positive ground facts,
whereas, for unnamed individuals, the models are completely unrelated.

In order to be able to draw additional consequences from KB1, we need to extend
it with additional statements about C, D, or R. Let KB2 = KB1 ∪ {D v ⊥}, so

4.6 Examples 53

Ξ(KB2) = Ξ(KB1) ∪ {¬D(x)}. Saturation of Ξ(KB2) produces one additional clause
¬C(x), so we get DD(KB2) = {← C(x),← D(x)}. This shows that the reduction is
not modular: for arbitrary knowledge bases KB1 and KB2, DD(KB1) ∪ DD(KB2) is
not necessarily equal to DD(KB1 ∪KB2).

The key step in the reduction is the saturation of Ξ(KBT) by RDL. It computes all
relevant nonground consequences of Ξ(KBT), which ensures that subsequent removal
of clauses containing function symbols does not change the set of drawn ground conse-
quences. One can think of RDL as producing shortcut clauses that derive facts about
objects without explicitly expanding the successors of each object. This is demon-
strated by the following knowledge base:

KB3 = {A v ∃R.B, B v C, ∃R.C v D}(4.6)

Now Ξ(KB3) consists of the following clauses:

¬A(x) ∨R(x, f(x))(4.7)
¬A(x) ∨B(f(x))(4.8)
¬B(x) ∨ C(x)(4.9)

D(x) ∨ ¬R(x, y) ∨ ¬C(y)(4.10)

Assuming literals are ordered as D(x) � C(x) � B(x) � A(x), by saturating
Ξ(KB3) we obtain the following clauses (the notation R(xx; yy) means that a clause
is derived by resolving clauses xx and yy):

¬A(x) ∨D(x) ∨ ¬C(f(x)) R(4.7;4.10)(4.11)
¬A(x) ∨D(x) ∨ ¬B(f(x)) R(4.11;4.9)(4.12)

¬A(x) ∨D(x) R(4.12;4.8)(4.13)

By eliminating clauses containing function symbols, we get DD(KB3) as follows:

C(x)← B(x)(4.14)
D(x)← R(x, y), C(y)(4.15)

D(x)← A(x)(4.16)

It is instructive to consider the role of each rule in DD(KB3). Whereas the axiom
B v C in KB3 is applicable to all individuals in a model, the rule (4.14) is applicable
only to named individuals. The relationship between ∃R.C v D and (4.15) is analo-
gous. However, to compensate for the fact that (4.14) and (4.15) derive consequences
only about named individuals, DD(KB3) contains the rule (4.16), which is produced
by the saturation of Ξ(KBT) by RDL. This rule can be thought of as a shortcut:
instead of introducing for each x in A an R-successor y in B, propagating y to C,
and then concluding that x is in D, the rule (4.16) derives that all members of A are
members of D in one step, and thus ensures that DD(KB3) and KB3 entail the same
set of ground facts.

54 4. Reduction Algorithm at a Glance

Finally, we take KB4 to be the knowledge base introduced in Section 4.1. Note
that the concept ∃R.∃R.A contains a nonatomic subconcept ∃R.A, to which we apply
structural transformation, and replace it by a new atomic concept Q.1 Hence, the set
of clauses Ξ(KB4) consists of the following clauses:

¬A(x) ∨R(x, f(x))(4.17)
¬A(x) ∨A(f(x))(4.18)

Q(x) ∨ ¬R(x, y) ∨ ¬A(y)(4.19)
B(x) ∨ ¬R(x, y) ∨ ¬Q(y)(4.20)

Assuming literals are ordered as Q(x) � B(x) � A(x), by saturating Ξ(KB4) using
RDL we obtain the following new clauses:

¬A(x) ∨Q(x) ∨ ¬A(f(x)) R(4.17;4.19)(4.21)
¬A(x) ∨Q(x) R(4.21;4.18)(4.22)

¬A(x) ∨B(x) ∨ ¬Q(f(x)) R(4.17;4.20)(4.23)
¬A(x) ∨B(x) ∨ ¬A(f(x)) R(4.23;4.22)(4.24)

¬A(x) ∨B(x) R(4.24;4.18)(4.25)

After eliminating clauses containing function symbols, we obtain DD(KB) as the
following set of rules:

Q(x)← R(x, y), A(y)(4.26)
B(x)← R(x, y), Q(y)(4.27)

Q(x)← A(x)(4.28)
B(x)← A(x)(4.29)

The intuitive meaning behind these rules is somewhat obscured because we intro-
duced a new predicate Q. However, we are not interested in ground consequences
related to Q, and, since Q is a new predicate, it cannot occur in any ABox one might
consider in conjunction with KB4. Hence, we can perform all possible resolution in-
ferences with the Q predicate in advance (that is, we can apply rule unfolding to Q),
which yields the following datalog program:

B(x)← A(x)(4.30)
B(x)← R(x, y), A(y)(4.31)

B(x)← R(x, y), R(y, z), A(z)(4.32)

Now the intuitive meaning of these rules can be explained as follows. The rule
(4.30) takes into account that each named individual that is in A has a chain of at

1The rules (4.2)–(4.4) do not contain Q because they are obtained by direct clausification, without
applying structural transformation.

4.7 Extending the Algorithms to SHIQ(D) 55

least two unnamed R-successors. The rule (4.31) takes into account that a named
individual may be explicitly linked through R to another individual in A that then
has at least one unnamed R-successor. Finally, the rule (4.32) takes into account that
a named individual may be explicitly linked through an R-chain of length two to a
named individual that is in A. Only R-chains of length two are considered, because
KB4 contains the concept ∃R.∃R.A, which effectively checks for such R-chains.

4.7 Extending the Algorithms to SHIQ(D)

The algorithms for reducing a SHIQ(D) knowledge base to a disjunctive datalog
program, presented in the subsequent chapters, are based on the same ideas as the
algorithms for ALC. Next, we outline the issues that must be addressed to extend the
basic algorithms:

• The most important difference is that SHIQ provides for number restrictions,
which we translate into first-order logic with equality. This requires using ba-
sic superposition [14, 96] instead of ordered resolution. The decision procedure
for SHIQ by basic superposition is derived along the same principles as for
ALC; however, due to more complex clause types and a more complex calculus,
establishing closure under inferences is significantly more involved.

• As we discuss in Section 5.4, we were able to derive a decision procedure by basic
superposition only for a slightly weaker logic SHIQ−. Namely, even though basic
superposition is a fairly optimized calculus, it does not restrict the inferences
enough to obtain a decision procedure for full SHIQ. The problems are caused
by an interaction of inverse properties, number restrictions, and role hierarchies.
To solve these problems, we extend basic superposition with a new decomposition
inference rule. We show that such a calculus is sound and complete, and that it
decides SHIQ.

• The reduction into disjunctive datalog is also more involved. Namely, due to
number restrictions, the ground clauses derivable by basic superposition can
contain literals of the form A(f(a)). It is now not possible to simply throw away
all clauses containing function symbols after saturation. Instead, we encode a
ground functional term f(a) using a fresh constant af .

• To be able to handle datatypes, in Chapter 6 we first derive a general approach for
reasoning with concrete domains in the framework of resolution. Then, we apply
this approach to derive a decision procedure, and, consequently, the reduction
algorithm for SHIQ(D).

• SHIQ provides for transitivity axioms, which, in their clausal form, raise a
number of issues for resolution decision procedures [82]. Hence, in Section 5.2 we
show how to eliminate transitivity axioms from knowledge bases without affecting
satisfiablity, using a transformation similar to the ones from [144] and [129].

56 4. Reduction Algorithm at a Glance

• A slight technical complication with clausifying SHIQ axioms arises because,
even though a concept D = ≤ nR.A is in negation-normal form, the concept A
occurs in D under negative polarity. Hence, the structural transformation for
SHIQ is modified to take this into account.

4.8 Discussion

In this section we discuss some aspects of our algorithms that may seem surprising at
the first glance.

4.8.1 Independence of the Reduction and the Query

Theorem 4.5.2 shows that the program DD(KB) is independent of the query, as long
as the query is a positive atomic concept or a role.2 Hence, DD(KB) can be computed
once, and can be used to answer any number of atomic queries.

On the contrary, if the query involves a nonatomic concept C (even if C is a negated
atomic concept), then query answering can be reduced to entailment of positive ground
facts, by introducing a new name Q, and by adding the axiom C v Q to the TBox.
Obviously, DD(KB ∪ {C v Q}) may depend on the query concept C.

Intuitively, the reduction algorithm effectively derives all nonground facts following
from the terminological part of a knowledge base. Moreover, a complex concept C,
even if used only in the query, introduces terminological knowledge. Therefore, the
reduction is independent of atomic query concepts, but depends on nonatomic ones.

We point out that, if DD(KB) is interpreted under standard first-order semantics,
then KB and DD(KB) also entail the same set of negative ground facts. However,
disjunctive datalog programs are usually interpreted under minimal model semantics.
As we discuss in the following subsection, minimal models do affect the entailment of
negative ground facts; therefore, we restrict Theorem 4.5.2 to positive facts only.

4.8.2 Minimal vs. Arbitrary Models

Disjunctive datalog programs are usually interpreted under minimal model semantics:
P |=c α means that α is true in all minimal models of a program P , where minimality
is defined w.r.t. set inclusion. In this way, disjunctive datalog implements a kind
of closed-world semantics. On the contrary, description logics assume the standard
first-order semantics: KB |= α means that α is true in all models of KB . Thus,
description logics implement open-world semantics. It may come as a surprise that a
logic whose semantics is defined for arbitrary models can be embedded in a logic that
considers only minimal models. The answer is found in two important observations:
(i) our reduction produces only positive datalog programs (that is, programs without
negation-as-failure), and (ii) the distinction between first-order and minimal-model
semantics is not relevant for certain types of questions.

2Note that the algorithm for full SHIQ allows only simple roles in queries.

4.8 Discussion 57

Assume that P is a positive datalog program and that α is a positive ground atom.
Then, P |= α if and only if P |=c α. Namely, if α is true in each model of P , it is
true in each minimal model of P as well, and vice versa. Therefore, for entailment of
positive ground atoms, it is not important whether the semantics of P is defined w.r.t.
minimal or w.r.t. general first-order models.

Assume now that α is a negative ground atom. Then, the difference between min-
imal model semantics and first-order semantics is relevant, as shown by the following
example. For α = ¬A(b) and P = {A(a)}, it is clear that P 6|= α. Namely, ¬A(b) is
not explicitly derivable from the facts in P : M1 = {A(a), A(b)} is a first-order model
of P , and α is false in M1. However, P has exactly one minimal model M2 = {A(a)},
and ¬A(b) is obviously true in M2, so P |=c α.

The choice of semantics also affects subsumption. For α = ∀x : [C(x) → D(x)]
and P = {C(a), D(a)}, we have P 6|= α: M1 = {C(a), D(a), C(b)} is a first-order
model of P , in which α is false. On the contrary, the only minimal model of P is
M2 = {C(a), D(a)}, and α is true in M2, so P |=c α. The distinction between minimal
and general first-order models fundamentally changes the computational properties of
concept subsumption: equivalence of general programs under minimal model semantics
is undecidable [136] whereas, under first-order semantics, it is decidable and can be
reduced to satisfiability checking using standard transformations.

To summarize, the difference between first-order and minimal model semantics is
not relevant for answering positive queries in positive datalog programs; however, it is
relevant for queries that involve negation or for concept subsumption. Theorem 4.5.2
reflects this: it does not say that minimal models of DD(KB) are somehow related to
KB ; it simply says that all positive ground facts entailed by KB are contained in each
minimal model of DD(KB) and vice versa.

It would therefore be incorrect to check whether KB |= ¬A(a) by checking if
DD(KB) |=c ¬A(a). To solve this task using our algorithms, we must reduce it to
entailment of positive ground facts: for NotA a new concept, KB |= ¬A(a) if and only
if DD(KB ∪ {¬A v NotA}) |=c NotA(a).

Similarly, it would be incorrect to check whether KB |= C v D by checking whether
DD(KB) |=c ∀x : [C(x) → D(x)]. To solve the task using our algorithms, we again
must reduce it to entailment of positive ground facts. If C and D are atomic concepts,
KB |= C v D if and only if DD(KB) ∪ {C(ι)} |=c D(ι), where ι is a new individual
not occurring in KB .

4.8.3 Complexity

The complexity of cautious query answering in a nonground positive disjunctive datalog
program P is co-NExpTime [42], due to the following reasons. Let c be the number of
constants, v the maximal number of variables per rule, p the number of predicates, and
a the maximal arity of a predicate in P ; in general, all of these parameters are linear
in |P |. Since P is assumed to be a positive program, query answering in P can be
reduced to checking unsatisfiability of P in the usual way. To decide satisfiability of P ,

58 4. Reduction Algorithm at a Glance

we compute the ground program PG = ground(P) by replacing, in each rule, at most v
variables with one of the c constants. This gives cv combinations, so |PG| is exponential
in |P |. Furthermore, the number of ground atoms in PG is also exponential in |P |, as
it is bounded by p · ca: each of the c constants can occur at each of the a positions
in a ground atom in PG. Now satisfiability of PG can be performed by guessing an
interpretation I for PG, and then checking whether I is a model of PG. The first step
requires choosing a truth value for each ground atom of PG; this can obviously be
performed in time exponential in |P |. The second step can be performed by checking
the truth value of each rule of PG; since the length of the rules is linear in |P |, but
the number of rules is exponential in |P |, this step can also be performed in time
exponential in |P |. Since the algorithm is nondeterministic, these two steps together
give NExpTime complexity of satisfiability checking, and co-NExpTime complexity
of unsatisfiability checking and query answering.

Note that the results in [42] actually give co-NExpTimeNPas the complexity of
query answering. This is because the authors consider a more general case of disjunctive
datalog programs with negation-as-failure under stable model semantics. In such a
case, it does not suffice to find an arbitrary model; one must additionally check if the
model is minimal, which can be performed using an NP oracle. For positive datalog
programs without negation-as-failure this is not needed: if we find a model, we know
that a minimal model exists as well.

These results suggest that reducing DLs to disjunctive datalog might increase the
complexity of reasoning. We show, however, that the previous calculation overesti-
mates the complexity in case of DD(KB). Let PG

DL = ground(DD(KB)). Now the
number of variables in a rule from DD(KB) is at most two, so |PG

DL| is still exponential
in |KB |. Furthermore, the arity of literals in DD(KB) is at most two, so the number of
ground literals in PG

DL is polynomial in |KB |. Hence, an interpretation IDL for PG
DL can

be guessed in time polynomial in |KB |, and all such interpretations can be examined
in time exponential in |KB |. Checking if IDL is a model of PG

DL can be performed in
time exponential in |KB |. These two steps combined give us the ExpTime complexity
for satisfiability checking, and also for unsatisfiability checking and query answering.
To summarize, even though |DD(KB)| is exponential in |KB |, query answering can be
performed in time exponential in |KB | because (i) the length of the rules in DD(KB)
is polynomial in |KB |, and (ii) the arity of the literals is bounded.

4.8.4 Descriptive vs. Minimal-Model Semantics

Our reduction preserves the so-called descriptive semantics. Namely, Nebel has shown
that knowledge bases containing terminological cycles are not definitorial [95]: for a
fixed partial interpretation of atomic concepts, several interpretations of nonatomic
concepts may exist. In such a case, it might be reasonable to designate a particular
interpretation as the intended one, with least and greatest fixpoint models being the
obvious candidates. However, Nebel argues that it is not clear which interpretation
best matches the intuition, as choosing either of the fixpoint models has its drawbacks.

4.8 Discussion 59

Consequently, most description logic systems implement the descriptive semantics,
which coincides with that of Definition 3.1.2.

By Theorem 4.5.2, our decision procedure implements exactly the descriptive se-
mantics. Namely, DD(KB) entails exactly those ground facts that are derivable using
the resolution decision procedure, and the latter implements the descriptive semantics.

4.8.5 Unique Name Assumption

The semantics of ALC and SHIQ(D) does not require different symbols to be in-
terpreted as different objects, whereas the standard semantics of disjunctive datalog
does require it. Therefore, it may seem surprising that a logic without unique name
assumption (UNA) can be embedded into a logic that strictly requires it.

To understand why our algorithms are correct, note that UNA can be used to derive
new consequences from a theory only if the theory employs equality. For example,
ALC provides neither number restrictions, nor explicit individual equality statements,
so it actually does not require equality reasoning. Given a knowledge base KB , to
enforce UNA we can append an axiom ai 6≈ aj for each ai 6= aj . However, since KB
does not contain the equality predicate, these inequality axioms do not participate in
any inference with ALC-clauses, so they are not needed in the first place. A model-
theoretic explanation is given by the following claim, which can easily be proved for
logics without any form of equality:3 for each model I, where distinct constants are
interpreted by the same objects, there is a model I ′ where all constants are interpreted
by distinct objects. To summarize, in the case of a logic such as ALC, we simply do
not care whether either KB or DD(KB) employs UNA, as this does not change the
entailed set of facts.

The situation changes slightly for logics such as SHIQ, which require a form of
equality reasoning. Consider KB = {> v ≤ 1R, R(a, b), R(a, c)}. Without UNA, KB
is satisfiable, and KB |= b ≈ c. Namely, the first axiom requires R to be functional, so
b and c must be interpreted as the same object. On the contrary, with UNA, KB is
unsatisfiable.

It is easy to see that DD(KB) consists of the rules (4.33)–(4.35). Note that DD(KB)
is now a disjunctive datalog program with equality, which is quite different from the
type of equality usually considered in disjunctive datalog.

y1 ≈ y2 ← R(x, y1), R(x, y2)(4.33)
R(a, b)(4.34)
R(a, c)(4.35)

In [42], the authors consider disjunctive datalog in which equality atoms can occur
in rule bodies under negation-as-failure. Such programs are interpreted under UNA, so
an inequality atom ¬(x ≈ y) actually checks whether x and y are bound to syntactically
different individuals.

3Note that number restrictions typically require equality.

60 4. Reduction Algorithm at a Glance

In our case, however, we allow equality to occur not only in the rule bodies, but
also in the rule heads. This means we can actually derive two individuals to be equal.
Such inferences are not directly supported in disjunctive datalog; however, they can
be simulated using the well-known encoding from [46]. The main idea is to treat ≈ as
an ordinary predicate, for which the properties of equality are explicitly axiomatized.
Hence, for a disjunctive datalog program P with equality, we compute the program P≈
that states that ≈ is reflexive, symmetric, and transitive, and contains the following
rule for each distinct predicate R from P and a position i in R:

R(x1, . . . , yi, . . . , xn)← R(x1, . . . , xi, . . . , xn), xi ≈ yi(4.36)

The program P ∪ P≈ is now a disjunctive datalog program in which ≈ is just
another predicate, so we are free to interpret P ∪P≈ with or without UNA, just as we
discussed previously. Furthermore, in each Herbrand model I≈ of P ∪P≈, the rules in
P≈ ensure that ≈ is interpreted as a congruence relation, so we can always transform
I≈ to an interpretation I by replacing each individual a with the equivalence class of
≈ to which a belongs. The resulting interpretation I is a model of P [46].

Observe that the encoding sketched in the previous paragraph is polynomial in the
size of P , so it does not increase the worst-case complexity of reasoning. However, it
is known that the replacement rules do introduce problems in practice. Therefore, in
Section 7.5 we present a slight optimization of this technique, which explores the idea
of the basic superposition to reduce the number of required replacement rules.

To summarize, DD(KB) can freely be interpreted under UNA, as long as we keep
the following issues in mind. If DD(KB) does not contain equality, we do not care
about UNA, as we cannot tell the difference. Otherwise, DD(KB) can be interpreted
under UNA if we treat ≈ as a normal predicate whose properties are explicitly axioma-
tized. Finally, note that DD(KB) does not contain negation-as-failure. Nonmonotonic
reasoning without UNA is an open problem; however, it is not relevant in our case.

4.8.6 The Size of DD(KB)

By Theorem 4.5.2, the number of the rules of |DD(KB)| can be exponential in |KB |,
which may seem discouraging in practice. We address this issue in two ways.

On the theoretical side, in Chapter 8 we observe that this blowup is only in the
size of the TBox of KB . Hence, a sufficiently large ABox may actually dominate the
size of the rules. This observation leads to novel data complexity results: in general,
checking satisfiability of KB is NP-complete in |KBA|; furthermore, we identify a new
fragment of SHIQ(D) for which satisfiability checking is even polynomial in |KBA|.

On the practical side, in Section 7.3 we present an important optimization that
allows us to remove many rules from |DD(KB)|. Intuitively, the saturation of Ξ(KB)
introduces clauses that are entailed by other clauses. Such clauses are needed to derive
all relevant clauses without function symbols. However, after saturation, the rules in
DD(KB) that are entailed by other rules in DD(KB) can freely be removed. Our
experiments show that this drastically reduces the size of DD(KB).

4.8 Discussion 61

4.8.7 The Benefits of Reducing DLs to Disjunctive Datalog

We see two main benefits of our approach. On the theoretical side, our reduction makes
it easier to derive novel data complexity results that we present in Chapter 8. Namely,
the distinction between combined and data complexity has traditionally been studied in
the context of (deductive) databases. Furthermore, we believe that our work sheds new
light on the relationship between description logics and deductive databases, pointing
out similarities and differences between the two knowledge representation formalisms.
For example, as we extend description logics with rules in Chapter 9, we show that the
rules can simply be appended to the result of the reduction; a result that is conceptually
very easy to grasp.

On the practical side, the reduction to disjunctive datalog allows applying the
magic sets transformation [18, 55, 34] and other optimization techniques, which are
independent of the query answering algorithm, and can be reused as-is. Furthermore,
in Section 7.6 we present an alternative technique for answering queries in datalog
programs. If the program is not disjunctive, this technique falls back to the standard
fixpoint saturation, which has been efficiently implemented in practice. Our algorithms
thus follow the principle of graceful degradation: one pays a performance penalty only
for features that one actually uses.

62 4. Reduction Algorithm at a Glance

Chapter 5

Deciding SHIQ by Basic
Superposition

In this chapter we present a resolution-based decision procedure for SHIQ, which we
then use in Chapter 7 to derive an algorithm for reducing a SHIQ knowledge base to
a disjunctive datalog program.

Decision procedures based on clausal calculi have been derived for numerous frag-
ments of first-order logic (an overview is given in Section 5.6). However, SHIQ cannot
be directly embedded into any of these fragments. An exception is the two-variable
fragment with counting quantifiers; however, our attempts to derive the reduction to
disjunctive datalog using the decision procedure from [110] were unsuccessful. Hence,
we designed a new, worst-case optimal decision procedure for SHIQ, which itself has
several novel aspects.

It is well known that the combination of inverse roles and counting quantifiers is
difficult to handle algorithmically. On the model-theoretic side, such a combination
of constructs easily causes a logic to lose the finite-model property; on the proof-
theoretic side, it makes the tableau decision procedures more complex, by requiring
sophisticated pair-wise blocking techniques to ensure termination [73]. This combina-
tion of constructs makes a resolution-based decision procedure more complex as well:
contrary to most existing decision procedures for related logics (such as the ones pre-
sented in [47, 129]), to decide SHIQ it is necessary to consider clauses containing
terms of depth two. To block certain inferences on such clauses, a calculus for equality
stronger than superposition [9] is needed, so we use basic superposition [14, 96].

5.1 Decision Procedure Overview

The fundamental principles for deciding a first-order fragment L by resolution are
known from [80]. First, one selects a sound and complete resolution calculus C. Second,
one identifies the set of clauses NL such that NL is finite for a finite signature, and
that clausifying each formula ϕ ∈ L produces only clauses from NL. Third, one

63

64 5. Deciding SHIQ by Basic Superposition

demonstrates that NL is closed under C; that is, one shows that applying an inference
of C to clauses fromNL produces a clause inNL. This is sufficient to obtain a refutation
decision procedure for L, since, in the worst case, C will derive all clauses of NL.

A minor problem in deciding satisfiability of a SHIQ knowledge base KB is caused
by transitivity axioms, as they produce clauses without covering literals—literals con-
taining all variables of a clause [76]. As shown in [82], termination of resolution on such
clauses is very difficult to achieve. To address this, we show in Section 5.2 how to elim-
inate transitivity axioms by polynomially encoding a SHIQ knowledge base KB into
an equisatisfiable ALCHIQ knowledge base Ω(KB). After this initial transformation
step, we consider only ALCHIQ knowledge bases.

A significantly more complex problem is that basic superposition alone decides
only the ALCHIQ− fragment of ALCHIQ, in which number restrictions are allowed
only on roles not having subroles. Namely, the combination of role hierarchies, inverse
roles, and number restrictions may cause a saturation by basic superposition to produce
terms of ever increasing depth, thus preventing termination. We address this problem
in two stages.

In Section 5.3 we present a procedure for deciding satisfiability of an ALCHIQ−
knowledge base KB . We start by preprocessing KB into a set of closures Ξ(KB) as
explained in Subsection 5.3.1. It is not difficult to see that Ξ(KB) contains closures
only of a syntactic form as in Table 5.1. We then saturate Ξ(KB) under BSDL with
eager application of redundancy elimination rules, where BSDL is the BS calculus
parameterized according to Definition 5.3.3. We denote the saturated set of closures
by Sat(Ξ(KB)). Since BSDL is sound and complete [14], Sat(Ξ(KB)) contains the
empty closure if and only if Ξ(KB) is unsatisfiable. To obtain a decision procedure, we
show that saturation always terminates. This is done in a proof-theoretic way along
the lines outlined at the beginning of this section:

• We generalize the types of closures from Table 5.1 to ALCHIQ−-closures, which
are presented in Table 5.2. In Lemma 5.3.4 we show that each closure occurring
in Ξ(KB) is an ALCHIQ−-closure.

• In Lemma 5.3.6 we show that, in any BSDL-derivation starting from Ξ(KB), each
inference produces either an ALCHIQ−-closure, or a closure that is redundant
(and can therefore be deleted).

• In Lemma 5.3.9 we show that, for a finite knowledge base, the set of possible
ALCHIQ−-closures occurring in any BSDL-derivation is finite.

• Termination is a simple consequence of these two lemmata: in the worst case, all
possible ALCHIQ−-closures are derived in a saturation, after which all further
inferences are redundant. The bound on the number of ALCHIQ−-closures
yields the complexity of the algorithm, as demonstrated in Theorem 5.3.10.

To handle ALCHIQ, in Subsection 5.4.1 we extend the basic superposition cal-
culus with a new decomposition inference rule that transforms certain closures with

5.2 Eliminating Transitivity Axioms 65

undesirable terms into several simpler closures. We show that decomposition is sound
and complete. Furthermore, in Subsection 5.4.2 we show that it guarantees the termi-
nation of basic superposition for ALCHIQ. It turns out that decomposition is quite
a general and versatile rule: in Subsection 5.4.3 we use it to decide a slightly stronger
logic ALCHIQb that allows certain safe role expressions.

5.2 Eliminating Transitivity Axioms

In this section, we show how to eliminate transitivity axioms from a SHIQ knowledge
base KB by transforming it polynomially into an equisatisfiable ALCHIQ knowledge
base Ω(KB). Since Ω(KB) is satisfiable if and only if KB is, in the remaining sections
we restrict our attention to ALCHIQ knowledge bases without loss of generality. For
a SHIQ− knowledge base KB , Ω(KB) is an ALCHIQ− knowledge base, so we do not
consider very simple roles explicitly in the definition of Ω.

The transformation presented here is similar to the algorithm for transforming
SHIQ concepts to ALCIQb concepts presented in [144] (ALCIQb does not provide
for a role hierarchy, but allows certain types of Boolean operations on roles). A similar
transformation for encoding formulae of the modal logic K4 (that is, the propositional
modal logic with a transitive modality) into formulae of the modal logic K (that is,
the propositional modal logic with an unrestricted modality) was presented in [129].

Definition 5.2.1. For a SHIQ knowledge base KB, let clos(KB) denote the concept
closure of KB, defined as the smallest set of concepts satisfying the following conditions:

• If C v D ∈ KBT , then NNF(¬C tD) ∈ clos(KB);

• If C ≡ D ∈ KBT , then NNF(¬CtD) ∈ clos(KB) and NNF(¬DtC) ∈ clos(KB);

• If C(a) ∈ KBA, then NNF(C) ∈ clos(KB);

• If C ∈ clos(KB) and D is a subconcept of C, then D ∈ clos(KB);

• If ≤ nR.C ∈ clos(KB), then NNF(¬C) ∈ clos(KB);

• If ∀R.C ∈ clos(KB), S v∗ R, and Trans(S) ∈ KBR, then ∀S.C ∈ clos(KB).

Note that all concepts in clos(KB) are in NNF. We now define the operator Ω:

Definition 5.2.2. For a SHIQ knowledge base KB, Ω(KB) is an ALCHIQ knowl-
edge base constructed as follows:

• Ω(KB)R is obtained from KBR by removing all axioms Trans(R);

• Ω(KB)T is obtained by adding to KBT the axiom ∀R.C v ∀S.(∀S.C), for each
concept ∀R.C ∈ clos(KB) and role S such that S v∗ R and Trans(S) ∈ KBR;

• Ω(KB)A = KBA.

66 5. Deciding SHIQ by Basic Superposition

The encoding is polynomial in |KB |: the number of concepts in clos(KB) generated
by a concept C is bounded by 2 · |C| · |NR|, and, for each concept from clos(KB), we
generate at most |NR| axioms in Ω(KB)T . Next, we show that it does not affect
satisfiability.

Theorem 5.2.3. KB is satisfiable if and only if Ω(KB) is satisfiable.

Proof. (⇒) Assume that I is a model of KB , but not of Ω(KB); that is, Ω(KB) contains
an axiom that is not satisfied in I. Since Ω(KB)R ⊆ KBR and KBT ⊆ Ω(KB)T , such
an axiom must have been added in the second point of Definition 5.2.2. Hence, there
is a domain element α such that α ∈ (∀R.C)I , but α /∈ (∀S.(∀S.C))I . There are two
possibilities:

• There is no domain element β for which (α, β) ∈ SI . Then α ∈ (∀S.X)I , regard-
less of X. Hence, α ∈ (∀S.(∀S.C))I holds, which is a contradiction.

• There is a domain element β such that (α, β) ∈ SI . There are two possibilities:

– If no domain element γ exists such that (β, γ) ∈ SI , then β ∈ (∀S.C)I .

– If there is γ such that (β, γ) ∈ SI , by transitivity of S we have (α, γ) ∈ SI .
Since SI ⊆ RI and α ∈ (∀R.C)I , we have γ ∈ CI . Since this holds for any
γ, we have β ∈ (∀S.C)I .

Either way, for any β, we have β ∈ (∀S.C)I , so α ∈ (∀S.(∀S.C))I , which is a
contradiction.

(⇐) As explained in Section 3.1, without loss of generality we can consider only knowl-
edge bases with acyclic RBoxes. Let I be a model of Ω(KB), and I ′ an interpretation
constructed from I as follows:

• 4I′ = 4I ;

• For each individual a, aI′ = aI ;

• For each atomic concept A ∈ clos(KB), AI′ = AI ;

• If Trans(R) ∈ KBR, then RI′ = (RI)+;

• If Trans(R) /∈ KBR, then RI′ = RI ∪
⋃

Sv∗R,S 6=R S
I′ .

Since we assume that KBR is acyclic, the induction is well-founded. By construc-
tion, I ′ satisfies all transitivity axioms in KBR. Furthermore, I ′ satisfies each inclusion
axiom in KBR: if R is not transitive, this is obvious from the construction; otherwise,
this follows because A+ ∪ B+ ⊆ (A ∪ B)+ for all binary relations A and B. For each
role R, we have RI ⊆ RI′ ; furthermore, if R is simple, then RI′ = RI .

For concepts C and D from clos(KB), let ClD if and only if C or NNF(¬C) occur
in D. We now show by induction on l that, for each D ∈ clos(KB), DI ⊆ DI′ . The

5.2 Eliminating Transitivity Axioms 67

relation l is obviously acyclic, so the induction is well-founded. For the base case,
where D is an atomic concept A or a negation of an atomic concept ¬A, the claim
follows immediately from the definition of I ′. For the induction step, we examine
possible forms that D might have.

• For D = C1 u C2, assume that α ∈ (C1 u C2)I for some α. Then, α ∈ CI
1 and

α ∈ CI
2 . By the induction hypothesis, α ∈ CI′

1 and α ∈ CI′
2 , so α ∈ (C1 u C2)I′ .

• For D = C1 t C2, assume that α ∈ (C1 t C2)I for some α. If α ∈ CI
1 , by the

induction hypothesis, we have α ∈ CI′
1 ; if α ∈ CI

2 , by the induction hypothesis,
we have α ∈ CI′

2 . Either way, α ∈ (C1 t C2)I′ .

• For D = ∃R.C, assume that α ∈ (∃R.C)I for some α. Then, β exists such
that (α, β) ∈ RI and β ∈ CI , so, by the induction hypothesis, β ∈ CI′ . Since
RI ⊆ RI′ , we have (α, β) ∈ RI′ , so α ∈ (∃R.C)I′ .

• For D = ∀R.C, assume that α ∈ (∀R.C)I for some α. If there is no object β
such that (α, β) ∈ RI′ , then α ∈ (∀R.C)I′ . Otherwise, assume that such β exists.
There are two possibilities:

– (α, β) ∈ RI . Then, β ∈ CI , so, by the induction hypothesis, β ∈ CI′ .

– (α, β) /∈ RI . Then, a role S v∗ R with Trans(S) ∈ KBR exists, as well as
a path (α, γ1) ∈ SI , (γ1, γ2) ∈ SI , . . ., (γn, β) ∈ SI with n ≥ 0. But then,
∀R.C v ∀S.(∀S.C) ∈ Ω(KB)T , so α ∈ (∀S.(∀S.C))I and γ1 ∈ (∀S.C)I .
Furthermore, ∀S.C v ∀S.(∀S.C) ∈ Ω(KB)T , so γi ∈ (∀S.C)I for 0 ≤ i ≤ n.
For i = n, we get that β ∈ CI , so, by the induction hypothesis, β ∈ CI′ .

For any β, in both cases we have that β ∈ CI′ , so we conclude that α ∈ (∀R.C)I′ .

• For D = ≥ nR.C, assume that α ∈ (≥ nR.C)I . Then, there are at least n
distinct domain elements βi such that (α, βi) ∈ RI and βi ∈ CI . By the induction
hypothesis, we have βi ∈ CI′ , and, because RI ⊆ RI′ , we have α ∈ (≥ nR.C)I′ .

• For D = ≤ nR.C, because R is simple, we have RI = RI′ . Let E = NNF(¬C).
Assume now that α ∈ (≤ nR.C)I , but α /∈ (≤ nR.C)I′ . Then, β exists such
that (α, β) ∈ RI , β /∈ CI , β ∈ CI′ , β ∈ EI , and β /∈ EI′ . However, since
E ∈ clos(KB), by induction hypothesis we have β ∈ EI′ , which is a contradiction.
Hence, α ∈ (≤ nR.C)I′ .

It is now obvious that each ABox axiom of the form C(a) from KB is satisfied in I ′:
since I is a model of Ω(KB), we have aI ∈ CI , but since CI ⊆ CI′ , we have aI′ ∈ CI′

as well. Also, any ABox axiom of the form R(a, b) from KB is satisfied in I ′: since I is
a model of Ω(KB), we have (aI , bI) ∈ RI , but since RI ⊆ RI′ , we have (aI′ , bI

′
) ∈ RI′ .

For an ABox axiom of the form ¬S(a, b), S must be a simple role, so SI = SI′ , and
(aI , bI) /∈ SI implies (aI′ , bI

′
) /∈ SI′ . Finally, any TBox axiom of the form C ⊆ D from

68 5. Deciding SHIQ by Basic Superposition

KB is satisfied in I ′: since I is a model of Ω(KB), we have that 4I ⊆ (¬C tD)I , but
since (¬C tD)I ⊆ (¬C tD)I′ , we have 4I′ ⊆ (¬C tD)I′ . Similar arguments hold for
any TBox axiom of the form C ≡ D.

Note that, for α of the form (¬)A(a) with A an atomic concept, or of the form
(¬)S(a, b) with S a simple role, Ω(KB ∪ {α}) = Ω(KB) ∪ {α}, so KB |= α if and
only if Ω(KB) |= α. Hence, transitivity axioms can be eliminated once, and the
resulting knowledge base can be used for query answering. Unfortunately, the models
of KB and Ω(KB) may differ in the interpretation of complex roles. Therefore, Ω(KB)
cannot be used to answer ground queries where S is a complex role. This is why, in
Definition 3.1.1, we restrict negative role membership axioms to simple roles only.

5.3 Deciding ALCHIQ−

In this section, we present an algorithm for deciding satisfiability of an ALCHIQ−
knowledge base KB by basic superposition.

5.3.1 Preprocessing

To decide satisfiability of KB , we must transform it into a clausal form. As discussed
in Section 4.3, a straightforward transformation of π(KB) into disjunctive normal form
might exponentially increase the formula size and could destroy the structure of the
formula. Therefore, before clausification, we apply to KB the structural transformation
[108, 99, 8], also known as renaming.

Definition 5.3.1. Let C be a concept and Λ a function assigning to C the set of
positions p 6= ε such that C|p is not a literal concept and, for all positions q below p,
C|q is a literal concept. Then, Def(C) is defined recursively as follows:

• If Λ(C) = ∅, then Def(C) = {C};

• If Λ(C) 6= ∅, then choose p ∈ Λ(C) and let Def(C) be as follows, where Q is a
new globally unique atomic concept:

Def(C) =
{
{¬Q t C|p} ∪ Def(C[Q]p) if pol(C, p) = 1
{Q t ¬C|p} ∪ Def(C[Q]p) if pol(C, p) = −1

The operator Cls for clausifying a first-order formula, defined in Section 2.1, is
extended to concepts as follows:

Cls(C) =
⋃

D∈Def(C)

Cls(∀x : πy(D,x))

For an extensionally reduced ALCHIQ knowledge base KB, Ξ(KB) is the smallest
set of closures satisfying the following conditions:

5.3 Deciding ALCHIQ− 69

• For each abstract role name R ∈ NRa, Cls(π(R)) ⊆ Ξ(KB);

• For each RBox or ABox axiom α in KB, Cls(π(α)) ⊆ Ξ(KB);

• For each TBox axiom C v D in KB, Cls(¬C tD) ⊆ Ξ(KB);

• For each TBox axiom C ≡ D in KB, Cls(¬C tD) ⊆ Ξ(KB) and
Cls(¬D t C) ⊆ Ξ(KB).

If KB is not extensionally reduced, then Ξ(KB) = Ξ(KB ′), where KB ′ is an exten-
sionally reduced knowledge base obtained from KB as explained in Section 3.1.

The following lemma summarizes the properties of Ξ(KB):

Lemma 5.3.2. For KB an ALCHIQ− knowledge base, the following claims hold:

1. KB is satisfiable if and only if Ξ(KB) is satisfiable.

2. Ξ(KB) can be computed in time polynomial in |KB | for unary coding of numbers
in input.

3. Each closure from Ξ(KB) is of one of the types given in Table 5.1.

Proof. (Claim 1.) It is easy to see that ψC =
∧

D∈Def(C) ∀x : πy(D,x) is actually
the definitional normal form of ϕ = ∀x : πy(C, x) with respect to the set of positions
of all nonatomic subformulae of ϕ. By the definitions of π and Cls, and because
transformation into definitional normal form does not affect satisfiability [108, 99, 8],
KB and Ξ(KB) are equisatisfiable.

(Claim 2.) The inductive step of Def(C) is applied at most once for each subconcept
of C, so the number of new concepts Q introduced by Def is linear in |C|, and Def(C)
can be computed in polynomial time. For each D ∈ Def(C), the number of function
symbols f introduced by skolemizing ∀x : πy(D,x) is bounded by the maximal number
occurring in a number restriction in D. For unary coding of numbers, f is linear in
|D|, so Cls(D) can be computed in time polynomial in |D|.

(Claim 3.) Observe that Def(C) contains only concepts of the form Dt
⊔
Li, where

D is a SHIQ concept containing only literal subconcepts and Li are literal concepts.
By the definition of π from Table 3.1, closures of type 1 axiomatize inverse properties;
closures of type 2 correspond to role inclusion axioms; closures of types 3 and 4 are
obtained for D = ∃R.C; closures of types 3, 4, and 5 are obtained for D = ≥ nR.C;
closures of type 6 are obtained for D =

⊔
Li or D =

d
Li; closures of type 7 are

obtained for D = ∀R.C or D = ≤ nR.C; finally, closures of types 8–11 correspond to
ABox axioms.

Using binary coding, a number n can be represented using dlog2 ne bits, so the
number of function symbols introduced by skolemization is exponential in the size of
the input. Hence, for binary coding of numbers, translation into first-order logic incurs
an exponential blowup.

70 5. Deciding SHIQ by Basic Superposition

Table 5.1: Closure Types after Preprocessing

1 ¬R(x, y) ∨ Inv(R)(y, x)
2 ¬R(x, y) ∨ S(x, y)
3

∨
(¬)Ci(x) ∨R(x, f(x))

4
∨

(¬)Ci(x) ∨ (¬)D(f(x))
5

∨
(¬)Ci(x) ∨ fi(x) 6≈ fj(x)

6
∨

(¬)Ci(x)
7

∨
(¬)Ci(x) ∨

∨n
i=1 ¬R(x, yi) ∨

∨n
i=1D(yi) ∨

∨n
i=1

n
j=i+1yi ≈ yj

8 (¬)C(a)
9 (¬)R(a, b)

10 a ≈ b
11 a 6≈ b

5.3.2 Parameters for Basic Superposition

To understand the following definition, it is necessary to keep in mind that literals
P (t1, . . . , tn) are encoded as P (t1, . . . , tn) ≈ T, as discussed in Section 2.5. Due to this
encoding, predicate symbols become E-function symbols, and atoms become E-terms.

Definition 5.3.3. Let BSDL denote the BS calculus parameterized as follows:

• The E-term ordering � is a lexicographic path ordering induced by a total prece-
dence > over function, constant, and predicate symbols such that f > c > P > T,
for each function symbol f , constant symbol c, and predicate symbol P .

• The selection function selects every negative binary literal in each closure C · σ.

We show in Subsection 5.3.3 that, in applying BSDL to Ξ(KB), we need to compare
only E-terms occurring in closures of types 3–6 and 8 from Table 5.2. These closures
contain at most one variable, so any LPO is total on E-terms from such closures. This
allows us to use a simpler extension of the E-term ordering to literals than the one
obtained by the two-fold multiset extension as explained in Section 2.5. We assign to
each literal L = s ◦ t with ◦ ∈ {≈, 6≈} the triple cL = (max(s, t), pL,min(s, t)), where
(i) max(s, t) is the larger of the two E-terms; (ii) pL = 1 if ◦ is 6≈; (iii) pL = 0 if ◦
is ≈; and (iv) min(s, t) is the smaller of the two E-terms. Then, L1 � L2 if and only
if cL1 � cL2 , where cLi are compared lexicographically. The E-term ordering is used
to compare the first and the third position of cL whereas, for the second position, we
take 1 � 0. It is easy to see that this definition is equivalent to the one based on the
two-fold multiset extension.

Ordering and selection constraints in BS are checked a posteriori—that is, after
computing the unifier. This is more general, because some E-terms may be comparable
only after unification. For example, s = f(x) and t = y are not comparable under any

5.3 Deciding ALCHIQ− 71

LPO. For σ = {x 7→ a, y 7→ g(f(a))}, however, we have tσ � sσ. The drawback of
a posteriori checking of ordering constraints is that the unifier is often computed in
vain, just to determine that constraints are not satisfied. However, LPOs are total on
E-terms from closures 3–6 and 8, so we can check ordering and selection constraints a
priori—that is, before computing the unifier. Namely, if s and t are two E-terms to
be compared, they are either both ground or both have the same, single free variable,
so they are always comparable by an LPO. Also, if s � t, then sσ � tσ for each
substitution σ, because LPOs are stable under substitutions.

5.3.3 Closure of ALCHIQ−-Closures under Inferences by BSDL

We now generalize the types of closures from Table 5.1 to ALCHIQ−-closures, pre-
sented in Table 5.2. For a term t, with P(t) we denote a possibly empty disjunction of
the form (¬)P1(t)∨ . . .∨ (¬)Pn(t). With P(f(x)) we denote a possibly empty disjunc-
tion of the form P1(f1(x)) ∨ . . . ∨ Pm(fm(x)). Note that this definition allows each
Pi(fi(x)) to contain positive and negative literals. With 〈t〉 we denote that the term t
may, but need not be marked. In all closure types, the disjuncts P(t) or P(f(x)) may
be empty. To distinguish the closures of types 5 and 6, we assume that each closure
of type 6 always contains at least one term of the form f(g(x)). Finally, with ≈/6≈ we
denote a positive or a negative equality literal.

Lemma 5.3.4. Each closure from Ξ(KB) is of a type from Table 5.2. Furthermore,
for each function symbol f occurring in Ξ(KB), there is exactly one closure of type 3
containing f(x) unmarked; this closure is called the Rf -generator, the disjunction of
unary literals in this closure is denoted with Pf (x) and is called the f-support, and R
is called the designated role for f and is denoted with role(f).

Proof. The first claim follows trivially from Lemma 5.3.2. For the second claim, observe
that each closure of type 3 is generated by skolemizing an existentially quantified
subformula. Since each skolemization introduces a fresh function symbol, this symbol
is associated with exactly one closure of type 3.

Next, we prove a lemma that shows which literals can be maximal in closures of
types 3, 4, 5, 6, and 8 under the ordering and the selection function of BSDL.

Lemma 5.3.5. The maximal literal of an ALCHIQ−-closure that participates in an
inference by BSDL satisfies the following conditions:

• In a closure of type 3, the literal R(x, 〈f(x)〉) is always maximal.

• In a closure of type 4, the literal R([f(x)] , x) is always maximal.

• In a closure of type 5, a literal (¬)P (x) can be maximal only if the closure does
not contain a term f(x).

• In a closure of type 6, only a literal containing a term f([g(x)]) can be maximal.

72 5. Deciding SHIQ by Basic Superposition

Table 5.2: Types of ALCHIQ−-Closures

1 ¬R(x, y) ∨ Inv(R)(y, x)
2 ¬R(x, y) ∨ S(x, y)
3 Pf (x) ∨R(x, 〈f(x)〉)
4 Pf (x) ∨R([f(x)] , x)
5 P1(x) ∨P2(〈f(x)〉) ∨

∨
〈fi(x)〉≈/6≈ 〈fj(x)〉

6 P1(x) ∨P2([g(x)]) ∨P3(〈f([g(x)])〉) ∨
∨
〈ti〉≈/ 6≈ 〈tj〉

where ti and tj are either of the form f([g(x)]) or of the form x

7 P1(x) ∨
∨n

i=1 ¬R(x, yi) ∨
∨n

i=1 P2(yi) ∨
∨n

i=1
n
j=i+1yi ≈ yj

8 R(〈a〉 , 〈b〉) ∨P(〈t〉) ∨
∨
〈ti〉≈/6≈ 〈tj〉

where t, ti, and tj are either a constant b or a term fi([a])
Conditions:

(i): In any term f(t), the inner term t occurs marked.
(ii): In all positive equality literals with at least one function symbol,

both sides are marked.
(iii): Any closure that contains a term f(t), contains Pf (t) as well.
(iv): In a literal [fi(t)] ≈ [fj(t)], role(fi) = role(fj).
(v): In a literal [f(g(x))] ≈ x, role(f) = Inv(role(g)).
(vi): For each [fi(a)] ≈ [b] in a closure C, a witness closure of C exists that is

of form R(〈a〉 , 〈b〉) ∨D, role(fi) = R, D does not contain function
symbols or negative binary literals, and D is contained in C.

• In a closure of type 8, a literal (¬)R(a, b), (¬)P (a), a ≈ b, or a 6≈ b can be
maximal only if the closure does not contain a function symbol.

Proof. For each term t, function symbol f , and predicate symbol P , since f > P by
Definition 5.3.3 and f(t) � t, we have f(t) � P (t). Hence, R(x, f(x)) � f(x) � P (x),
so R(x, f(x)) is always maximal in a closure of type 3; the claim for a closure of type 4
follows analogously. Furthermore, P ′′(f(g(x))) � f(g(x)) � P ′(g(x)) � g(x) � P (x),
thus implying the claims for closures of types 5 and 6. Finally, for each function symbol
f , constants a, b, and c, unary predicate symbol P , and binary predicate symbol R,
by Definition 5.3.3 we have f(a) � P (b), f(a) � R(b, c), and f(a) � b, thus implying
the claim for a closure of type 8.

We now prove the core result that our decision procedure is based upon.

Lemma 5.3.6. Let Ξ(KB) = N0, . . . , Ni ∪ {C} be a BSDL-derivation, where C is the
conclusion derived from premises in Ni. Then, C is either an ALCHIQ−-closure, or
it is redundant in Ni.

Proof. We prove the lemma by induction on the derivation length. By Lemma 5.3.4,
N0 contains only ALCHIQ−-closures, so the induction base holds. For the induction

5.3 Deciding ALCHIQ− 73

step, we examine all possible applications of inference rules of BSDL to closures in Ni.
We first show that the conclusion has the structure of an ALCHIQ−-closure, and later
prove that conditions (i)–(vi) hold as well.

Inferences with closures of types 1 and 2. Since negative binary literals are
always selected, and superposition into variables is not necessary, closures of types 1
and 2 can participate only as main premises in resolution inferences with closures of
types 3, 4, and 8. Obviously, the unifier binds the variables x and y to corresponding
terms in the positive premise, and the result is of type 3, 4, or 8.

Inferences between closures of types 5, 6, and 8. Consider any inference be-
tween closures of types 5 or 6 with free variables x and x′, respectively. Since the
term g(x) in some f([g(x)]) is always marked, terms can be unified only at their root
positions. The following pairs of terms from premises are unifiable:

• For x and x′, f(x) and f(x′), or f([g(x)]) and f([g(x′)]), the unifier has the
form σ = {x 7→ x′}, and the conclusion is a closure of type 5 or 6. Note that
superposition from f(g(x)) ≈ x into f(g(x′)) 6≈ x′ results in x′ 6≈ x′, which is
eagerly eliminated by reflexivity resolution.

• For x and g(x′), or f(x) and f([g(x′)]), the unifier is σ = {x 7→ g(x′)}, and the
conclusion is a closure of type 5 or 6.

• For x and f(g(x′)), the unifier is σ = {x 7→ f(g(x′))}, and the conclusion is a
closure of type 5 or 6.

Inferences between closures of type 6 and 8 are not possible, because a term of the
form f(g(x)) does not unify with a term of the form a or f(a). For closures of types
5 and 8, the unifier is either σ = {x 7→ a} or σ = {x 7→ f(a)}, and the conclusion is of
type 8. Inferences between closures of type 8 have an empty unifier, so the conclusion
is trivially of type 8.

Inferences with a closure of type 7. Since all binary literals are always selected,
a closure of type 7 can participate only in a hyperresolution inference as the main
premise C. The side premises can have the maximal literals of the form R(xi, 〈fi(xi)〉),
R([gi(xi)] , xi), or R(〈a〉 , 〈bi〉). These combinations are possible:

• Assume that there are two (or more) side premises with the maximal literal of the
form R([gi(xi)] , xi). Without loss of generality, these premises can be assigned
indices 1 and 2. Since g1(x1) and g1(x2) are unified with x, we have g1 = g2.
Moreover, σ contains mappings y1 7→ x1, y2 7→ x1, and x2 7→ x1. Since C contains
a literal yi ≈ yj for each pair of indices i and j, the conclusion contains x1 ≈ x1,
so it is a tautology.

74 5. Deciding SHIQ by Basic Superposition

• Assume that the first side premise has the maximal literal R([g(x′)] , x′). Since
g(x′) does not unify with a constant, no side premise can be of type 8. The unifier
σ is of the form {x 7→ g(x′), xi 7→ g(x′), y1 7→ x′, yi 7→ fi(g(x′)) for 2 ≤ i ≤ n}. If
n = 1, the conclusion is of type 5; otherwise, it is of type 6.

• Assume that all side premises have the maximal literals R(xi, 〈fi(xi)〉). The
unifier σ is of the form {xi 7→ x, yi 7→ fi(x)}, so the conclusion is of type 5.

• Assume that some side premises have the maximal literal R(xi, 〈fi(xi)〉), for
1 ≤ i ≤ k, and R(〈a〉 , 〈bi〉) for k < i ≤ n (all ground premises must have the same
first argument in the maximal literal, because all these arguments should unify
with x). The unifier σ contains mappings of the form x 7→ a, xi 7→ a, yi 7→ fi(a)
for 1 ≤ i ≤ k, and yi 7→ bi for k + 1 ≤ i ≤ n, so the conclusion is of type 8.

Superposition into a closure of type 3. Consider superposition into a closure of
type 3 with a free variable x′. By Lemma 5.3.5, (w ≈ v) · ρ can only be the literal
R(x′, f(x′)), with R being the designated role for f . There are these possibilities:

• (C∨s ≈ t)·ρ is a closure of type 5, 6, or 8 with (s ≈ t)·ρ of the form [f(u)] ≈ [g(u)].
The unifier is σ = {x′ 7→ u}, so the conclusion is S = Pf ([u])∨R([u] , [g(u)])∨C ·ρ,
where Pg([u]) ⊆ C · ρ. By Condition (iv), the Rg-generator P g(y) ∨ R(y, g(y))
exists, and it subsumes S by the substitution {y 7→ u}.

• (C ∨s ≈ t) ·ρ is a closure of type 6 with (s ≈ t) ·ρ of the form [f(g(x))] ≈ x. The
unifier is σ = {x′ 7→ g(x)}, so the conclusion is S = Pf ([g(x)])∨R([g(x)] , x)∨C ·ρ,
where Pg(x) ⊆ C · ρ. By Condition (v), the closure Pg(y) ∨ R([g(y)] , y) exists,
and it subsumes S by the substitution {y 7→ x}.

• (C ∨ s ≈ t) · ρ is a closure of type 8 with (s ≈ t) · ρ of the form [f(a)] ≈ [b]. The
unifier is σ = {x′ 7→ a}, so the conclusion is S = Pf ([a]) ∨R([a] , [b]) ∨ C · ρ. By
Condition (vi), a witness of the form R(〈a〉 , 〈b〉) ∨ D, where D ⊆ C · ρ, exists,
and it subsumes S by the empty substitution.

In all three cases, the subsuming closure might be subsumed by some other closure;
however, subsumption is transitive, so this other closure then subsumes the inference
conclusion. Hence, a superposition into a closure of type 3 is always redundant.

Equality factoring. Ordering constraints allow us to optimize the application of
equality factoring. Only closures of types 5, 6, or 8 are candidates for equality factoring.
The premise has the form (C ∨ s ≈ t ∨ s′ ≈ t′) · ρ, where sρ ≈ tρ is maximal with
respect to Cρ ∨ s′ρ ≈ t′ρ, tρ � sρ, and t′ρ � s′ρ. The unifier σ is always empty. If we
assume that simplification by duplicate literal elimination is applied eagerly, we safely
conclude that (s ≈ t) · ρ is strictly maximal, so t′ and t cannot be T. Hence, terms
sρ, tρ, s′ρ and t′ρ are either all ground, or all contain the same free variable x. The

5.3 Deciding ALCHIQ− 75

ordering � is total on such terms, so the ordering constraints are equivalent to tρ ≺ sρ
and t′ρ ≺ s′ρ. Because sρ ≈ tρ is strictly maximal, we have tρ � t′ρ.

Consider now the case where all equalities involved in the inference are marked, so
s, t, s′, and t′ are variables. This is the case for all closures of types 5 and 6, and for
some closures of type 8. The conclusion has the form (C ∨ t 6≈ t′ ∨ s′ ≈ t′) · ρ, where
t is a variable and tρ � t′ρ; such a conclusion is a basic tautology, which is redundant
and can be deleted.

Hence, provided that duplicate literal elimination is applied eagerly, equality factor-
ing is redundant for all closures, apart from closures of type 8, where it can be applied
to equalities of the form 〈a〉 ≈ 〈b〉 in which at least one term is not marked. Depending
on the marking, equality factoring either yields a basic tautology, which is redundant,
or a closure of type 8. Note that a closure of type 8 can contain disjunctions of the
form R([a] , b) ∨ R(a, [b]), to which duplicate literal removal does not apply directly
due to incompatible markers. However, we assume that in such a case the markers are
eagerly retracted. Thus, such a disjunction is converted into R(a, b) ∨ R(a, b), which
is then collapsed into R(a, b).

Reflexivity resolution. Reflexivity resolution can only be applied to a closure of
type 5, 6, and 8 with the empty unifier, so it produces a closure of type 5, 6, or 8.
Since the unifier is always empty, the conclusion always subsumes the premise, so this
inference rule should be applied eagerly.

Conditions. We now show that conditions from Table 5.2 hold for each nonredun-
dant inference conclusion.

Condition (i): If a closure C satisfies Condition (i), applying a unifier σ to it only
instantiates variables, so Cσ satisfies (i) as well. Since no inference removes markers,
Condition (i) holds for any conclusion.

Condition (ii): All positive equality literals with at least one function symbol are
generated by hyperresolution with a closure of type 7, so all terms in positive equalities
in the conclusion are marked. Since no inference removes markers from the roots of
the terms occurring in equalities, Condition (ii) holds for any conclusion.

Condition (iii): If a closure C contains f([t]) and satisfies Condition (iii), by
Lemma 5.3.5, literals from Pf ([t]) cannot participate in an inference. Furthermore,
a variable is instantiated simultaneously in f([t]) and P f ([t]). The terms containing
function symbols occurring in an inference conclusion always stem from one of the
inference premises, so Condition (iii) holds for any conclusion.

Conditions (iv) and (v): All equality literals containing function symbols are gen-
erated by hyperresolution with a main premise C of type 7. Since the role R occurring
in C is very simple, a closure of type 3 or 4 containing R cannot be resolved with a
closure of type 2. Hence, for all side premises of the form Pf (x) ∨ R(x, 〈f(x)〉), we
have role(f) = R, and, for a side premise of the form Pg(x) ∨ R([g(x)] , x), we have
role(g) = Inv(R). Hence, Conditions (iv) and (v) are satisfied for each conclusion of

76 5. Deciding SHIQ by Basic Superposition

a hyperresolution inference. Furthermore, by Condition (ii), superposition into pos-
itive equality literals containing function symbols is not possible, and, in each literal
[fi(x)] ≈ [fj(x)], the variable x is instantiated simultaneously. Hence, Conditions (iv)
and (v) hold for any conclusion of any inference.

Condition (vi): All literals of the form [f(a)] ≈ [b] are generated by hyperresolution
involving a side premise E1 of type 8 with the maximal literal R(〈a〉 , 〈b〉), and a side
premise E2 of type Pf (x) ∨ R(x, 〈f(x)〉). Since R occurring in such C is very simple,
a closure of type 8 cannot be resolved with a closure of type 2, so role(f) = R.
Since the literal R(〈a〉 , 〈b〉) is maximal in E1, by Lemma 5.3.5, no literal from E1

contains a function symbol, and E2 does not contain a negative binary literal. Hence,
the conclusion satisfies Condition (vi). Assume now that Condition (vi) holds for
some closure C, where D is a witness of [f(a)] ≈ [b]. Since each literal from D
neither contains a function symbol, nor is it a negative binary literal, by Lemma 5.3.5,
no literal from C occurring in D can participate in an inference, so all literals are
present in the conclusion. Finally, both sides of all equality literals containing function
symbols are marked, so each equality literal containing function symbols derived in an
inference must always occur in some of the premises. Hence, Condition (vi) holds for
any conclusion.

The following corollary follows from the proof of Lemma 5.3.6:

Corollary 5.3.7. If a closure of type 8 participates in a BSDL inference in a derivation
from Lemma 5.3.6, the unifier σ contains only ground mappings of the form x 7→ a
and x 7→ f(b), and the conclusion is a closure of type 8. Furthermore, a closure of
type 8 cannot participate in an inference with a closure of type 4 or 6.

The following corollary is useful for optimizing the algorithm in Chapter 7.

Corollary 5.3.8. Let KB be an ALCHIQ− knowledge base, containing neither at-
most number restrictions occurring under positive, nor at-least number restrictions
occurring under negative polarity. Then, in a saturation of Ξ(KB) by BSDL, closures of
type 8 do not contain function symbols. Furthermore, a closure of type 8 can participate
in an inference only with closures not containing function symbols.

Proof. Let KB be as specified in the corollary, and let (*) denote the following property:
for each closure C of type 7 from Ξ(KB), C contains exactly one literal ¬R(x, y) and
it does not contain equality literals. We now prove the first claim by induction on the
derivation length. The base case is obvious, since each ABox closure in Ξ(KB) = N0 is
of a type from Table 5.1, and it does not contain a function symbol. For the induction
step, we consider all inferences generating a closure of type 8 in Ni+1. A closure
with an equality literal containing a function symbol might be generated only by a
hyperresolution with a closure of type 7 containing equality literals; however, this is
not possible by (*). A literal (¬)C([g(a)]) might be derived by hyperresolving a closure
of type 7 with a side premise of type 3 and of type 8, but this is again not possible by
(*). The only remaining possibility to derive a literal (¬)C([g(a)]) is by superposition

5.3 Deciding ALCHIQ− 77

from [f(a)] ≈ [g(a)] into (¬)C(f(x)); however, this is not possible, since Ni does not
contain equality literals with function symbols.

For the second claim, note that, since a closure of type 8 does not contain a function
symbol, it can participate in an inference only with a literal not containing a function
symbol; since such a literal must be maximal, it can occur only in a closure not
containing a function symbol.

5.3.4 Termination and Complexity Analysis

We now show that the number of ALCHIQ−-closures is finite for a finite signature.
This, in combination with Lemma 5.3.6 and the soundness and completeness of BSDL,
shows that saturation of BSDL with eager application of redundancy elimination rules
decides satisfiability of ALCHIQ− knowledge bases.

Lemma 5.3.9. Let Ni be any closure set encountered in a derivation from Lemma
5.3.6. If C is a closure in Ni, then the number of literals in C is at most polynomial in
|KB |, for unary coding of numbers in input. Furthermore, |Ni| is at most exponential
in |KB |, for unary coding of numbers in input.

Proof. By Lemma 5.3.6, Ni can contain only ALCHIQ−-closures. Since redundant
closures are eliminated eagerly, Ni cannot contain closures with duplicate literals or
closures identical up to variable renaming. Let r denote the number of role predicates,
a the number of atomic concept predicates, c the number of constants, and f the
number of function symbols occurring in the signature of Ξ(KB). By definition of
|KB |, r and c are obviously linear in |KB |. Furthermore, a is also linear in |KB |,
since the number of new atomic concept predicates introduced during preprocessing is
bounded by the number of subconcepts of each concept, which is linear in |KB |. The
number f is bounded by the sum of all numbers n in ≥ nR.C and ≤ nR.C, plus one
for each ∃R.C and ∀R.C occurring in KB . Since numbers are coded in unary, f is
linear in |KB |. Let n denote the maximal number occurring in any number restriction;
for unary coding of numbers, n is linear in |KB |.

Consider now the maximal number of literals in a closure of type 5. The maximal
number of literals for P1(x) is 2a (factor 2 allows for each atomic concept predicate to
occur positively or negatively), for P2(〈f(x)〉) it is 2a · 2f (f is multiplied by 2 since
each term may or may not be marked), for equalities it is f2 (both terms are always
marked), and for inequalities it is 4f2 (factor 4 allows for each side of the equality to
be marked or not). Hence, the maximal number of literals is 2a+4af+f2 +4f2. For a
closure of type 6, the maximal number of literals is 2a+2a+4af+(f2+f)+(4f2+2f):
possible choices for g do not contribute to the closure length, and the expressions in
parenthesis take into account that each term in an equality or an inequality can be
fi(g(x)) or x. For a closure of type 8, the maximal number of literals is bounded by
2r · 2c · 2c + 2a · 2c + 2a · 2f · c + 2 · (4c2 + c · f2 + cf · 2c): the factor 2 in front of
the parenthesis takes into account that equalities and inequalities can have the same
form, and the expression in the parenthesis counts all possible forms these literals can

78 5. Deciding SHIQ by Basic Superposition

have. The maximal number of literals of closures of type 1 and 2 is obviously 2, and
for closures of type 3 and 4 it is a+ 1. For a closure of type 7, the number of variables
yi is bounded by n: each such closure in Ξ(KB) contains at most n variables, and
no inference increases the number of variables. The maximal number of literals in a
closure of type 7 is n+4c+n2, since the choice for R does not contribute to the closure
length. Hence, the maximal number of literals in any closure in Ni is polynomial in
|KB |, for unary coding of numbers.

The maximal number of closures of types 1–6 and 8 in Ni is now easily obtained
as follows: if C` is the closure with the maximal number of literals ` for some closure
type, then there are 2` subsets of literals of C`. To obtain the total number of closures,
one must multiply 2` with the number of closure-wide choices. For closures of type
6, the function symbol g can be chosen in f ways. For closures of type 3 and 4, one
can choose R and f in rf ways. For closures of type 1, one can choose R in r ways.
For closures of type 2, one can choose R and S in r2 ways. Since all these factors are
polynomial in |KB | for unary coding of numbers, we obtain an exponential bound on
the number of closures of types 1–6 and 8. Finally, no inference derives a new closure
of type 7, so Ni contains only those closures of type 7 that are contained in Ξ(KB).

Theorem 5.3.10. For an ALCHIQ− knowledge base KB, saturation of Ξ(KB) by
BSDL with eager application of redundancy elimination rules decides satisfiability of
KB, and runs in time exponential in |KB |, for unary coding of numbers in input.

Proof. Translation of KB into Ξ(KB) can be performed in time polynomial in |KB |
by Lemma 5.3.2, and Ξ(KB) contains only ALCHIQ−-closures by Lemma 5.3.4. Let
` denote the maximal number of closures occurring in the closure set in a derivation as
specified in Lemma 5.3.6, and let l denote the maximal number of literals in a closure.
By Lemma 5.3.9, ` is exponential, and l is polynomial in |KB |, for unary coding of
numbers. Since all terms are bounded in size, they can be compared in constant time,
and a maximal term in a closure can be selected in time linear in l. A subsumption
algorithm, running in time exponential in l, was presented in [53]. Furthermore, the
subsumption check is performed at most for each pair of closures, so it takes at most
exponential time. For closures other than of type 7, each of the four inference rules can
potentially be applied to any closure pair, so, because exactly one literal of each closure
is eligible for inference, we get at most 4`2 inferences. For a hyperresolution inference
with a closure of type 7, n side premises can be chosen in `n ways. Hence, the number
of applications of inference rules of BSDL is bounded by 4`2 + `n, which is exponential
in |KB |, for unary coding of numbers in input. Now it is obvious that Ξ(KB) is
saturated after performing at most an exponential number of steps, after which the
saturation terminates. Since BSDL is sound and complete with eager application of
redundancy elimination rules, the claim of the theorem follows.

In the proof of Theorem 5.3.10, we assumed an exponential algorithm for checking
subsumption. In practice, it is known that modern theorem provers spend up to 90

5.4 Removing the Restriction to Very Simple Roles 79

percent of their time in subsumption checking, so efficient subsumption checking is
crucial for practical applicability of resolution theorem proving.

Fortunately, subsumption checks for ALCHIQ−-closures can be performed in poly-
nomial time as follows. In [53], it was shown that subsumption between closures having
at most one variable can be checked in polynomial time. This algorithm can be easily
extended with an additional η-reducibility test, yielding a polynomial algorithm for
checking subsumption of closures of type 3, 4, 5, 6, and 8. Checking whether a closure
of type 1 or 2 subsumes some other closure can be performed by matching the negative
literal first, and then checking whether the positive literal matches as well, which can
be performed in quadratic time.

Let C and C ′ be two closures of type 7. For C to subsume C ′, the only possibility
is that σ contains mappings yi 7→ y′i and x 7→ x′. Hence, C subsumes C ′ only if
the number of variables yi in C is smaller than in C ′, both closures contain the same
role R, and the predicates occurring in P1(x) and P2(y) of C are a subset of the
predicates occurring in C ′, respectively. These checks can obviously be performed in
polynomial time. Finally, a closure C of type 5 can subsume a closure C ′ of type 7
only if C subsumes P1(x) or P2(yi). These checks can be performed in polynomial
time, because C, P1(x), and P2(yi) contain only one variable.

5.4 Removing the Restriction to Very Simple Roles

In this section, we remove the restriction to very simple roles from the algorithm from
Section 5.3, and thus obtain an algorithm for deciding satisfiability of an ALCHIQ
knowledge base KB . Our main problem is that, during saturation of Ξ(KB) by BSDL,
we can obtain closures whose structure corresponds to Table 5.2, but for which condi-
tions (iii)–(vi) do not hold; we call such closures ALCHIQ-closures.

For example, let KB be a knowledge base containing axioms (5.1)–(5.9). On the
right-hand side, we show the translation of KB into closures Ξ(KB):

R v T ¬R(x, y) ∨ T (x, y)(5.1)
S v T ¬S(x, y) ∨ T (x, y)(5.2)

C v ∃R.> ¬C(x) ∨R(x, f(x))(5.3)
> v ∃S−.> S−(x, g(x))(5.4)
> v ≤ 1T ¬T (x, y1) ∨ ¬T (x, y2) ∨ y1 ≈ y2(5.5)
∃S.> v D ¬S(x, y) ∨D(x)(5.6)
∃R.> v ¬D ¬R(x, y) ∨ ¬D(x)(5.7)

> v C C(x)(5.8)
¬S−(x, y) ∨ S(y, x)(5.9)

80 5. Deciding SHIQ by Basic Superposition

Consider a saturation of Ξ(KB) by BSDL (the notation R(xx; yy) means that a
closure is derived by resolving closures xx and yy):

S([g(x)] , x) R(5.4;5.9)(5.10)
¬C(x) ∨ T (x, [f(x)]) R(5.1;5.3)(5.11)

T ([g(x)] , x) R(5.2;5.10)(5.12)
¬C([g(x)]) ∨ [f(g(x))] ≈ x R(5.5;5.11;5.12)(5.13)

For the closure (5.13), condition (v) from Table 5.2 is not satisfied. Namely, we
have role(f) = R 6= Inv(role(g)) = Inv(S−) = S; this is because a number restriction
was stated in (5.5) on a role that is not very simple. Now (5.13) can be superposed
into (5.3), resulting in (5.14):

(5.14) ¬C([g(x)]) ∨R([g(x)] , x)

Since condition (v) is not satisfied for (5.13), we cannot assume that a closure
subsuming (5.14) exists, as we did in the proof of Lemma 5.3.6. Hence, we must keep
(5.14), which is obviously not an ALCHIQ-closure. This might cause termination
problems since, in general, (5.14) might be resolved with some closure of type 6 of
the form C([g(h(x))]), producing a closure of the form R([g(h(x))] , [h(x)]). The term
depth in a binary literal is now two; resolving such a closure with a closure of type
7 can yield closures with even deeper terms. Hence, Lemma 5.3.9, stating that the
number of closures that can be derived is finite, does not hold any more, so saturation
does not necessarily terminate.

We did not find a way to refine the ordering or the selection function that would
solve this problem. Furthermore, (5.14) is necessary for completeness. Namely, KB
is unsatisfiable, and the empty closure is derived by the following derivation, which
involves (5.14):

D([g(x)]) R(5.6;5.10)(5.15)
¬D([g(x)]) ∨ ¬C([g(x)]) R(5.7;5.14)(5.16)

¬C([g(x)]) R(5.15;5.16)(5.17)
� R(5.8;5.17)(5.18)

5.4.1 Transformation by Decomposition

To solve the termination problems for ALCHIQ, in this subsection we introduce de-
composition—a transformation that can be applied to the result of certain BS infer-
ences. This transformation is generally applicable, and is not limited to description
logic reasoning. We show that decomposition can be combined with basic superpo-
sition, but in a similar way one can show that it can be combined with any clausal
calculus compatible with the standard notion of redundancy [13].

In the following, for x a vector of distinct variables x1, . . . , xn and t a vector
of (not necessarily distinct) terms t1, . . . , tn, let {x 7→ t} denote the substitution
{x1 7→ t1, . . . , xn 7→ tn}, and let Q([t]) denote Q([t1] , . . . , [tn]).

5.4 Removing the Restriction to Very Simple Roles 81

Definition 5.4.1. Let C · ρ be a closure and N a set of closures. A decomposition of
C ·ρ w.r.t. N is a pair of closures C1 ·ρ∨Q([t]) and C2 ·θ∨¬Q(x), where t is a vector
of n terms, x is a vector of n distinct variables, n ≥ 0, satisfying these conditions:

• C = C1 ∪ C2;

• ρ = θ{x 7→ t};

• x is exactly the set of free variables of C2θ;

• If C2 ·θ∨¬Q′(x) ∈ N , then Q = Q′; otherwise, Q is a new predicate not occurring
in N .

The closure C2 ·θ is called the fixed part, the closure C1 ·ρ is called the variable part,
and the predicate Q is called the definition predicate. An application of decomposition
is written as follows:

C · ρ C1 · ρ ∨ Q([t])
C2 · θ ∨ ¬Q(x)

Let ξ be a BS inference with a most general unifier σ, a side premise Ds · η, and
a main premise Dm · η; furthermore, let Lm · η be the literal from Dm · η on which
the inference takes place. The conclusion of ξ is eligible for decomposition if, for each
ground substitution τ such that ξτ satisfies the ordering constraints of BS, we have
¬Q(t)τ ≺ Lmηστ . With BS+ we denote the BS calculus where decomposition can be
applied to conclusions of eligible inferences.

As an example, consider superposition from a closure [f(g(x))] ≈ [h(g(x))] into a
closure C(x) ∨ R(x, f(x)), resulting in a closure C([g(x)]) ∨ R([g(x)] , [h(g(x))]). This
is obviously not an ALCHIQ-closure, so performing further inferences with it might
prevent a saturation from terminating. However, this closure can be decomposed into
C([g(x)])∨QR,f ([g(x)]) and ¬QR,f (x)∨R(x, [h(x)]), which are bothALCHIQ-closures,
so they do not cause termination problems. The inference is eligible for decomposition
if we ensure that ¬QR,f ([g(x)]) ≺ R(g(x), f(g(x))) = Lmησ; this can be done by using
an LPO with a precedence in which R > QR,f .

The following lemma demonstrates that decomposition is a sound inference rule.

Lemma 5.4.2. Let N0, . . . , Ni be a BS+-derivation, and let I0 be a model of N0.
For i > 1, let Ii be an interpretation such that, if the inference deriving Ni from
Ni−1 involves a decomposition step introducing a new definition predicate Q, then
Ii = Ii−1∪{Q(s) | s is a vector of ground terms such that C2θ{x 7→ s} is true in Ii−1};
otherwise Ii = Ii−1. Then, Ii is a model of Ni.

Proof. The proof is by induction on the length of the derivation N0, . . . , Ni. The base
case is trivial, since I0 is a model of N0 by the assumption. For the induction step,
we assume that Ni−1 has a model Ii−1 satisfying the conditions of the lemma, and
consider possible inferences deriving Ni. For inferences without a decomposition step,

82 5. Deciding SHIQ by Basic Superposition

the claim is easy. Consider a positive superposition inference from (s ≈ t ∨ C) · ρ into
(w ≈ v ∨D) · ρ with a unifier σ, resulting in (C ∨D ∨w[t]p ≈ v) · θ, where θ = ρσ, and
let τ be a ground substitution. If (s ≈ t) · θτ is false in Ii−1, then C · θτ is true in Ii−1;
if (w ≈ v) · θτ is false in Ii−1, then D · θτ is true in Ii−1; and if both (s ≈ t) · θτ and
(w ≈ v) · θτ are true in Ii−1, then (w[t]p ≈ v) · θτ is true in Ii−1. The cases for other
inference rules are analogous.

If the inference deriving Ni from Ni−1 involves a decomposition step, then two cases
are possible. If the predicate Q is new, then Ii−1 is extended to Ii by adding those
ground literals Q(s) for which C2θ{x 7→ s} is true in Ii−1. Hence, for each ground
substitution τ , in C2 ·θτ ∨¬Q(x)τ , either C2 ·θτ or ¬Q(x)τ is true in Ii. Furthermore,
if C · ρτ is true in Ii−1, then C1 · ρτ ∨Q([t])τ is obviously true in Ii. If the predicate Q
is not new, then Ii = Ii−1. Then, by the induction hypothesis Q(s) is true if and only
if C2θ{x 7→ s} is true, and C1 · ρτ ∨Q([t])τ is true in Ii as in the previous case.

We next show that decomposition is compatible with the standard notion of re-
dundancy. This is the key step in showing completeness of BS+.

Lemma 5.4.3. Let ξ be a BS inference applied to premises from a closure set N ,
resulting in a closure C · ρ. If ξ is eligible for decomposition of C · ρ into C1 · ρ∨Q([t])
and C2 · θ ∨ ¬Q(x), and the two latter closures are both redundant in N , then ξ is
redundant in N as well.

Proof. Let ξ be an inference on a literal Lm · η from a main premise Dm · η and a side
premise Ds · η, with a most general unifier σ, resulting in a closure C · ρ. Furthermore,
let R be a rewrite system and τ a ground substitution such that ξτ satisfies the
ordering constraints of BS, and it is a variable irreducible ground instance of ξ w.r.t.
R. Finally, let E1 = (C1 · ρ ∨Q([t]))τ and E2 = (C2 · θ ∨ ¬Q(x)){x 7→ t}τ . Note that
D = max(Dm · ηστ,Ds · ηστ) = Dm · ηστ .

By the ordering constraints of BS inference rules, Dsηστ ≺ Lmηστ . Furthermore,
superposition inferences are allowed only from the maximal side of an equality, so the
inference always produces a literal L′ηστ ≺ Lmηστ . Finally, because ξ is eligible for
decomposition, ¬Q(t)τ ≺ Lmηστ . Thus, if a literal Lηστ � Lmηστ occurs n times in
E1 ∪E2, it also occurs n times in D. In other words, both E1 and E2 contain at most
those literals larger than Lmηστ that also occur in D. All other literals in E1 or E2

are smaller than Lmηστ . Since Lmηστ ∈ D, we conclude that E1 ≺ D and E2 ≺ D.
The vector of terms t is “extracted” from the substitution part of C · ρ. Hence, if

a term t occurs in E1 and E2 at a substitution position, then t occurs in C · ρτ also
at a substitution position. Therefore, if ξτ is variable irreducible w.r.t. R, so is C · ρτ ,
and so are E1 and E2.

To summarize, for all rewrite systems R and all ground substitutions τ such that
ξτ is a variable irreducible ground instance of ξ w.r.t. R, the closures E1 and E2

are smaller than D, and are variable irreducible w.r.t R. The closure C1 · ρ ∨Q([t]) is
redundant in N by assumption, so R∪ irredR(N)≺E1 |= E1, but, since E1 ≺ D, we have
R ∪ irredR(N)≺D |= E1. Similarly, R ∪ irredR(N)≺D |= E2. Since {E1, E2} |= C · ρτ ,
we have R ∪ irredR(N)≺D |= C · ρτ , so the claim of the lemma holds.

5.4 Removing the Restriction to Very Simple Roles 83

Soundness and compatibility with the standard notion of redundancy imply that
BS+ is a sound and complete calculus, as shown by Theorem 5.4.4. Note that, to
obtain the saturated set N , we can use any fair saturation strategy [13]. Furthermore,
the decomposition rule can be applied an infinite number of times in a saturation, and
it is even allowed to introduce an infinite number of definition predicates. In the latter
case, we just need to ensure we use a well-founded E-term ordering.

Theorem 5.4.4. For N0 a set of closures of the form C · {}, let N be a set of closures
obtained by saturating N0 under BS+. Then, N0 is satisfiable if and only if N does
not contain the empty closure.

Proof. The (⇒) direction follows immediately from Lemma 5.4.2. For the (⇐) di-
rection, assume that N is saturated under BS+. Then, by Lemma 5.4.3, N is satu-
rated under BS as well. Using the model generation method [14, 96], we can build
a rewrite system R such that R∗ |= irredR(N). Unlike for basic superposition with-
out decomposition, the set of closures N does not need to be well-constrained, so we
cannot immediately assume that R∗ is a model of N . However, we can conclude that
R∗ |= irredR(N0): consider a closure C ∈ N0 and its variable irreducible ground in-
stance Cτ . If C ∈ N , then R∗ is obviously a model of Cτ . Furthermore, C /∈ N only if
it is redundant in N ; then, for any τ , there are ground closures Diτ ∈ irredR(N) such
that D1τ, . . . ,Dnτ |= Cτ . Since R∗ |= Diτ by assumption, we have R∗ |= Cτ as well.

Now consider a closure C ∈ N0 and its (not necessarily variable irreducible) ground
instance Cη. Let η′ be a substitution obtained from η by replacing each mapping
x 7→ t with x 7→ nfR(t). Since the substitution part of C is empty, Cη′ ∈ irredR(N0),
so, because R∗ |= Cη′, we have R∗ |= Cη. Hence, R∗ |= N0, and by Lemma 5.4.2,
there is a model of N .

Discussion. We discuss the intuition behind the Theorem 5.4.4. Decomposition is
essentially the structural transformation applied in the course of the theorem proving
process. Since the formulae obtained by the structural transformation are equisatisfi-
able with the original formula, the application of the structural transformation does
not affect the soundness of the calculus.

A potential problem might be that decomposition somehow interferes with mark-
ers of basic superposition. This does not occur because, for any rewrite system R,
decomposing C ·ρ into C1 ·ρ∨Q([t]) and C2 · θ∨¬Q(x) actually decomposes any vari-
able irreducible ground instance of the premise into corresponding variable irreducible
ground instances of the conclusions. In this way, we do not lose any variable irreducible
ground instance used in detecting a potential inconsistency of the closure set. Note
that, for an arbitrary rewrite system R, closures C1 · ρ∨Q([t]) and C2 · θ ∨¬Q(x) can
have variable irreducible ground instances that do not correspond to a variable irre-
ducible ground instance of C · ρ. However, these variable irreducible ground instances
do not cause problems, since decomposition is sound.

Another potential problem might arise if a closure C · ρ is derived and decomposed
into C1 · ρ∨Q([t]) and C2 · θ ∨¬Q(x) an infinite number of times. This might happen

84 5. Deciding SHIQ by Basic Superposition

if the ordering constraints on predicates require the fixed and the variable parts to
be resolved on Q([t]) and ¬Q(x): obviously, the theorem proving process would be
stuck in an infinite loop. This is avoided by requiring an inference to be eligible
for decomposition, which makes decomposition compatible with the standard notion
of redundancy. Hence, the fixed and the variable parts together make the original
inference redundant, so the inference does not need to be repeated in a derivation.

Notion of Eligibility. We briefly discuss the way eligibility condition was defined
in Definition 5.4.1. It essentially ensures that the closures obtained by decomposition
of the conclusion of an inference ξ are smaller than the main premise of ξ. Consider
the example BS inference ξ, followed by decomposition (the unifier is σ = {x′ 7→ x}):

¬A(x) ∨B(x) ∨ C(y) ∨D(y) A(x′) ∨ E(x′)

B(x) ∨ E(x) ∨ C(y) ∨D(y)
B(x) ∨ C(y) ∨Q(x, y)
¬Q(x, y) ∨ E(x) ∨D(y)

To determine if ξ is eligible for decomposition, we have a problem: ¬A(x) is the
main literal on which the inference takes place, and it is not comparable with ¬Q(x, y)
(sinceQ(x, y) contains an additional variable y). The remedy is to consider each ground
substitution τ such that ξτ satisfies the ordering constraints of BS. For comparing
terms, we shall assume an LPO as in Definition 5.3.3. Provided that ¬A(x) is not
selected, ¬A(x)στ � (B(x) ∨ C(y))στ must hold, implying that xστ � yστ . If we
ensure that A > Q in the LPO precedence, then ¬A(x)στ � ¬Q(x, y)στ , so the
eligibility condition is satisfied.

On the contrary, assume that ¬A(x) is selected. Then, ¬A(x)στ is not necessarily
larger than (B(x) ∨ C(y))στ . Therefore, we cannot conclude that xστ � yστ , and
that ¬A(x)στ � ¬Q(x, y)στ . Indeed, it is possible to take τ = {x 7→ a, y 7→ f(a)};
now A(x)στ ≺ Q(x, y)στ , regardless of the relation between Q and A in the LPO
precedence. Hence, the eligibility condition is not satisfied.

By defining the eligibility condition based on the ground instances of closures, we
achieve a higher level of generality. However, in most cases decomposition is applied to
closures of simpler syntactic structure, for which we next derive simpler and sufficient
eligibility tests.

Proposition 5.4.5. Let ξ be a BS inference as in Definition 5.4.1. If ¬Q(t) ≺ Lmησ,
then ξ is eligible for superposition.

Proof. Since ≺ is stable under substitutions, we have ¬Q(t)τ ≺ Lmηστ for each τ .

Proposition 5.4.6. Let ξ be a BS inference as in Definition 5.4.1. If the side premise
Ds ·η contains a literal L ·η such that ¬Q(t) ≺ Lησ, then ξ is eligible for superposition.

Proof. For ξ a BS inference and τ a ground substitution as in Definition 5.4.1, by
the ordering conditions of BS, we have Lsηστ ≺ Lmηστ , where Ls · η is the maximal
literal of the side premise. Since ¬Q(t) ≺ Lησ by assumption, and ≺ is stable under
substitutions, we also have that ¬Q(t)τ ≺ Lηστ ≺ Lsηστ ≺ Lmηστ .

5.4 Removing the Restriction to Very Simple Roles 85

Combining Decomposition with Other Calculi. For any other sound clausal
calculus, Lemma 5.4.2 applies identically. Furthermore, for any calculus compatible
with the standard notion of redundancy [13], Lemma 5.4.3 can be proved in a similar
manner with minor modifications.

5.4.2 Deciding ALCHIQ by Decomposition

In this subsection, we extend the decision procedure from Section 5.3 with the decom-
position rule from Subsection 5.4.1, and thus obtain a decision procedure for checking
satisfiability of ALCHIQ knowledge bases.

Definition 5.4.7. Let BS+
DL be the BSDL calculus, where conclusions are decomposed

according to the following table whenever possible, for an arbitrary term t:

D · ρ ∨R([t] , [f(t)])
D · ρ ∨ QR,f ([t])

¬QR,f (x) ∨ R(x, [f(x)])

D · ρ ∨R([f(x)] , x)
D · ρ ∨ QInv(R),f (x)

¬QInv(R),f (x) ∨ R([f(x)] , x)

The precedence of an LPO is f > c > P > QS,f > T, for each function symbol f ,
constant symbol c, nondefinition predicate P , and definition predicate QS,f .

By Definition 5.4.1, for a (possibly inverse) role S and a function symbol f , the
definition predicate QS,f is unique. Furthermore, a strict application of Definition
5.4.1 would require introducing a distinct definition predicate Q′R,f for R([f(x)] , x).
However, by the operator π for translating KB into first-order logic, R([f(x)] , x) and
Inv(R)(x, [f(x)]) are logically equivalent. Therefore, QInv(R),f can be used as the defi-
nition predicate for R([f(x)] , x) instead of Q′R,f , thus avoiding the need to introduce
an additional predicate in the second form of decomposition in Definition 5.4.7. This
optimization is not essential for the correctness of our results; however, it is good
practice to keep the number of predicate symbols minimal.

Because decomposition ensures that all non-ALCHIQ-closures derived in a satu-
ration are replaced with ALCHIQ-closures, BS+

DL decides satisfiability of ALCHIQ
knowledge bases. Furthermore, since the definition predicate QR,f is unique for a pair
of role and function symbols R and f , at most a polynomial number of definition pred-
icates is introduced during saturation, so the result of Theorem 5.4.4 applies. Since
the number of ALCHIQ-closures is finite according to Lemma 5.3.9, a saturation by
BS+

DL terminates.

Theorem 5.4.8. For an ALCHIQ knowledge base KB, saturation of Ξ(KB) by BS+
DL

decides satisfiability of KB, and runs in time exponential in |KB |, for unary coding of
numbers in input.

86 5. Deciding SHIQ by Basic Superposition

Proof. We first show that inferences of BS+
DL, when applied to ALCHIQ-closures,

always produce ALCHIQ-closures. The proof of Lemma 5.3.6 applies even if condi-
tions (iii)–(vi) from Table 5.2 do not hold; the only exception is a superposition into a
generator closure Pf (x)∨R(x, f(x)). For the latter, there are these three possibilities,
depending on the structure of the premise that superposition is performed from:

• Superposition from a closure of type 5, 6, or 8 of the form [f(t)] ≈ [g(t)] ∨D · ρ,
where t is either a variable x′, a term g(x′) or a constant a, results in a closure
of the form Pf ([t]) ∨ R([t] , [g(t)]) ∨D · ρ, which is decomposed into a closure of
type 3 and a closure of type 5, 6, or 8.

• Superposition from a closure of type 6 of the form [f(g(x′))] ≈ x′∨D ·ρ results in
a closure of the form Pf ([g(x′)])∨R([g(x′)] , x′)∨D·ρ. This closure is decomposed
into a closure of type 4, and a closure of type 5 or 6. Since R([g(x′)] , x′) and
Inv(R)(x′, [g(x′)]) are logically equivalent due to the translation operator π, the
predicate QInv(R),f can be used as the definition predicate for R([g(x′)] , x′).

• Superposition from a closure of type 8 of the form [f(a)] ≈ [b] ∨D · ρ results in
a closure of the form Pf (a) ∨R([a] , [b]) ∨D · ρ, which is of type 8.

Hence, decomposition ensures that the conclusion of each inference of BS+
DL is

an ALCHIQ-closure. Note that R(t, f(t)) = Lmησ is the maximal literal of the main
premise after applying the most general unifier σ and, since R > QR,g in the precedence
of the LPO of BS+

DL, ¬QR,g(t) ≺ R(t, f(t)). Hence, by Proposition 5.4.5, the first two
superposition inferences from the previous list are eligible for decomposition. Also,
note that decomposition can be performed after resolving a closure of type 3 or 4 with
a closure of type 2 (eligibility is ensured also by Proposition 5.4.5), but this is not
essential to obtain a decision procedure.

To show the claim of this theorem, let r be the number of roles, and f the number
of function symbols occurring in Ξ(KB); as in Lemma 5.3.9, both r and f are linear
in |KB | for unary coding of numbers. The number of definition predicates QR,f intro-
duced by decomposition is bounded by r ·f , which is quadratic in |KB |, so the number
of different predicates is polynomial in |KB |. Hence, Lemma 5.3.9 applies in this case
as well, so the maximal set of closures derived in a saturation is at most exponential
in |KB | for unary coding of numbers. After deriving this set, all inferences of BS+

DL

are redundant and the saturation terminates. Since BS+
DL is a sound and complete

calculus by Theorem 5.4.4, it decides satisfiability of Ξ(KB) and, by Lemma 5.3.2, of
KB as well, in time that is exponential in |KB |.

Although Theorem 5.4.8 supersedes Theorem 5.3.10, in practice it is useful to know
that superposition into an R-generator is not necessary, provided that there is no role
S such that R v S. In this way a practical implementation can be optimized not to
perform inferences whose conclusions are immediately subsumed.

5.4 Removing the Restriction to Very Simple Roles 87

Note that Definition 5.4.7 applies decomposition eagerly. For example, a resolution
of a closure of type 3 or 4 with a closure of type 1 or 2 produces a closure of type 3;
similarly, a superposition from [f(x)] ≈ [g(x)] ∨C(x) into D(x) ∨R(x, f(x)) produces
D(x) ∨ C(x) ∨ R(x, [g(x)]), which is also of type 3. By Definition 5.4.7, all these
conclusions will be decomposed, even though they are ALCHIQ-closures. In such
cases, decomposition could be made optional: it may be performed, but it is not
strictly necessary to obtain termination.

For most knowledge bases, not all possible predicates QR,f are introduced in a
saturation of Ξ(KB). Rather, only predicates from the set gen(KB), defined in the
following definition, can be introduced by decomposition. This set is used in the algo-
rithm for reducing an ALCHIQ knowledge base KB to a disjunctive datalog program
from Chapter 7. Namely, the algorithm presented there requires all inferences among
nonground clauses to be performed before any ground inferences, so, in Section 7.2,
we append gen(KB) to Ξ(KB) in advance, before saturation.

Definition 5.4.9. For an ALCHIQ knowledge base KB, gen(KB) is the set of all
closures of the form ¬QR,f (x) ∨ R(x, [f(x)]), where R 6= role(f) and a role S exists
such that the following conditions are satisfied:

• S occurs in an at-least number restriction under positive, or in an at-most number
restriction under negative polarity in KB;

• R v∗ S or Inv(R) v∗ S;

• role(f) v∗ S or Inv(role(f)) v∗ S.

Lemma 5.4.10. In a saturation of Ξ(KB) by BS+
DL, the decomposition rule introduces

only definition closures from the set gen(KB).

Proof. A definition predicate QR,f is introduced in a saturation by decomposing the
conclusion of superposition from a literal [g(f(x))] ≈ x with role(g) 6= Inv(role(f)), or
from a literal [g(t)] ≈ [f(t)] with role(g) 6= role(f), into Pg(x)∨R(x, g(x)). Literals of
the form [g(f(x))] ≈ x or [g(t)] ≈ [f(t)] are generated only by a hyperresolution with
a closure of type 7, obtained by translating an at-least restriction on some role S into
clausal form. Such a hyperresolution inference is possible only if there are closures of
the form P1(x)∨S(x, 〈f(x)〉) or P1(x)∨ Inv(S)([f(x)] , x), and P2(x)∨S(x, 〈g(x)〉) or
P2(x) ∨ Inv(S)([g(x)] , x). Finally, the closures of the latter form can be derived only
if R v∗ S or Inv(R) v∗ S, and role(f) v∗ S or Inv(role(f)) v∗ S.

5.4.3 Safe Role Expressions

A prominent limitation of ALCHIQ is a rather restricted form of axioms on roles.
These limitations can be partially overcome by allowing safe Boolean role expressions
to occur in TBox and ABox axioms. The resulting logic is called ALCHIQb, and can
be viewed as the union of ALCHIQ and ALCIQb [144]. Roughly speaking, safe role

88 5. Deciding SHIQ by Basic Superposition

expressions are built by combining simpler role expressions using union, disjunction,
and relativized negation of roles: relativized statements such as

∀x, y : isParentOf (x, y)→ isMotherOf (x, y) ∨ isFatherOf (x, y)

are allowed; however, fully negated statements such as

∀x, y : ¬isMotherOf (x, y)→ isFatherOf (x, y)

are not allowed. The safety restriction is needed for the algorithm to remain in
ExpTime; namely, reasoning with unsafe role expressions is NExpTime-complete [90].

Definition 5.4.11. A role expression is a finite expression built over the set of abstract
roles using the connectives t, u, and ¬ in the usual way. Let safe+ and safe− be
functions defined on the set of all role expressions as follows, where R is an abstract
role and E(i) are role expressions:

safe+(R) = true safe−(R) = false
safe+(¬E) = ¬safe−(E) safe−(¬E) = ¬safe+(E)

safe+(
⊔
Ei) =

∧
safe+(Ei) safe−(

⊔
Ei) =

∨
safe+(Ei)

safe+(
d
Ei) =

∨
safe+(Ei) safe−(

d
Ei) =

∧
safe+(Ei)

A role expression E is safe if safe+(E) = true. The description logic ALCHIQb
is obtained from ALCHIQ by allowing concepts ∃E.C, ∀E.C, ≥ nE.C and ≤ nE.C,
inclusion axioms E v F , and ABox axioms E(a, b), where E is a safe role expression,
and F is any role expression. The semantics of ALCHIQb is obtained by extending
the translation operator π as specified in Table 5.3, where E(i) are role expressions.

A similar logic ALCIQb was considered in [144], where it was required that each
disjunct in the disjunctive normal form of the role expression contains at least one
nonnegated conjunct. These two definitions coincide; we use Definition 5.4.11 because
transformation into disjunctive normal form can introduce exponential blowup, which
we avoid using structural transformation.

To decide satisfiability of an ALCHIQb knowledge base KB , we extend the pre-
processing of KB to transform each role expression into negation-normal form, and to
introduce a new name for each nonatomic role expression. The set of closures obtained
by preprocessing we also denote with Ξ(KB). From [99] we know that Ξ(KB) can be
computed in polynomial time.

Table 5.3: Semantics of Role Expressions

π(R,X, Y) = R(X,Y)
π(¬E,X, Y) = ¬π(E,X, Y)
π(

d
Ei, X, Y) =

∧
π(Ei, X, Y)

π(
⊔
Ei, X, Y) =

∨
π(Ei, X, Y)

5.4 Removing the Restriction to Very Simple Roles 89

Theorem 5.4.12. For an ALCHIQb knowledge base KB, saturation of Ξ(KB) by
BS+

DL decides satisfiability of KB in time that is exponential in |KB |, for unary coding
of numbers in input.

Proof. In addition to ALCHIQ closures, Ξ(KB) can contain closures obtained by
translating role expressions. For a role expression E occurring in concepts ∃E.C and
≥ nE.C under positive polarity, or in concepts ∀E.C and ≤ nE.C under negative
polarity, structural transformation introduces a formula of the following form, where
Q is a predicate:

(5.19) ∀x, y : Q(x, y)→ π(E, x, y)

For a role expression E occurring in concepts ∃E.C and ≥ nE.C under negative
polarity, or in concepts ∀E.C and ≤ nE.C under positive polarity, the structural
transformation introduces a formula of the following form, where Q is a predicate:

(5.20) ∀x, y : π(E, x, y)→ Q(x, y)

Finally, for an inclusion axiom E v F , the structural transformation introduces one
formula of the form (5.19) and one of the form (5.20). Regardless of whether E is safe
in (5.19) or not, the structural transformation and clausification of (5.19) produces
closures containing the literal ¬Q(x, y). Furthermore, E is safe in (5.20), so each
disjunct in the disjunctive normal form of E contains at least one positive conjunct.
Hence, each disjunct in the conjunctive normal form of ¬π(E, x, y) contains at least
one literal of the form ¬S(x, y), so the structural transformation and clausification of
(5.20) also produce a closure with at least one such literal. Hence, all closures produced
by role expressions have the form (5.21), where n > 0 and m ≥ 0:

(5.21) ¬R1(x, y) ∨ . . . ∨ ¬Rn(x, y) ∨ S1(x, y) ∨ . . . ∨ Sm(x, y)

Such a closure always contains at least one negative literal that is selected, so the
closure can participate only in hyperresolution on all negative literals. If one of the
side premises is a closure of type 8 with a maximal literal R(〈a〉 , 〈b〉), no side premise
can have a maximal literal of the form R(x, 〈f(x)〉) or R([f(x)] , x) (because f(x)
does not unify with a constant). Hence, the resolvent is a ground closure of type 8.
Furthermore, if one side premise has a maximal literal of the form R(x, 〈f(x)〉), then no
side premise can have a maximal literal of the form R′([g(x′)] , x′), as this would require
unifying x with g(x′) and f(x) with x′ simultaneously, which is not possible due to the
occurs-check in unification [7]. If all side premises have a maximal literal of the form
Ri(xi, 〈f(xi)〉), the resolvent has the form (5.22), for S(s, t) = S1(s, t) ∨ . . . ∨ Sm(s, t):

(5.22) P(x) ∨ S(x, [f(x)])

90 5. Deciding SHIQ by Basic Superposition

This closure can be decomposed into (5.23)–(5.25):

P(x) ∨QS1,f (x) ∨ . . . ∨QSm,f (x)(5.23)
¬QS1,f (x) ∨ S1(x, [f(x)])(5.24)

...
¬QSm,f (x) ∨ Sm(x, [f(x)])(5.25)

Finally, if all side premises have a maximal literal of the form Ri([f(xi)] , xi), the
resolvent has the form (5.26):

(5.26) P(x) ∨ S([f(x)] , x)

This closure can further be decomposed into (5.27)–(5.29). Since Si([f(x)] , x) and
Inv(Si)(x, [f(x)]) are logically equivalent due to the translation operator π, the predi-
cate QInv(Si),f can be used as the definition predicate for Si([f(x)] , x).

P(x) ∨QInv(S1),f (x) ∨ . . . ∨QInv(Sm),f (x)(5.27)

¬QInv(S1),f (x) ∨ S1([f(x)] , x)(5.28)
...

¬QInv(Sm),f (x) ∨ Sm([f(x)] , x)(5.29)

Hence, we ensure that the conclusions of all inferences are ALCHIQ-closures, so
Lemma 5.3.6 applies for ALCHIQb as well. Furthermore, the number of literals in a
closure of type (5.21) is linear in the size of the role expression, so the claim of this
theorem holds in the same way as for Theorem 5.4.8.

Note that role safety is important for Theorem 5.4.12 because it ensures that clo-
sures of type (5.21) always contain a negative literal, which is then selected. If this
were not the case, a closure of the form R(x, y) might participate in resolution with a
closure P1(x)∨¬R(x, y)∨P2(x), producing a closure P1(x)∨P2(y). This closure does
not match any closure from Table 5.2, which complicates the decision procedure. Since
P1(x) and P2(y) do not have variables in common, a possible solution is to don’t-know
nondeterministically assume that either disjunct is true, and thus reduce the problem-
atic closure to an ALCHIQ closure. This increases the complexity of the algorithm
from ExpTime to NExpTime as required: in [90] it was shown that reasoning in a
description logic with unsafe role expressions is NExpTime-complete. Unfortunately,
the presented transformation is not applicable to all problematic closures, so we leave
solving the general problem to future research.

5.5 Example 91

5.5 Example

In Subsection 3.1.1, we introduced two knowledge bases KB1 and KB2, and showed,
by a model-theoretic argument, that KB1 ∪KB2 |= ∃hasVD .Adpt3DAcc(pc1). In this
section, we show that this entailment holds using a proof-theoretic argument.

Our algorithm is refutational—that is, it is capable only of detecting a contradic-
tion. Since ¬(∃hasVD .Adpt3DAcc(pc1)) ≡ ∀hasVD .¬Adpt3DAcc(pc1), we set KB ′ to
be defined as follows, and show it to be unsatisfiable:

(5.30) KB ′ = KB1 ∪KB2 ∪ {∀hasVD .¬Adpt3DAcc(pc1)}

Eliminating Transitivity Axioms. The first step in checking satisfiability of KB ′

is to eliminate transitivity axioms by computing Ω(KB ′). We start with computing
the concept closure of KB ′. For the sake of brevity, we omit concepts that can be
simplified using standard identities.

clos(KB ′) = {
∀ hasAdpt .Adpt ,Adpt , (from 3.1)
∀ has3DAcc.3DAcc, 3DAcc, (from 3.2)
¬Adpt t ¬3DAcc tAdpt3DAcc,¬Adpt ,¬3DAcc,Adpt3DAcc, (from 3.3)
¬Adpt tVD ,VD , (from 3.4)
¬3DAcc tVD , (from 3.5)
¬GrWS t PC ,¬GrWS ,PC , (from 3.6)
¬GaPC t (GrWS u PC),¬GaPC ,GrWS u PC ,GrWS , (from 3.7)
¬PC t ∃ hasAdpt .>,¬PC ,∃ hasAdpt .>, (from 3.12)
¬GrWS t ∃ has3DAcc.>,∃ has3DAcc.>, (from 3.13)
¬GaPC t ≤ 1 hasVD .VD ,≤ 1 hasVD .VD ,¬VD , (from 3.14)
¬PCI t ∀ contains.PCI ,¬PCI ,∀ contains.PCI ,PCI , (from 3.15)
GaPC , (from 3.16)
∀hasVD .¬Adpt3DAcc,¬Adpt3DAcc (from 5.30)

}

We next select all concepts of the form ∀R.C from clos(KB ′), where R is transitive
or has a transitive subrole; in our example, the only such concept is ∀ contains.PCI .
Finally, to construct Ω(KB ′), we remove from KB ′ the transitivity axiom (3.11) and
add the axiom (5.31):

(5.31) ∀ contains.PCI v ∀ contains.∀ contains.PCI

Translation into Closures. To check satisfiability of Ω(KB ′) using basic superpo-
sition, the knowledge base must be extensionally reduced; that is, ABox axioms should
only contain literal concepts. Hence, we replace (5.30) by (5.32) and (5.33):

Q1 v ∀hasVD .¬Adpt3DAcc(5.32)
Q1(pc1)(5.33)

92 5. Deciding SHIQ by Basic Superposition

We now apply the clausification algorithm from Definition 5.3.1. The following
closures correspond to TBox and RBox axioms of Ω(KB ′) other than (5.31):

(5.34) ¬hasAdpt(x, y) ∨Adpt(y) (3.1)
(5.35) ¬has3DAcc(x, y) ∨ 3DAcc(y) (3.2)
(5.36) ¬Adpt(x) ∨ ¬3DAcc(x) ∨Adpt3DAcc(x) (3.3)
(5.37) ¬Adpt(x) ∨VD(x) (3.4)
(5.38) ¬3DAcc(x) ∨VD(x) (3.5)
(5.39) ¬GrWS (x) ∨ PC (x) (3.6)
(5.40) ¬GaPC (x) ∨GrWS (x) (3.7)
(5.41) ¬GaPC (x) ∨ PC (x) (3.7)
(5.42) ¬hasAdpt(x, y) ∨ hasVD(x, y) (3.8)
(5.43) ¬has3DAcc(x, y) ∨ hasVD(x, y) (3.9)
(5.44) ¬hasVD(x, y) ∨ contains(x, y) (3.10)
(5.45) ¬PC (x) ∨ hasAdpt(x, f(x)) (3.12)
(5.46) ¬GrWS (x) ∨ has3DAcc(x, g(x)) (3.13)
(5.47) ¬GaPC (x)∨¬hasVD(x, y1)∨¬hasVD(x, y2)∨ y1 ≈ y2 ∨¬VD(y1)∨¬VD(y2) (3.14)
(5.48) ¬PCI (x) ∨ ¬contains(x, y) ∨ PCI (y) (3.15)
(5.49) ¬Q1(x) ∨ ¬hasVD(x, y) ∨ ¬Adpt3DAcc(y) (5.32)

Axiom (5.31) contains nonliteral subconcepts, so it must be transformed using
structural transformation. Hence, we compute Def(C) for C as follows:

C = ¬(∀ contains.PCI) t ∀ contains.∀ contains.PCI

We start by setting Λ(C) = {1.1, 2.2}. Namely, C|1.1 = ∀ contains.PCI , and each
subconcept of C|1.1 is atomic; the situation is similar for C|2.2 = ∀contains.PCI . Next,
we introduce new names Q2 and Q3 for C|1.1 and C|2.2, respectively. Furthermore,
pol(C, 1.1) = −1, but pol(C, 2.2) = 1, so, after skipping some intermediate steps, we
obtain the following set Def(C):

Def(C) = {Q2 t ¬(∀ contains.PCI)} ∪ {¬Q3 t ∀ contains.PCI }∪
Def(¬Q2 t ∀ contains.Q3)

We now recursively compute Def(D) forD = ¬Q2t∀ contains.Q3. The subconcepts
of D are all literal except ∀ contains.Q3, but this is the only nonatomic subconcept
in a disjunction, so renaming it is not strictly necessary; thus, Def(D) = {D}. By
clausifying Def(C), we obtain the following closures:

(5.50) Q2(x) ∨ contains(x, h(x)) (5.31)
(5.51) Q2(x) ∨ ¬PCI (h(x)) (5.31)
(5.52) ¬Q3(x) ∨ ¬contains(x, y) ∨ PCI (y) (5.31)
(5.53) ¬Q2(x) ∨ ¬contains(x, y) ∨Q3(y) (5.31)

Finally, we append the following ABox closures:

(5.54) GaPC (pc1) (3.16)
(5.55) Q1(pc1) (5.33)

5.5 Example 93

Term Ordering. To obtain the lexicographic ordering for BS+
DL, we use the prece-

dence > where all function symbols are larger than all constants, all constants are
larger than all predicate symbols, and symbols of equal type are compared alphabeti-
cally. An exception are definition predicates starting with the letter Q, which, because
of Definition 5.4.7, must be smallest. Furthermore, we select all negative binary lit-
erals. The E-terms that participate in inferences because they are either selected or
maximal in the E-term ordering are displayed like this .

Saturation by BS+
DL. We now saturate the set of closures by basic superposition.

Since this set is fairly large, we need a strategy in applying BS+
DL inferences that

ensures we do not miss an inference. To that purpose, we use the DISCOUNT loop
algorithm [133]. The algorithm is presented formally in Subsection 12.3.1; here, we give
a brief overview in order to make this section self-contained. The algorithm maintains
two sets of closures: the set U of unprocessed closures, and the set W of worked-off
closures. Initially, U = Ξ(Ω(KB ′)), and W = ∅. In each iteration of the algorithm, a
given closure C is (don’t-care nondeterministically) selected in U . Then, all possible
BS+

DL inferences with C and premises from W are computed; we denote the set of
consequences with S. Next, C is removed from U and added to W . Finally, all closures
from S that are nonredundant w.r.t. W are added to U . The algorithm terminates
when U becomes empty. Note that the algorithm has an important property: after each
iteration, all possible inferences among closures in W have been performed. Therefore,
when the algorithm terminates, W is the saturated set of closures.

An iteration of the algorithm is presented using the following notation. C is the
given closure, and is numbered in the set W with (xx.xx). Closures S1, . . . , Sn are the
conclusions of all inferences involving C and closures from W . A label R(yy.yy) means
that S1 is derived by resolving C with the closure (yy.yy) from W ; a label S(zz.zz)
means that Sn is derived by superposition of C and the closure (zz.zz) from W . Thus,
at any given instant, the set W consists of closures marked with ⇒. At start, the set
U consists of closures (5.34)–(5.55); as the algorithm proceeds, it also contains closures
derived in a previous iteration, but not yet moved to W .

⇒ (xx.xx) C
R(yy.yy) S1

...
S(zz.zz) Sn

We now show the inferences of BS+
DL on Ξ(Ω(KB ′)). To make the presentation

shorter, we perform only decomposition inferences that are strictly necessary.

⇒ (5.56) ¬PC (x) ∨ hasAdpt(x, f(x))

⇒ (5.57) ¬GrWS (x) ∨ has3DAcc(x, g(x))

94 5. Deciding SHIQ by Basic Superposition

⇒ (5.58) ¬hasAdpt(x, y) ∨ hasVD(x, y)
R(5.56) ¬PC (x) ∨ hasVD(x, [f(x)])

⇒ (5.59) ¬has3DAcc(x, y) ∨ hasVD(x, y)
R(5.57) ¬GrWS (x) ∨ hasVD(x, [g(x)])

⇒ (5.60) ¬PC (x) ∨ hasVD(x, [f(x)])

⇒ (5.61) ¬GrWS (x) ∨ hasVD(x, [g(x)])

⇒ (5.62) ¬hasAdpt(x, y) ∨Adpt(y)
R(5.56) ¬PC (x) ∨Adpt([f(x)])

⇒ (5.63) ¬has3DAcc(x, y) ∨ 3DAcc(y)
R(5.57) ¬GrWS (x) ∨ 3DAcc([g(x)])

⇒ (5.64) ¬PC (x) ∨ Adpt([f(x)])

⇒ (5.65) ¬GrWS (x) ∨ 3DAcc([g(x)])

⇒ (5.66) ¬Adpt(x) ∨ VD(x)

⇒ (5.67) ¬3DAcc(x) ∨ VD(x)

⇒ (5.68) ¬GaPC (x) ∨ ¬hasVD(x, y1) ∨ ¬hasVD(x, y2) ∨ y1 ≈ y2¬VD(y1) ∨ ¬VD(y2)
R(5.60;5.61) ¬GaPC (x)∨¬PC (x)∨¬GrWS (x)∨ [g(x)] ≈ [f(x)]∨¬VD([g(x)])∨¬VD([f(x)])

⇒ (5.69) ¬GaPC (x)∨¬PC (x)∨¬GrWS (x)∨[g(x)] ≈ [f(x)]∨ ¬VD([g(x)]) ∨¬VD([f(x)])
R(5.66) ¬GaPC (x)∨¬PC (x)∨¬GrWS (x)∨ [g(x)] ≈ [f(x)]∨¬Adpt([g(x)])∨¬VD([f(x)])
R(5.67) ¬GaPC (x)∨¬PC (x)∨¬GrWS (x)∨[g(x)] ≈ [f(x)]∨¬3DAcc([g(x)])∨¬VD([f(x)])

⇒ (5.70) ¬GaPC (x) ∨ ¬PC (x) ∨ ¬GrWS (x) ∨ [g(x)] ≈ [f(x)] ∨ ¬3DAcc([g(x)]) ∨
¬VD([f(x)])

R(5.65) ¬GaPC (x) ∨ ¬PC (x) ∨ ¬GrWS (x) ∨ [g(x)] ≈ [f(x)] ∨ ¬VD([f(x)])

⇒ (5.71) ¬GaPC (x) ∨ ¬PC (x) ∨ ¬GrWS (x) ∨ [g(x)] ≈ [f(x)] ∨ ¬VD([f(x)])
S(5.57) ¬GaPC (x) ∨ ¬PC (x) ∨ ¬GrWS (x) ∨ has3DAcc(x, [f(x)]) ∨ ¬VD([f(x)])

The conclusion of the last inference is not an ALCHIQ-closure, so we must de-
compose it. We introduce a new predicate Q4, replace the conclusion with (5.72) and
(5.73), and continue the saturation.

⇒ (5.72) ¬Q4(x) ∨ has3DAcc(x, [f(x)])
R(5.63) ¬Q4(x) ∨ 3DAcc([f(x)])
R(5.59) ¬Q4(x) ∨ hasVD(x, [f(x)])

5.5 Example 95

⇒ (5.73) ¬GaPC (x) ∨ ¬PC (x) ∨ ¬GrWS (x) ∨Q4(x) ∨ ¬VD([f(x)])
R(5.66) ¬GaPC (x) ∨ ¬PC (x) ∨ ¬GrWS (x) ∨Q4(x) ∨ ¬Adpt([f(x)])
R(5.67) ¬GaPC (x) ∨ ¬PC (x) ∨ ¬GrWS (x) ∨Q4(x) ∨ ¬3DAcc([f(x)])

⇒ (5.74) ¬GaPC (x) ∨ ¬PC (x) ∨ ¬GrWS (x) ∨Q4(x) ∨ ¬Adpt([f(x)])
R(5.64) ¬GaPC (x) ∨ ¬PC (x) ∨ ¬GrWS (x) ∨Q4(x)

⇒ (5.75) ¬Q4(x) ∨ 3DAcc([f(x)])

⇒ (5.76) ¬Q4(x) ∨ hasVD(x, [f(x)])
R(5.68;5.61) ¬GaPC (x) ∨ ¬Q4(x) ∨ ¬PC (x) ∨ [g(x)] ≈ [f(x)]¬VD([g(x)]) ∨ ¬VD([f(x)])

⇒ (5.77) ¬Q1(x) ∨ ¬hasVD(x, y) ∨ ¬Adpt3DAcc(y)
R(5.60) ¬Q1(x) ∨ ¬PC (x) ∨ ¬Adpt3DAcc([f(x)])
R(5.61) ¬Q1(x) ∨ ¬GrWS (x) ∨ ¬Adpt3DAcc([g(x)])
R(5.76) ¬Q1(x) ∨ ¬Q4(x) ∨ ¬Adpt3DAcc([f(x)])

⇒ (5.78) ¬Q1(x) ∨ ¬Q4(x) ∨ ¬Adpt3DAcc([f(x)])

⇒ (5.79) ¬Adpt(x) ∨ ¬3DAcc(x) ∨ Adpt3DAcc(x)
R(5.78) ¬Adpt([f(x)]) ∨ ¬3DAcc([f(x)]) ∨ ¬Q1(x) ∨ ¬Q4(x)

⇒ (5.80) ¬Adpt([f(x)]) ∨ ¬3DAcc([f(x)]) ∨ ¬Q1(x) ∨ ¬Q4(x)
R(5.64) ¬PC (x) ∨ ¬3DAcc([f(x)]) ∨ ¬Q1(x) ∨ ¬Q4(x)

⇒ (5.81) ¬PC (x) ∨ ¬3DAcc([f(x)]) ∨ ¬Q1(x) ∨ ¬Q4(x)
R(5.75) ¬PC (x) ∨ ¬Q1(x) ∨ ¬Q4(x)

⇒ (5.82) ¬PC (x) ∨ ¬Q1(x) ∨ ¬Q4(x)

⇒ (5.83) ¬GaPC (x) ∨ ¬PC (x) ∨ ¬GrWS (x) ∨Q4(x)

⇒ (5.84) ¬GaPC (x) ∨ PC (x)
R(5.82) ¬GaPC (x) ∨ ¬Q1(x) ∨ ¬Q4(x)
R(5.83) ¬GaPC (x) ∨ ¬GrWS (x) ∨Q4(x)

⇒ (5.85) ¬GaPC (x) ∨ ¬GrWS (x) ∨Q4(x)

⇒ (5.86) ¬GaPC (x) ∨ GrWS (x)
R(5.85) ¬GaPC (x) ∨ ∨Q4(x)

⇒ (5.87) ¬GaPC (x) ∨Q4(x)

⇒ (5.88) ¬GaPC (x) ∨ ¬Q1(x) ∨ ¬Q4(x)

96 5. Deciding SHIQ by Basic Superposition

⇒ (5.89) GaPC (pc1)
R(5.87) Q4([pc1])
R(5.88) ¬Q1([pc1]) ∨ ¬Q4([pc1])

⇒ (5.90) Q4([pc1])

⇒ (5.91) ¬Q1([pc1]) ∨¬Q4([pc1])
R(5.90) ¬Q1([pc1])

⇒ (5.92) ¬Q1([pc1])

⇒ (5.93) Q1(pc1)
R(5.92) �

⇒ (5.94) �

In step (5.94), we added the empty closure to W . This makes all other closures
redundant, so the saturation terminates. Moreover, Ξ(Ω(KB ′)) is unsatisfiable, and so
is KB ′, so KB1 ∪KB2 |= ∃hasVD .Adpt3DAcc(pc1).

5.6 Related Work

Decision procedures for various logics were investigated in the field of automated theo-
rem proving from its early days. Three such procedures were already implemented by
Wang in 1960: a procedure capable of deciding validity in propositional logic, a proce-
dure for deriving theorems in propositional logic, and a procedure for deciding validity
in the so-called AE-fragment of first-order logic, consisting of first-order formulae with
a quantifier prefix of the form ∀x1 . . .∀xm∃y1 . . .∃yn.

At the beginning of the sixties, Robinson introduced the resolution principle [121]
for first-order logic. Due to its simplicity, resolution soon gained popularity. Namely,
a resolution-based theorem prover must implement only one inference rule, thus elim-
inating the complexity involved in choosing the rule to apply next. Soon after the
initial work by Robinson, various refinements of resolution were developed, such as hy-
perresolution [122], ordered resolution [115], paramodulation [120], or lock resolution
[23], to name just a few. The common goal of all of these refinements is to reduce
the number of consequences generated in the theorem proving process without losing
completeness. A good overview of resolution and related refinements is given in the
classical textbook by Chang and Lee [26].

Soon after the introduction of the resolution principle and its refinements, attempts
were made to use them to obtain efficient decision procedures for various classes of
first-order logic. The first such procedure was presented by Kallick [81] for the class
of formulae with the quantification prefix ∀x1∀x2∃y. This decision procedure is based

5.6 Related Work 97

on a refinement of resolution that is incomplete for first-order logic, and is therefore
difficult to extend.

In [80], Joyner has established the basic principles for deriving resolution-based de-
cision procedures. He observed that, if clauses derivable in a saturation by a resolution
refinement have a bounded term depth and clause length, then saturation necessarily
terminates. By choosing appropriate refinements, he presented decision procedures for
the Ackermann class (where the formulae are restricted to the quantification prefix
∃∗∀∃∗), the Monadic class (where only unary predicates are allowed), and the Maslov
class (where formulae are restricted to quantification prefix ∃∗∀∗∃∗, and the formula
under the quantifiers is a conjunction of binary disjunctions).

In the years to follow, the approach by Joyner was applied to numerous other
decidable classes, such as the E+ class [142], the PVD class [83], and the PVDg

= class
[107], to name just a few. An overview of these results is given in [45].

Decidability of description logics in the resolution framework has been studied
extensively in [98, 77, 76]. There, the description logic ALB is embedded in the
DL* clausal class, which is then decided using the resolution framework by Bachmair
and Ganzinger [13]. The main advantage of using this framework lies in its effective
redundancy elimination methods, which were shown to be essential for the practical
applicability of resolution calculi. ALB is a very expressive logic and allows for unsafe
role expressions, but does not provide for counting quantifiers.

In [48], a decision procedure for the modal logic with a single transitive modality
K4 was presented. To deal with transitivity, the algorithm is based on the ordered
chaining calculus [11]. This calculus consists of inference rules aimed at optimizing
theorem proving with chains of binary roles. Unfortunately, our attempts to decide
SHIQ using ordered chaining proved unsuccessful, mainly due to certain negative
chaining inferences that produced undesirable equality literals. Therefore, we adopted
the approach for eliminating transitivity presented in Section 5.2.

The guarded fragment was introduced in [3] to explain and generalize the good
properties of modal and description logic, such as decidability. A decision procedure
by resolution with a nonliftable ordering was presented in [36]; it was later modified to
handle the (loosely) guarded fragment with equality in [47] by basing the algorithm on
superposition [9]. Since the basic description logic ALC is actually a syntactic variant
of the multi-modal logic Km [127], it can be embedded into the guarded fragment and
decided by [47]. Using the approach from [129], certain extensions of ALC, such as
role transitivity, can be encoded into ALC knowledge bases, so the algorithm from
[47] can decide these extensions as well. However, SHIQ is not a fragment of the
(loosely) guarded fragment because of the counting quantifiers: equality is available in
the guarded fragment, but each two pairs of free variables of a guarded formula must
occur in a guard atom. In fact, in [65] it was shown that the guarded fragment has
the finite-model property, which is known not to hold for SHIQ [4, Chapter 2], thus
suggesting that other mechanisms are necessary for handling the latter logic.
SHIQ can easily be embedded into the two-variable fragment of first-order logic

with counting quantifiers C2. This fragment was shown to be decidable in [54, 100], and

98 5. Deciding SHIQ by Basic Superposition

a decision procedure based on a combination of resolution and integer programming
was presented in [110]. However, deciding satisfiability of C2 is NExpTime-complete
[100], and SHIQ is an ExpTime-complete logic [144]. Thus, the decision procedure
from [110] introduces an unnecessary overhead for SHIQ. Furthermore, we do not see
how to use this procure to derive the desired reduction to disjunctive datalog.

The decomposition rule is closely related to the structural transformation [108,
99, 8]. However, structural transformation is usually applied as a preprocessing step
and not in the theorem proving process. In [37] and [118], splitting by propositional
symbols was proposed that allows splitting variable-disjoint subsets of a clause and
connect them by a propositional symbol. Finally, a separation rule was used to decide
fluted logic in [128]. It was shown that resolution remains complete if the separation
rule is applied a finite number of times during saturation. In contrast to these re-
lated approaches, our rule can decompose complex terms. Moreover, we demonstrate
compatibility of the decomposition rule with the standard redundancy notion. Finally,
extending basic superposition with decomposition is not trivial, due to the nonstandard
approach to lifting employed by basic superposition.

Chapter 6

Reasoning with a Concrete
Domain

As argued in [5], representing concrete data is essential for practical knowledge repre-
sentation systems. However, existing algorithms for reasoning with concrete domains
from [5, 70, 62, 87] mainly operate in tableau and automata frameworks, which nonde-
terministically check satisfiability of conjunctions of ground atoms. On the contrary,
the algorithm from Chapter 5 is based on resolution, and it works with conjunctions
of nonground disjunctions. Hence, extending the results from Chapter 5 with concrete
domain reasoning is not trivial. In order to support the description logic SHIQ(D),
in this chapter we present two new results.

First, in Section 6.1 we present a general approach for combining concrete domain
reasoning with clausal calculi. The approach consists of two steps. A c-factoring pre-
processing transformation is applied first to bring a clause set into a suitable form.
Next, we introduce a concrete domain resolution inference rule, for which we show
soundness and completeness when combined with a clausal calculus whose complete-
ness proof is based on the model generation method. Note that this is the standard
technique for proving completeness of many state-of-the-art calculi, such as ordered
resolution [13], basic superposition [14], or ordered chaining [11], so concrete domain
resolution is applicable to a wide range of calculi.

Second, in Section 6.2 we apply these techniques to the algorithm from Chapter 5,
and thus obtain a procedure for deciding satisfiability of SHIQ(D) knowledge bases.
Assuming a bound on the arity of concrete predicates and an exponential procedure
for checking D-satisfiability of conjunctions of concrete predicates, extending the logic
does not increase the complexity of reasoning—that is, it remains in ExpTime.

Results from this chapter were published in [150]. Due to space limitations, we
did not consider there the distinction between D- and d-satisfiability, as discussed in
Subsection 6.1.2 (for SHIQ(D) without ABox assertions of the form ¬T (a, bc), these
two notions coincide).

99

100 6. Reasoning with a Concrete Domain

6.1 Resolution with a Concrete Domain

In this section we develop a general algorithm for reasoning in first-order logic extended
with an admissible concrete domain.

6.1.1 Preliminaries

The key step in computing the set of clauses Cls(ϕ) from a first-order formula ϕ is to
skolemize existential quantifiers, as explained in Section 2.1. Similarly, to check D-
satisfiability of ϕ, skolemization can be applied as well, since, as shown by the following
lemma, it does not affect D-satisfiability:

Lemma 6.1.1. A formula ϕ is D-satisfiable if and only if sk(ϕ) is D-satisfiable.

Proof. The proof is identical to the case of ordinary satisfiability presented in [46]:
given a D-model I of ϕ, one can build a D-model I ′ of sk(ϕ) by extending I with the
appropriate interpretations of new general function symbols. Conversely, new general
function symbols ensure existence of existentially implied individuals.

Hence, to check D-satisfiability of a formula ϕ, we first compute a D-equisatisfiable
set of clauses N = Cls(ϕ). Furthermore, since the concrete domain D is admissible, we
replace each literal ¬d(t) with d(t). Thus, we assume without loss of generality that
concrete domain predicates occur only in positive literals.

Checking satisfiability of a set of clauses N in an arbitrary model is problematic,
because one should consider arbitrary domains. In the case of first-order logic with-
out concrete domains, this can conveniently be avoided by considering only Herbrand
models. For the case of first-order logic extended with a concrete domain, we introduce
the notion of Herbrand D-interpretations, as follows:

Definition 6.1.2. For a function δ : HU c → 4D and a ground formula ϕ, δ(ϕ) is
the ground formula obtained by replacing each term tc with δ(tc). The extension of δ
to sets of formulae is defined by applying δ to each set member.

A Herbrand D-interpretation over a signature Σ is a pair (I, δ), where I is a
classical Herbrand interpretation over Σ and δ : HU c → 4D is an assignment of
concrete individuals to concrete terms of HU c. A Herbrand D-interpretation is well-
formed if the following two conditions are true:

• si ≈ ti ∈ I for 1 ≤ i ≤ n imply δ(f c(s1, . . . sn)) = δ(f c(t1, . . . tn)), for each
general function symbol f c;

• δ(t) ∈ dD for each concrete literal d(t) ∈ I.

A ground clause CG is D-satisfied in a Herbrand D-interpretation (I, δ), written
(I, δ) |=D CG, if (I, δ) is well-formed and δ(CG) is true in δ(I). A nonground clause C
is D-satisfied in (I, δ) if all its ground instances are D-satisfied in (I, δ). The notions
of D-models, D-satisfiability and so on extend to Herbrand D-interpretations as usual.

6.1 Resolution with a Concrete Domain 101

There is a slight problem with Herbrand D-models as defined in the previous
definition. Namely, Definition 6.1.2 does not ensure that the number of constants in
the Herbrand universe matches the number of objects in 4D. Consider the set of
clauses N = {=1(x)} with the concrete domain D such that 4D = {1, 2}. Obviously,
N is D-unsatisfiable (since 2 is not equal to 1); however, the Herbrand D-interpretation
defined by I = {=1(a)} and δ(a) = 1 is a Herbrand D-model of N . This discrepancy
arises because I does not contain a distinct constant for each element of4D. To ensure
that considering only Herbrand models does not affect satisfiability, we append to N
the (possibly infinite) set of clauses ℵD = {=α (aα) | for each α ∈ 4D}, where aα are
new constants (note that the notion of admissibility from Definition 3.2.1 ensures that
the predicates =α exist). A set of clauses N that contains ℵD is said to be D-extended.

We now show that, for D-extended clause sets, we can consider D-satisfiability
only in Herbrand D-models.

Lemma 6.1.3. A set of D-extended clauses N is D-satisfiable if and only if a well-
formed Herbrand D-model of N exists.

Proof. (⇐) Let (I, δ) be a Herbrand D-model of N . We construct a model I ′ by setting
the domain Dr = HU r for each sort r 6= c, Dc = 4D, tI

′
= t for each term t of sort

other than c, (f c)I′(t1, . . . , tn) = δ(f c(t1, . . . , tn)), and (tI
′

1 , . . . , t
I′
n) ∈ P I′ if and only if

P (t1, . . . , tn) ∈ I for a predicate P . Because N is D-extended, each object from 4D

is represented as a constant in HU c, so I ′ is a D-model of N .
(⇒) Let N be D-satisfiable in a D-model I. Let I ′ be an interpretation containing

those ground atoms A from the Herbrand base of N such that AI are true in I.
Furthermore, for each ground concrete term tc ∈ HU c, let δ(tc) = (tc)I . In the same
way as for first-order logic without concrete domains in [46], I ′ is a classical Herbrand
model of N , and (I ′, δ) is a D-model of N .

6.1.2 d-Satisfiability

The task of finding a Herbrand D-model (I, δ) of a set of clauses N essentially consists
of two subtasks. The first one is to ensure that a Herbrand model I exists; this can
be done using resolution in the standard way. The second one is to ensure that an
appropriate assignment δ exists. To solve the latter problem, we first consider the
simpler task of finding δ that only satisfies the concrete predicates.

Definition 6.1.4. A ground clause CG is d-satisfied in a Herbrand D-interpretation
(I, δ), written (I, δ) |=d C

G, if and only if (I, δ) is well-formed and CG is classically
satisfied in I (that is, it is satisfied without taking special care of concrete individuals).
A nonground clause C is d-satisfied in (I, δ) if all ground instances of C are d-satisfied
in (I, δ). Other notions are defined analogously.

Note that d-satisfiability is a strictly weaker notion than D-satisfiability: if N
is D-satisfiable, it is obviously d-satisfiable, but the converse does not hold. For
example, consider a set of clauses N = {R(a, bc),¬R(a, cc), d(bc, cc)} and a concrete

102 6. Reasoning with a Concrete Domain

domain D such that dD = {(1, 1)}. Obviously, I = {R(a, bc), d(bc, cc)} is a classic
Herbrand model of N ; furthermore, for a function δ such that δ(bc) = δ(cc) = 1,
we have (δ(bc), δ(cc)) ∈ dD, so N is d-satisfiable. However, N is not D-satisfiable:
δ(I) = {R(a, 1), d(1, 1)}, but then δ(R(a, cc)) is true in δ(I), so the clause δ(¬R(a, cc))
is not true in δ(I). Intuitively, d-satisfiability ensures consistency of literals containing
concrete domain predicates, but not of literals with ordinary predicates containing both
concrete and abstract terms. The relationship between d- and D-satisfiability can be
captured using c-factors, introduced below. Please keep in mind that, as discussed in
Subsection 3.2.1, sc 6≈D tc is a positive literal with a concrete predicate 6≈D.

Definition 6.1.5. Let C be a clause containing a literal ¬A. The c-factor of ¬A w.r.t.
C is the disjunction

¬A[xc
1]p1 . . . [x

c
n]pn ∨ xc

1 6≈D A|p1 ∨ . . . ∨ xc
n 6≈D A|pn

where xc
i are globally new variables, and p1, . . . , pn are exactly those positions in A

such that sort(A|pi) = c and at least one condition from the following list holds:

• A|pi is not a variable;

• A|pi is a variable occurring in some negative literal in C \ {¬A};

• A|pi is a variable occurring in ¬A at some position other than pi.

A clause C ′ is a c-factor of C if no literal from C ′ has a c-factor w.r.t. C ′, and if
a sequence of clauses C = C0, . . . , Cn = C ′ exists such that, for i ≥ 1, Ci is obtained
from Ci−1 by replacing a literal Li ∈ C with its c-factor w.r.t. Ci−1.

A c-factor of a set of clauses N is obtained from N by replacing each clause C ∈ N
with an (arbitrary) c-factor of N . A clause (clause set) is said to be c-factored if it is
equal to one of its c-factors.

Note that a clause can have several c-factors, depending on the order in which the
literals are c-factored. For example, the clause ¬R(x, yc) ∨ ¬S(x, yc) ∨ T (x, yc) has
these two c-factors:

¬R(x, zc) ∨ zc 6≈D yc ∨ ¬S(x, yc) ∨ T (x, yc)
¬R(x, yc) ∨ ¬S(x, zc) ∨ zc 6≈D yc ∨ T (x, yc)

In the remaining sections, we can pick any c-factor of N ; that is, an arbitrary c-factor
of C can be used to replace a clause C ∈ N .

Note that, for a c-factored clause C and for each literal ¬A ∈ C, if sort(A|p) = c,
then A|p is a variable that can occur in C \ {¬A} only in a positive literal. As shown
by the following lemma, c-factoring modifies the set of clauses such that d-satisfiability
ensures D-satisfiability:

Lemma 6.1.6. Let N be a D-extended set of clauses, and N ′ a c-factor of N . Then,
the following claims hold:

6.1 Resolution with a Concrete Domain 103

• N is D-satisfiable if and only if N ′ is D-satisfiable.

• N ′ is d-satisfiable if and only if it is D-satisfiable.

Proof. For the first claim, observe that the literal A is equivalent to the following
formula:

∃xc
1, . . . , x

c
n : A[xc

1]p1 . . . [x
c
n]pn ∧ xc

1 ≈D A|p1 ∧ . . . ∧ xc
n ≈D A|pn

Moreover, the c-factor of ¬A is obtained from the previous formula using the applica-
tion of de Morgan laws, so ¬A and its c-factor are equivalent. Therefore, N and N ′

are equivalent, so they are D-equisatisfiable.
For the second claim, the (⇐) direction follows trivially from the definitions of D-

and d-satisfiability. For the (⇒) direction, let I be a classic Herbrand model of N ′,
and δ an assignment satisfying Definition 6.1.4. If (I, δ) is not a D-model of N ′, then
there is a clause C ∈ N ′ with a ground instance Cτ that is true in I, but for which
δ(Cτ) is false in δ(I). For each positive literal A ∈ C, if Aτ ∈ I, then δ(Aτ) is true
in δ(I), so C must be of the form D ∨ ¬A1 ∨ . . . ∨ ¬An where Dτ is false in I, and,
for all i, Aiτ /∈ I but δ(Aiτ) is true in δ(I). The latter is the case only if there are
A′i ∈ I such that δ(A′i) = δ(Aiτ). Let pij be positions in Ai such that sort(Ai|pij) = c.
Since each Ai is c-factored w.r.t. C, then, for all j, Ai|pij is a variable xc

ij occurring
in C \ {Ai} only in positive literals. Let σ be a ground substitution that is identical
to τ except for the mappings xc

ij 7→ A′i|pij . Obviously, A′i = Aiσ. Since I is a model
of N ′, Dσ ∨ ¬A1σ ∨ . . . ∨ ¬Anσ is true in I; this is possible only if Dσ is true in I.
Since Dτ is false in I, a literal L′ ∈ D must exist such that L′σ is true in I, but L′τ
is false in I. Since, for each i, all variables of sort c from ¬Ai occur only in positive
literals of C, the truth value of all negative literals in Dσ and Dτ is identical, so L′

must be a positive literal. However, since δ(L′σ) is true in δ(I) and δ(L′σ) = δ(L′τ),
we have that δ(L′τ) is true in δ(I), which contradicts the assumption that δ(Cτ) is
false in δ(I).

Intuitively, c-factoring allows us to move the concrete terms from literals with-
out concrete predicates into concrete inequalities. In Subsection 6.1.3, we present a
procedure for checking d-satisfiability of a set of ground clauses, which we lift to non-
ground clauses in Subsections 6.1.4 and 6.1.5. Combined with c-factoring, this yields
a refutation procedure for D-satisfiability.

6.1.3 Concrete Domain Resolution with Ground Clauses

We now develop the ground concrete domain resolution calculus, GD for short, for
checking d-satisfiability of a set of clauses, where D is an admissible concrete domain.
In order to prevent the presentation from being too technical, we add the concrete
domain resolution rule to the ordered resolution calculus [13] (see Section 2.4) only,
and argue later that the rule can be combined with other calculi as well. As for
ordinary resolution, GD is parameterized with an admissible ordering � on literals,
which is extended to clauses by a multiset extension (see Section 2.4).

104 6. Reasoning with a Concrete Domain

Definition 6.1.7. Let S = {di(ti)} be a set of literals, where ti is a vector of terms
ti1, . . . , tik. Then, Ŝ is a conjunction C =

∧
di(xi), obtained from S by replacing each

occurrence of a term with the same variable such that different terms are replaced with
distinct variables. For two conjunctions C1 and C2, we write C1 ≡ C2 if they are
equivalent up to variable renaming.

A set S = {di(ti)} of positive concrete literals is a D-constraint if Ŝ is not D-
satisfiable. A D-constraint S is minimal if Ŝ′ is D-satisfiable for each S′ (S; S is
connected if it cannot be decomposed into two disjoint nonempty subsets S1 and S2 not
sharing a common term (S1 and S2 do not share a common term if, for all di(ti) ∈ S1

and dj(tj) ∈ S2, we have ti ∩ tj = ∅).

Lemma 6.1.8. Each minimal D-constraint S is connected.

Proof. Assume that S is a D-constraint, but it is not connected. Hence, S can be
decomposed into subsets S1 and S2 not sharing a common term. Since S is a minimal
D-constraint, Ŝ1 and Ŝ2 are D-satisfiable. However, since Ŝ1 and Ŝ2 do not have a
common variable, Ŝ1 ∧ Ŝ2 = Ŝ is D-satisfiable as well, which is a contradiction.

The ground concrete domain resolution calculus GD consists of the following infer-
ence rules:

Positive factoring:
C ∨A ∨ . . . ∨A

C ∨A

where (i) A is strictly maximal with respect to C.

Ordered resolution:
C ∨A D ∨ ¬A

C ∨D

where (i) A is strictly maximal with respect to C, (ii) ¬A is maximal with respect to
D.

Concrete domain resolution:
C1 ∨ d1(t1) . . . Cn ∨ dn(tn)

C1 ∨ . . . ∨ Cn

where (i) di(ti) are strictly maximal with respect to Ci, (ii) S = {di(ti)} is a minimal
D-constraint.

In GD, the clauses C∨A∨ . . .∨A and D∨¬A are called the main premises, whereas
the clauses C ∨ A and Ci ∨ d1(t1) are called the side premises. Note that, under this
definition, the concrete domain resolution rule does not have a main premise.

It is well known that effective redundancy elimination criteria are necessary for
theorem proving to be applicable in practice. A powerful standard notion of redundancy
was introduced in [13]. We adapt this notion slightly to take into account that the
concrete domain resolution rule does not have a main premise.

Definition 6.1.9. Let N be a set of ground clauses. A ground clause C is redundant
in N if clauses Di ∈ N exist such that C � Di and D1, . . . , Dm |= C. A ground

6.1 Resolution with a Concrete Domain 105

inference ξ with side premises Ci and a conclusion D is redundant in N if clauses
Di ∈ N exist such that C1, . . . , Cn, D1, . . . , Dm |= D; if ξ has a main premise C, then
C � Di is required in addition.

We now prove the soundness and completeness of GD under the standard notion
of redundancy.

Lemma 6.1.10 (Soundness). Let N be a set of ground clauses, I a d-model of N , and
N ′ = N ∪ {C}, where C is the conclusion of an inference by GD with premises from
N . Then, I is a d-model of N ′.

Proof. For an inference by positive factoring or ordered resolution, the claim is trivial
and is shown in the same way as in [13]. Let C be obtained by the concrete domain
resolution rule, with S being as in the rule definition. Since S is a D-constraint, a
d-model (I, δ) of N can exist only if there is a literal di(ti) ∈ S such that di(ti) /∈ I.
Since Ci ∨ di(ti) is by assumption true in I, some literal from Ci is true in I. Since
Ci ⊆ C, we have that C is true in I as well.

Lemma 6.1.11 (Completeness). Let N be a set of ground clauses such that each
inference by GD from premises in N is redundant in N . If N does not contain the
empty clause, then N is d-satisfiable.

Proof. We extend the model building method from [13] to handle the concrete domain
resolution rule. For a set of ground clauses N , we define an interpretation I by induc-
tion on the clause ordering � as follows: for a clause C, we set IC =

⋃
C�D εD, where

εD = {A} if (i) D ∈ N , (ii) D is of the form D′ ∨ A such that A is strictly maximal
with respect to D′, and (iii) D is false in ID; otherwise, εD = ∅. Let I =

⋃
D∈N εD. A

clause D such that εD = {A} is called productive, and it is said to produce the atom
A in I. Before proving the lemma, we show the following three properties.

Invariant (*): if C is false in ID∪εD for C � D, then C is false in I. Since C is false
in ID ∪ εD, all negative literals from C are false in ID ∪ εD, and, since ID ∪ εD ⊆ I,
all negative literals from C are false in I as well. Furthermore, since ¬A � A and
there is no literal between ¬A and A, any atom produced by a clause D′ � D is larger
than any literal occurring in C, so no clause greater than C can produce an atom that
would make C true.

Invariant (**): if C is true in IC ∪ εC , then C is true in I. If C is true in IC ∪ εC
because some positive literal is true in IC ∪ εC , since IC ∪ εC ⊆ I, the clause C is
true in I as well. Otherwise, C is true in IC ∪ εC because some negative literal ¬A is
true in IC ∪ εC . Since ¬A � A and there is no literal between ¬A and A, any atom
produced by a clause D � C is larger than any literal occurring in C. Hence, no such
clause D can produce A, so ¬A is true in I as well. We often use this invariant in its
contrapositive form: if C is false in I, then it is false in IC ∪ εC as well.

Property (***): if an inference ξ with a main premise C, side premises Ci, and a
conclusion D is redundant in N , then there are clauses Di ∈ N that are not redundant
in N such that D1, . . . , Dm, C1, . . . , Cn |= D and C � Di. If ξ is redundant, by

106 6. Reasoning with a Concrete Domain

definition of the standard notion of redundancy, there are clauses D′
j ∈ N such that

D′
1, . . . , D

′
m, C1, . . . , Cn |= D and C � D′

i. Now if some D′
j is redundant, then there are

clauses D′′
k such that D′′

1 , . . . , D
′′
m′ |= D′

j and D′
j � D′′

k . Since � is well-founded, this
process can be continued recursively until we obtain the set of smallest nonredundant
clauses for which (***) obviously holds. This property holds analogously if ξ does not
have a main premise.

We now prove the claim of Lemma 6.1.11 by contradiction: let us assume that all
inferences by GD from premises in N are redundant in N , but no δ exists such that
(I, δ) is a d-model of N . There can be two causes for that:

• There is a clause C ∈ N that is false in I; such a clause is called a counterexample
for I. Since � is well-founded and total, we can assume without loss of generality
that C is the smallest counterexample. C is obviously not productive, since all
productive clauses are true in I. C can be nonproductive and false in I if it has
one of the following two forms:

– C = C ′ ∨ A ∨ . . . ∨ A. Then, C is not productive since A is not strictly
maximal in C. Since C is false in I, by (**) it is false in IC ∪ εC . Hence,
C ′ is false in IC ∪ εC , and, since C ′ ≺ C, by (*) C ′ is false in I. Since N
is saturated, the inference by positive factoring resulting in D = C ′ ∨ A is
redundant in N . D is obviously false in I. By the fact that N is saturated
and by (***), clauses Di ∈ N exist, such that C � Di and D1, . . . , Dn |= D.
Since C is the smallest counterexample, all Di are true in I, but then D is
true in I as well, which is a contradiction.

– C = C ′ ∨¬A. Since C is false in I, we have A ∈ I, where A is produced by
a smaller clause D = D′∨A. Similarly as in the previous case, C ′ is false in
I. Since D is productive, D′ is false in ID, and since A is strictly maximal
w.r.t. D′, D′ is false in ID ∪ εD as well. Since D′ ≺ D, by (*) D′ is false
in I. Since N is saturated, the inference by ordered resolution resulting
in E = C ′ ∨ D′ is redundant in N . E is obviously false in I. Because N
is saturated and by (***), clauses Di ∈ N exist, such that C � Di and
D1, . . . , Dn, D

′∨A |= E. Since C is the smallest counterexample, all Di are
true in I, and, since D′ ∨ A is productive, it is also true in I. Hence, E is
true in I, which is a contradiction.

• All clauses from N are true in I, but I contains a set of concrete domain literals
S = {di(ti)} such that Ŝ is D-unsatisfiable. We can assume without loss of
generality that S is minimal. The literals from S must have been produced
by clauses Ei = Ci ∨ di(ti) ∈ N , where Ci is false in IEi ∪ εEi . For each i,
we conclude that Ci is false in I as in the case of ordered resolution. Since N
is saturated, the inference by concrete domain resolution from Ei resulting in
D = C1 ∨ . . . ∨ Cn is redundant in N . Obviously, D is false in I. Since the

6.1 Resolution with a Concrete Domain 107

inference is redundant, by property (***), nonredundant clauses Di ∈ N exist
such that D1, . . . , Dm, C1∨d1(t1), . . . , Cn∨dn(tn) |= D. All Di and Ci∨di(ti) are
by assumption true in I, implying that D is true in I, which is a contradiction.

Hence, an assignment δ must exist such that (I, δ) is a d-model of N (because we
do not consider theories with equality, the first condition of Definition 6.1.2 related to
≈ is trivially satisfied), so N is d-satisfiable.

A fair derivation by GD from a set of clauses N with a limit N∞ is defined as usual
(see Section 2.4). By lemmata 6.1.10 and 6.1.11, we get the following result:

Theorem 6.1.12. The set of ground clauses N is d-unsatisfiable if and only if the
limit N∞ of a fair derivation by GD contains the empty clause.

6.1.4 Most General Partitioning Unifiers

Lifting the concrete domain resolution rule to general clauses is not trivial, because
unification can only partly guide the rule application. Consider, for example, the set of
clauses N = {d1(x1, y1), d2(x2, y2)}. N has ground instances d1(a1, b1) and d2(a2, b2),
which do not share a common term. Hence, a conjunction consisting of these literals
is not connected, so, by the contrapositive of Lemma 6.1.8, it cannot be minimal, and
the conditions of the concrete domain resolution are not satisfied. However, clauses
d1(a, b1) and d2(a, b2) are also ground instances of N , but they do share common
terms. Hence, a conjunction of these literals is connected, so the conditions of the
concrete domain resolution rule could be satisfied. This is so because it is possible
to unify x1 and x2 from d1(x1, y1) and d2(x2, y2). Another possibility is to unify x2

and y1. Even for a set consisting of a single clause, such as M = {d(x, y)}, it is
possible to obtain a D-constraint d(x, x) by unifying x and y. These examples show
that, to check all potential D-constraints at the ground level, one has to consider all
possible substitutions that produce a minimal D-constraint at the nonground level.
We formalize this idea in the following definition.

Definition 6.1.13. Let S = {di(ti)} be a set of positive concrete domain literals. A
substitution σ is a partitioning unifier of S if the set Sσ is connected. Furthermore,
σ is a most general partitioning unifier if, for any partitioning unifier θ such that
Ŝσ ≡ Ŝθ, a substitution η exists such that θ = ση. With MGPU(S) we denote the set
of all most general partitioning unifiers of S unique up to variable renaming.

If no terms from literals in S are unifiable, a most general partitioning unifier of S
does not exist. Furthermore, the previous example shows that S can have several most
general partitioning unifiers. However, for a given conjunction of concrete literals
Ŝσ, all most general partitioning unifiers are identical up to variable renaming, as
demonstrated next.

Let S = {di(ti)} be a set of positive concrete domain literals, and C a conjunction
over literals in S, obtained by replacing terms of each di(ti) with arbitrary variables

108 6. Reasoning with a Concrete Domain

(it is not necessary to use different variables in C for different terms from S, but the
same term in S should always be replaced with the same variable in C). For such a C,
let m be the number of distinct variables in C; for each such variable xi, 1 ≤ i ≤ m,
let Txi be a list of all terms occurring in a literal in S at a position corresponding to an
occurrence of xi in C; finally, let n = max |Txi |. With SC we denote the set of terms
tj = f(sj

x1 , . . . , s
j
xm), where sj

xi is the j-th term of Txi if j ≤ |Txi |, and a fresh variable
if j > |Txi |, for 1 ≤ j ≤ n. Most general partitioning unifiers of S and most general
unifiers of SC are closely related, as shown by the following lemma.

Lemma 6.1.14. Let θ be a partitioning unifier of a set of concrete domain literals
S = {di(ti)}, and let C = Ŝθ. Then, the substitution σ = MGU(SC) is the most
general partitioning unifier of S such that Ŝσ ≡ C, and it is unique up to variable
renaming.

Proof. To obtain the variable xi in C, θ must be such that s1xi
θ = . . . = sn

xi
θ = Txiθ.

Furthermore, xi 6= xj for i 6= j, so Txiθ 6= Txjθ. Because of the first property, θ is
obviously a unifier of SC , so σ = MGU(SC) exists, and it is unique up to variable
remaining [7]. Furthermore, σ is the most general unifier of SC , so a substitution η
exists such that θ = ση. Hence, it is impossible that Txiσ = Txjσ and Txiση 6= Txjση.
Thus, s1xi

σ = . . . = sn
xi
σ = Txiσ and Txiσ 6= Txjσ for i 6= j, so Ŝσ ≡ C.

Lemma 6.1.15. For a set of concrete domain literals S = {di(ti)}, MGPU(S) contains
exactly all MGU(SC), for each connected conjunction C over literals of S.

Proof. For σ ∈ MGPU(S), C = Ŝσ is obviously a connected conjunction over literals
of S satisfying conditions of Lemma 6.1.14, so σ is equivalent to MGU(SC) up to
variable renaming. Conversely, let C be a connected conjunction over literals of S.
Now σ = MGU(SC) is a partitioning unifier of S. Let C ′ = Ŝσ. Observe that C ≡ C ′

does not necessarily hold: it is possible that Txiσ = Txjσ for i 6= j. However, C ′ is
a connected conjunction over concrete domain literals satisfying conditions of Lemma
6.1.14, so MGU(SC′) exists, and it is a most general partitioning unifier of S.

Hence, Lemma 6.1.15 gives a brute-force algorithm for computing MGPU(S): one
should systematically enumerate all connected conjunctions C over literals in S and
compute MGU(SC). The main performance drawback of this algorithm is that all such
conjunctions C must be enumerated. For n literals in S of maximal aritym, the number
of possible assignments of variables in C is bounded by (nm)nm, which is obviously
exponential. However, for certain logics, it is possible to construct a specialized, but
much more efficient algorithm. In Section 6.2, we present such an algorithm applicable
to SHIQ(D).

6.1.5 Concrete Domain Resolution with General Clauses

As usual in a resolution setting, we assume that no two premises of an inference rule
have any variables in common. The concrete domain resolution calculus, RD for short,
consists of the following rules:

6.1 Resolution with a Concrete Domain 109

Positive factoring:
C ∨A ∨B

Cσ ∨Aσ

where (i) σ = MGU(A,B), (ii) Aσ is strictly maximal with respect to Cσ.

Ordered resolution:
C ∨A D ∨ ¬B

Cσ ∨Dσ

where (i) σ = MGU(A,B), (ii) Aσ is strictly maximal with respect to Cσ, (iii) ¬Bσ
is maximal with respect to Dσ.

Concrete domain resolution:
C1 ∨ d1(t1) . . . Cn ∨ dn(tn)

C1σ ∨ . . . ∨ Cnσ

where (i) clauses Ci ∨ di(ti) are not necessarily unique, (ii) for the set S = {di(ti)},
σ ∈ MGPU(S), (iii) di(ti)σ are strictly maximal with respect to Ciσ, (iv) Sσ is a
minimal D-constraint.

We briefly comment on Constraint (i) of the concrete domain resolution rule. Con-
sider a set of clauses N = {d(f c(x), bc), f c(a) 6≈D f c(c)} and dD = {(1, 2)}. Then,
S = {d(f c(a), bc), d(f c(c), bc), f c(a) 6≈D f c(c)} is a set of instances of N such that
the conjunction Ŝ is D-unsatisfiable. Also, for each proper subset S′ ⊂ S, the con-
junction Ŝ′ is D-satisfiable. Hence, unsatisfiability is detected only if several copies
of d(f c(x), bc) are considered simultaneously in the concrete domain resolution rule.
Without any assumptions on the nature of the concrete predicates, there is no upper
bound on the number of copies that should be considered simultaneously. This prop-
erty of the calculus obviously leads to undecidability in the general case. To obtain a
decision procedure for SHIQ(D), in Section 6.2 we show that the number of copies
that must be considered is bounded.

To prove the completeness of RD, we show now that, for each ground derivation,
there is a corresponding nonground derivation.

Lemma 6.1.16 (Lifting). Let N be a set of clauses and NG the set of ground instances
of N . For each ground inference ξG by GD applicable to premises CG

i ∈ NG, there is
an inference ξ by RD applicable to premises Ci ∈ N such that ξG is an instance of ξ.

Proof. Let CG
i be ground premises from NG participating in ξG, resulting in a ground

clause DG. The ground inference ξG of GD can be simulated by a corresponding
nonground inference ξ where, for each ground premise CG

i , we take the corresponding
nonground premise Ci. Since all Ci are variable disjoint, there is a ground substitution
τ such that CG

i = Ciτ . Let us denote with D the result of ξ on Ci. We now show that
ξ is an inference of RD.

Let ξG be an inference by positive factoring on ground literals AG
i of CG. Substi-

tution τ is obviously a unifier for the corresponding nonground literals Ai of C. Since
any unifier is an instance of the most general unifier σ of Ai, a substitution η exists
such that τ = ση. Furthermore, if AG

i is strictly maximal with respect to CG, since �

110 6. Reasoning with a Concrete Domain

is a reduction ordering, the corresponding literal Ai is strictly maximal with respect
to Cσ, so DG = Dη. Hence, ξ is an inference of RD. Similar reasoning applies in the
case of ordered resolution.

Let ξG be an inference by concrete domain resolution, and S = {di(ti)} be the set
of corresponding nonground literals. Since Sτ is a minimal D-constraint, by Lemma
6.1.8, Sτ is connected, so τ is obviously a partitioning unifier of S. Then, by Lemma
6.1.14, a most general partitioning unifier σ exists such that τ = ση for some η and
Ŝσ ≡ Ŝτ . Obviously, if Sτ is a minimal D-constraint, so is Sσ. Furthermore, if literals
from Sτ are strictly maximal with respect to CG

i , since � is a reduction ordering, the
corresponding literals from Sσ are strictly maximal with respect to Ciσ, so DG = Dη.
Hence, ξ is an inference of RD.

The notion of redundancy is lifted to the nonground case as usual [13]: a clause C
(an inference ξ) is redundant in a set of clauses N if all ground instances of C (ξ) are
redundant in NG. This is enough for soundness and completeness of RD.

Theorem 6.1.17. A set of clauses N is d-unsatisfiable if and only if the limit N∞ of
a fair derivation by RD contains the empty clause.

Proof. A set N is d-unsatisfiable if and only if the set of its ground instances NG is d-
unsatisfiable. By Theorem 6.1.12, NG is d-unsatisfiable if and only if there is a ground
derivation NG = NG

0 , N
G
1 , . . . , N

G
∞, where the limit NG

∞ contains the empty clause. By
Lemma 6.1.16 and the definition of the redundancy for nonground clauses, for each
ground derivation, a nonground derivation N = N0, N1, . . . , N∞ exists, in which each
NG

i is a subset of the set of ground instances of Ni. Hence, NG
∞ contains the empty

clause if and only if N∞ contains the empty clause, so the claim follows.

D-satisfiability of a set of clauses N can now be checked by the following steps:

• Extend N with ℵD;

• Compute N ′—the c-factor of N ∪ ℵD;

• Check d-satisfiability of N ′ by RD.

By Lemma 6.1.6, N ′ is d-satisfiable if and only if N ∪ ℵD is D-satisfiable, which
is the case if and only if N is D-satisfiable by Lemma 6.1.3. A practical problem
in applying RD to N ′ is that ℵD can be infinite. In general, this obviously leads to
undecidability. However, we show in Section 6.2 that, the clauses from ℵD are not
needed to decide SHIQ(D).

6.1.6 Deleting D-Tautologies

In ordinary resolution, clauses that are true in any model can be removed without
jeopardizing completeness of the calculus. Removing such clauses is crucial for practical
applicability of resolution, because this drastically reduces the search space. To achieve

6.1 Resolution with a Concrete Domain 111

the same effect forRD, we now define the notion of D-tautologies—clauses that are true
in any D-model due to properties of the concrete domain. We show that D-tautologies
can be deleted eagerly in a saturation process while preserving completeness.

Definition 6.1.18. A literal d(t) is a D-tautology if d̂(t) = d(x) is satisfied for any
assignment δ of variables x to elements of 4D. A clause is a D-tautology if it contains
a D-tautology literal.

For example, the clauses C ∨ f(x) ≈D f(x) and C ∨ >D(x) are D-tautologies.
Similarly, if 4D is the set of nonnegative integers, then the clause C ∨ ≥0 (x) is also
a D-tautology. We now show that such clauses are redundant and can be deleted in a
saturation process.

Lemma 6.1.19. D-tautologies can be eagerly deleted in a saturation by RD without
loosing completeness.

Proof. Let S = {di(ti)} be a minimal D-constraint. Obviously, S cannot contain a D-
tautology literal d(t), since S \ {d(t)} would be an even smaller D-constraint. Hence,
D-tautologies do not participate in inferences by the concrete domain resolution rule.

Let N be a set of ground clauses saturated under GD not containing the empty
clause. Furthermore, let I be a model obtained by applying the model building method
from Lemma 6.1.11 to all clauses from N that are not D-tautologies, and let δ be an
assignment of elements from 4D to elements of HU c (such an assignment exists by
Lemma 6.1.11, because N is saturated and does not contain the empty clause). Let I ′

be a model obtained by adding d(t) to I for each D-tautology literal d(t) of a ground
clause C ∈ N . Since all concrete domain literals occur positively in clauses in N ,
adding concrete literals to I cannot make any clause in N false. For each such literal,
we have δ(t) ∈ dD, so (I ′, δ) is a Herbrand d-model of N . Effectively, a D-tautology C
generates in I ′ only D-tautology concrete literals that cannot participate in a concrete
domain resolution rule; thus C can be deleted from N .

For the nonground calculus RD, simply observe that, if a nonground literal d(t) is
a D-tautology, then for all ground substitutions τ , the literal d(t)τ is a D-tautology
as well, so the lifting argument from Lemma 6.1.16 holds without change.

Note that a clause containing a complementary pair of concrete literals is not a
D-tautology and should not be deleted. Consider the following d-unsatisfiable set of
clauses (recall that ≈D and 6≈D are just a special concrete domain predicates):

a ≈D b ∨ a ≈D c(6.1)

b ≈D c(6.2)

a 6≈D b ∨ a 6≈D c(6.3)

Let a > b > c > 6≈D>≈D; the maximal literal in a clause is denoted like this .
Now d-unsatisfiability can be demonstrated as follows (the notation D(xx; yy) means
that a clause is derived by concrete domain resolution from clauses xx and yy):

112 6. Reasoning with a Concrete Domain

a ≈D c ∨ a 6≈D c D(6.1;6.3)(6.4)

a ≈D c D(6.1;6.2;6.4)(6.5)

a 6≈D c D(6.2;6.3;6.5)(6.6)

� D(6.5;6.6)(6.7)

The clause (6.4) is derived because {a ≈D b, a 6≈D b} is a D-constraint; the clause
(6.5) is derived because {a ≈D b, b ≈D c, a 6≈D c} is a D-constraint; the clause (6.6)
is derived because {b ≈D c, a 6≈D b, a ≈D c} is a D-constraint; and the clause (6.7) is
derived because {a ≈D c, a 6≈D c} is a D-constraint.

Note that (6.4) contains a complementary pair of concrete literals, but it should
not be deleted, as the empty clause cannot be derived without it. Intuitively, this
clause is needed to produce the literal a 6≈D c in the model, which is then used in
further applications of concrete domain resolution to detect inconsistency.

6.1.7 Combining Concrete Domains with Other Resolution Calculi

The proof of Lemma 6.1.6 is model-theoretic and does not depend on a calculus. Hence,
c-factoring can be applied as a preprocessing step, regardless of the calculus.

In order to make the presentation less technical, we considered the concrete domain
resolution rule only in combination with ordered resolution. However, from the proof
of Lemma 6.1.11, one may see that the concrete domain resolution rule is largely
independent from the actual calculus, and can be combined with other calculi whose
completeness proof is based on the model generation method [13].

To apply the concrete domain resolution rule to other calculi, the premises of the
concrete domain resolution rule must be those clauses that have at least one produc-
tive ground instance. For ordered resolution with selection, this means that premises
should not contain selected literals (since such clauses do not have productive ground
instances). The usual arguments for the calculus under consideration show that, if
N∞ does not contain the empty clause, one can generate an interpretation I using the
model generation method such that all clauses from N∞ are true in I. Furthermore,
the argument from the second part of Lemma 6.1.11 shows independently that, if all
inferences by the concrete domain resolution rule are redundant in N∞, then there is
an assignment δ such that (I, δ) is a d-model of N .

We denote with BSD the extension of the basic superposition calculus with a
concrete domain resolution rule. We stress that ≈D is a concrete predicate like any
other. Hence, due to encoding of atoms as E-terms (see Section 2.5), a literal s ◦ t
with ◦ ∈ {≈D, 6≈D} is actually a shortcut for a positive literal (s ◦ t) ≈ T. Therefore,
superposition and reflexivity resolution are not applicable to such literals; rather, they
participate only in inferences by concrete domain resolution.

6.2 Deciding SHIQ(D) 113

Theorem 6.1.20. Let N∞ be the set of closures obtained by saturating a set of closures
N by BSD. Then N is d-satisfiable if and only if N∞ does not contain the empty
closure.

Proof. The inference rules of BS are sound, and the soundness of the concrete domain
resolution rule follows exactly as in Lemma 6.1.10. For completeness, let us assume
that N∞ does not contain the empty closure. By [14, 96], it is possible to generate a
rewrite system RN , which uniquely defines the Herbrand interpretation RN

∗ such that
RN

∗ |= irredRN
(N). Furthermore, by exactly the same argument as in Lemma 6.1.11,

a function δ assigning concrete individuals to concrete terms from irredRN
(N) exists

such that, for each d(t) ∈ RN
∗, we have δ(t) ∈ dD.

However, (I, δ) is not necessarily a well-formed Herbrand d-model of irredRN
(N),

because it need not satisfy the first condition of Definition 6.1.2: it may be that we
have si ≈ ti ∈ RN

∗ for 1 ≤ i ≤ n, but, for some general function symbol f c, we
have δ(f c(s1, . . . , sn)) 6= δ(f c(t1, . . . , tn)). However, consider an assignment δ′ defined
as δ′(f c(s1, . . . , sn)) = δ(f c(nfRN

(s1), . . . , nfRN
(sn))). Obviously, δ′ satisfies the first

condition of Definition 6.1.2. Furthermore, by the definition of RN
∗, if d(t) ∈ RN

∗,
then d(nfRN

(t)) ∈ RN
∗. Because δ fulfills the second condition of Definition 6.1.2, δ′

fulfills it as well. Hence, (RN
∗, δ′) is a d-model of irredRN

(N). Finally, by the standard
lifting argument for basic superposition, (RN

∗, δ′) is a d-model of N .

The proof of Theorem 6.1.20 ensures by a model-theoretic argument that the prop-
erties of the model related to equality (the first condition of Definition 6.1.2) are
satisfied. To develop an intuition behind this result, we present an alternative, proof-
theoretic argument. The first condition of Definition 6.1.2 is obviously fulfilled if, for
each general function symbol f c of arity n, we add the following closure:

x1 6≈ y1 ∨ . . . ∨ xn 6≈ yn ∨ f c(x1, . . . , xn) ≈D f c(y1, . . . , yn)(6.8)

If we select all literals xi 6≈ yi, such a closure can only participate in a reflexivity
resolution inference, producing a closure of the following form:

f c(x1, . . . , xn) ≈D f c(x1, . . . , xn)(6.9)

Such a closure is obviously a D-tautology, so by Lemma 6.1.19 it can be removed from
the closure set. Effectively, the first condition of Definition 6.1.2 is always trivially
satisfied; however, it is needed in Definition 6.1.2 to ensure that replacing subterms of
concrete terms with equal terms has the usual semantics.

6.2 Deciding SHIQ(D)

In this section, we combine the concrete domain resolution rule from Section 6.1 with
the algorithm from Chapter 5 to obtain a decision procedure for checking satisfiability
of SHIQ(D) knowledge bases.

114 6. Reasoning with a Concrete Domain

Table 6.1: Closures after Preprocessing Stemming from Concrete Datatypes

12 ¬T (x, yc) ∨ U(x, yc)
13

∨
(¬)Ci(x) ∨ T (x, f c(x))

14
∨

(¬)Ci(x) ∨ d(f c
1(x), . . . , f c

m(x))
15

∨
(¬)Ci(x) ∨ f c

i (x) 6≈D f c
j (x)

16
∨

(¬)Ci(x) ∨
∨n

i=1 ¬Ti(x, yc
i) ∨ d(yc

1, . . . , y
c
n)

17
∨

(¬)Ci(x) ∨
∨n

i=1 ¬T (x, yc
i) ∨

∨n
i=1

n
j=i+1y

c
i ≈D yc

j

18 T (a, bc)
19 ¬T (a, yc) ∨ yc 6≈D bc

20 ac ≈D bc

21 ac 6≈D bc

The operator Ω from Section 5.2 can be used to eliminate transitivity axioms from
a SHIQ(D) knowledge base KB by encoding it into an equisatisfiable knowledge base
Ω(KB): concrete roles cannot be transitive, so Theorem 5.2.3 applies without changes.
Hence, without loss of generality, in the rest of this section we consider ALCHIQ(D)
knowledge bases only.

With BSD,+
DL we denote the BS+ calculus extended with the concrete domain res-

olution rule, parameterized as specified in Definition 5.3.3. To obtain a decision pro-
cedure for ALCHIQ(D), we show that the results of Lemma 5.3.6 remain valid when
ALCHIQ(D)-closures are saturated under BSD,+

DL . In particular, we show that the
application of the concrete domain resolution rule does not cause generating terms of
arbitrary depth. Furthermore, we show that the maximal length of a D-constraint
to be considered is polynomial in |KB |, assuming a limit on the arity of concrete
predicates, so the complexity of reasoning does not increase.

6.2.1 Closures with Concrete Predicates

With Ξ(KB) we denote the set of closures obtained from KB by structural transfor-
mation (see Definition 5.3.1) and c-factoring. By definition of π from Table 3.1 and
Table 3.4, it is easy to see that Ξ(KB) can contain only closures with structure given in
Table 5.1, with all variables, function symbols, and predicate arguments being of the
sort a, and, additionally, closures with structure given in Table 6.1. Note that closures
of type 21 are obtained by applying c-factoring to closures of the form ¬T (a, bc).

We now generalize the closures from Table 6.1 to include closure types produced
in a saturation of Ξ(KB) by BSD,+

DL : ALCHIQ(D)-closures are of the form given in
Table 5.2 and Table 6.2. By definition of Ξ, it is obvious that Lemma 5.3.2 and Lemma
5.3.4 hold for ALCHIQ(D)-closures as well.

6.2 Deciding SHIQ(D) 115

6.2.2 Closure of ALCHIQ(D)-Closures under Inferences

We now extend Lemma 5.3.6 to handle ALCHIQ(D)-closures.

Lemma 6.2.1. Let Ξ(KB) = N0, . . . , Ni∪{C} be a BSD,+
DL -derivation, where C is the

conclusion derived from premises in Ni. Then, C is either an ALCHIQ(D)-closure,
or it is redundant in Ni.

Proof. The sorts of the abstract and concrete domain predicates are disjoint; further-
more, in closures of type 11 literals with concrete predicates or concrete equalities are
always maximal. Hence, an inference between closures of types 1–7 and 9–13 is not
possible. Also, a closure of type 8 can participate in an inference with a closure of type
1–7 only on abstract roles and concepts, and in an inference with a closure of type
9–13 only on concrete roles and concrete literals. Hence, the proof of Lemma 5.3.6
remains valid for closures of types 1–8. Furthermore, decomposition can be applied
analogously as in Theorem 5.4.8.

Since equality among concrete terms is actually a concrete predicate, it does not
participate in superposition inferences; rather, it participates only in concrete domain
resolution. Hence, there are no superposition inferences into closures of type 10, so
there are no termination problems as in Lemma 5.3.6. Finally, in a closure of type 8
containing a literal L = ¬T (〈a〉 , yc), the literal L is selected. Hence, such a closure
can only participate in superposition into the first argument of L, or in resolution with
a closure of type 3 or 8. In both cases, the result is a closure of type 8.

The most important difference to the proof of Lemma 5.3.6 lies in the application
of the concrete domain resolution rule, with n side premises of the form Ci ∨ di(〈ti〉).
Let xi be the free variables of the side premises of type 11, and let S = {di(ti)}. For
any most general partitioning unifier σ of S, Sσ must be connected, so there are two
possibilities:

• If all side premises are of type 11, σ is of the form {x2 7→ x1, . . . , xn 7→ x1}. The
result is obviously a closure of type 11.

Table 6.2: Types of ALCHIQ(D)-Closures

8 in addition to literals from Table 5.2, a closure can additionally contain
T(〈a〉 , 〈bc〉) ∨ d(〈tc

1〉 , . . . , 〈tc
n〉) ∨

∨
〈tci 〉≈D/ 6≈D 〈tcj〉 ∨

∨
¬T (〈a〉 , yc) ∨ yc 6≈D bc

where tci and tcj are either a constant bc, or a term f c
i ([a])

9 ¬T (x, yc) ∨ U(x, yc)
10 Pf c

(x) ∨ T (x, 〈f c(x)〉)
11 P(x) ∨ d(〈f c

1(x)〉 , . . . , 〈f c
n(x)〉) ∨

∨
〈f c

i (x)〉≈D/ 6≈D

〈
f c

j(x)
〉

12 P(x) ∨
∨n

i=1 ¬T (x, yc
i) ∨

∨n
i=1

n
j=i+1y

c
i ≈D yc

j

13 P(x) ∨
∨n

i=1 ¬Ti(x, yc
i) ∨ d(yc

1, . . . , y
c
n)

116 6. Reasoning with a Concrete Domain

• Assume there is a side premise of type 8, and that Sσ is connected. If Sσ would
contain a variable xi, then the literal di(f c

i(xi)) would not contain a ground
term, so Sσ would not be connected. Hence, all literals from Sσ are ground, and
σ is of the form {x1 7→ c1, . . . , xn 7→ cn}. The result is a closure of type 8.

Hence, all nonredundant inferences of BSD,+
DL applied to ALCHIQ(D)-closures

produce an ALCHIQ(D)-closure.

By inspecting the proof of Lemma 6.2.1, one may easily extend the Corollary 5.3.7
to include ALCHIQ(D) closures:

Corollary 6.2.2. If a closure of type 8 participates in a BSD,+
DL inference in a deriva-

tion from Lemma 6.2.1, the unifier σ contains only ground mappings, and the conclu-
sion is a closure of type 8. Furthermore, a closure of type 8 cannot participate in an
inference with a closure of type 4 or 6.

The proof of Lemma 6.2.1 also shows that closures from ℵD cannot participate
in inferences by concrete domain resolution. Namely, in nonground inferences, an
individual aα does not unify with f c(x), and for ground inferences, an individual aα

does not occur in any ABox clause. Hence, it is not necessary to ensure that Ξ(KB)
is D-extended.

Corollary 6.2.3. In any BSD,+
DL derivation from Ξ(KB) ∪ ℵD, the closures from ℵD

do not participate in any inferences.

6.2.3 Termination and Complexity Analysis

Establishing termination and determining the complexity is slightly more difficult.
Let m denote the maximal arity of a concrete domain predicate, d the number of
concrete domain predicates, and f the number of function symbols. By skolemizing
∃T1, . . . , Tm.d, we introduce m function symbols, so f is linear in |KB | for unary
coding of numbers as in Lemma 5.3.9. In addition to literals from ALCHIQ-closures,
ALCHIQ(D)-closures can contain literals of the form d(〈f1(x)〉 , . . . , 〈fm(x)〉). The
maximal nonground closure contains all such literals, of which there can be d(2f)m

many (the factor 2 takes into account that each term can be marked or not); moreover,
there are 2d(2f)m

different combinations of concrete domain literals. This presents us
with a problem: in general, m is linear in |KB |, so the number of closures is doubly-
exponential, thus invalidating Lemma 5.3.9.

A possible solution to this problem is to assume a bound on the arity of concrete
predicates. This is justifiable from a practical point of view: it is hard to imagine
a practically useful concrete domain with predicates of unbounded arity. Thus, m
becomes a constant, and does not depend on |KB |. The maximal length of a closure
is now polynomial in |KB |, and the number of closures is exponential in |KB | in the
same way as in Lemma 5.3.9. The following lemma provides the last step necessary to
determine the complexity of the algorithm.

6.2 Deciding SHIQ(D) 117

Lemma 6.2.4. The maximal number of side premises participating in a concrete do-
main resolution rule in a BSD,+

DL derivation from Lemma 6.2.1 is at most polynomial
in |KB |, assuming a bound on the arity of concrete predicates.

Proof. Let S = {di(ti)} be the multiset of maximal concrete domain literals of n side
premises Ci∨di(ti), and let σ be a most general partitioning unifier of S. Obviously, Sσ
should not contain repeated literals di(ti)σ; otherwise, Ŝσ contains repeated conjuncts
and is not minimal. Hence, the longest set Sσ is the one in which each di(ti)σ is
distinct.

Let m be the maximal arity of a concrete domain predicate, f the number of
function symbols, d the number of concrete domain predicates, and c the number of
constants in the signature of Ξ(KB). Then, there are at most `ng = dfm distinct
nonground concrete domain literals, and at most `g = d(c + cf)m distinct ground
concrete domain literals. Assuming a bound on m and for unary coding of numbers,
both `ng and `g are polynomial in |KB |.

If all side premises are of type 11, the maximal literals are not ground. Since Sσ
should be connected, the only possible form that σ can take is {x2 7→ x1, . . . , xn 7→ x1}.
Hence, Sσ contains only one variable x1, so the maximal number of distinct literals in
Sσ is `ng. Thus, the maximal number of nonground side premises n to be considered
is bounded by `ng, and all side premises are unique up to variable renaming.

If there is a side premise of type 8, at least one maximal literal is ground. Since Sσ
should be connected, σ can be of the form {x1 7→ c1, . . . , xn 7→ cn}. All literals in Sσ
are ground, so the maximum number of distinct literals in Sσ is `g. Thus, the maximal
number of side premises n (by counting each possible copy of a premise separately) to
be considered is bounded by `g.

Theorem 6.2.5. Let KB be an ALCHIQ(D) knowledge base, defined over an ad-
missible concrete domain D, for which D-satisfiability of finite conjunctions over ΦD

can be decided in deterministic exponential time. Then, saturation of Ξ(KB) by BSD,+
DL

with eager application of redundancy elimination rules decides satisfiability of KB, and
runs in time exponential in |KB |, for unary coding of numbers and assuming a bound
on the arity of concrete predicates.

Proof. As already explained, a polynomial bound on the length, and an exponential
bound on the number of ALCHIQ(D)-closures follows in the same way as in Lemma
5.3.9 and Theorem 5.4.8. By substituting Lemma 6.2.1 for Lemma 5.3.6, the proof
of the Theorem 5.3.10 also holds in the case of ALCHIQ(D) knowledge bases for
all inferences apart from the concrete domain resolution rule. The only remaining
problem is to show that, in applying the concrete domain resolution rule, the number
of satisfiability checks of conjunctions over D is exponential in |KB |, and that the
length of each conjunction is polynomial in |KB |.

To apply the concrete domain resolution rule to a set of closures N , a subset
N ′ ⊆ N must be selected, for which maximal concrete domain literals are unique
up to variable renaming. By Lemma 6.2.4, ` = |N ′| is polynomial in |KB |, and N ′

118 6. Reasoning with a Concrete Domain

contains at most ` variables. If N ′ does not contain a closure of type 8, there is
exactly one substitution σ that unifies all ` variables. If there is at least one closure of
type 8, then each one of ` variables can be assigned to one of c constants, producing
c` combinations, which is exponential in |KB |. Closures in N ′ are chosen from the
maximal set of all closures, which is exponential in |KB |, and since |N ′| is polynomial
in |KB |, the number of different sets N ′ is exponential in |KB |. Hence, the maximal
number of D-constraints that should be examined by the concrete domain resolution
rule is exponential in |KB |, where the length of each D-constraint is polynomial in
|KB |. Under the assumption that the satisfiability of each D-constraint can be checked
in deterministic exponential time, all inferences by the concrete domain resolution rule
can be performed in exponential time, so the claim of the theorem follows.

The proof of Lemma 6.2.4 demonstrates how to implement the concrete domain
resolution rule in practice. There are two cases:

• For concrete domain resolution without a side premise of type 8, the most general
partitioning unifier is of the form σ = {x2 7→ x1, . . . , xn 7→ x1}. Hence, we should
consider only closures with maximal literals unique up to variable renaming,
without several copies of one and the same closure.

• For concrete domain resolution where at least one side premise is of type 8,
we first choose a connected set of closures ∆g

0 of type 8. Let ∆c
0 be the set of

constants, and ∆f
0 the set of function symbols occurring in a ground term f(c) in

a closure from ∆g
0. We then select the set of closures ∆ng

0 of type 11 containing
a function symbol from ∆f

0. To obtain a connected constraint, a most general
partitioning unifier σ of ∆g

0 ∪∆ng
0 contains mappings of the form xi 7→ c, for

c ∈ ∆c
0. To make all literals in the constraint unique, a closure from ∆ng

0 can be
used at most |∆c

0| times. For each such unifier σ, let ∆g
1 = ∆g

0σ ∪∆ng
0. It is

possible that, for ∆f
1 the set of function symbols occurring in a ground term f(c)

in ∆g
1, we have ∆f

0 (∆f
1; in this case we repeat the process iteratively. The

process will terminate, since the set of closures is finite, and will yield a maximal
possible set of connected concrete literals. A minimal connected constraint is
then a subset of this maximal literal set.

6.3 Example

To better understand how to apply the concrete domain resolution rule in practice, we
apply BSD,+

DL to the example from Subsection 3.2.3, and show proof-theoretically that
KB3∪KB4 |=D GrWS (pc2). This is the case if and only if KB ′ is unsatisfiable, where
KB ′ is defined as follows:

(6.10) KB ′ = KB3 ∪KB4 ∪ {¬GrWS (pc2)}

6.3 Example 119

Translation into Closures. Note that, in Subsection 3.2.3, the knowledge base
KB3 is defined as KB1 form Subsection 3.1.1, extended with axioms (3.18)–(3.19).
The translation of KB1 into closures has been presented in Section 5.5, and it consists
of closures (5.34)–(5.53); we now translate the axioms (3.18)–(3.19) from KB4.

The axiom (3.19) contains a nonatomic subconcept PC u ∃price.≥2000, so we in-
troduce a new concept Q4, and replace (3.19) with (6.11) and (6.12). Furthermore,
(3.21) contains a nonliteral concept ∃price.≤1500, so we introduce a new concept Q5,
and replace (3.21) with (6.13) and (6.14).

HighEnd v GrWS tQ4(6.11)
Q4 v PC u ∃price.≥2000(6.12)

Q5 v ∃price.≤1500(6.13)
Q5(pc2)(6.14)

The clausification algorithm can now be applied directly, yielding the following
closures:

(6.15) ¬price(x, y1) ∨ ¬price(x, y2) ∨ y1 ≈D y2 (3.18)
(6.16) ¬HighEnd(x) ∨GrWS (x) ∨Q4(x) (6.11)
(6.17) ¬Q4(x) ∨ PC (x) (6.12)
(6.18) ¬Q4(x) ∨ price(x, h(x)) (6.12)
(6.19) ¬Q4(x) ∨ ≥2000(h(x)) (6.12)
(6.20) ¬Q5(x) ∨ price(x, i(x)) (6.13)
(6.21) ¬Q5(x) ∨ ≤1500(i(x)) (6.13)
(6.22) Q5(pc2) (6.14)
(6.23) HighEnd(pc2) (3.20)
(6.24) ¬GrWS (pc2) (6.10)

Saturation by BSD,+
DL . The E-term ordering, the selection function, and the notation

are the same as in Section 5.5. D(. . .) denotes the application of the concrete domain
resolution rule. We now show the inference steps in saturating Ξ(Ω(KB ′)) by BSD,+

DL .

⇒ (6.25) ¬Q4(x) ∨ ≥2000(h(x))

⇒ (6.26) ¬Q5(x) ∨ ≤1500(i(x))

⇒ (6.27) ¬Q4(x) ∨ price(x, h(x))

⇒ (6.28) ¬Q5(x) ∨ price(x, i(x))

⇒ (6.29) ¬price(x, y1) ∨ ¬price(x, y2) ∨ y1 ≈D y2

R(6.27;6.28) ¬Q4(x) ∨ ¬Q5(x) ∨ [h(x)] ≈D [i(x)]

120 6. Reasoning with a Concrete Domain

⇒ (6.30) ¬Q4(x) ∨ ¬Q5(x) ∨ [h(x)] ≈D [i(x)]
D(6.25;6.26) ¬Q4(x) ∨ ¬Q5(x)

We briefly explain the last inference. The maximal literals of closures (6.25), (6.26)
and (6.30) are S = {≥2000(h(x)), ≤1500(i(x1)), h(x2) ≈D i(x2)} (since the premises of
each inference rule are assumed to be variable disjoint, the variables in closures (6.25)
and (6.26) are renamed appropriately). The substitution σ = {x1 7→ x, x2 7→ x}
is the only MGPU of S, and Sσ = {≥2000(h(x)), ≤1500(i(x)), h(x) ≈D i(x)}. The
conjunction Ŝσ = ≥2000(y) ∧ ≤1500(z) ∨ y ≈D z is obtained from Sσ by replacing the
term h(x) with y, and the term i(x) with z. Obviously, Ŝσ is D-unsatisfiable, so we
apply the concrete domain resolution rule. We now continue the saturation.

⇒ (6.31) HighEnd(pc2)

⇒ (6.32) ¬HighEnd(x) ∨GrWS (x) ∨Q4(x)
R(6.31) GrWS ([pc2]) ∨Q4([pc2])

⇒ (6.33) GrWS ([pc2]) ∨Q4([pc2])

⇒ (6.34) ¬GrWS (pc2)
R(6.33) Q4([pc2])

⇒ (6.35) ¬Q4(x) ∨ ¬Q5(x)

⇒ (6.36) Q5(pc2)
R(6.35) ¬Q4([pc2])

⇒ (6.37) Q4([pc2])

⇒ (6.38) ¬Q4([pc2])
R(6.37) �

⇒ (6.39) �

In (6.39), the empty closure is added to W , so Ξ(Ω(KB ′)) is d-unsatisfiable. Also,
Ξ(Ω(KB ′)) is c-factored (it does not contain a negative literal containing a concrete
term), so it is D-unsatisfiable as well, thus implying KB3 ∪KB4 |=D GrWS (pc2).

6.4 Related Work

The need to represent and reason with concrete data in description logic systems was
recognized early on. Early systems, such as MESON [40] and CLASSIC [22], provided
such features, mostly in an ad-hoc manner by means of built-in predicates.

6.4 Related Work 121

The first rigorous treatment of reasoning with concrete data in description logics
was presented by Baader and Hanschke in [5]. The authors introduce the notion of
a concrete domain and consider reasoning in ALC(D), a logic allowing feature chains
(chains of functional roles) to occur in existential and universal restrictions. The au-
thors show that adding a concrete domain does not increase the complexity of checking
concept satisfiability—that is, it remains in PSpace. Sound and complete reasoning
can be performed by extending the standard tableau algorithm for ALC with an addi-
tional branch closure check, which detects potential unsatisfiability of concrete domain
constraints on a branch. Furthermore, if transitive closure of roles is allowed, the au-
thors show that checking concept satisfiability becomes undecidable. The approach of
Baader and Hanschke was implemented in the TAXON system [63].

Contrary to modern description logic systems, the approach presented in [5] does
not allow TBoxes. In [89] it was shown that allowing cyclic TBoxes makes reasoning
with a concrete domain undecidable in general. More important, undecidability holds
for all numeric concrete domains, which are probably the most practically relevant
ones. Still, in [87] it was shown that reasoning with a temporal concrete domain is
decidable even with cyclic TBoxes, thus providing for an expressive description logic
with features for temporal modeling.

It turned out that even without cyclic TBoxes, extending the logic is difficult. In
[89] it was shown that extending ALC(D) with either acyclic TBoxes, inverse roles,
or role-forming concrete domain constructor makes reasoning NExpTime-hard. The
main reason for this is the presence of the feature chain concept constructor, which can
be used to force equality of objects at the end of two distinct chains of features in a
model. Hence, feature chains with concrete domains destroy the tree-model property,
which was identified in [147] as the main explanation for the good properties of modal
and description logics.

Since obtaining expressive logics with concrete domains turned out to be difficult,
another path to extending the logic was taken in [62], by prohibiting feature chains.
In this way, concrete domain reasoning is restricted only to immediate successors of
an abstract individual, so the tree-model property remains preserved. A decision
procedure for an expressive ALCNHR+ logic extended with concrete domains without
feature chains was presented in [62], obtained by extending the tableau algorithm
with concrete domain constraint checking. In [70], the term datatypes was introduced
for a concrete domain without feature chains, and a tableau decision procedure for
SHOQ(D) (a logic providing nominals and datatypes) was presented. This approach
was extended to allow for n-ary concrete roles in [101]. The results of this research
influenced significantly the development of the Semantic Web ontology language OWL
[106], which also supports datatypes.

Apart from fundamental issues, such as decidability and complexity or reasoning,
other issues were considered to make concrete domains practically applicable. In prac-
tice, usually several different datatypes are needed. For example, an application might
use the string datatype to represent a person’s name, and the integer datatype to
represent a person’s age. It is natural to model each datatype as a separate concrete

122 6. Reasoning with a Concrete Domain

domain, and then to integrate several concrete domains for reasoning purposes. An
approach for integrating concrete domains was already presented in [5], and was fur-
ther extended to datatype groups in [103], which simplify the integration process by
taking care of the extensions of negative concrete literals.

Until now, all existing approaches consider reasoning with a concrete domain in
tableau and automata frameworks. In the resolution setting, many Prolog-like systems,
such as XSB,1 provide built-in predicates to handle datatypes. However, to the best of
our knowledge, none of these approaches is complete for even the basic logic ALC(D).
Built-in predicates are only capable of handling explicit datatype constants, and cannot
cope with individuals introduced by existential quantification. Hence, ours is the first
approach that we are aware of that supports reasoning with a concrete domain in the
resolution setting and is complete w.r.t. the semantics from [5].

Concrete domain resolution calculus can be viewed as an instance of theory reso-
lution [139]. In fact, it is similar to ordered theory resolution [15], in which inferences
with theory literals are restricted to maximal literals only. It has been argued in [15]
that tautology deletion is not compatible with ordered theory resolution. However,
the concrete domain resolution calculus is fully compatible with the standard notion
of redundancy, so all existing deletion and simplification techniques can be freely used.
Furthermore, in our work we explicitly address the issues specific to concrete domains,
such as the necessity to consider several copies of a clause in an inference by the
concrete domain resolution ruls.

1http://xsb.sourceforge.net/

http://xsb.sourceforge.net/

Chapter 7

Reducing Description Logics to
Disjunctive Datalog

Based on the algorithms presented in Chapters 5 and 6, we now develop an algo-
rithm for reducing a SHIQ(D) knowledge base KB to a disjunctive datalog program
DD(KB). The program DD(KB) entails the same set of ground facts as KB , so it
can be used to answer queries in KB . Furthermore, we also present an algorithm for
answering queries in DD(KB) that runs in exponential time, and thus show that our
approach does not increase the complexity of reasoning.

For the algorithms in this chapter, the distinction between the skeleton and the
substitution part of a closure is not important. Hence, instead of “closure,” we use a
more common term “clause.”

7.1 Overview

Our reduction algorithm is based on the observation that, while saturating Ξ(KB)
using BSD,+

DL , after performing all inferences with nonground clauses, all remaining
inferences involve a clause of type 8 containing terms whose depth is at most one.
Intuitively, we simulate these terms with fresh constants, and thus allow transform-
ing each BSD,+

DL refutation from Ξ(KB) to a refutation in DD(KB). The reduction
algorithm consists of the following steps:

• Transitivity axioms are eliminated using the transformation from Section 5.2.
Hence, we consider onlyALCHIQ(D) knowledge bases in the remaining sections.

• The TBox and the RBox clauses of Ξ(KB) are saturated together with the clauses
from gen(KB) (see Definition 5.4.9) using BSD,+

DL , thus performing all inferences
with nonground clauses. As shown in Lemma 7.2.1, certain clauses can be re-
moved from the saturated set, as they cannot participate in further inferences.

• If the saturated set does not contain the empty clause, function symbols are
eliminated from the clauses as explained in Section 7.2. Lemma 7.2.4 demon-

123

124 7. Reducing Description Logics to Disjunctive Datalog

strates that this transformation does not affect satisfiability. Intuitively, if ABox
clauses are added to the saturated set and saturation is continued, all remaining
inferences involve a clause of type 8 and produce a clause of type 8, and each
such inference can be simulated in the function-free clause set.

• In order to reduce the size of the datalog program, some irrelevant clauses are
removed as explained in Section 7.3. Lemma 7.3.2 demonstrates that this trans-
formation also does not affect satisfiability.

• Transformation of KB into DD(KB) is explained in Section 7.4 and is straight-
forward: it suffices to transform each clause into the equivalent sequent form.
Theorem 7.4.2 summarizes the properties of the resulting datalog program. As
discussed in Subsection 4.8.2, such a program can be interpreted under minimal
or standard first-order semantics, as long as it is used only for answering positive
ground queries.

7.2 Eliminating Function Symbols

Let KB be an extensionally reduced ALCHIQ(D) knowledge base KB ; furthermore,
let ΓT Rg = Ξ(KBT ∪KBR)∪ gen(KB). By the definitions of Ξ and gen, the set ΓT Rg

does not contain clauses of type 8. Furthermore, let Γ = SatR(ΓT Rg)∪Ξ(KBA), where
SatR(ΓT Rg) is the relevant set of saturated clauses—that is, clauses of types 1, 2, 3, 5, 7,
and 9–13 obtained by saturating ΓT Rg by BSD,+

DL with eager application of redundancy
elimination rules. Intuitively, Sat(ΓT Rg) contains all nonredundant clauses derivable
by BSD,+

DL from the TBox and the RBox, so each further inference in the saturation
of Γ involves a clause of type 8. Such a clause cannot participate in an inference
with a clause of type 4 or 6, so we can safely delete the latter clauses, and consider
only the SatR(ΓT Rg) subset. Adding gen(KB) is necessary to compute all nonground
consequences of clauses possibly introduced by decomposition.

Lemma 7.2.1. KB is D-unsatisfiable if and only if Γ is D-unsatisfiable, for an ex-
tensionally reduced ALCHIQ(D) knowledge base KB,

Proof. Let Γ′ = Ξ(KB) ∪ gen(KB). Because it does not contain clauses of type 8,
Γ′ is c-factored. Since all clauses from gen(KB) contain a new predicate QR,f , any
interpretation of Ξ(KB) can be extended to an interpretation of Γ′ by adjusting the
interpretation of QR,f as needed. Hence, KB is D-equisatisfiable with Ξ(KB) by
Lemma 5.3.2; Ξ(KB) is D-equisatisfiable with Γ′; and, by Lemma 6.1.6 and Theorem
6.1.20, Γ′ is D-unsatisfiable if and only if the set of clauses derived by saturating Γ′

with BSD,+
DL contains the empty clause. Since the order in which the inferences are

performed in a derivation Γ′ = N0, N1, . . . can be chosen don’t-care nondeterminis-
tically, we perform all nonredundant inferences among clauses from ΓT Rg first. Let
Ni = Sat(ΓT Rg) ∪ Ξ(KBA) be the resulting intermediate set of clauses.

7.2 Eliminating Function Symbols 125

If Ni contains the empty clause, Γ contains it as well (the empty clause is of type
5), and the claim of the lemma follows. Otherwise, we continue the saturation of Ni.
In such a derivation, each Nj , j > i, is obtained from Nj−1 by an inference involving at
least one clause not in Ni. By induction on the derivation length, one can show that
Nj \Ni contains only clauses of type 8: namely, all nonredundant inferences between
clauses of type other than 8 have been performed in Ni, and, by Corollary 6.2.2, each
inference involving a clause of type 8 produces a clause of type 8. A conclusion of an
inference can be decomposed into a clause of type 8 and a clause of type 3; however,
the resulting clause of type 3 has the form ¬QR,f (x) ∨R(x, [f(x)]) and is, by Lemma
5.4.10, contained in gen(KB), so only a clause of type 8 is added to Nj .

Furthermore, by Corollary 6.2.2, a clause of type 4 and 6 can never participate in
an inference with a clause of type 8. Hence, such a clause cannot be used to derive a
clause in Nj \Ni, j > i, so Ni can safely be replaced by Γ. Any set of clauses Nj , j > i,
that can be obtained by saturation from Γ′, can be obtained by saturation from Γ as
well, modulo clauses of type 4 and 6. Hence, the saturation of Γ′ by BSD,+

DL derives
the empty clause if and only if the saturation of Γ by BSD,+

DL derives the empty clause,
so the claim of the lemma follows.

If KB does not use number restrictions, further optimizations are possible. By
Corollary 5.3.8, clauses of types 3 or 5 containing a function symbol cannot participate
in an inference with a clause of type 8. Hence, such clauses can also be eliminated
from the saturated set; that is, they need not be included in SatR(ΓT Rg). Observe that
this does not necessarily hold for clauses of type 10 and 11; namely, if there is a clause
of type 13 with more than one literal ¬Ti(xi, y

c
i), then such a clause might derive a

ground concrete literal containing a function symbol.
We now show how to eliminate function symbols from clauses in Γ. Intuitively,

the idea is to replace each ground term f(a) with a new constant, denoted with af .
For each function symbol f we introduce a new predicate symbol Sf that contains,
for each abstract constant a, a tuple of the form Sf (a, af). Thus, Sf contains the
f -successor of each constant. A clause C is transformed by replacing each occurrence
of a term f(x) with a new variable xf , and appending the literal ¬Sf (x, xf). The
Herbrand universe of the transformed clause set is finite and can be enumerated in a
finite predicate HU ; this predicate is used to bind unsafe variables in clauses. This
transformation is formalized in the following definition:

Definition 7.2.2. The operator λ maps terms to terms as follows:

• λ(a) = a;

• λ(f(a)) = af , for af a new globally unique constant1 with sort(af) = sort(f(a));

• λ(x) = x;

• λ(f(x)) = xf , for xf a new globally unique variable with sort(xf) = sort(f(x)).
1Globally unique means that, for some f and a, the constant af is uniquely defined.

126 7. Reducing Description Logics to Disjunctive Datalog

We extend λ to ALCHIQ(D)-clauses such that, for an ALCHIQ(D)-clause C,
λ(C) gives a function-free clause as follows:

1. Each term t in the clause is replaced with λ(t).

2. For each variable xf introduced in step 1, the literal ¬Sf (x, xf) is appended to
the clause.

3. If, after steps 1 and 2, a variable x occurs in a positive, but not in a negative
literal, the literal ¬HU (x) is appended to the clause.

For a position p in a clause C, let λ(p) denote the corresponding position in λ(C).
For a substitution σ, let λ(σ) denote the substitution obtained from σ by replacing
each assignment x 7→ t with x 7→ λ(t). With λ− we denote the inverse of λ (that is,
λ−(λ(α)) = α for any term, clause, position, or a substitution α).2

For KB an extensionally reduced ALCHIQ(D) knowledge base, the function-free
version of Ξ(KB), denoted with FF(KB), is defined as follows:

FF(KB) = FFλ(KB) ∪ FFSucc(KB) ∪ FFHU (KB) ∪ Ξ(KBA)
FFλ(KB) = {λ(C) | C ∈ SatR(ΓT Rg)}

FFSucc(KB) = {Sf (a, af) | for each a and f from Ξ(KB)}
FFHU (KB) = {HU (a) | for each a from Ξ(KB)} ∪

{HU (af) | for each a and f from Ξ(KB)}

Note that, if a variable occurs in a positive, but not in a negative literal in a clause
from SatR(ΓT Rg), such a variable must be of the abstract sort. Therefore, it suffices
to enumerate in HU only the abstract part of the Herbrand universe. We now prove
a lemma about the syntactic structure of clauses in FF(KB).

Lemma 7.2.3. If Ξ(KBA) is c-factored, then FF(KB) is c-factored as well. Further-
more, nonground negative equality literals occur in clauses of FF(KB) only in disjunc-
tions of the form xf 6≈ xg ∨ ¬Sf (x, xf) ∨ ¬Sg(x, xg).

Proof. For the first claim, observe that each clause C of type 9, 12, or 13 is c-factored,
so λ(C) is c-factored as well. Furthermore, for a clause C of type 10 and 11, a term
of sort c occurs only in positive literals of C, so such terms can occur in λ(C) only in
negative literals of the form ¬Sf (x, xc

f). Moreover, each variable xc
f occurs in exactly

one such literal, so λ(C) is c-factored.
For the second claim, observe that λ(C) can contain nonground equalities only if

C is a clause of type 5. Since such clauses only contain negative equality literals of the
form f(x) 6≈ g(x), λ(C) contains xf 6≈ xf ∨ ¬Sf (x, xf) ∨ ¬Sg(x, xg).

We now show that eliminating function symbols does not affect satisfiability—that
is, that KB and FF(KB) are D-equisatisfiable.

2Note that λ is injective, but not surjective, so to make the definition of λ− is correct, we assume
that λ− is applicable only to the range of λ.

7.2 Eliminating Function Symbols 127

Lemma 7.2.4. KB is D-unsatisfiable if and only if FF(KB) is D-unsatisfiable, for an
extensionally reduced ALCHIQ(D) knowledge base KB.

Proof. Since KB and Γ are D-equisatisfiable by Lemma 7.2.1, the claim of this lemma
can be demonstrated by showing that Γ and FF(KB) are D-equisatisfiable. Further-
more, since Γ and FF(KB) are c-factored, by Lemma 6.1.6 it suffices to show that they
are d-equisatisfiable.

(⇐) If FF(KB) is d-unsatisfiable, because hyperresolution with superposition, concrete
domain resolution, and splitting is sound and complete [9], a derivation of the empty
clause from FF(KB) exists. We show that such a derivation can be transformed to
a derivation of the empty clause from Γ by sound inference rules of hyperresolution,
paramodulation, instantiation, splitting, and concrete domain resolution.

Let B be a branch FF(KB) = N0, . . . , Nn of a derivation from FF(KB) by hyper-
resolution with superposition, concrete domain resolution and eager splitting, where
all negative literals containing a predicate other than equality are selected. We now
show by induction on n that a corresponding branch B′ in a derivation from Γ by
sound inference steps and a set of clauses N ′

m on B′ exist such that the following
property (*) holds: if C is a clause in Nn not of the form Sf (u, v) or HU (u), then N ′

m

contains the counterpart clause of C, equal to λ−(C). The induction base n = 0 is
obvious, since FF(KB) and Γ contain only one branch on which, other than Sf (u, v) or
HU (u), all ground clauses are ABox clauses. Now assume that the property (*) holds
for some n and consider all possible inferences from premises in Nn deriving a clause
C in Nn+1 = Nn ∪ {C}.

• For a superposition inference, observe that the clause that superposition is per-
formed from must be ground; namely, each nonground clause is safe, so it con-
tains negative literals, which are selected. Furthermore, because of splitting, all
ground clauses are unit clauses, so superposition can be performed only from a
clause of the form s ≈ t. Consider now superposition into a ground unit clause
L. If L = HU (s), superposition is redundant, since HU is instantiated for each
constant occurring in FF(KB), so the conclusion is already contained on the
branch. If L = Sf (s, u) or L = Sf (u, s), then the proposition obviously holds.
Otherwise, clauses s ≈ t and L are derived in at most n steps on B, so, by the
induction hypothesis, counterpart clauses λ−(s ≈ t) and λ−(L) are derivable on
B′. Thus, superposition can be performed on these clauses on B′ to derive the
required counterpart clause. Identical arguments hold for a superposition into
¬T (s, yc) ∨ yc 6≈D bc. Because nonground clauses of other types contain only
variables, superposition into such clauses is not possible.

• Reflexivity resolution can be applied to a ground clause u 6≈ u on B. By the
induction hypothesis, λ−(u 6≈ u) is then derivable on B′, so reflexivity resolution
can be applied on B′ to derive the required counterpart clause. Reflexivity res-

128 7. Reducing Description Logics to Disjunctive Datalog

olution is not applicable to nonground clauses, since negative literals containing
the equality predicate are not selected.

• Equality factoring is not applicable to a clause on B, since all positive clauses on
B are ground unit clauses.

• Consider a hyperresolution with a main premise C, side premises E1, . . . , Ek,
and a unifier σ, resulting in a hyperresolvent H. The side premises Ei are not
allowed to contain selected literals, so they are ground unit clauses. Furthermore,
the clause C is safe, and, by Lemma 7.2.3, for each literal of the form xf 6≈ xg,
C contains literals ¬Sf (x, xf) and ¬Sg(x, xg), respectively, which are selected.
Hence, all variables in C are bound, so H is a ground clause. Let σ′ be the
substitution obtained from σ by including a mapping x 7→ λ−(xσ) for each
variable x ∈ dom(σ) not of the form xf . Let us now perform an instantiation
step C ′ = λ−(C)σ′ on B′. Obviously, λ−(Cσ) and C ′ can differ only at a position
p in C, at which a variable of the form xf occurs. Let p′ = λ−(p). The term
in λ−(C) at p′ is of the form f(x), so with p′x we denote the position of the
inner x in f(x). In the hyperresolution inference generating H, the variable xf

is instantiated by resolving ¬Sf (x, xf) with some ground literal Sf (u, v). Hence,
Cσ contains at p the term v, whereas C ′ contains at p′ the term f(u), and
λ−(v) 6= f(u). We show that all such discrepancies can be eliminated with sound
inferences on B′. The literal Sf (u, v) is obtained on B from some Sf (a, af) by n
or less superposition inference steps. Let us with ∆1 (∆2) denote the sequence
of ground unit equalities applied to the first (second) argument of Sf (a, af). All
si ≈ ti from ∆1 and ∆2 are derivable on B in n steps or less, so corresponding
equalities λ−(si ≈ ti) are derivable on B′ by the induction hypothesis; we denote
these sequences with ∆′

1 and ∆′
2. We now perform superposition with equalities

from ∆′
1 into C ′ at p′x in the reverse order. After this, p′x contains the constant a,

and p′ contains the term f(a). Hence, we can apply superposition with equalities
from ∆′

2 at p′ in the original order. After this is done, each position p′ contains the
term λ−(v). Let C ′′ denote the result of removing discrepancies at all positions;
obviously, C ′′ = λ−(Cσ). All side premises Ei are derivable in n steps or less on
B, so, if Ei is not of the form Sf (u, v) or HU (u), λ−(Ei) is derivable on B′. We
hyperresolve these side premises with C ′′ to obtain H ′. Obviously, H ′ = λ−(H),
so the counterpart clause is derivable on B′.

• Since nonground clauses contain selected literals, and all concrete domain literals
are positive, concrete domain resolution can be applied only to a set of positive
ground clauses Ci. By the induction hypothesis, all λ−(Ci) are derivable on B′.
Hence, concrete domain resolution can be applied on B′ in the same way as on
B, so the counterpart clause is derivable on B′.

• Since all ground clauses on B are unit clauses, and no clause in FF(KB) contains
a positive literal with Sf or HU predicates, a ground nonunit clause C generated

7.2 Eliminating Function Symbols 129

by an inference on B cannot contain Sf (u, v) and HU (a) literals. Hence, if C is
of length k and causes B to be split into k sub-branches, then λ−(C) is of length
k and B′ can be split into k sub-branches, each of them satisfying (*).

Hence, if there is a derivation of the empty clause on all branches from FF(KB),
then there is a derivation of the empty clause on all branches from Γ as well.

(⇒) If Γ is d-unsatisfiable, since BSD,+
DL is sound and complete, a derivation of the

empty clause from Γ exists. We show that such a derivation can be reduced to a
derivation of the empty clause in FF(KB) by sound inference rules.

Let B′ be a derivation Γ = N ′
0, . . . , N

′
n by BSD,+

DL . We show by induction on n
that there exists a corresponding derivation B of the form FF(KB) = N0, . . . , Nm by
sound inference steps such that the following property (**) holds: if C ′ is a clause in
N ′

n, then Nm contains the counterpart clause C = λ(C ′). The induction base n = 0
is trivial. Let us now assume that (**) holds for some n, and let us consider possible
inferences deriving N ′

n+1 = N ′
n ∪ {C ′}, where the clause C ′ is derived from premises

P ′i ∈ N ′
n, 1 ≤ i ≤ k. By the induction hypothesis, we know that there is a derivation

B from FF(KB) with a clause set Nm, containing the counterpart clauses of each P ′i ,
denoted with Pi, 1 ≤ i ≤ k. Let σ′ be the unifier of the inference. By Corollary 6.2.2,
σ′ is ground and contains only assignments of the form xi 7→ a or xi 7→ f(a). Let
σ = λ(σ′). Since all Pi are derivable by the induction hypothesis, we can instantiate
each Pi into Piσ. Obviously, apart from the literals involving Sf and HU , the only
difference between Piσ and λ(P ′iσ

′) may be that the latter contains a term f(a) at
position p, whereas the former contains xf at λ(p). But then Piσ contains a literal
¬Sf (a, xf), which can be resolved with Sf (a, af) to produce af at λ(p). All such
differences can be removed iteratively, and the remaining ground literals involving HU
can be resolved away. Hence, each λ(P ′iσ

′) is derivable from premises in Nm.
Observe that in all literals of the form f(a), the inner term is marked. Hence,

superposition inferences are possible only on the outer position of such terms, which
correspond via λ to af . Therefore, regardless of the inference type, C = λ(C ′) can be
derived from λ(P ′iσ

′) by the same inference on the corresponding literals.
The result of a superposition inference in B′ may be a clause C ′ containing a literal

R([a] , [f(a)]), which is decomposed into a clause C ′1 of type 8 and a clause C ′2 of type
3. However, since gen(KB) ⊆ Γ, we have C ′2 ∈ Γ, so the conclusion C ′ should only be
replaced with the conclusion C ′1. The decomposition inference rule can obviously be
applied on B as well to produce a counterpart clause C1 = λ(C ′1). Since λ(C ′2) ∈ Nm,
this inference is sound by Lemma 5.4.2, so the property (**) holds.

Now it is obvious that, if there is a derivation of the empty clause from Γ, then
there is a derivation of the empty clause from FF(KB) as well.

Lemma 7.2.4 also implies that KB |= α if and only if FF(KB) |= α, where α is of
the form (¬)A(a) or (¬)R(a, b), for A an atomic concept and R a simple role. The
proof also reveals that, in checking D-satisfiability of FF(KB), it is not necessary to
perform a superposition inference into a literal of the form HU (a).

130 7. Reducing Description Logics to Disjunctive Datalog

It is interesting to consider the role of the new constants af in FF(KB). As dis-
cussed in Section 4.6, our transformation does not preserve the semantics of KB—the
models of FF(KB) and KB are, in general, not related, and they coincide only on
positive ground facts. Therefore, a constant af can be intuitively best understood
as a proof-theoretic means used to simulate the term f(a) from a refutation by basic
superposition. We do not provide any results about a deeper correspondence between
af and unnamed individuals in a model of KB .

7.3 Removing Irrelevant Clauses

The saturation of ΓT Rg derives new clauses that enable the reduction to FF(KB).
However, the same process introduces many clauses that are not necessary. Consider,
for example, the knowledge base KB = {A v C,C v B}. If the precedence of the
predicate symbols is C > B > A, the saturation process derives ¬A(x)∨B(x); however,
this clause is entailed by the premises, and it can be deleted. Hence, we present an
optimization, by which we reduce the number of rules in the resulting disjunctive
datalog program.

Definition 7.3.1. For N ⊆ FF(KB), let C ∈ N be a clause such that λ−(C) is
derived in the saturation of ΓT Rg from premises Pi, 1 ≤ i ≤ k, by an inference with a
substitution σ. Then, C is irrelevant w.r.t. N if the following conditions hold:

• λ−(C) is not derived by the decomposition rule;

• For each premise Pi, λ(Pi) ∈ N ;

• Each variable occurring in λ(Piσ) occurs in C.

Relevant is the opposite of irrelevant. Let C1, C2, . . . , Cn be a sequence of clauses
from FF(KB) such that λ−(Cn), . . . , λ−(C2), λ−(C1) is the order in which the clauses
are derived in the saturation of ΓT Rg. Let FF(KB) = N0, N1, . . . , Nn be a sequence of
clause sets such that Ni = Ni−1 if Ci is relevant w.r.t. Ni−1, and Ni = Ni−1 \ {Ci} if
Ci is irrelevant w.r.t. Ni−1, for 1 ≤ i ≤ n. Then, FFR(KB) = Nn is called the relevant
subset of FF(KB).

Removing irrelevant clauses preserves satisfiability, as demonstrated by the follow-
ing lemma.

Lemma 7.3.2. FFR(KB) is D-unsatisfiable if and only if FF(KB) is D-unsatisfiable.

Proof. Let N be a (not necessarily proper) subset of FF(KB). Furthermore, let C ∈ N
be an irrelevant clause w.r.t. N , where λ−(C) is derived in the saturation of ΓT Rg from
premises Pi by an inference ξ with a substitution σ. Finally, let λ(Pi) ∈ N , i ≤ i ≤ k.
We now show the following property (*): N is D-unsatisfiable if and only if N \ {C}
is D-unsatisfiable. The (⇐) direction is trivial, since N \ {C} ⊂ N . For the (⇒)

7.4 Reduction to Disjunctive Datalog 131

direction, by Herbrand’s theorem, N is D-unsatisfiable if and only if some finite set
M of ground instances of N is D-unsatisfiable. For such M , we construct the set of
ground clauses M ′ in the following way:

• For each D ∈M such that D is not a ground instance of C, let D ∈M ′;

• For each D ∈ M such that D is a ground instance of C with substitution τ , let
λ(Pi)λ(σ)τ ∈M ′, 1 ≤ i ≤ k.

Let τ be a ground substitution such that D = Cτ . Clauses Pi can be of type 1,
2, 3, 5, 7, or 9–13, so σ can contain only mappings of the form x 7→ x′, x 7→ f(x′), or
yi 7→ f(x′). The sets of variables in λ(Piσ) and λ(Pi)λ(σ) obviously coincide. Since
C is irrelevant, each variable from each λ(Piσ) occurs in C as well, so τ instantiates
all variables in all λ(Pi)λ(σ). Therefore, each λ(Pi)λ(σ)τ is a ground instance of a
clause λ(Pi) in N \ {C}. Furthermore, λ(Pi)λ(σ)τ ⊆ λ(Piσ)τ . If the inclusion is
strict, then the latter clause contains literals of the form ¬Sf (a, b) that do not occur in
the former one, because σ instantiates a variable from Pi to a term f(x′) originating
from some premise Pj . But then, λ(Pj) contains the literal ¬Sf (x′, x′f), so λ(Pj)λ(σ)τ
contains ¬Sf (a, b). Therefore, all λ(Pi)λ(σ)τ can participate in a ground inference
corresponding to ξ, so D can be derived from M ′. Hence, if M is D-unsatisfiable,
then M ′ is D-unsatisfiable as well. Since M ′ is a finite D-unsatisfiable set of ground
instances of N \ {C}, the latter is D-unsatisfiable by Herbrand’s theorem, so the
property (*) holds.

Consider the sequence of clause sets FF(KB) = N0, N1, . . . , Nn = FFR(KB) from
Definition 7.3.1. For each Ni = Ni−1 \ {Ci}, i ≥ 1, the preconditions of property (*)
are fulfilled, so by (*), Ni is D-satisfiable if and only if Ni−1 is D-satisfiable. The claim
of the lemma now follows by a straightforward induction on i.

7.4 Reduction to Disjunctive Datalog

Reduction of an ALCHIQ(D) knowledge base KB to a disjunctive datalog program
is now easy: for each clause from FFR(KB), simply move all positive literals into the
rule head, and all negative literals into the rule body.

Definition 7.4.1. For an extensionally reduced ALCHIQ(D) knowledge base KB,
DD(KB) is the disjunctive datalog program that contains the rule

A1 ∨ . . . ∨An ← B1, . . . , Bm

for each clause A1∨. . .∨An∨¬B1∨. . .∨¬Bm from FFR(KB). If KB is not extensionally
reduced, then DD(KB) = DD(KB ′), where KB ′ is an extensionally reduced knowledge
base obtained from KB as explained in Section 3.1.

132 7. Reducing Description Logics to Disjunctive Datalog

Theorem 7.4.2. Let KB be an ALCHIQ(D) knowledge base, defined over a concrete
domain D such that D-satisfiability of finite conjunctions over ΦD can be decided in
deterministic exponential time. Then, the following claims hold:

1. KB is D-unsatisfiable if and only if DD(KB) is D-unsatisfiable.

2. KB |=D α if and only if DD(KB) |=c α, where α is of the form A(a) or R(a, b),
and A is an atomic concept.

3. KB |=D C(a) for a nonatomic concept C if and only if, for Q a new atomic
concept, DD(KB ∪ {C v Q}) |=c Q(a).

4. The number of literals in each rule in DD(KB) is at most polynomial, the number
of rules in DD(KB) is at most exponential, and DD(KB) can be computed in
exponential time in |KB |, assuming a bound on the arity of the concrete domain
predicates and for unary coding of numbers in input.

Proof. The first claim follows directly from Lemma 7.3.2. The second claim follows
from the first one, since DD(KB ∪ {¬α}) = DD(KB) ∪ {¬α} is D-unsatisfiable if and
only if DD(KB) |=c α. Furthermore, KB |= C(a) if and only if KB ∪ {¬C(a)} is D-
unsatisfiable, which is the case if and only if KB ∪{¬Q(a), C v Q} is D-unsatisfiable.
Now, because Q is atomic, the third claim follows from the second one.

By Lemma 5.3.9, for each clause C ∈ Sat(ΓT Rg), the number of literals in C is at
most polynomial in |KB |, and |Sat(ΓT Rg)| is at most exponential in |KB |. It is easy to
see that the application of λ to C can be performed in time polynomial in the number
of terms and literals in C. The number of constants af added to DD(KB) is equal to
c · f , where c is the number of constants, and f the number of function symbols in the
signature of Ξ(KB). If numbers are coded in unary, both c and f are polynomial in
|KB |, so the number of constants af is also polynomial in |KB |. By Theorem 6.2.5,
Sat(ΓT Rg) can be computed in time that is at most exponential in |KB |.

We point out that basic superposition is crucial for the correctness of the reduc-
tion. Namely, in basic superposition, superposition into Skolem function symbols is
redundant, which allows encoding ground terms of the form f(a) using new constants.

7.5 Equality Reasoning in DD(KB)

The program DD(KB) can contain the equality predicate in the rule heads, which is
not allowed in usual definitions of disjunctive datalog, such as [42]. Hence, to answer
queries over DD(KB), we apply a well-known transformation from [46], which allows us
to treat ≈ as an ordinary predicate. The effects of this transformation were discussed
in more detail in Subsection 4.8.5.

For a disjunctive datalog program P , with P≈ we denote the program consisting
of the rules (7.1)–(7.4), where (7.1) is instantiated for each individual a occurring in

7.5 Equality Reasoning in DD(KB) 133

P , and (7.4) is instantiated for each predicate symbol R occurring in P . (Note that it
is not necessary to instantiate (7.4) for R = ≈, since such a rule logically follows from
symmetry and transitivity.) From [46, 26], it is well known that, for ϕ a first-order
formula, P |= ϕ (where |= denotes the usual first-order entailment w.r.t. an equational
theory) if and only if P ∪ P≈ |=f ϕ (where |=f denotes first-order entailment where
equality is not given any special meaning). In other words, appending P≈ to P allows
us to treat ≈ as an ordinary predicate, and to use any existing reasoning technique for
disjunctive datalog without equality.

a ≈ a(7.1)
x ≈ y ← y ≈ x(7.2)

x ≈ z ← x ≈ y, y ≈ z(7.3)
R(x1, . . . , yi, . . . , xn)← R(x1, . . . , xi, . . . , xn), xi ≈ yi(7.4)

The results in [46, 26] consider only first-order logic without concrete domains.
However, by Definition 3.2.2, only concrete equality ≈D is allowed for concrete terms.
Since ≈D is treated like any other concrete predicate, by instantiating (7.4) in P≈ only
for positions of predicates that are of sort other than c, the encoding is sound and
complete even if P contains concrete predicates.

Observe also that (7.4) is instantiated at most for each predicate R and each
position i in R. Since the number of predicates and the number of positions are
both linear in |P |, this does not increase the complexity of reasoning.

The presented approach to handling equality may prove inefficient in practice, since
the rules from P≈ can be used to derive the same conclusion multiple times. Therefore,
we present an optimization that allows us to omit certain instances of (7.4).

Theorem 7.5.1. For a disjunctive datalog program P , let PF
≈ be the subset of P≈,

where (7.4) is instantiated only for those predicates R and positions i, for which R
occurs either in a head or a body atom R(t) of some rule in P , and t contains a
constant at position i. Then, the following claims hold:

1. P ∪ P≈ is satisfiable if and only if P ∪ PF
≈ is satisfiable.

2. P ∪ P≈ |=f Q(a) if and only if P ∪ PF
≈ ∪ P

Q
≈ |=f Q(a) for a ground atom Q(a),

where PQ
≈ is obtained by instantiating (7.4) for all positions in Q.

Proof. (Claim 1.) Since PF
≈ ⊆ P≈, the (⇒) direction is trivial. For the (⇐) direction,

let I be a Herbrand model of P ∪ PF
≈ . Because PF

≈ contains the axioms (7.1), (7.2),
and (7.3), the relation ≈ is an equivalence relation. Let us choose a distinct object
for each equivalence class of ≈, and let ã denote the object chosen for the equivalence
class that a belongs to. For α a substitution, atom, literal, or a rule, with α̃ we denote
the result of replacing each a in α with ã. Finally, let I≈ be the smallest Herbrand
interpretation such that I ⊆ I≈ and R(ã1, . . . , ãn) ∈ I implies R(a1, . . . , an) ∈ I for all
distinct constants ai. We now show that I≈ is a model of P ∪ P≈.

134 7. Reducing Description Logics to Disjunctive Datalog

The interpretation I≈ obviously satisfies all rules from P≈. Let C be a rule from
P (for the purpose of this proof, we consider a rule to be equivalent to a clause) and τ
a substitution such that Cτ is ground. Because I |=f P ∪ PF

≈ , we have I |=f Cτ̃ . Let
L ∈ C be a literal such that I |=f Lτ̃ . Because the rule (7.4) is instantiated in PF

≈ for
positions at which L contains constants, I |=f L̃τ̃ . By definition, I and I≈ coincide for
ground atoms such that A = Ã; hence, I≈ |=f L̃τ̃ . Finally, I≈ is an interpretation in
which ≈ is a congruence relation, so I≈ |=f Lτ , and therefore I≈ |=f Cτ . Because this
holds for all substitutions τ and rules C, we have I≈ |=f P .

(Claim 2.) Observe that P ∪ P≈ |=f Q(a) if and only if P ∪ P≈ ∪ {¬Q(a)} = P ′ is
unsatisfiable. Since Q occurs in ¬Q(a) in a negative literal, we instantiate (7.4) for Q,
which yields the set of rules PQ

≈ . By the first claim of the theorem, P ′ is unsatisfiable
if and only if P ∪ PF

≈ ∪ P
Q
≈ {¬Q(a)} is unsatisfiable, which is the case if and only if

P ∪ PF
≈ ∪ P

Q
≈ |=f Q(a).

Usually, in (disjunctive) datalog one distinguishes extensional predicates, which
occur only in facts and rule bodies, from intensional predicates, which occur in the
heads of rules with a nonempty body. If the rules of P do not contain constants,
Theorem 7.5.1 states that, to compute the set of positive ground consequences of P
w.r.t. an equational theory, it suffices to instantiate (7.4) only for extensional predicates
and the query predicate.

Another optimization is applicable to an atom A of the form x ≈ t occurring in
the body of a rule r ∈ P . Namely, for a first-order formula ϕ, a variable x, and a
term t that does not contain x as a proper subterm, the formulae ∀x : (x ≈ t → ϕ)
and ϕ{x 7→ t} are equisatisfiable [99]. Hence, we can delete A from the body of r, and
replace all occurrences of x with t; if the resulting rule contains an unsafe variable y,
we append the literal HU (y). (As explained in Section 7.2, HU contains all constants
occurring in P .) Furthermore, a literal of the form a ≈ a can simply be deleted from
the body of r, since such a literal is always true. This optimization has an important
side-effect: it allows us to omit all instances of (7.1) from PF

≈ . Namely, the reflexivity
axioms a ≈ a can only participate in an inference with a body literal x ≈ y or a ≈ a;
however, the literals of the latter form are eagerly eliminated as explained previously.

7.6 Answering Queries in DD(KB)

Currently, the state-of-the-art technique for reasoning in disjunctive datalog is intelli-
gent grounding [43]. It is based on model building, which is performed by generating a
ground instantiation of the program rules, generating candidate models, and eliminat-
ing those candidates that do not satisfy the ground rules. In order to avoid generating
the entire grounding of the program, carefully designed heuristics are applied to gener-
ate the subset of the ground rules that have exactly the same set of the stable models
as the original program. This technique has been successfully implemented in the
disjunctive datalog engine DLV [43].

7.6 Answering Queries in DD(KB) 135

Model building is of central interest in many applications of disjunctive datalog. For
example, disjunctive datalog has been successfully applied to planning problems, where
plans are decoded from models. Query answering is easily reduced to model building:
A is not a certain answer if and only if there is a model not containing A. In our view,
the main drawback of query answering by model building is that such an approach
provides answering of ground queries only; nonground queries are typically answered
by considering all ground instances of the query. Furthermore, the algorithm computes
the grounded program, which can be large even for small nonground programs.

Note that the models of DD(KB) are of no interest, as they do not reflect the
structure of the models of KB (see Section 4.6 for an example). Hence, we propose
to answer nonground queries in DD(KB) by ordered hyperresolution, which may be
viewed as an extension of the fixpoint computation of plain datalog. This algorithm
computes the set of all answers to a nonground query in one pass, and does not consider
each ground instance separately. Furthermore, the algorithm does not compute the
program grounding, but works with the nonground program directly. Finally, the
algorithm exhibits optimal worst-case complexity. A similar technique was presented
in [25]; however, the algorithm presented there does not specify whether application of
redundancy elimination techniques is allowed during hyperresolution. Both techniques
are actually extensions of the answer literal technique, first proposed in [56].

Roughly speaking, we saturate DD(KB) ∪ DD(KB)≈ by RD, with all negative
literals selected, under an ordering in which all ground query literals are smallest.
Additionally, we require that the query predicate does not occur in the body of any
rule. Under these assumptions, the saturated set of clauses contains the cautious
consequences w.r.t. the query predicate as unit clauses. Because the ordering is total, in
each ground disjunction there is exactly one maximal literal, so the seminäıve bottom-
up saturation [112] or various join order optimizations can easily be adapted to the
disjunctive case.

Definition 7.6.1. For a predicate symbol Q, let RD
Q denote the RD calculus parame-

terized as follows:

• All negative literals are selected.

• All ground atoms of the form Q(a) are smallest in the ordering �.

A simple ordering compatible with RD
Q can be obtained in the following way. Let

�P and �C be orderings on predicate and constant symbols, respectively, such that the
query predicate Q is the smallest element in �P . Now A(a1, . . . , an) �Q B(b1, . . . , bm)
if and only if A �P B, or A = B and an index i exists such that aj = bj for j < i and
ai �C bi. It is easy to see that the ordering �Q is compatible with Definition 7.6.1.
Since in RD all negative literals are selected, the definition of �Q on negative literals
is not important.

Lemma 7.6.2. Let P be a positive satisfiable disjunctive datalog program, Q a predi-
cate not occurring in the body of any rule in P , and Q(a) a ground literal not containing

136 7. Reducing Description Logics to Disjunctive Datalog

concrete terms. Then P |=c Q(a) if and only if Q(a) ∈ N , where N is the set of clauses
obtained by saturating a c-factor of P under RD

Q up to redundancy.

Proof. Let P ′ be a c-factor of P . Since RD
Q is sound and complete, P |=c Q(a) if

and only if the set of clauses N ′, obtained by saturating P ′ ∪ {¬Q(a)} by RD
Q up to

redundancy, contains the empty clause. Note that, since all clauses in P ′ are safe and
all negative literals are selected, all hyperresolvents are positive ground clauses.

Since P is satisfiable, N ′ contains the empty clause if and only if a hyperresolution
step with ¬Q(a) is performed in the saturation by RD

Q . Since the literals containing
Q are smallest in the ordering of RD

Q , a positive literal Q(a) can be maximal only in a
clause C = Q(a)∨D, where D contains only literals with the Q predicate. Since ¬Q(a)
is the only clause where Q occurs negatively, if D is not empty, no literal from D can
be eliminated by a subsequent hyperresolution inference. Hence, the empty clause can
be derived from such C if and only if D is empty, but then Q(a) ∈ N .

Assuming that Q does not occur in the body of any rule in P does not reduce the
generality of the approach, as one can always add a new rule of the form AQ(x)← Q(x)
to satisfy the lemma conditions. Also, note that redundancy elimination techniques
can freely be applied in the saturation. We now consider the complexity of answering
queries in DD(KB) by RD

Q .

Theorem 7.6.3. Let KB be an ALCHIQ(D) knowledge base, defined over a concrete
domain D such that D-satisfiability of finite conjunctions over ΦD can be decided in
deterministic exponential time. Then, the set of all α such that DD(KB) |=c α, for
α the form C(a) or R(a, b) with R an abstract role, can be computed by saturating a
c-factor of DD(KB) ∪ DD(KB)≈ with RD

Q in time exponential in |KB |, assuming a
bound on the arity of concrete predicates and unary coding of numbers in input.

Proof. Let P be the c-factor of DD(KB) ∪DD(KB)≈. Since the number of predicates
in DD(KB) is linear in |KB |, the number of rules in DD(KB)≈ is linear in |KB |. In a
way similar as in the proof of Lemma 5.3.9, it is easy to see that the maximal length of
each ground clause obtained in the saturation of P by RD

Q is polynomial in |KB |, so the
number of ground clauses is exponential in |KB |. Furthermore, in each application of
the hyperresolution inference to some rule r, one selects a ground clause for each body
literal of r. Since the length of the rules is polynomial in |KB |, there are exponentially
many selections of ground clauses, giving rise to exponentially many hyperresolution
inferences. Hence, the saturation of P can be performed in time exponential in |KB |
and, by Lemma 7.6.2, it computes all certain consequences of P regarding the query
predicate, so the claim of the theorem follows.

We briefly discuss the restriction of Theorem 7.6.3 that R is an abstract role.
Consider the knowledge base KB containing only the axiom ∃T.=5(a). Obviously,
KB |= T (a, 5), where, by convention from Subsection 3.2.1, T (a, 5) is a shortcut for
T (a, a5) ∧=5(a5). The disjunctive datalog program DD(KB) consists of these rules:

7.7 Example 137

T (x, xf)← Q1(x), Sf (x, xf)(7.5)
=5(xf)← Q1(x), Sf (x, xf)(7.6)

Q1(a)(7.7)
Sf (a, af)(7.8)

The translation into disjunctive datalog does not change the set of entailed facts:
DD(KB) |=c T (a, 5) as well. The latter we demonstrate proof-theoretically by showing
that P = DD(KB)∪{¬T (a, 5)} is unsatisfiable. To translate ¬T (a, 5) into clauses, we
apply c-factoring and obtain (7.9):

x 6≈D 5← T (a, x)(7.9)

We now saturate P under RD
Q . Observe that (7.13) is derived by concrete domain

resolution, since the set S = {af 6≈D 5, =5(af)} is a D-constraint.

T (a, af) R(7.5;7.7;7.8)(7.10)
af 6≈D 5 R(7.9;7.10)(7.11)
=5(af) R(7.6;7.7;7.8)(7.12)

� D(7.11;7.12)(7.13)

However, DD(KB) does not contain the constant 5; this constant was added in the
refutation only by assuming the negation of the goal T (a, 5). Hence, the fact T (a, 5)
cannot be derived by saturating DD(KB) by RD

Q . To summarize, we can freely use
DD(KB) to answer queries by refutation, but we cannot use RD

Q to answer queries
regarding concrete roles or concrete literals.

7.7 Example

We now show how to translate a subset of KB1 ∪KB2 ∪KB3 ∪KB4 into disjunctive
datalog (KB1 and KB2 are given in Subsection 3.1.1, while KB3 and KB4 are given
in Subsection 3.2.3). Namely, the axioms involving the role contains (in particular the
transitivity axiom) generate many closures that participate in many inferences, but
do not contribute significantly to understanding the algorithm. Hence, to make the
example easier to follow, let KB5 contain the axioms (3.1)–(3.9), (3.12)–(3.14), (3.16),
(3.18)–(3.21), and the following axiom (7.14):

(7.14) ∃hasVD .Adpt3DAcc v Q1

The axiom (7.14) introduces a new name for the concept ∃hasVD .Adpt3DAcc. Hence,
to show that KB5 |= ∃hasVD .Adpt3DAcc(pc1), we check whether KB5 |= ∃Q1(pc1).

138 7. Reducing Description Logics to Disjunctive Datalog

Translation into Closures. Translating KB5 into closures is explained in Subsec-
tions 5.5 and 6.3. We recapitulate all closures from Ξ(KB5), but we renumber the
predicates in Ξ(KB5) introduced by structural transformation to use consecutive in-
dices. We also reorder the closures to make the order of applying inferences easier to
follow. The following closures correspond to axioms from KB1 and KB2:

¬PC (x) ∨ hasAdpt(x, f(x))(7.15)
¬GrWS (x) ∨ has3DAcc(x, g(x))(7.16)
¬hasAdpt(x, y) ∨ hasVD(x, y)(7.17)
¬has3DAcc(x, y) ∨ hasVD(x, y)(7.18)

¬hasAdpt(x, y) ∨Adpt(y)(7.19)
¬has3DAcc(x, y) ∨ 3DAcc(y)(7.20)

¬GaPC (x) ∨ ¬hasVD(x, y1) ∨ ¬hasVD(x, y2) ∨ y1 ≈ y2 ∨ ¬VD(y1) ∨ ¬VD(y2)(7.21)
¬Adpt(x) ∨VD(x)(7.22)
¬3DAcc(x) ∨VD(x)(7.23)

¬Adpt(x) ∨ ¬3DAcc(x) ∨Adpt3DAcc(x)(7.24)
¬GrWS (x) ∨ PC (x)(7.25)
¬GaPC (x) ∨ PC (x)(7.26)

¬GaPC (x) ∨GrWS (x)(7.27)
GaPC (pc1)(7.28)

The following closure corresponds to the axiom (7.14):

Q1(x) ∨ ¬hasVD(x, y) ∨ ¬Adpt3DAcc(y)(7.29)

The following closures correspond to axioms from KB3 and KB4:

¬Q2(x) ∨ price(x, h(x))(7.30)
¬Q2(x) ∨ ≥2000(h(x))(7.31)
¬Q3(x) ∨ price(x, i(x))(7.32)
¬Q3(x) ∨ ≤1500(i(x))(7.33)

¬price(x, y1) ∨ ¬price(x, y2) ∨ y1 ≈D y2(7.34)
¬HighEnd(x) ∨GrWS (x) ∨Q2(x)(7.35)

¬Q2(x) ∨ PC (x)(7.36)
Q3(pc2)(7.37)

HighEnd(pc2)(7.38)

Finally, we introduce the closures from gen(KB5). To make the notation more
compact, we use Q4 for QhasAdpt ,g and Q5 for Qhas3DAcc,f .

¬Q4(x) ∨ hasAdpt(x, [g(x)])(7.39)
¬Q5(x) ∨ has3DAcc(x, [f(x)])(7.40)

7.7 Example 139

Saturation of Nonground Closures by BSD,+
DL . We now saturate the nonground

closures of Ξ(KB5) ∪ gen(KB5) by BSD,+
DL . We perform all decomposition inferences,

as in this particular example this reduces the total number of inferences, using Q6 for
QhasVD ,f , and Q7 for QhasVD ,g. Conclusions that are tautologies are denoted with †.

⇒ (7.41) ¬PC (x) ∨ hasAdpt(x, f(x))

⇒ (7.42) ¬Q4(x) ∨ hasAdpt(x, [g(x)])

⇒ (7.43) ¬GrWS (x) ∨ has3DAcc(x, g(x))

⇒ (7.44) ¬Q5(x) ∨ has3DAcc(x, [f(x)])

⇒ (7.45) ¬hasAdpt(x, y) ∨ hasVD(x, y)
R(7.41) ¬Q6(x) ∨ hasVD(x, [f(x)])
R(7.41) ¬PC (x) ∨Q6(x)
R(7.42) ¬Q7(x) ∨ hasVD(x, [g(x)])
R(7.42) ¬Q4(x) ∨Q7(x)

⇒ (7.46) ¬has3DAcc(x, y) ∨ hasVD(x, y)
R(7.43) ¬GrWS (x) ∨Q7(x)
R(7.44) ¬Q5(x) ∨Q6(x)

⇒ (7.47) ¬hasAdpt(x, y) ∨Adpt(y)
R(7.41) ¬PC (x) ∨Adpt([f(x)])
R(7.42) ¬Q4(x) ∨Adpt([g(x)])

⇒ (7.48) ¬has3DAcc(x, y) ∨ 3DAcc(y)
R(7.43) ¬GrWS (x) ∨ 3DAcc([g(x)])
R(7.44) ¬Q5(x) ∨ 3DAcc([f(x)])

⇒ (7.49) ¬Q6(x) ∨ hasVD(x, [f(x)])

⇒ (7.50) ¬Q7(x) ∨ hasVD(x, [g(x)])

⇒ (7.51) Q1(x) ∨ ¬hasVD(x, y) ∨ ¬Adpt3DAcc(y)
R(7.49) Q1(x) ∨ ¬Q6(x) ∨ ¬Adpt3DAcc([f(x)])
R(7.50) Q1(x) ∨ ¬Q7(x) ∨ ¬Adpt3DAcc([g(x)])

⇒ (7.52) ¬GaPC (x)∨ ¬hasVD(x, y1) ∨ ¬hasVD(x, y2) ∨ y1 ≈ y2 ∨¬VD(y1)∨¬VD(y2)
R(7.49;7.50) ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨ [g(x)] ≈ [f(x)] ∨ ¬VD([g(x)]) ∨ ¬VD([f(x))]

⇒ (7.53) ¬PC (x) ∨ Adpt([f(x)])

⇒ (7.54) ¬Q4(x) ∨ Adpt([g(x)])

140 7. Reducing Description Logics to Disjunctive Datalog

⇒ (7.55) ¬GrWS (x) ∨ 3DAcc([g(x)])

⇒ (7.56) ¬Q5(x) ∨ 3DAcc([f(x)])

⇒ (7.57) ¬Adpt(x) ∨ VD(x)

⇒ (7.58) ¬3DAcc(x) ∨ VD(x)

⇒ (7.59) ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨ [g(x)] ≈ [f(x)] ∨ ¬VD([g(x)]) ∨ ¬VD([f(x)])
R(7.57) ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨ [g(x)] ≈ [f(x)] ∨ ¬Adpt([g(x)]) ∨ ¬VD([f(x)])
R(7.58) ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨ [g(x)] ≈ [f(x)] ∨ ¬3DAcc([g(x)]) ∨ ¬VD([f(x)])

⇒ (7.60) ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨ [g(x)] ≈ [f(x)] ∨ ¬Adpt([g(x)]) ∨ ¬VD([f(x)])
R(7.54) ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨ [g(x)] ≈ [f(x)] ∨ ¬Q4(x) ∨ ¬VD([f(x)])

⇒ (7.61) ¬GaPC (x)∨¬Q6(x)∨¬Q7(x)∨ [g(x)] ≈ [f(x)]∨ ¬3DAcc([g(x)]) ∨¬VD([f(x)])
R(7.55) ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨ [g(x)] ≈ [f(x)] ∨ ¬GrWS (x) ∨ ¬VD([f(x)])

⇒ (7.62) ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨ [g(x)] ≈ [f(x)] ∨ ¬Q4(x) ∨ ¬VD([f(x)])
S(7.43) ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨Q5(x) ∨ ¬Q4(x) ∨ ¬VD([f(x)])

⇒ (7.63) ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨ [g(x)] ≈ [f(x)] ∨ ¬GrWS (x) ∨ ¬VD([f(x)])
S(7.43) ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨Q5(x) ∨ ¬GrWS (x) ∨ ¬VD([f(x)])

We have performed all inferences involving closures of KB1 containing binary lit-
erals; next we perform inferences with unary literals containing a function symbol.

⇒ (7.64) ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨Q5(x) ∨ ¬Q4(x) ∨ ¬VD([f(x)])
R(7.57) ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨Q5(x) ∨ ¬Q4(x) ∨ ¬Adpt([f(x)])
R(7.58) ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨Q5(x) ∨ ¬Q4(x) ∨ ¬3DAcc([f(x)])

⇒ (7.65) ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨Q5(x) ∨ ¬GrWS (x) ∨ ¬VD([f(x)])
R(7.57) ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨Q5(x) ∨ ¬GrWS (x) ∨ ¬Adpt([f(x)])
R(7.58) ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨Q5(x) ∨ ¬GrWS (x) ∨ ¬3DAcc([f(x)])

⇒ (7.66) ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨Q5(x) ∨ ¬Q4(x) ∨ ¬Adpt([f(x)])
R(7.53) ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨Q5(x) ∨ ¬Q4(x) ∨ ¬PC (x)

⇒ (7.67) ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨Q5(x) ∨ ¬Q4(x) ∨ ¬3DAcc([f(x)])
R(7.56)† ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨Q5(x) ∨ ¬Q4(x) ∨ ¬Q5(x)

⇒ (7.68) ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨Q5(x) ∨ ¬GrWS (x) ∨ ¬Adpt([f(x)])
R(7.53) ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨Q5(x) ∨ ¬GrWS (x) ∨ ¬PC (x)

7.7 Example 141

⇒ (7.69) ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨Q5(x) ∨ ¬GrWS (x) ∨ ¬3DAcc([f(x)])
R(7.56)† ¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨Q5(x) ∨ ¬GrWS (x) ∨ ¬Q5(x)

⇒ (7.70) Q1(x) ∨ ¬Q6(x) ∨ ¬Adpt3DAcc([f(x)])

⇒ (7.71) Q1(x) ∨ ¬Q7(x) ∨ ¬Adpt3DAcc([g(x)])

⇒ (7.72) ¬Adpt(x) ∨ ¬3DAcc(x) ∨Adpt3DAcc(x)
R(7.70) ¬Adpt([f(x)]) ∨ ¬3DAcc([f(x)]) ∨Q1(x) ∨ ¬Q6(x)
R(7.71) ¬Adpt([g(x)]) ∨ ¬3DAcc([g(x)]) ∨Q1(x) ∨ ¬Q7(x)

⇒ (7.73) ¬Adpt([f(x)]) ∨ ¬3DAcc([f(x)]) ∨Q1(x) ∨ ¬Q6(x)
R(7.53) ¬PC (x) ∨ ¬3DAcc([f(x)]) ∨Q1(x) ∨ ¬Q6(x)

⇒ (7.74) ¬Adpt([g(x)]) ∨ ¬3DAcc([g(x)]) ∨Q1(x) ∨ ¬Q7(x)
R(7.54) ¬Q4(x) ∨ ¬3DAcc([g(x)]) ∨Q1(x) ∨ ¬Q7(x)

⇒ (7.75) ¬PC (x) ∨ ¬3DAcc([f(x)]) ∨Q1(x) ∨ ¬Q6(x)
R(7.56) ¬PC (x) ∨ ¬Q5(x) ∨Q1(x) ∨ ¬Q6(x)

⇒ (7.76) ¬Q4(x) ∨ ¬3DAcc([g(x)]) ∨Q1(x) ∨ ¬Q7(x)
R(7.55) ¬Q4(x) ∨ ¬GrWS (x) ∨Q1(x) ∨ ¬Q7(x)

Next we perform the inferences with closures from KB3 containing function sym-
bols:

⇒ (7.77) ¬Q2(x) ∨ price(x, h(x))

⇒ (7.78) ¬Q3(x) ∨ price(x, i(x))

⇒ (7.79) ¬price(x, y1) ∨ ¬price(x, y2) ∨ y1 ≈D y2

R(7.77;7.78) ¬Q2(x) ∨ ¬Q3(x) ∨ [h(x)] ≈D [i(x)]

⇒ (7.80) ¬Q2(x) ∨ ≥2000(h(x))

⇒ (7.81) ¬Q3(x) ∨ ≤1500(i(x))

⇒ (7.82) ¬Q2(x) ∨ ¬Q3(x) ∨ [h(x)] ≈D [i(x)]
D(7.80;7.81) ¬Q2(x) ∨ ¬Q3(x)

We recapitulate in the following table the closures from the unused set at this
point. Obviously, all closures produced by remaining inferences do not contain function
symbols; such closures are irrelevant in the sense of Definition 7.3.1, and, by Lemma
7.3.2, are not needed in DD(KB5). Therefore, we do not show the remaining inferences.

142 7. Reducing Description Logics to Disjunctive Datalog

¬GrWS (x) ∨ PC (x)(7.83)
¬GaPC (x) ∨ PC (x)(7.84)

¬GaPC (x) ∨GrWS (x)(7.85)
¬PC (x) ∨Q6(x)(7.86)
¬Q4(x) ∨Q7(x)(7.87)

¬GrWS (x) ∨Q7(x)(7.88)
¬Q5(x) ∨Q6(x)(7.89)

¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨Q5(x) ∨ ¬Q4(x) ∨ ¬PC (x)(7.90)
¬GaPC (x) ∨ ¬Q6(x) ∨ ¬Q7(x) ∨Q5(x) ∨ ¬GrWS (x) ∨ ¬PC (x)(7.91)

¬PC (x) ∨ ¬Q5(x) ∨Q1(x) ∨ ¬Q6(x)(7.92)
¬Q4(x) ∨ ¬GrWS (x) ∨Q1(x) ∨ ¬Q7(x)(7.93)

¬HighEnd(x) ∨GrWS (x) ∨Q2(x)(7.94)
¬Q2(x) ∨ PC (x)(7.95)
¬Q2(x) ∨ ¬Q3(x)(7.96)

Conversion to Disjunctive Datalog. The saturated set of closures is converted
into a disjunctive datalog program by eliminating function symbols (see Section 7.2),
eliminating irrelevant clauses (see Section 7.3), and translating the obtained clauses to
the rule form (see Section 7.4).

To understand how to eliminate function symbols, consider the closure (7.41). It
contains the term f(x). This term is replaced with a new variable xf and a literal
¬Sf (x, xf) is appended. Then, the positive literals are moved to the rule head, and
the negative literals to the rule body, yielding the rule (7.97). The following rules are
obtained by applying the process:

(7.97) hasAdpt(x, xf)← PC (x), Sf (x, xf) (7.41)
(7.98) hasAdpt(x, xg)← Q4(x), Sg(x, xg) (7.42)
(7.99) has3DAcc(x, xg)← GrWS (x), Sg(x, xg) (7.43)

(7.100) has3DAcc(x, xf)← Q5(x), Sf (x, xf) (7.44)
(7.101) hasVD(x, y)← hasAdpt(x, y) (7.45)
(7.102) hasVD(x, y)← has3DAcc(x, y) (7.46)
(7.103) Adpt(y)← hasAdpt(x, y) (7.47)
(7.104) 3DAcc(y)← has3DAcc(x, y) (7.49)
(7.105) hasVD(x, xf)← Q6(x), Sf (x, xf) (7.49)
(7.106) hasVD(x, xg)← Q7(x), Sg(x, xg) (7.50)
(7.107) Q1(x)← hasVD(x, y),Adpt3DAcc(y) (7.51)
(7.108) y1 ≈ y2 ← GaPC (x), hasVD(x, y1), hasVD(x, y2),VD(y1),VD(y2) (7.52)

Consider the closure (7.53); to understand why this closure is irrelevant, we next
show the BSD,+

DL inference deriving the closure.

7.7 Example 143

¬PC (x) ∨ hasAdpt(x, f(x)) ¬hasAdpt(x1, y1) ∨Adpt(y1)

¬PC (x) ∨Adpt([f(x)])

The most general unifier used in the inference is σ = {x1 7→ x, y1 7→ f(x)}. The
result of applying σ and λ to the clauses is as follows:

¬PC (x) ∨ hasAdpt(x, f(x)) ¬hasAdpt(x, [f(x)]) ∨Adpt([f(x)])

¬PC (x) ∨Adpt([f(x)])

⇓λ

¬Sf (x, xf) ∨ ¬PC (x) ∨ hasAdpt(x, xf) ¬hasAdpt(x, xf) ∨Adpt(xf) ∨ ¬Sf (x, xf)

¬PC (x) ∨Adpt(xf) ∨ ¬Sf (x, xf)

Now all variables in the inference premises occur in the inference conclusion. Also,
all premises are members of the set of saturated closures. It is now clear that (7.53) is
irrelevant, since it fulfills the conditions of Definition 7.3.1. In a similar way one can
see that all closures (7.54)–(7.56) are irrelevant. Intuitively, a closure C derived by an
inference ξ from premises Pi is irrelevant if λ(C) is obtained from λ(Pi) by the inference
λ(ξ); in such a case, the premises λ(Pi) imply the conclusion λ(C). In the previous
example this is obviously the case, so by removing (7.53) we perform “unresolution.”

We contrast this with the relevant closure (7.93). The inference deriving the closure
is as follows:

¬Q4(x) ∨ ¬3DAcc([g(x)]) ∨Q1(x) ∨ ¬Q7(x) ¬GrWS(x1) ∨ 3DAcc([g(x1)])

¬Q4(x) ∨ ¬GrWS(x) ∨Q1(x) ∨ ¬Q7(x)

The most general unifier is σ = {x1 7→ x}; we now show the effects of applying σ
and λ to the inference:

¬Q4(x) ∨ ¬3DAcc([g(x)]) ∨Q1(x) ∨ ¬Q7(x) ¬GrWS(x) ∨ 3DAcc([g(x)])

¬Q4(x) ∨ ¬GrWS(x) ∨Q1(x) ∨ ¬Q7(x)

⇓λ

¬Sg(x, xg) ∨ ¬Q4(x) ∨ ¬3DAcc(xg) ∨Q1(x) ∨ ¬Q7(x) ¬GrWS(x) ∨ 3DAcc(xg) ∨ ¬Sg(x, xg)

¬Q4(x) ∨ ¬GrWS(x) ∨Q1(x) ∨ ¬Q7(x)

In this case, λ(C) is not obtained by the resolution of λ(P1) and λ(P2), since λ(C)
does not contain ¬Sg(x, xg). The inference deriving (7.93) eliminates the function
symbol g from the premises. Such inferences are crucial in the reduction, since they
ensure that the obtained disjunctive datalog program entails the same set of ground
facts as the original knowledge base.

Note that, although irrelevant closures are removed in the translation to disjunctive
datalog, they still have to be derived during saturation. Namely, the irrelevant closure
(7.53) is used (indirectly) in the saturation to derive the relevant closure (7.93).

We now translate the remaining (relevant) closures into disjunctive datalog rules.

144 7. Reducing Description Logics to Disjunctive Datalog

(7.109) VD(x)← Adpt(x) (7.57)
(7.110) VD(x)← 3DAcc(x) (7.58)
(7.111) Q5(x)← GaPC (x), Q6(x), Q7(x), Q4(x),VD(xf), Sf (x, xf) (7.64)
(7.112) Q5(x)← GaPC (x), Q6(x), Q7(x),GrWS (x),VD(xf), Sf (x, xf) (7.65)
(7.113) Adpt3DAcc(x)← Adpt(x), 3DAcc(x) (7.72)
(7.114) price(x, xh)← Q2(x), Sh(x, xh) (7.77)
(7.115) price(x, xi)← Q3(x), Si(x, xi) (7.78)
(7.116) y1 ≈D y2 ← price(x, y1), price(x, y2) (7.79)
(7.117) ≥2000(xh)← Q2(x), Sh(x, xh) (7.80)
(7.118) ≤1500(xi)← Q3(x), Si(x, xi) (7.81)
(7.119) PC (x)← GrWS (x) (7.83)
(7.120) PC (x)← GaPC (x) (7.84)
(7.121) GrWS (x)← GaPC (x) (7.85)
(7.122) Q6(x)← PC (x) (7.86)
(7.123) Q7(x)← Q4(x) (7.87)
(7.124) Q7(x)← GrWS (x) (7.88)
(7.125) Q6(x)← Q5(x) (7.89)
(7.126) Q5(x)← GaPC (x), Q6(x), Q7(x), Q4(x),PC (x) (7.90)
(7.127) Q5(x)← GaPC (x), Q6(x), Q7(x),GrWS (x),PC (x) (7.91)
(7.128) Q1(x)← PC (x), Q5(x), Q6(x) (7.92)
(7.129) Q1(x)← Q4(x),GrWS (x), Q7(x) (7.93)
(7.130) GrWS (x) ∨Q2(x)← HighEnd(x) (7.94)
(7.131) PC (x)← Q2(x) (7.95)
(7.132) ← Q2(x), Q3(x) (7.96)

We finally append the ABox clauses:

(7.133) GaPC (pc1) (7.28)
(7.134) Q3(pc2) (7.37)
(7.135) HighEnd(pc2) (7.38)
(7.136) Sf (pc1 , pc1 f)
(7.137) Sf (pc2 , pc2 f)
(7.138) Sg(pc1 , pc1 g)
(7.139) Sg(pc2 , pc2 g)
(7.140) Sh(pc1 , pc1 h)
(7.141) Sh(pc2 , pc2 h)
(7.142) Si(pc1 , pc1 i)
(7.143) Si(pc2 , pc2 i)

We now make DD(KB5) to be a program consisting of rules (7.97)–(7.143). In this
program, of all predicates Q∗, the predicate Q1 is introduced for query answering, and
the predicate Q3 occurs in the ABox. The predicates Q2, Q4, Q5, Q6 and Q7 are
introduced by decomposition, and are not of interest in query answering. Therefore,
to reduce the size of the program, it is possible to apply the standard rule-unfolding
strategy. Here we refrain from doing so for the sake of brevity.

7.8 Related Work 145

Answering Queries in DD(KB5). The program DD(KB5) can be used to answer
queries. We show that KB5 |= ∃hasVD .Adpt3DAcc(pc1), see Subsection 3.1.1, by
demonstrating that DD(KB5) |=c Q1(pc1). Since DD(KB5) is large, we do not show
all inferences in the bottom-up saturation, but only those leading to the goal.

PC (pc1) R(7.120;7.133)(7.144)
GrWS (pc1) R(7.121;7.133)(7.145)

Q6(pc1) R(7.122;7.144)(7.146)
Q7(pc1) R(7.124;7.145)(7.147)
Q5(pc1) R(7.127;7.133;7.146;7.147;7.145;7.144)(7.148)
Q1(pc1) R(7.128;7.144;7.148;7.146)(7.149)

In a similar way, we show that KB5 |= GrWS (pc2), see Subsection 3.2.3. The
query GrWS (x) cannot be answered directly, since the predicate GrWS occurs in the
body of several rules, so we add a new rule (7.150). We use an ordering as in Section
7.6, with Q8 being the smallest predicate.

Q8(x)← GrWS (x)(7.150)

GrWS (pc2) ∨Q2(pc2) R(7.130;7.135)(7.151)

Q8(pc2) ∨ Q2(pc2) R(7.150;7.151)(7.152)

Q8(pc2) R(7.132;7.152;7.134)(7.153)

7.8 Related Work

Our work was largely motivated by [57], where the authors investigated a decidable
intersection of description logic and logic programming. In particular, the authors iden-
tify the description logic constructs that can be encoded and executed using existing
rule engines. Thus, the description logic component allows only existential quantifiers
to occur under negative, and universal quantifiers to occur under positive polarity. The
authors present an operator for translating a description logic knowledge base into a
logic program. This approach was later extended in [148] to support more expressive
description logic, provided that the rule engine supports advanced features. However,
our approach is a significant extension since we handle full SHIQ(D).

In [64], it was shown how to convert SHIQ∗ knowledge bases into conceptual logic
programs (CLP). CLPs generalize the good properties of description logic to the frame-
work of answer set programming. Apart from the usual constructs, SHIQ∗ supports
the transitive closure of roles. Although the presented transformation preserves the
semantics of the knowledge base, the obtained answer set program is not safe. Hence,
its grounding is infinite, so the program cannot be evaluated using existing answer set
solvers. The problem of decidable reasoning for CLPs is addressed by an automata-
based technique. On the contrary, our transformation produces a safe program with

146 7. Reducing Description Logics to Disjunctive Datalog

a finite grounding. Hence, issues related to decidability of reasoning are handled by
the transformation, and not by the query answering algorithm: the disjunctive pro-
gram obtained by our approach can be evaluated using any technique for reasoning in
disjunctive datalog programs.

Another approach for reducing description logic knowledge bases to answer set pro-
gramming was presented in [2]. To deal with existential quantification, this approach
uses function symbols. Thus, the Herbrand universe of the programs obtained by the
reduction is infinite, so existing answer set solvers cannot be used for reasoning. In
fact, decidability is not considered at all.

The query answering algorithm from Section 7.6 was inspired by [25], where the
authors suggested that the fixpoint computation of disjunctive semantics can be opti-
mized by introducing an appropriate literal ordering. Our approach extends the one
from [25] by showing that redundancy elimination techniques can be applied in the
fixpoint computation. Both algorithms are based on the idea of using answer literals
to compute answers, which was first proposed in [56].

As discussed in Section 7.6, the state-of-the-art technique for reasoning in dis-
junctive datalog is intelligent grounding [43]. It is actually a nondeterministic model
building technique. Ground query answering problems are reduced to model building,
and nonground query answering is solved by grounding the query and checking each
ground answer separately. Our query answering algorithm from Section 7.6 is not
based on model building. It does not require grounding the disjunctive program, it
computes all answers to nonground queries in one pass, and does not require nonde-
terministic guessing. However, it requires exponential space in the worst case, whereas
intelligent ground requires only polynomial space.

Chapter 8

Data Complexity of Reasoning

Algorithms from Chapters 5, 6, and 7 run in worst-case exponential time in |KB |,
assuming unary coding of numbers, a bound on the arity of concrete predicates, and
an exponential oracle for reasoning with a concrete domain. In [144], SHIQ was shown
to be ExpTime-complete for any coding of numbers, so our algorithms are (almost)
worst-case optimal. However, our complexity results, as well as the results from [144],
actually address the combined complexity of reasoning, which is measured in the size
of the entire knowledge base KB , including the RBox, the TBox, and the ABox.

ExpTime-completeness is a rather discouraging result, since |KB | can be large in
practice. However, by drawing a parallel with traditional database applications, |KB |
often depends mainly on the size of the ABox, while the sizes of the TBox and the
RBox are usually negligible. Namely, in many applications of description logics, the
TBox and the RBox are used as the database schema, whereas the ABox is used as the
database instance. For such applications, a much better performance estimate is given
by data complexity—the complexity measured only in |KBA|, under the assumption
that |KBR ∪ KBT | is bound by a constant. In practice, data complexity provides a
good performance estimate if |KBR|+ |KBT | = |KBT R| � |KBA|.

To fully separate the terminological from the assertional knowledge, we assume
in this chapter that KB is extensionally reduced; that is, the ABox axioms of KB
contain only (negations of) atomic concepts. Namely, complex concept axioms in
ABox assertions actually specify terminological knowledge, so, for extensionally re-
duced knowledge bases, |KBA| is the measure of raw input data processed by the
algorithm.

To the best of our knowledge, data complexity of testing knowledge base satisfiabil-
ity even for the basic logic ALC with general TBoxes was previously unknown. Based
on the results from Chapter 7, in Section 8.1 we show that satisfiability checking is
NP-complete in the size of ABox for any logic between ALC and SHIQ(D) (regardless
of how numbers are encoded), and that instance and role checking—the basic query
answering problems for description logics—are co-NP-complete.

To obtain a formalism with an even better data complexity, in Section 8.2 we define
Horn-SHIQ(D)—a logic related to SHIQ(D) analogously as Horn logic is related to

147

148 8. Data Complexity of Reasoning

full first-order logic. Namely, Horn-SHIQ(D) provides existential and universal quan-
tifiers, but does not provide for modeling disjunctive knowledge. This restriction allows
us to show that basic reasoning problems for Horn-SHIQ(D) are P-complete in |KBA|.
Hence, along the traditional lines of knowledge representation research, the capability
of representing disjunctive information is traded for polynomial data complexity. Since
disjunctive reasoning is not needed for many applications, Horn-SHIQ(D) is a very
appealing logic because it is still very expressive, but there is theoretical evidence that
it can be implemented efficiently in practice. Furthermore, Horn-SHIQ(D) extends
DL-lite [27], a logic aiming to capture most constructs of formalisms for conceptual
modeling, such as Entity–Relationship (ER) diagrams or the Unified Modeling Lan-
guage (UML), while providing polynomial algorithms for satisfiability checking and
conjunctive query answering (assuming an unbounded knowledge base, but a bound
on the query size). Horn-SHIQ(D) additionally provides for concrete predicates,
qualified existential quantification, conditional functionality and role inclusions, while
providing a reasoning algorithm polynomial in the size of data.

To develop an intuition and to provide a more detailed account behind our results,
in Section 8.3 we compare our results with the similar results for datalog and its
variants [35].

8.1 Data Complexity of Satisfiability

Our results from Chapter 7 show almost immediately that checking satisfiability of a
SHIQ(D) knowledge base KB is NP-complete in the size of data.

Lemma 8.1.1 (Membership). For an extensionally reduced SHIQ(D) knowledge base
KB, data complexity of checking D-satisfiability of KB is in NP, assuming a bound
on the arity of concrete predicates and that D-satisfiability of finite conjunctions over
ΦD can be decided in polynomial time.

Proof. Let c be the number of constants, f the number of function symbols in the
signature of Ξ(KB), and s the number of facts in Ξ(KB). By Definition 7.2.2, the
number of constants in DD(KB) is bounded by `1 = c+ cf (cf accounts for constants
of the form af), and the number of facts in DD(KB) is bounded by `2 = s + c + 2cf
(c accounts for facts of the form HU (a), one cf accounts for the facts of the form
Sf (a, af), and the other cf accounts for the facts of the form HU (af)). Since we
assume that |KBT R| is bounded by a constant, f is bounded by a constant (regardless
of how numbers are encoded), so both `1 and `2 are linear in |KBA|.

Hence, |DD(KB)| is exponential in |KB | only because the number of rules in
DD(KB) is bounded by the number of closures obtained by saturating the set of clo-
sures ΓT Rg = Ξ(KBT ∪ KBR) ∪ gen(KB) by BSD,+

DL . Since ΓT Rg does not contain
ABox closures, by Lemma 5.3.9, the number of closures in Sat(ΓT Rg) is exponential in
|KBT R|. Since we assume that the latter is bounded by a constant, both the number
of rules in DD(KB) and their length are bounded by constants, so |DD(KB)| is linear
in |KBA|, and can be computed from KB in linear time. Now the claim of the lemma

8.1 Data Complexity of Satisfiability 149

follows from a well-known fact that checking satisfiability of a disjunctive datalog pro-
gram is NP-complete [35]. A minor difference is that DD(KB) can contain concrete
predicates, so for the sake of completeness we prove this result as well.

The program DD(KB) can be c-factored in time linear in |KBA|, so it suffices
to show that the result is d-satisfiable. Let n be the number of rules introduced
by c-factoring; obviously, n is linear in |KBA|. Assuming that DD(KB) contains r
rules with at most v variables per rule, the number of literals in a ground instanti-
ation ground(DD(KB)) is bounded by r · `v1 + n · `1 + `2 (in each rule, each variable
can be replaced in `1 possible ways). Assuming r and v are bounded by constants,
|ground(DD(KB))| is polynomial in |KBA|. Now d-satisfiability of ground(DD(KB))
can be checked by nondeterministically generating an interpretation I, and then check-
ing whether it is a d-model. Checking whether I is a model can be performed in
polynomial time. To additionally check whether I is a d-model, it is sufficient to check
whether Ŝ is D-satisfiable, where S is the subset of I containing all literals with a con-
crete predicate. This can be done in polynomial time by assumption. Since DD(KB)
and KB are D-equisatisfiabile by Theorem 7.4.2, the claim of the lemma follows.

Schaerf showed in [126, Lemma 4.2.7] that the problem of instance checking in
a very simple logic ALE is co-NP-hard in the size of data. The proof employs a
reduction from 2-2-Satisfiability—the problem of checking satisfiability of CNF
formulae where each clause contains exactly two positive and two negative literals—,
which is known to be NP-complete. This reduction produces an extensionally reduced
knowledge base, so it immediately provides a lower bound for data complexity of
satisfiability checking. For the sake of completeness, we give a simple, alternative
hardness proof.

Lemma 8.1.2 (Hardness). Checking satisfiability of an ALC knowledge base KB is
NP-hard in |KBA|.
Proof. The proof is by the reduction from 3-Graph Coloring: a graph G is said
to be 3-colorable if and only if it is possible to assign a singe color from the set
{Red ,Green,Blue} to each of the graph’s vertices such that no two adjoining vertices
have the same color. Deciding whether G is 3-colorable is NP-complete [104].

For a graph G, we construct the knowledge base KBG, whose ABox contains the
assertions edge(e, f) and edge(f, e) for each edge 〈e, f〉 in G, and whose TBox contains
the following axioms:

> v Red tGreen t Blue(8.1)
Red uGreen v ⊥(8.2)
Green u Blue v ⊥(8.3)

Red u Blue v ⊥(8.4)
Red v ∀edge.¬Red(8.5)

Green v ∀edge.¬Green(8.6)
Blue v ∀edge.¬Blue(8.7)

150 8. Data Complexity of Reasoning

Obviously, G is 3-colorable if and only if KBG is satisfiable. Namely, (8.1) states
that each individual (that is, each vertex) in a model is assigned at least one color;
(8.2)–(8.4) specify that colors are pair-wise disjoint so each vertex is assigned at most
one color; and (8.5)–(8.7) specify the conditions of 3-colorability. Hence, each model
of KBG gives an assignment of colors to vertices of G; conversely, each assignment of
colors of G defines a model of KBG. Since the size of the TBox of KBG is constant,
and the size of ABox of KBG is double the number of edges of G, the claim of the
lemma follows.

We now state the main result of this section.

Theorem 8.1.3. Let KB be an extensionally reduced knowledge base expressed in any
logic between ALC and SHIQ(D). Assuming a polynomial oracle for reasoning with
concrete domains and a bound on the arity of concrete domain predicates, the following
claims hold:

• Checking KB (D-)satisfiability is data complete for NP.

• Checking KB (D-)unsatisfiability is data complete for co-NP.

• Checking whether KB |=(D) α, for α of the form (¬)C(a) with |C| bounded or of
the form (¬)R(a, b), is also data complete for co-NP.

Proof. The first claim is a direct consequence of lemmata 8.1.1 and 8.1.2. Checking
(D-)unsatisfiability is a complementary problem to checking (D-)satisfiability, so the
second claim follows from the first one. Furthermore, both instance checking (assuming
|C| is bounded) and role checking can be reduced to (D-)unsatisfiability in constant
time, so the third claim follows from the second.

We finish this section with a remark that, in an extensionally reduced knowledge
base, ABox assertions do not contain number restrictions, so |KBA| does not depend
on the used number coding. Hence, the results of Theorem 8.1.3 also do not depend
on the coding of numbers.

8.2 A Horn Fragment of SHIQ(D)

Horn logic is a well-known fragment of first-order logic in which formulae are restricted
to clauses containing at most one positive literal. Because of this restriction, a Horn
clause can be understood as a rule in which a conjunction of several body literals
imply one head literal. The main limitation of Horn logic is the inability to represent
disjunctive information; however, its main benefit are practical refutation procedures,
such as SLD-resolution [109]. Furthermore, if function symbols are not used, query
answering in Horn logic is data complete for P [145, 78, 35], thus making function-free
Horn logic appealing for practical usage.

8.2 A Horn Fragment of SHIQ(D) 151

Following this idea, in this section we identify the Horn fragment of SHIQ(D)
that provides similar properties. In Horn-SHIQ(D), the capability of representing
disjunctive information is traded for P-complete data complexity of reasoning. Roughly
speaking, only TBox axioms of the form

d
Ci v D are allowed, where Ci is A, ∃R.A,

or ≥ nR.A, and D is A, ⊥, ∃R.A, ∀R.A, ≥ nR.A, or ≤ 1R; additionally, Horn-
SHIQ(D) allows role inclusion axioms and, in certain situations, transitivity axioms,
as discussed after Definition 8.2.1. Whereas such a definition succinctly demonstrates
the expressivity of the fragment, it is too restricting in general. For example, the
axiom A1 t A2 v ¬B is not Horn, but it is equivalent to Horn axioms A1 u B v ⊥
and A2 u B v ⊥. Similarly, a non-Horn axiom A v ∃R.(∃R.B) can be transformed
into Horn axioms A v ∃R.Q and Q v ∃R.B by introducing a new name Q for the
subconcept ∃R.B. To avoid dependency on such obvious syntactic transformations,
we use the following, rather technical definition of Horn-SHIQ(D):

Definition 8.2.1. Let pl+ and pl− be two mutually recursive functions assigning a
nonnegative integer to a SHIQ(D) concept D, defined inductively as in Table 8.1,
where sgn(0) = 0, and sgn(n) = 1 for n > 0. For a concept D and a position p of a
subconcept in D, let pl(D, p) be defined as follows:1

pl(D, p) =
{

pl+(D|p) if pol(D, p) = 1
pl−(D|p) if pol(D, p) = −1

A SHIQ(D) concept C is a Horn concept if pl(C, p) ≤ 1 for each position p
of a subconcept in C (including the empty position ε). An extensionally reduced
ALCHIQ(D) knowledge base KB is Horn if, for each axiom C v D ∈ KBA, the
concept ¬C tD is Horn. An extensionally reduced SHIQ(D) knowledge base KB is
Horn if Ω(KB) is Horn.

Observe that, for a concept C without nonatomic subconcepts, pl+(C) yields the
maximal number of positive literals in clauses obtained by clausifying ∀x : πy(C, x).
To clausify a concept C containing a nonatomic subconcept at position p, one should
consider if C|p occurs in C under positive or negative polarity. For example, in a
concept ¬(¬Au¬B), the concepts A and B actually occur positively, and u is actually
t. Hence, pl+(C|p) (pl−(C|p)) counts the number of positive literals used to clausify
C|p, provided that C|p occurs in C under positive (negative) polarity.

The function sgn(·) takes into account that C|p is replaced in C by structural
transformation with only one atomic concept, even if clausification of C|p produces
more than one positive literal. For example, to clausify C = ∀R.(D1 t D2), the
structural transformation replaces D1 t D2 with a new atomic concept Q, yielding
C ′ = ∀R.Q; now clausifying C ′ produces a clause with only one positive literal.

A concept C is Horn if the maximal number of positive literals obtained by clausi-
fying subconcepts of C is at most one. Recall that, although transitivity axioms are
translated by π into Horn clauses, the algorithm from Section 5.2 replaces them by

1The abbreviation pl stems from “[the number of] positive literals.”

152 8. Data Complexity of Reasoning

Table 8.1: Definitions of pl+ and pl−

D pl+(D) pl−(D)
> 0 0
⊥ 0 0
A 1 0
¬C pl−(C) pl+(C)
C1 u . . . u Cn max1≤i≤n sgn(pl+(Ci))

∑
1≤i≤n sgn(pl−(Ci))

C1 t . . . t Cn

∑
1≤i≤n sgn(pl+(Ci)) max1≤i≤n pl−(Ci)

∃R.C 1 sgn(pl−(C))
∀R.C sgn(pl+(C)) 1
≥ nR.C 1 (n−1)n

2 + n · sgn(pl−(C))
≤ nR.C n(n+1)

2 + (n+ 1) · sgn(pl−(C)) 1
∃T1, . . . , Tm.d 1 1
∀T1, . . . , Tm.d 1 1
≥ nT 1 (n−1)n

2

≤ nT n(n+1)
2 1

axioms of the form ∀R.C v ∀S.(∀S.C). Now pl+(∃R.¬Ct∀S.(∀S.C)) = 1+pl+(C), so
if pl+(C) > 0, Ω(KB) is not a Horn knowledge base. Hence, the presence of transitivity
axioms can make KB non-Horn.

If a concept C has a nonatomic subconcept at position p, special care has to
be taken when introducing a new name α for C|p. For example, consider the Horn
concept C = ∀R.D1 t ∀R.¬D2. To apply the structural transformation to C, one
might replace ∀R.D1 and ∀R.¬D2 with new atomic concepts Q1 and Q2, yielding
¬Q1t∀R.D1, ¬Q2t∀R.¬D2, and Q1tQ2. The problem is that the concept C is Horn,
but Q1 t Q2 is not. The previous example shows that a straightforward application
of the structural transformation can destroy Hornness. To remedy this, we modify
the structural transformation to replace each C|p with α chosen in a way such that
clausifying α and C|p requires the same number of positive literals. In the previous
example, this would mean that ∀R.D1 should be replaced with Q1, but ∀R.¬D2 should
be replaced with ¬Q2, yielding concepts ¬Q1 t ∀R.D1, Q2 t ∀R.¬D2, and Q1 t ¬Q2,
which are all Horn.

We formalize these considerations in the following definition. Intuitively, to produce
a clausal form of ∀x : πy(C, x), each nonatomic subconcept at a position p in C is
replaced with α or ¬α, depending on the polarity of C|p in C, where α requires the
same number of positive literals as C|p.

Definition 8.2.2. A Horn-compatible structural transformation is identical to the one
from Definition 5.3.1, with the following difference in the definition of Def(C):

• If Λ(C) = ∅, then Def(C) = {C};

8.2 A Horn Fragment of SHIQ(D) 153

• Otherwise, choose p ∈ Λ(C) and let Def(C) be as follows, where α = Q if
pl(C, p) > 0, and α = ¬Q if pl(C, p) = 0, for Q a new concept and ¬(¬Q) = Q:

Def(C) =
{
{¬α t C|p} ∪ Def(C[α]p) if p ∈ Λ(C) and pol(C, p) = 1
{¬α t (¬C)|p} ∪ Def(C[¬α]p) if p ∈ Λ(C) and pol(C, p) = −1

In the rest of this section, we assume that Ξ(KB) is computed using the Horn-
compatible structural transformation. It is obvious that Lemma 5.3.2 holds in this
case as well; that is, KB and Ξ(KB) are D-equisatisfiable. The only difference to
Definition 5.3.1 is that a concept at a position p in C can be replaced with ¬Q instead
of with Q, depending on pol(C, p) and pl(C, p). This obviously does not affect the
correctness of the transformation.

We now show that applying the Horn-compatible structural transformation to Horn
concepts produces Horn clauses.

Lemma 8.2.3. For a Horn-SHIQ(D) knowledge base KB, each closure from Ξ(KB)
contains at most one positive literal.

Proof. We first show the following property (*): for a Horn concept C, all concepts
in Def(C) are Horn concepts. The proof is by induction on the application of the
operator Def. The induction base for Λ(C) = ∅ is obvious. Consider an application
of Def(C), where C is a Horn concept and p is a position in C such that C|p is not
a literal concept, and for each position q below p, C|q is a literal concept. Observe
that, in all cases, we have pl+(α) = pl(C, p) and pl+(¬α) = 1− pl(C, p). Depending on
pol(C, p), we consider two cases:

• For pol(C, p) = 1, we have pl+(¬α t C|p) = pl+(¬α) + pl+(C|p) = pl+(¬α) +
pl(C, p) = 1. Furthermore, since pl(C, p) = pl(C[α]p, p), C[α]p is a Horn concept.

• For pol(C, p) = −1, we have pl+(¬αt (¬C)|p) = pl+(¬α)+pl−(C|p) = pl+(¬α)+
pl(C, p) = 1. Furthermore, since pl(C, p) = pl(C[¬α]p, p), C[¬α]p is a Horn
concept.

Hence, each application of the operator Def decomposes a Horn concept C into two
simpler Horn concepts, so (*) holds. Furthermore, each immediate subconcept of C|p
or (¬C)|p is a literal concept.

For D ∈ Def(C), by definition of π it is easy to see that pl+(D) gives the maximal
number of positive literals occurring in a closure from Cls(∀x : πy(D,x)). Thus, if C is
a Horn concept, all closures from Cls(C) have at most one positive literal. All closures
obtained by translating RBox and ABox axioms of Ω(KB) obviously contain at most
one positive literal, so the claim of the lemma follows.

We now show that BSD,+
DL , when applied to Horn premises, produces only Horn

conclusions.

154 8. Data Complexity of Reasoning

Lemma 8.2.4. If all premises of an inference by BSD,+
DL contain at most one positive

literal, the inference conclusions contain at most one positive literal as well.

Proof. In ordered hyperresolution and positive or negative superposition, each side
premise participates in an inference on the positive literal, which does not occur in
the conclusion. Hence, the number of positive literals in the conclusion is equal to
the number of positive literals in the main premise. Furthermore, reflexivity resolution
only reduces the number of negative literals in a closure, and equality factoring is never
applicable to a closure with only one positive literal. All side premises of a concrete
domain resolution inference participate in the inference on the positive literals, so
the conclusion contains only negative literals. Finally, a closure participating in a
decomposition inference contains the single positive literal R(t, f(t)), so both resulting
closures have exactly one positive literal.

The following corollary is a direct consequence of Lemmas 8.2.3 and 8.2.4:

Corollary 8.2.5. If KB is a Horn ALCHIQ(D) knowledge base, then DD(KB) is a
Horn datalog program.

We are now ready to show the main result of this section.

Lemma 8.2.6 (Membership). For an extensionally reduced Horn-SHIQ(D) knowl-
edge base KB, data complexity of checking D-satisfiability of KB is in P, assuming a
bound on the arity of concrete predicates, and that D-satisfiability of finite conjunctions
over ΦD can be decided in polynomial time,

Proof. Since KB is D-satisfiable if and only if DD(KB) is D-satisfiable, data complex-
ity of checking D-satisfiability of KB is bounded by the data complexity of checking
D-satisfiability of a Horn program DD(KB). The program DD(KB) can be c-factored
in time linear in |KBA|, so it suffices to show that the result is d-satisfiable. Satisfiabil-
ity of datalog programs without concrete predicates can be decided using bottom-up
fixpoint saturation in polynomial time [145, 78, 35]. If DD(KB) contains concrete
predicates, d-satisfiability can be decided by first saturating DD(KB) (which can also
be performed in time polynomial in the number of facts), followed by checking the
D-satisfiability of derived facts with concrete literals (which can be performed in poly-
nomial time by the assumption). As in Lemma 8.1.2, |DD(KB)| is polynomial in
|KBA|, so the claim of this lemma follows.

Lemma 8.2.7 (Hardness). For a Horn ALC knowledge base KB, instance checking
w.r.t. KB is P-hard in |KBA|.

Proof. The proof is implemented by the reduction from the well-known Boolean circuit
value problem [104]. A Boolean circuit C is a graph (G, δ,E) defined as follows:

• G = {γ1, ..., γn} is the set of nodes, also called gates;

• δ : G→ {T, F,∧,∨,¬} is a function assigning a label to each gate;

8.2 A Horn Fragment of SHIQ(D) 155

• E ⊆ G×G is the set of edges such that (i) E is acyclic—that is, i < j for each
(γi, γj) ∈ E; and (ii) the in-degree of gates labeled with T or F is zero, of gates
labeled with ¬ is one, and of gates labeled with ∧ or ∨ is two.

A valuation µ : G→ {T, F} over gates of C is defined inductively as follows (since
E is acyclic, the induction is well-founded):

• If δ(γ) ∈ {T, F}, then µ(γ) = δ(γ);

• If δ(γ) = ¬ and (γ1, γ) ∈ E, then µ(γ) = T if and only if µ(γ1) = F ;

• If δ(γ) = ∧, (γ1, γ) ∈ E, and (γ2, γ) ∈ E, then µ(γ) = T if and only if µ(γ1) = T
and µ(γ2) = T ;

• If δ(γ) = ∨, (γ1, γ) ∈ E, and (γ2, γ) ∈ E, then µ(γ) = T if and only if µ(γ1) = T
or µ(γ2) = T .

The value of C is defined as µ(C) = µ(γn). For an arbitrary circuit C, checking if
µ(C) = T is P-complete [104].

For a circuit C, we construct the knowledge base KBC in which each gate γi

corresponds to the individual γi. We convert the graph structure of C into ABox
assertions as follows:

• If δ(γ) = ¬ and (γ1, γ) ∈ E, we add the ABox assertion not(γ, γ1);

• If δ(γ) = ∧, (γ1, γ) ∈ E, and (γ2, γ) ∈ E, we add the ABox assertions and1(γ, γ1)
and and2(γ, γ2);

• If δ(γ) = ∨, (γ1, γ) ∈ E, and (γ2, γ) ∈ E, we add the ABox assertions or1(γ, γ1)
and or2(γ, γ2);

• If δ(γ) = T , we add the ABox assertion T (γ);

• If δ(γ) = F , we add the ABox assertion F (γ).

Furthermore, the TBox of KBC contains the following axioms:

∃not .T v F T u F v ⊥
∃not .F v T

∃and1.T u ∃and2.T v T ∃or1.T u ∃or2.T v T
∃and1.T u ∃and2.F v F ∃or1.T u ∃or2.F v T
∃and1.F u ∃and2.T v F ∃or1.F u ∃or2.T v T
∃and1.F u ∃and2.F v F ∃or1.F u ∃or2.F v F

It is now easy to see that µ(C) = T if and only if KBC |= T (γn). Namely, the
TBox axioms ensure that that concept membership is propagated through the circuit

156 8. Data Complexity of Reasoning

according to the standard semantics of propositional connectives. Hence, for each gate
γ, µ(γ) = T if and only if KBC |= T (γ), and µ(γ) = F if and only if KBC |= F (γ).2

Now the claim of the lemma follows because the size of the TBox of KBC is con-
stant, the size of the ABox of KBC is linear in the size of C, and KBC is a Horn
knowledge base.

The following theorem is an immediate consequence of these two lemmata.

Theorem 8.2.8. Let KB be an extensionally reduced Horn knowledge base expressed
in any logic between ALC and SHIQ(D). Assuming a polynomial oracle for reasoning
with a concrete domain and a bound on the arity of concrete domain predicates, the
problems of checking KB (D-)(un)satisfiability, and checking if KB |=(D) α are data
complete for P, for α of the form (¬)R(a, b) or of the form (¬)C(a) with C a Horn
concept of bounded size.

8.3 Discussion

To better understand the results from the previous two sections, we contrast them
with the well-known results for (disjunctive) datalog [35]. Since datalog has been
successfully applied in practice, this analysis gives interesting insights into the practical
applicability of description logics.

Note that the complexities of datalog variants and of corresponding SHIQ frag-
ments seem to coincide. Without disjunctions, a SHIQ knowledge base and a datalog
program always have at most one model, which can be computed in polynomial time.
With disjunctions, several models are possible, and this must be dealt with using rea-
soning by case. Intuitively, one needs to guess a model, which increases data complexity
to NP.

The key difference between datalog and description logics is revealed by considering
the effects that various parameters have on the complexity. For a datalog program P
and a ground atom α, checking whether P |= α can be performed in time O(|P |v),
where v is the maximal number of distinct variables in a rule of P [146]. Namely,
the problem can be solved by grounding P—that is, by replacing in each rule of P all
variables with individuals from P in all possible ways. The size of the grounding is
bounded by |P |v, and propositional Horn logic is P-complete, which implies O(|P |v)
complexity. In general, v is linear in |P |, so the size of the grounding is exponential;
thus, the combined complexity of datalog coincides with the combined complexity of
SHIQ. However, in practical applications, v is usually small, so it makes sense to
assume it is bounded; then, datalog actually exhibits polynomial behavior.

An intuitive analogous limitation for DLs might be to restrict the size of concepts in
axioms. However, this is not an adequate limitation. Namely, DLs are closely related

2Note that the structure of KBC ensures that each gate is a member of either T or F concept, even
though the TBox does not contain an axiom > v T t F . Furthermore, including such an axiom into
KBC would invalidate the proof, because this would make KBC a non-Horn knowledge base.

8.4 Related Work 157

to the two-variable fragment of first-order logic [21]: ALC concepts correspond to first-
order formulae with only two variables, regardless of nesting. By limiting the numbers
occurring in number restrictions to n, the number of variables in SHIQ axioms is
limited to n + 2. Axioms with complex concepts can be polynomially reduced to
axioms with atomic concepts using structural transformation.

We summarize our observations as follows: assuming a bound on the axiom length,
but not on the number of axioms, satisfiability checking in datalog is (nondeterminis-
tically) polynomial, but in DLs it is exponential. This is so because DLs such as ALC
provide the existential quantifier and general inclusion axioms, which can be used to
succinctly encode models with paths of exponential length. The saturation step elim-
inates the function symbols, but it also incurs an exponential blowup in the program
size to account for such paths. Hence, although combined complexity of both datalog
and DLs is exponential, the reasons for this are different.

In [4, Chapter 5], two sources of complexity in DLs have been identified: OR-
branching caused by the existence of numerous possible models, and AND-branching
caused by the existence of paths within a model. Our results show that OR-branching
is not as difficult as AND-branching: the former increases the complexity to NP,
whereas the latter increases the complexity to ExpTime.

8.4 Related Work

Data complexity of reasoning in description logics has so far been rarely considered.
The only work we are aware of is [126, 125], where the complexity bounds of instance
checking for certain description logics were considered. In particular, it was shown that
combined complexity of instance checking for languages with polynomial subsumption
algorithm, such as AL and ALN , is also polynomial. For ALE it was shown that
instance checking is co-NP-hard in the size of data; however, ΠP

2 is given as the upper
bound. Furthermore, it was shown that the combined complexity of instance checking
in ALE is PSpace-complete. Finally, for ALR, it was shown that the combined
complexity of instance checking is NP-complete. It was pointed out that the additional
source of complexity in ALE over ALR arises from qualified existential quantification.

Whereas the hardness proof for ALE provides a lower bound for data complexity
of satisfiability, the upper bound does not follow from [126], since none of the logics
considered is as expressive as ALC or SHIQ(D). In particular, no considered logic
allows for general inclusion axioms, which are known to have a significant impact on
the complexity. Furthermore, the complexity of reasoning in [126] is measured in the
size of the ABox that is allowed to contain complex concept expressions. Our work
addresses the logic with general inclusion axioms, but restricts the ABox to contain
only literal concepts. Hence, our results measure the complexity in the number of
simple facts, without any terminological knowledge in the ABox.

158 8. Data Complexity of Reasoning

Part III

Extensions

159

Chapter 9

Integrating Description Logics
with Rules

Although SHIQ(D) is very expressive, it is a decidable fragment of first-order logic,
and thus cannot express arbitrary axioms. In fact, it can express only axioms of
a certain tree-structure [57]. Decidable rule-based formalisms, such as function-free
Horn rules,1 do not have this restriction, but lack some of the expressive power of
SHIQ(D), since they are restricted to universal quantification and, in their basic form,
provide no negation. To overcome the limitations of both approaches, description logics
were extended with rules [69], but this extension is undecidable [69]. Intuitively, the
undecidability arises because adding rules to SHIQ(D) causes the loss of any form of
tree model property [147]. In a logic with such a property, every satisfiable knowledge
base has a model of a certain tree-shaped form, so, to decide satisfiability, it suffices
to search only for such a model. For most DLs, it is possible to ensure termination of
such a search.

It is natural to ask what kind of rules can be added to SHIQ(D) while preserving
decidability. This follows a classic line of research in knowledge representation of
investigating the trade-off between expressivity and complexity, and providing different
formalisms with varying expressive power and complexity. This not only provides for
better understanding of the causes for the undecidability of the full combination, but
also enables a more detailed analysis of the complexity and, ultimately, the design of
specialized reasoning procedures. Applications that do not require the expressive power
of the full combination can use such procedures, and rely on the known upper time
and space bounds required to return a correct answer. Finally, in the last decade, it
turned out that these specialized decision procedures are amenable to optimizations,
thus achieving surprisingly good performance in practice even for logics with high
worst-case complexity [4, Chapter 9].

In this chapter, we present a decidable combination of SHIQ(D) with rules, where
decidability is achieved by requiring the rules to be DL-safe: concepts (roles) are

1Throughout this chapter, we use “rules” and “clauses” as synonyms, following [69].

161

162 9. Integrating Description Logics with Rules

Table 9.1: Example Knowledge Base

Person(Peter) Peter is a person.
Person v ∃father .Person Each person has a father who is a person.
∃father .(∃father .Person) v Grandchild Things having a father of a father who

is a person are grandchildren.

allowed to occur in both rule bodies and heads as unary (binary) predicates in atoms,
but each variable in a rule is required to occur in a body literal whose predicate is
neither a concept nor a role. Intuitively, this restriction makes the logic decidable
because the rules are applicable only to individuals explicitly introduced in the ABox.
Our formalism is a generalization of existing hybrid approaches presented in [84, 39],
and a special case of approaches presented in [123, 69]. We discuss the expressive
power and the limitations of our approach in a nontrivial example. Moreover, we show
that query answering with DL-safe rules can be performed by simply appending the
rules to a program obtained by the reduction from Chapter 7.

9.1 Reasons for Undecidability of SHIQ(D) with Rules

An approach for integrating an OWL-DL knowledge base KB with a datalog program P
was presented in [69]. The integration is achieved by assuming NC ∪NRa ∪NRc ⊆ NP ,
and by interpreting the resulting hybrid knowledge base under standard first-order
semantics (that is, the rules in P are interpreted as clauses). In other words, concepts
and roles can be used in rules as unary and binary predicates, respectively. It was
shown that checking satisfiability of such a hybrid knowledge base is undecidable; as
a consequence, subsumption and query answering w.r.t. hybrid knowledge bases are
also undecidable. Investigating the proof from [69] and [84] more closely, we note that
the undecidability is caused by the interaction between some very basic features of
description logics and rules. In this section, we try to give an intuitive explanation of
this result and its consequences.

Consider the simple knowledge base KB from Table 9.1. This knowledge base
implies the existence of an infinite chain of fathers: since Peter must have a father,
there is some x1 who is a Person. In turn, x1 must have some father x2 , who must
be a Person, and so on. An infinite model with such a chain is shown in Figure 9.1,
upper part (a). Observe that Peter is a grandchild, since he has a father of a father,
who is a person.

Let us now check whether KB |= Grandchild(Jane); this is the case if and only if
KB∪{¬Grandchild(Jane)} is unsatisfiable. We can perform this task by trying to build
a model; if we fail, then we conclude that KB ∪ {¬Grandchild(Jane)} is unsatisfiable.
However, we have a problem: starting from Peter , a näıve approach will expand the
chain of Peter’s fathers indefinitely, and will therefore not terminate.

9.1 Reasons for Undecidability of SHIQ(D) with Rules 163

This very simple example intuitively shows that we have to be careful if we want to
ensure termination of a model building algorithm. For many DLs, termination can be
ensured without losing completeness because we can restrict our attention to certain
“nice” models. For numerous DLs, we can consider only tree models—that is, models
in which the underlying relational structure forms a tree [147]. This is so because
every satisfiable knowledge base has such a tree model (to be precise, for certain logics
we consider tree-like abstractions of possibly nontree models, but this distinction is
not relevant here). Even if such a tree model is infinite, we can wind this infinite tree
model into a finite one. In our example, since KB does not require each father in the
chain to be distinct (that is, there is no axiom requiring the role father to be acyclic),
the model in Figure 9.1, lower part (b), is the result of winding an infinite tree into
a “nice,” finite model. Due to their regular structure, such windings of tree models
can be easily constructed in an automated way. To understand why every satisfiable
SHIQ(D) knowledge base has a tree model [73], consider the mapping π from Tables
3.1 and 3.4 more closely (we ignore some technicalities caused by transitive roles): in all
formulae obtained by transforming the result of π into prenex normal form, variables
are connected by roles only in a tree-like manner, as shown in the following example:

∃S.(∃R.C u ∃R.D) v Q ⇒
∀x : {[∃y : S(x, y) ∧ (∃x : R(y, x) ∧ C(x)) ∧ (∃x : R(y, x) ∧D(x))]→ Q(x)} ⇒
∀x, x1, x2, x3 : {S(x, x1) ∧R(x1, x2) ∧ C(x2) ∧R(x1, x3) ∧D(x3)→ Q(x)}

Let us contrast these observations with the kind of reasoning required for function-
free Horn rules. In such rules, all variables are universally quantified; that is, there
are no existentially quantified variables in rule consequents. Hence, we never have
to infer the existence of objects not enumerated in the Herbrand universe. Thus,
reasoning algorithms can consider only individuals that are explicitly introduced and
are given a name in the knowledge base. Reasoning can be performed by grounding
the rules—that is, by replacing the variables in the rules with all individuals from the
knowledge base in all possible ways. Through grounding, first-order reasoning becomes
propositional, since a ground rule is essentially equivalent to a propositional clause.
For a finite program, the number of ground rules is also finite, and satisfiability of a set
of propositional clauses is decidable. Hence, non-tree-like rules are allowed to enforce
arbitrary, but finite, nontree models, and not only “nice” models.

Figure 9.1: Two Similar Models

164 9. Integrating Description Logics with Rules

Now let us see what happens if we extend SHIQ(D) with function-free Horn rules.
Then, we combine a logic that can be decided by restricting our attention to “nice”
models (but with possibly infinitely many individuals whose existence is implied by
a knowledge base) with a logic that can be decided by restricting our attention to
known individuals (but with arbitrary relations between them). Unsurprisingly, this
and similar combinations are undecidable [84, 69].

9.2 Combining Description Logics and Rules

We now formalize the interface between SHIQ(D) and rules.

Definition 9.2.1 (DL-Rules). Let KB be a SHIQ(D) knowledge base. For s and t
constants or variables, a DL-atom is an atom of the form A(s), where A is an atomic
concept in KB, of the form R(s, t) where R is simple (abstract or concrete) role in KB,
or of the form s ≈ t. A non-DL-atom is an atom with a predicate other than ≈, an
atomic concept in KB, or a role in KB. A (disjunctive) DL-rule is a (disjunctive) rule
with DL- and non-DL-atoms in the head and the body. A (disjunctive) DL-program P
is a set of (disjunctive) DL-rules. A combined knowledge base is a pair (KB , P).

We define the translation operator π on rules to interpret them as first-order clauses
(x is the vector of all free variables of the rule):

π(A1 ∨ ... ∨An ← B1, ..., Bm) = ∀x : {A1 ∨ ... ∨An ∨ ¬B1 ∨ ... ∨ ¬Bm}

For a DL-program P , we define π(P) =
∧

r∈P π(r), and, for a combined knowledge base
(KB , P), we define π((KB , P)) = π(KB) ∧ π(P). The main inferences for combined
knowledge bases are defined as follows:

• Satisfiability checking: (KB , P) is satisfiable if and only if π((KB , P)) is D-
satisfiable.

• Query answering: A ground atom α is an answer of (KB , P), denoted with
(KB , P) |= α, if and only if π((KB , P)) |=D π(α).

A few remarks regarding Definition 9.2.1 are in order.

Minimal vs. First-order Models. Rules are usually interpreted under minimal
model semantics. In contrast, the semantics of DL-rules is classical, in the sense
that it considers arbitrary models. An in-depth comparison between the two types of
semantics was presented in Subsection 4.8.2.

Transitive Roles. It is straightforward to extend Definition 9.2.1 to allow DL-atoms
to contain complex roles. However, our algorithms deal with transitivity axioms by en-
coding a SHIQ(D) knowledge base KB into a D-equisatisfiable ALCHIQ(D) knowl-
edge base Ω(KB). As mentioned in Section 5.2, this transformation does not preserve
entailment of ground complex role atoms. Therefore, we prohibit the usage of complex
roles in rules (such roles can still be used in KB).

9.3 DL-Safety Restriction 165

(In)equality Literals. Without loss of generality, we allow only positive equality
literals in DL-rules. Namely, DL-rules can be disjunctive and are interpreted under
standard first-order semantics, so a negative equality literal in the body can be moved
as a positive literal into the head. For example, the following rule defines Commuter
as a person who lives and works at different places:

Commuter(x)← livesAt(x, y),worksAt(x, y), x 6≈ y

By standard properties of first-order logic, this rule is equivalent to the following one:

Commuter(x) ∨ x ≈ y ← livesAt(x, y),worksAt(x, y)

By allowing only positive equality literals in rules, we make Definition 9.2.1 consis-
tent with the definition of disjunctive datalog from Section 2.7, which allows only for
positive atoms in rule bodies.

Note also that positive equality literals in the rule body do not increase the expres-
sivity of the formalism. Namely, for a first-order formula ϕ, a variable x, and a term
t that does not contain x as a proper subterm, the formulae ∀x : (x ≈ t → ϕ) and
ϕ{x 7→ t} are equisatisfiable [99]. However, positive equality literals in the rule heads
do increase the expressivity, as they allow deriving two objects to be equal. In order
not to make Definition 9.2.1 too technical, we do not distinguish these two cases.

Relationship with Existing Formalisms. Definition 9.2.1 yields a formalism com-
patible with the ones from [69, 84, 123]. The main differences from [69] are that DL-
rules can additionally contain non-DL-atoms; furthermore, DL-atoms cannot contain
inequality, and they can contain only simple roles and atomic concepts. The latter is
a technical assumption and is not really a restriction: for a complex concept C, one
can always introduce a new atomic concept AC , add the axiom AC ≡ C to the TBox,
and use AC in the rule. This transformation is obviously linear in the size of P .

Decidability. Since the formalism is compatible with [69], reasoning with combined
knowledge bases is undecidable. To achieve decidability, we introduce the notion of
DL-safety in the following section.

9.3 DL-Safety Restriction

A possible way to obtain a decidable logic is to require DL-rules to be DL-safe.

Definition 9.3.1 (DL-Safe Rules). A (disjunctive) DL-rule r is DL-safe if each vari-
able occurring in r also occurs in a non-DL-atom in the body of r. A (disjunctive)
DL-program P is DL-safe if all its rules are DL-safe.

DL-safety is similar to safety in datalog. In a safe rule, each variable occurs in
a positive atom in the body, and can therefore be bound only to constants explicitly

166 9. Integrating Description Logics with Rules

present in the database. Similarly, DL-safety ensures that each variable is bound only
to individuals explicitly introduced in the ABox. For example, if Person, livesAt , and
worksAt are concepts and roles from KB , the following rule is not DL-safe, because
both x and y occur in DL-atoms, but not in an atom with a predicate outside of KB :

Homeworker(x)← Person(x), livesAt(x, y),worksAt(x, y)

The previous rule can be made DL-safe by adding special non-DL-atoms O(x),
O(y), and O(z) to the body of the rule, and by adding a fact O(a) for each individual
a occurring in KB and P . Thus, the previous rule is transformed as follows:

Homeworker(x)← Person(x), livesAt(x, y),worksAt(x, y),O(x),O(y),O(z)

9.4 Expressivity of DL-Safe Rules

To achieve decidability, we do not restrict the component languages; rather, we com-
bine full SHIQ(D) with function-free Horn rules, and thus extend both formalisms.
However, DL-safety restricts the interaction between the component languages to in-
volve only individuals explicitly introduced in the ABox.

To illustrate the expressive power of DL-safe rules, consider the combined knowl-
edge base (KB , P), containing DL axioms and rules from Table 9.2. We use a rule
to define the only non-DL-predicate BadChild as a grandchild who hates some of his
siblings (or himself). Note that this rule involves relations forming a triangle between
two siblings and a parent, and thus cannot be expressed in SHIQ(D); furthermore,
the rule is not DL-safe.

Now consider the first group of ABox facts. Since Cain is a Person, as shown in
Section 9.1, one can infer that Cain is a Grandchild . Since Cain and Abel are children
of Adam, and Cain hates Abel , we derive that Cain is a BadChild .

Similarly, since Romulus and Remus are persons, they have a father. Due to the
second rule, the father of Romulus and Remus must be the same. Now Romulus hates
Remus, so Romulus is a BadChild as well. We are able to derive this without knowing
exactly who the father of Romulus and Remus is.2

Consider now the DL-safe rule defining BadChild ′: since the father of Cain and
Abel is known by name—that is, Adam is in the ABox—, the literal O(y) from the
rule for BadChild ′ can be matched to O(Adam), allowing us to conclude that Cain is
a BadChild ′. In contrast, the father of Romulus and Remus is not known in the ABox.
Hence, in the DL-safe version of the second rule, O(x) and O(y) cannot be matched to
the father’s name, so the rule does not derive that the fathers of Romulus and Remus
are the same. Similarly, in the rule defining BadChild ′, the literal O(y) cannot be
matched to the father’s name, so we cannot derive that Romulus is a BadChild ′.

This may seem confusing. However, DL-safe rules do have a natural reading: just
append the phrase “where the identity of all objects is known” to the intuitive meaning

2Actually, the father of Romulus and Remus is the god Mars, but we assume that this is not known
to the modeler of KB . Still, the father’s existence is certain, which is reflected by KB .

9.4 Expressivity of DL-Safe Rules 167

Table 9.2: Example with DL-Safe Rules

Person v ∃father .Person Each person has a father who is a person.
∃father .(∃father .Person) v Grandchild Things having a father of a father who

is a person are grandchildren.
father v parent Fatherhood is a kind of parenthood.
BadChild(x)← Grandchild(x), A bad child is a grandchild who hates

parent(x, y), parent(z, y), hates(x, z) one of his siblings.
BadChild ′(x)← Grandchild(x), DL-safe version of a bad child.

parent(x, y), parent(z, y), hates(x, z),
O(x),O(y),O(z)

Person(Cain) Cain is a person.
father(Cain,Adam) Cain’s father is Adam.
father(Abel ,Adam) Abel’s father is Adam.
hates(Cain,Abel) Cain hates Abel.

Person(Romulus) Romulus is a person.
Person(Remus) Remus is a person.
x ≈ y ← father(Romulus, x), father(Remus, y) Romulus and Remus have the same father.
x ≈ y ← father(Romulus, x), father(Remus, y), DL-safe version.
O(x),O(y)

hates(Romulus,Remus) Romulus hates Remus.

Child(x)← GoodChild(x),O(x) Good children are children.
Child(x)← BadChild ′(x),O(x) Bad children are children.
(GoodChild t BadChild ′)(Oedipus) Oedipus is a good or a bad child.

O(α) for each explicitly named individual α Enumeration of all ABox individuals.

of the rule. For example, the rule defining BadChild ′ should be read as “A BadChild ′ is
a known grandchild whose parent is known, and who hates one of his known siblings.”

Combining description logics with DL-safe rules increases the expressivity of both
components. Namely, a SHIQ(D) knowledge base cannot imply that Cain is a
BadChild ′, because the rule expressing a triangular relationship cannot be expressed
in SHIQ(D). Similarly, function-free Horn rules cannot imply this either: we know
that Cain has a grandfather because Cain is a person, but we do not know who he is.
Hence, we need the existential quantifier to infer the existence of ancestors, and then
to infer that Cain is a Grandchild .

Note that it is incorrect to compute all consequences of the DL component first, and
then to apply the rules to these consequences. Consider the KB part about Oedipus:
he is a GoodChild or a BadChild ′, but we do not know exactly what is true. Either
way, one of the rules derives that Oedipus is a Child , so (KB , P) |= Child(Oedipus).
This would not be derived by applying the rules for Child to the consequences of KB ,
since KB 6|= GoodChild(Oedipus) and KB 6|= BadChild ′(Oedipus).

168 9. Integrating Description Logics with Rules

9.5 Query Answering for DL-Safe Rules

We now show that reasoning in (KB , P) can be performed by simply appending P to
DD(KB). To do that, we extend several lemmata used in the proof of Theorem 7.4.2.

For a SHIQ(D) knowledge base KB , the first step in query answering is to elim-
inate transitivity axioms by encoding KB into an D-equisatisfiable ALCHIQ(D)
knowledge base Ω(KB), as explained in Section 5.2. Observe that Definition 9.3.1
allows only simple roles to occur in DL-atoms, and that, as discussed in Section 5.2,
this encoding preserves entailment of such atoms. Hence, for P a DL-safe program,
(KB , P) and (Ω(KB), P) are equisatisfiable. Hence, in the rest of this section we
assume without loss of generality that KB is an ALCHIQ(D) knowledge base.

Let P c be a c-factor of π(P). Without loss of generality, we can assume that P c

is computed by first applying c-factoring to all negative DL-atoms, and then to non-
DL-atoms in a rule. Thus, for a clause C from P c, negative DL-atoms containing a
concrete role occur in C only in disjunctions of the form ¬T (x, zc)∨zc 6≈D yc, where yc

occurs in a non-DL-atom because of DL-safety. Furthermore, in all positive DL-atoms
T (x, yc) of C, yc also occurs in a negative non-DL-atom because of DL-safety.

By Lemma 6.1.6, D-satisfiability of Ξ(KB) ∪ P coincides with d-satisfiability of
Ξ(KB)∪P c, and the latter can be decided by BSD,+

DL . To obtain a decision procedure,
we extend the selection function of BSD,+

DL as follows: if a closure contains negative
non-DL-atoms, then all such atoms, and nothing else are selected; otherwise, if there
are no negative non-DL-atoms, the selection function is as in Definition 5.3.3—that is,
it selects all negative binary literals.

We define the extended ALCHIQ(D)-closures to include the closure types from
Table 5.2 without conditions (iii)–(vi), the closure types from Table 6.2, and the
closures corresponding to c-factors of DL-safe rules. Furthermore, closures of type
8 are allowed to contain positive ground non-DL-atoms and negative non-DL-atoms
whose arguments are either variables or constants.

Lemma 9.5.1. For an ALCHIQ(D) knowledge base KB, saturation by BSD,+
DL decides

d-satisfiability of Ξ(KB) ∪ P c.

Proof. All closures from Ξ(KB) ∪ P c are obviously extended ALCHIQ(D)-closures.
To prove the lemma, it is sufficient to show the following property (*): in a BSD,+

DL -
derivation Ξ(KB) ∪ P c = N0, . . . , Ni ∪ {C}, the closure C, derived from premises in
Ni, is either an extended ALCHIQ(D)-closure, or it is redundant in Ni.

All ground non-DL-atoms in Ξ(KB) ∪ P c contain constants. Hence, a superpo-
sition into a ground non-DL-atom is possible only from a literal 〈a〉 ≈ 〈b〉, and in
the superposition conclusion all non-DL-atoms contain constants. Consider an infer-
ence with a rule r. Since r is DL-safe, it can participate only in a hyperresolution
inference with side premises of type 8 on non-DL-literals. Furthermore, r is safe, so,
since all ground non-DL-atoms contain constants, hyperresolution binds all variables
in a rule to constants. An exception is variables zc in literals of the form ¬T (x, zc)
with T a concrete role. However, due to c-factoring and DL-safety, such literals occur

9.5 Query Answering for DL-Safe Rules 169

in rules always as part of a disjunction ¬T (x, zc) ∨ zc 6≈D yc, where x and yc occur
in non-DL-atoms, so these literals have in the hyperresolution conclusion the form
¬T (a, zc) ∨ zc 6≈D bc. Obviously, the conclusion is a closure of type 8. Furthermore,
closures of type 8 can participate in BSD,+

DL inferences with other closures in exactly
the same way as in Lemma 5.3.6, Lemma 6.2.1, and Theorem 5.4.8, so the property
(*) holds. Since BSD,+

DL is sound and complete calculus for checking d-satisfiability,
the claim of the lemma follows.

The next step is to show that rules can simply be appended to the function-free
version of KB .

Lemma 9.5.2. (KB , P) is unsatisfiable if and only if FF(KB)∪P c is d-unsatisfiable.

Proof. By Theorem 6.1.20, d-satisfiability of FF(KB)∪P c can be decided by a BSD,+
DL

saturation, in which we can choose to perform all nonground inferences before all
ground inferences. Since all non-DL-atoms in rules from P c are selected and each rule
by the DL-safety requirement must contain at least one such atom, the rules cannot
participate in an inference with nonground closures from Ξ(KB) ∪ P c. Hence, as in
Lemma 7.2.1, Ξ(KB)∪P c is d-satisfiable if and only if Γ = SatR(ΓT Rg)∪Ξ(KBA)∪P c

is d-satisfiable.
It is now straightforward to extend Lemma 7.2.4 to show that Γ is d-unsatisfiable if

and only if FF(KB)∪P c is d-unsatisfiable. For both directions of the proof, a hyperres-
olution with a rule r in one closure set can directly be simulated by a hyperresolution
with r in the other closure set.

We now state the main result of this section:

Theorem 9.5.3. Let KB be an ALCHIQ(D) knowledge base, and P a DL-safe dis-
junctive datalog program. Then, (KB , P) is unsatisfiable if and only if DD(KB)∪P is
D-unsatisfiable. Furthermore, (KB , P) |= α if and only if DD(KB) ∪ P |=c α, where
α is a ground DL- or a non-DL-atom.

Proof. Because FF(KB)∪P is D-satisfiable if and only FF(KB)∪P c is d-satisfiable, the
first claim follows from Lemma 9.5.2. For the second claim, observe that (KB , P) |= α
if and only if (KB ∪ {¬α}, P) is unsatisfiable. The latter is the case if and only if
FF(KB ∪ {¬α})∪ P = FF(KB)∪ P ∪ {¬α} is D-unsatisfiable, which is the case if and
only if DD(KB) ∪ P |=c α.

Query answering in DD(KB)∪P can be performed using the algorithm from Section
7.6, for which we now determine the complexity. As explained in Section 7.5, P≈ is
the axiomatization of the equality semantics for predicates occurring in a program P .

Theorem 9.5.4. Let KB be an ALCHIQ(D) knowledge base, defined over a concrete
domain D such that D-satisfiability of finite conjunctions over ΦD can be decided in
deterministic exponential time. Also, let P be a DL-safe program, Γ′ = DD(KB) ∪ P ,
and Γ = Γ′ ∪ Γ′≈. Finally, let numbers be coded in unary, and the arity of concrete

170 9. Integrating Description Logics with Rules

predicates be bounded. Then, computing all answers to a nonground query in (KB , P)
can be done by saturating a c-factor of Γ by RD

Q in time exponential in |KB | + |P |
assuming a bound on the arity of predicates in P , and in time doubly exponential in
|KB |+ |P | otherwise.

Proof. The number of clauses in Γ′≈ is polynomial in |KB | + |P |. As done in Lemma
5.3.9, to determine the complexity of the algorithm, we compute the maximal number
of clauses derivable in a saturation by RD

Q . Let p denote the number of non-DL-
predicates, r the maximal arity of a predicate, c the number of constants occurring in
(KB , P), and b the maximal number of literals in a body of a rule from P . Under the
theorem assumptions, p, c, and b are linear in |KB | + |P |. If r is not bounded, it is
also linear in |KB |+ |P |.

The number of non-DL-literals occurring in a maximal ground clause is bounded
by `1 = 2pcr (the factor 2 allows each literal to occur positively or negatively). If
the predicate arity is bounded, then `1 is polynomial, and if the predicate arity is
unbounded, it is exponential in |KB | + |P |. By Lemma 5.3.9, we know that the
maximal number of DL-atoms in a clause, denoted with `2, is polynomial in |KB |
assuming a bound on the arity of concrete domain predicates and for unary coding of
numbers. Since each ground clause can contain an arbitrary subset of these literals,
the maximal number of ground clauses derived by RD

Q is bounded by k = 2`1+`2 ,
which is exponential for bounded arity, and doubly exponential for unbounded arity
of predicates in P .

Each rule from Γ can participate in a hyperresolution inference with ground clauses
in kb ways, which is exponential in |P |. Furthermore, by Theorem 7.4.2 the number
of rules t in Γ is exponential in |KB | + |P |. Hence, the number of hyperresolution
inference steps is bounded by tkb = t · 2b·(`1+`2). For bounded arity of predicates in
P , this number is exponential, and doubly exponential otherwise. Hence, in the same
way as in Lemma 6.2.5, the number of concrete domain inference steps is exponential
for bounded arity of predicates in P , and doubly exponential otherwise, thus implying
the claim of the theorem.

Note that most applications require predicates of small arity. Hence, the assump-
tion that the arity of predicates is bounded is realistic in practice, thus giving a worst-
case optimal algorithm.

9.6 Related Work

AL-log [39] is a hybrid logic that combines an ALC knowledge base with datalog
rules, where the latter can be constrained with unary atoms having ALC concepts
as predicates in rule bodies. Query answering in AL-log is decided by a variant of
constrained resolution combined with a tableau algorithm for ALC. The combined
algorithm is shown to run in single nondeterministic exponential time. Because atoms
with concept predicates can occur only as constraints in rule bodies, the rules are

9.6 Related Work 171

applicable only to explicitly named objects. Our restriction to DL-safe rules has the
same effect. However, our approach is more general in the following ways: (i) it
supports a more expressive description logic, (ii) it allows using both concepts and roles
in DL-atoms, and (iii) DL-atoms can be used in rule heads as well. Furthermore, we
present a query answering algorithm as an extension of deductive database techniques
running in deterministic exponential time.

A comprehensive study of combining datalog rules with description logics was pre-
sented in [84]. The logic considered is ALCNR, which, although less expressive than
SHIQ, provides constructors characteristic of most DL languages. The results of the
study can be summarized as follows: (i) answering conjunctive queries over ALCNR
knowledge bases is decidable, (ii) query answering in the extension of ALCNR with
nonrecursive datalog rules, where both concepts and roles can occur in rule bodies, is
also decidable, because it can be reduced to computing a union of conjunctive query
answers, (iii) if rules are recursive, query answering becomes undecidable, (iv) decid-
ability can be regained by disallowing certain combinations of constructors in the logic,
and (v) decidability can be regained by requiring rules to be role-safe, where at least
one variable from each role literal must occur in a non-DL-atom. As in AL-log, query
answering is decided using constrained resolution and a modified version of the tableau
calculus. Apart from treating a more expressive logic, in our approach all variables in
a rule must occur in at least one non-DL-atom, but concepts and roles are allowed to
occur in rule heads. Hence, when compared to the variant (v), our approach is slightly
less general in some, and slightly more general in other aspects.

The Semantic Web Rule Language (SWRL) [69] combines OWL-DL with rules in
which concept and role predicates are allowed to occur in the head and in the body
without any restrictions. Hence, apart from technicalities such as allowing concept
expressions to occur in rules, SWRL is compatible with DL-rules. As mentioned be-
fore, this combination is undecidable but, as pointed out by the authors, (incomplete)
reasoning in such a logic can be performed using general first-order theorem provers.
By restricting DL-safe rules to contain only DL-atoms and the special predicate O, we
obtain a proper subset of SWRL, in which expressivity is traded for decidability. Also,
we provide an optimal query answering algorithm for a fragment of SWRL.

An approach for combining rules and description logics under a nonmonotonic
semantics was presented in [123]. To achieve decidability, the author also employs
DL-safety. Furthermore, rules are allowed to contain non-DL-atoms under negation-
as-failure, which is interpreted under stable-model semantics. Finally, unique name
assumption was assumed in [123], but this was later dropped in [124]. Hence, for
programs without negation-as-failure and for answering positive ground queries, this
approach coincides with ours. Also, in [123], a reasoning algorithm was presented,
which don’t-know nondeterministically reduces satisfiability and query answering w.r.t.
combined knowledge bases to satisfiability of a DL knowledge base. Due to a huge
amount guessing, such an algorithm is likely to be unsuitable for practice; on the
contrary, we present a deterministic reasoning algorithm that can be combined with
existing optimization techniques of disjunctive deductive databases.

172 9. Integrating Description Logics with Rules

Another approach for combining answer set programming with description logics
was presented in [44]. The interaction between the subsystems is enabled by exchanging
only unit ground consequences between the two components. The set of derivable facts
is obtained by fixpoint computation. In this approach, the two systems are not tightly
integrated, since the interaction between the systems is performed only through the
exchange of unit consequences, resulting in a semantics that is not compatible with
the first-order semantics. In the example in Section 9.4, this approach cannot derive
that Oedipus is a child from the fact that Oedipus is a GoodChild or a BadChild ′.

The approaches from [57] and [148] for reducing certain DL fragments to logic
programming can easily be extended with rules, by simply appending the rules to the
result of the transformation. However, the DL considered there does not support exis-
tential quantifiers, negation, or disjunction under positive polarity, so it is significantly
less expressive than Horn-SHIQ(D). Hence, our approach is a proper extension.

Chapter 10

Answering Conjunctive Queries

Conjunctive queries were introduced in [32] as a formalism capable of expressing the
class of selection–projection–join–renaming relational queries [1]. The vast majority of
relational queries used in practice falls into this fragment, so a great deal of database
research has been devoted to devising efficient algorithms for query answering and
deciding query containment.

Because conjunctive queries have been found useful in diverse practical applications,
it is natural to use them as an expressive formalism for querying description logic
knowledge bases. Algorithms for answering conjunctive queries over DL knowledge
bases expressed in various DL variants were presented in [143, 28, 72]. A common
approach used in these algorithms is to reduce the problem of query answering to
standard DL reasoning problems, as this enables reusing existing DL reasoning systems
and services.

It is well known that complex encodings usually yield relatively poor performance
in practice. Hence, in this chapter, we extend the algorithms from Chapters 5 and 6
to obtain an algorithm for answering conjunctive queries that works directly with
the query and the knowledge base, without any encoding. In this way, we obtain an
algorithm suitable for practical application. Furthermore, to the best of our knowledge,
this is the first attempt to realize conjunctive query answering over description logic
knowledge bases in the framework of resolution.

10.1 Definition of Conjunctive Queries

We first define conjunctive queries over ALCHIQ(D) knowledge bases.

Definition 10.1.1. Let KB be an ALCHIQ(D) knowledge base, and let x1, . . . , xn

and y1, . . . , ym be sets of distinguished and nondistinguished variables, denoted with
x and y, respectively. A conjunctive query over KB, denoted with Q(x,y), is a finite
conjunction of DL-atoms of the form (¬)A(s) or R(s, t), for A an atomic concept,
R an abstract role, and s and t individuals from KB or variables from x or y. The
inference problems for conjunctive queries are defined as follows:

173

174 10. Answering Conjunctive Queries

• Query answering: An answer of a query Q(x,y) w.r.t. KB is an assignment θ
of individuals to distinguished variables such that π(KB) |=D ∃y : Q(xθ,y).

• Query containment: A query Q2(x,y2) is contained in a query Q1(x,y1) w.r.t.
KB if π(KB) |=D ∀x : [∃y2 : Q2(x,y2)→ ∃y1 : Q1(x,y1)].

A few remarks regarding Definition 10.1.1 are in order.

Negative Atoms. Negative concept atoms are usually not allowed to occur in con-
junctive queries. However, including such atoms in Definition 10.1.1 makes the follow-
ing presentation simpler, and does not change the formalism in any significant way.

Abstract Roles. The restriction to abstract roles in queries has been introduced
in order not to require c-factoring of the query, which introduces problems for our
algorithms. Note that concrete roles can still be used in the knowledge base.

Transitive Roles. It is straightforward to extend Definition 10.1.1 to SHIQ(D)
knowledge bases; however, handling transitivity in queries seems to be quite difficult in
the framework developed in previous chapters. Namely, our algorithms deal with tran-
sitivity axioms by encoding a SHIQ(D) knowledge base KB into a D-equisatisfiable
ALCHIQ(D) knowledge base Ω(KB). As mentioned in Section 5.2, this transfor-
mation does not preserve entailment of ground complex role atoms. Therefore, we
prohibit the usage of complex roles in conjunctive queries (note that such roles can
still be used in KB). Under this assumption, π(KB) |=D ∃y : Q(xθ,y) if and only
if π(Ω(KB)) |=D ∃y : Q(xθ,y), which allows us to assume in the rest of this chapter
that KB is an ALCHIQ(D) knowledge base.

(In)equality DL-Atoms. Contrary to Definition 9.2.1 that defines DL-atoms for
DL-rules, Definition 10.1.1 does not allow the (in)equality predicate to occur in DL-
atoms of conjunctive queries. Namely, positive equality literals do not increase the
expressivity of conjunctive queries: for a first-order formula ϕ, a variable x, and a
term t that does not contain x as a proper subterm, the formulae ∃x : (ϕ ∧ x ≈ t)
and ϕ{x 7→ t} are equisatisfiable [99]. Furthermore, based on unpublished results from
[30], allowing negative equality literals to occur in a conjunctive query in all likelihood
makes query answering undecidable.

Conjunctive Queries vs. DL-safe Rules. Querying DL knowledge bases might be
performed using DL-safe rules, presented in Chapter 9; however, DL-safe rules are less
expressive than conjunctive queries. To understand the practical implications of using
either formalism, consider KB = {∃hasParent .Person(Peter)}, and a query retrieving
“all objects having a parent.” Note that KB states that Peter has a parent, but does
not reveal his identity (that is, the name of the parent is not in the ABox).

10.2 Answering Conjunctive Queries 175

Our question corresponds to the conjunctive query Q(x, y) = ∃y : hasParent(x, y).
Obviously, KB |= ∃y : hasParent(Peter , y), so Peter is an answer to Q(x, y) in KB .

Our question also corresponds to the DL-safe rule Q(x) ← hasParent(x, y),O(y);
the literal O(y) is required in the rule body to ensure DL-safety. For P a program
containing the rule, (KB , P) 6|= Q(Peter): namely, the name of the father is not
known, and is therefore not contained in the predicate O. The requirement on DL-
safety requires y to be bound to a named individual, which is the same as making y
a distinguished variable in the conjunctive query. Hence, querying by DL-safe rules is
the same as using conjunctive queries without nondistinguished variables.

In certain circumstances, it is possible to use DL-safe rules for querying without
having to completely give up on nondistinguished variables. In [75], the authors present
the query roll-up technique, by means of which certain tree-like queries with nondis-
tinguished variables can be transformed to queries without nondistinguished variables.
In the previous example, this amounts to adding an axiom ∃R.C v D to KB , and then
answering the DL-safe query Q(x) ← D(x),O(x). As discussed in [75], query roll-up
is easy for conjunctive queries where nondistinguished variables do not occur in cycles
of the query graph (as defined in the following section). Hence, conjunctive queries
are more expressive than DL-safe rules only if they contain cycles involving nondis-
tinguished variables; furthermore, dealing with such cycles is the main issue that the
algorithm presented in this chapter has to deal with.

10.2 Answering Conjunctive Queries

Let KB be an ALCHIQ(D) knowledge base. For a conjunctive query Q(x,y), the
assignment θ such that θx = a is an answer to the query w.r.t. KB if and only if the
set of closures Γ′ = Ξ(KB) ∪ {¬Q(a,y)} is unsatisfiable, where ¬Q(a,y) is a closure
obtained by negating each conjunct of Q(a,y). In the following, we show how to decide
satisfiability of Γ′ by basic superposition. For that purpose, we first define the notion
of a query graph:

Definition 10.2.1. A query graph for a conjunctive query Q(a,y) is a directed graph
with the following structure:

• Each variable y ∈ y is associated with a unique node;

• Each occurrence of a constant in Q(a,y) is associated with a unique node (that
is, different occurrences of the same constant are associated with distinct nodes);

• For each literal (¬)A(s) ∈ Q(a,y), the node s is labeled with (¬)A;

• For each literal R(s, t) ∈ Q(a,y), the graph contains a directed arc labeled with
R, pointing from s to t.

Each conjunctive query defines a distinct query graph, so we do not make an explicit
distinction between the two. Hence, by saying that a query is connected, tree-like, or
acyclic, we refer to the properties of the query graph.

176 10. Answering Conjunctive Queries

Without loss of generality, we can assume that a query graph is weakly con-
nected; that is, for each two nodes s and t in the graph, there is a path either from
s to t, or from t to s. Namely, assume that a query Q(a,y) can be split into n
weakly connected, mutually disjoint subqueries Q1(a1,y1), . . . , Qn(an,yn). Obviously,
π(KB) |=D

∧
1≤i≤n ∃yi : Qi(ai,yi) if and only if π(KB) |=D ∃yi : Qi(ai,yi), for all

1 ≤ i ≤ n. Splitting Q(a,y) into Qi(ai,yi) can be performed in time that is polynomial
in |Q(a,y)|, so this assumption does not increase the complexity of reasoning.

A slight problem arises if ¬Q(a,y) contains constants that do not occur at substi-
tution positions. Consider the following closures:

a1 ≈ a′1 ∨ a2 ≈ a′2(10.1)
¬Q1(a1,y1)(10.2)
¬Q2(a2,y2)(10.3)

Assuming that ai ∈ ai and a′i ∈ a′i for i ∈ {1, 2}, one can perform superposition
from (10.1) into (10.2), and then into (10.3), which produces the following closure:

¬Q1(a′1,y1) ∨ ¬Q2(a′2,y2)(10.4)

Now (10.4) contains more variables than either of the premises it was derived from,
and therefore causes termination problems.

We deal with this problem by applying the structural transformation to ¬Q(a,y).
In particular, we replace Γ′ with Γ defined as follows, where, for each a ∈ a, Oa is a
new predicate unique for a, xa is a new variable unique for a, and xa is the vector of
variables obtained from a by replacing each a with xa:

Γ = Ξ(KB) ∪ {¬Q(xa,y) ∨
∨
a∈a

¬Oa(xa)} ∪
⋃
a∈a

{Oa(a)}

The sets of closures Γ′ and Γ are obviously equisatisfiable. In the rest of this section,
we write ¬Oa(xa) for

∨
a∈a ¬Oa(xa).

This transformation solves the problem in the following way. By Definition 10.2.2,
the literals Oa(xa) are selected, so a closure (10.5) can participate only in resolution
with closures of the form (10.6) to produce a closure of the form (10.7):

¬Q(xa,y) ∨
∨
a∈a

¬Oa(xa)(10.5)

Oa(a)(10.6)
¬Q([a] ,y)(10.7)

In (10.7), all constants [a] are marked, which prevents superposition inferences from
(10.1) into (10.7).

We now define the calculus for checking satisfiability of Γ:

Definition 10.2.2. With BSD,+
CQ we denote the BSD calculus, extended with decom-

position, and parameterized as follows:

10.2 Answering Conjunctive Queries 177

• Inference conclusions, whenever possible, are decomposed according to the follow-
ing table, where s is a term of the form f1(. . . fm(u) . . .) with u a variable or a
constant, and ti are terms of the form fi,1(. . . fi,m(x) . . .) for m ≥ 1:

D · ρ ∨R([s] , [f(s)])
D · ρ ∨ QR,f ([s])

¬QR,f (x) ∨ R(x, [f(x)])

D · ρ ∨R([f(s)] , [s])
D · ρ ∨ QInv(R),f ([s])

¬QInv(R),f (x) ∨ R([f(x)] , x)

(¬)A1([t1]) ∨ . . . ∨ (¬)An([tn])
Q(¬)A1,t1(x) ∨ . . . ∨Q(¬)An,tn(x)

¬Q(¬)Ai,ti(x) ∨ (¬)Ai([ti]), 1 ≤ i ≤ n

• The precedence for LPO is f > c > P > QR,f > T for each function symbol f ,
constant c, nondefinition predicate P , and definition predicate QR,f .

• If a closure C contains a literal ¬Oa(xa), then all such literals are selected;
otherwise, all negative binary literals are selected.

We extend the ALCHIQ(D)-closures to closures obtained in a saturation of Γ by
BSD,+

CQ :

Definition 10.2.3. The class of CQ-closures w.r.t. a conjunctive query Q(a,y) over
an ALCHIQ(D) knowledge base KB is obtained as a generalization of closures from
Tables 5.2 and 6.2 with the following changes:

• Conditions (iii)–(vi) are dropped.

• Closure types 5 and 6 are replaced with a new type 5′, which contains each closure
C satisfying all of the following conditions:

1. C contains only equality or unary literals;

2. C contains only one variable x;

3. The depth of a term in C is bounded by the number of literals in Q(a,y);

4. If C contains a term of the form f(t), then all terms of the same depth in
C are of the form g(t), and all terms of smaller depth are (not necessarily
proper) subterms of t;

5. Only the outmost position of a term in C can be unmarked; that is, a term
containing a function symbol is either of the form [f(t)] or of the form f([t]);

6. Equality and inequality literals in C can have the form [f(t)] ◦ [g(t)] or
[f(g(t))] ◦ [t] for ◦ ∈ {≈, 6≈}.

178 10. Answering Conjunctive Queries

• Closure type 8 is modified to allow unary and (in)equality literals to contain unary
terms whose depth is bounded by the number of literals in Q(a,y); only outermost
positions in a term can be unmarked; and all (in)equality literals are of the form
[f(a)] ◦ [b], [f(t)] ◦ [g(t)], [f(g(t))] ◦ [t] or 〈a〉 ◦ 〈b〉, for ◦ ∈ {≈, 6≈} and t a ground
term.

• A new query closure type contains closures of the form ¬Q([a] ,y) ∨ C8, where
Q([a] ,y) is weakly connected, it contains at least one binary literal, and C8 is a
possibly empty closure of type 8, which is empty if a is empty.

• A new initial closure type contains closures of the form ¬Oa(xa) ∨ ¬Q(xa,y).

We now show that saturation of Γ by BSD,+
CQ terminates for each Γ, thus yielding

a decision procedure for conjunctive query answering:

Theorem 10.2.4. For a conjunctive query Q(a,y) over an ALCHIQ(D) knowledge
base KB, saturation of Γ by BSD,+

CQ decides satisfiability of Γ in time doubly exponential
in |KB |+ |Q(a,y)|, assuming a bound on the arity of the concrete domain predicates,
and for unary coding of numbers in input.

Proof. As in Lemma 5.3.5, Condition 5 of Definition 10.2.3 ensures that, in each CQ-
closure of type 5′, the maximal literal contains the deepest term of a closure. This
allows us to show the following property (*): application of a BSD,+

CQ inference to
CQ-closures results in one or more CQ-closures.

Namely, hyperresolution with a closure of type 7 is possible only with closures of
types 3, 4, and 8, and results in a closure of type 5′ or 8. Furthermore, each conclusion
of a superposition inference into a generator closure is decomposed into a generator and
a closure of type 5′; eligibility of the inference for decomposition follows by the same
argument as in Theorem 5.4.8. Note that, since R([f(t)] , [t]) and Inv(R)([t] , [f(t)]) are
logically equivalent, the predicate QInv(R),f can be used as the definition predicate for
R([f(x)] , x). Finally, since only the outermost position of any term can be unmarked,
two terms t1 and t2 can be unified only at the outer positions. Since both terms are
unary, they can be unified only if one of them is of the form f1(. . . fi(x) . . .), and
the other one is of the form f1(. . . fi(. . . fn(x′) . . .) . . .), so the unifier is of the form
x 7→ fi+1(. . . fn(x′) . . .). Therefore, the maximal term depth in the conclusion is n,
and the conclusion is a CQ-closure.

Consider an inference with an initial closure of the form ¬Oa(xa) ∨ ¬Q(xa,y).
For each variable xa, such a closure contains a literal ¬Oa(xa), all of which are se-
lected. Hence, the only possible inference is hyperresolution on all ¬Oa(xa) with
ground premises of the form Oa(a) ∨ C, which yields a query closure of the form
¬Q([a] ,y) ∨ C8.

A more complex case is an inference with a query closure ¬Q([a] ,y) ∨ C8. All
constants in such a closure are marked, so superposition into it is not possible. Fur-
thermore, since the closure always contains at least one binary literal, it can only
participate as the main premise in hyperresolution on all binary literals, with a unifier

10.2 Answering Conjunctive Queries 179

σ, and with side premises Ei being of type 3, 4, or 8. For side premises of types 3 and
4, with xi we denote the free variable of the i-th side premise.

Assume that at least one side premise is of type 8, or that Q([a] ,y) contains a
constant term. Then, some term in Q([a] ,y)σ is a ground term α. Let Ei be the
side premise matched to the binary literal containing α and some other term β. If Ei

is ground, then βσ is obviously a ground term. On the contrary, if Ei is nonground,
since the maximal literal of Ei is of the form R(xi, 〈f(xi)〉) or R([f(xi)] , xi), Eiσ is
ground, so βσ is again a ground term. Since Q([a] ,y) is weakly connected, constants
are propagated to the entire query, so Q([a] ,y)σ is ground. Since all terms containing
function symbols in side premises are of the form fi(xi), and they are of depth one,
the maximal depth of a term after unification is bounded by the maximal length of
a path in Q([a] ,y), which is bounded by the number of binary literals in Q([a] ,y).
Hence, the conclusion is a CQ-closure of type 8.

Assume that no side premise is of type 8, and that Q([a] ,y) does not contain a
constant; then, C8 is empty, and we write simplyQ(y). SinceQ(y) is weakly connected,
similarly as in the previous case, we conclude that the unifier σ contains mappings of
the form xi 7→ si and yi 7→ ti, where si and ti are terms of the form fi,1(. . . fi,m(x) . . .),
and m is bounded by the maximal length of a path in Q(y). Hence, the hyperresolution
conclusion C contains only unary literals of the form (¬)A([ti]), where ti is of the form
fi,1(. . . fi,m(x) . . .) and m is bounded by the number of binary literals in Q(y). Since
the conclusion does not have equality literals, it satisfies Conditions 1, 2, 3, 5, and 6 of
the CQ-closure type 5′; however, terms ti need not satisfy Condition 4. However, the
closure is decomposed by BSD,+

CQ into several CQ-closures. Since in the LPO we ensure
thatA > Q(¬)Ai,ti , we also have that ¬Q(¬)Ai,ti(x) ≺ (¬)A([ti]); furthermore, (¬)A([ti])
originates from some side premise Ej , so the inference is eligible for decomposition by
Proposition 5.4.6.

This covers all BSD,+
CQ inferences on CQ-closures, so the property (*) holds.

Let p and f be the number of predicates and function symbols occurring in Ξ(KB);
both are linear in |KB | for unary coding of numbers. The number p′ of predicates QS,f ,
introduced by decomposition after superposition into a generator, is quadratic in |KB |.
For n the number of literals in Q(a,y), the number of terms of the form f1(. . . fi(x) . . .)
is bounded by ` = f + f2 + . . .+ fn, which is exponential in |KB |+ |Q(a,y)|.

Consider a hyperresolution inference with a query closure. The conclusion of such
an inference is decomposed only if the conclusion is nonground, which is possible only
if all premises are of type 3 or 4. Therefore, the hyperresolution conclusion can only
contain predicates from Ξ(KB) and definition predicates QS,f . The number of such
predicates is bounded by 2(p+ p′) (the factor 2 takes into account that unary literals
can occur positively or negatively), so the number of predicates Q(¬)A,t introduced by
decomposition after resolution with a query closure is bounded by ℘ = 2(p+p′)`, which
is exponential in |KB |+ |Q(a,y)|. Furthermore, the number of literals in the longest
closure of type 5′ is bounded by 2(℘+p+p′)`, which is exponential in |KB |+ |Q(a,y)|.
Similarly, the maximal number of ground terms containing function symbols is c · `,

180 10. Answering Conjunctive Queries

where c is the number of constants in Ξ(KB), which gives an exponential bound on
the length of the maximal closure of type 8. In all cases, a maximal closure is at most
exponential in length, so the number of possible CQ-closures is doubly exponential in
|KB |+ |Q(a,y)|.

For Γ as assumed by the theorem, all closures in Γ are CQ-closures: closures from
Ξ(KB) are ALCHIQ-closures, and ¬Oa(xa)∨¬Q(xa,y) is either an initial or a query
closure (depending on whether xa is empty), or it is of type 5′, 7, or 8. By property
(*), in any derivation Γ = N0, . . . , Ni, each set Ni contains only CQ-closures. Since
the number of closures in each Ni is at most doubly exponential in |KB | + |Q(a,y)|,
saturation by BSD,+

CQ terminates in doubly exponential time. Since all decomposi-

tion inferences are eligible for decomposition, by Theorem 5.4.4 BSD,+
CQ is sound and

complete, so it decides satisfiability of Γ.

Note that, by assuming a bound on |Q(x,y)|, the query answering algorithm be-
comes exponential. Namely, the depth of the terms of the form f1(. . . fi(x) . . .) is then
polynomial in |KB |, so ` from the proof of Theorem 10.2.4 becomes polynomial.

10.3 Deciding Conjunctive Query Containment

We now apply the query answering algorithm to decide query containment.

Theorem 10.3.1. Let Q1(x,y1) and Q2(x,y2) be two conjunctive queries with the
same set of distinguished variables, defined over an ALCHIQ(D) knowledge base KB.
The query Q2(x,y1) is contained in the query Q1(x,y2) w.r.t. KB if a is an answer
to Q1(x,y1) over KB ∪{Q2(a,b)}, where a and b are sets of new distinct individuals,
not occurring in Q1(x,y1), Q2(x,y2), and KB.

Proof. The claim can easily be established by transforming the definition of query
containment using the following well-known equivalences:

π(KB) |=D ∀x : [∃y2 : Q2(x,y2)→ ∃y1 : Q1(x,y1)] ⇔
π(KB) ∪ {¬∀x : [¬∃y2 : Q2(x,y2) ∨ ∃y1 : Q1(x,y1)]} is D-unsatisfiable ⇔
π(KB) ∪ {∃x,y2 : Q2(x,y2) ∧ ∀y1 : ¬Q1(x,y1)} is D-unsatisfiable ⇔

π(KB) ∪ {Q2(a,b),∀y1 : ¬Q1(a,y1)} is D-unsatisfiable ⇔
π(KB) ∪ {Q2(a,b)} |=D ∃y1 : Q1(a,y1)} ⇔

a is an answer to Q1(x,y1) over KB ∪ {Q2(a,b)}

The constants a and b are introduced by skolemizing ∃x,y2.

The following corollary follows immediately from Theorem 10.3.1:

Corollary 10.3.2. Let Q1(x,y1) and Q2(x,y2) be conjunctive queries defined over an
ALCHIQ(D) knowledge base KB. Then, deciding if Q2(x,y2) is contained in a query
Q1(x,y1) w.r.t. KB by saturation with BSD,+

CQ runs in time that is doubly exponential
in |KB | + |Q1(x,y1)| + |Q2(x,y2)|, assuming a bound on the arity of the concrete
domain predicates and for unary coding of numbers in input.

10.4 Related Work 181

10.4 Related Work

Conjunctive queries were introduced in [32] as a query language for the relational
model, capable of expressing a large number of practically relevant queries. The prob-
lem of deciding conjunctive query containment was shown to be NP-complete, using an
algorithm based on deciding whether a homomorphism—an embedding of nondistin-
guished variables—between the subsumed and the subsuming query exists. Further-
more, the authors identify the close relationship between query answering and query
containment. In practice, query equivalence is used extensively for query optimization
in relational databases: a complex query is usually transformed into an equivalent but
simpler query, which can be executed more efficiently [1].

In [135], conjunctive queries were extended to recursive queries, for which deciding
equivalence was shown to be undecidable. However, note that this is so only if the
minimal fixpoint semantics is assumed for the queries. Such a semantics is common in
logic programming; however, it is principally different from the first-order semantics.
Hence, the results from [135] do not apply in our case.

Answering conjunctive queries and conjunctive query containment over description
logic knowledge bases was studied in the CARIN system [84]. The description logic
considered is ALCNR, and is significantly less expressive than SHIQ(D). The deci-
sion procedure for query answering is based on constrained resolution, which combines
SLD-resolution backward chaining with tableau reasoning.

In [28], the authors study the containment of conjunctive queries over constraints,
expressed in the description logic DLRreg. This logic is distinguished by allowing for
n-ary relations and regular expressions over projections of relations. The technique
used to handle query containment is based on a reduction to satisfiability of CPDLg

(propositional dynamic logic with converse and graded modalities) programs. A similar
technique was used to derive a procedure for rewriting queries over description logics
using views in [29]. However, as pointed out in [50], the presented algorithm is incorrect
in the presence of transitive roles.

In [72], a procedure for deciding containment of conjunctive queries over con-
straints, based on the reduction to SHIQ, was presented. In this way the authors
obtain a practical procedure. Namely, they argue that the approach from [28] is not
practical, since a reasoner for CPDLg does not exists.

In [75], conjunctive queries have been proposed as the query language for the
Semantic Web. The approach presented there is restricted only to tree-like queries,
possibly containing constants. However, the approach was generalized later in [143]
to an algorithm for answering conjunctive queries over SHf knowledge bases, and is
thus the first algorithm for answering conjunctive queries over a logic with transitive
roles. The algorithm is based on a reduction of query answering to standard reasoning
problems in SHIQ.

Contrary to the approach from [143], our approach supports inverse roles, but it
allows only simple roles to occur in the queries. To the best of our knowledge, this is
the first algorithm for query answering and query containment based on resolution.

182 10. Answering Conjunctive Queries

Chapter 11

The Semantics of Metamodeling

A common practice in DL modeling is to divide a model into an intensional and an
extensional part. The intensional part is analogous to a database schema, and it
describes the general structure and the regularities of the world; the extensional part
is analogous to a database instance, and it describes a particular state of the world.

To better understand this duality, consider the following example, originally pre-
sented in [149]; a similar example can be found in [132]. A natural way to represent
kinship between animal species is to organize them in a hierarchy of concepts. For
example, the concept Bird represents the set of all birds, and the concept Eagle is a
subconcept of Bird . The subconcept relationship states that all eagles are birds. This
is an example of intensional knowledge, as it is concerned with defining the general
notions of birds and eagles. Knowledge about concrete animals is extensional; for ex-
ample, we may state that the individual Harry is an instance of the concept Eagle.
Now the intensional knowledge implies that Harry is a Bird as well.

However, one might also make statements about individual species, such as “Eagles
are listed in the IUCN Red List1 of endangered species.” Note an important distinction:
we do not say that each individual eagle is listed in the Red List, but that the eagle
species as a whole is. Hence, we may introduce a concept RedListSpecies, but this
raises some concerns about the proper relationship between RedListSpecies and Eagle.
Making the former a superconcept of the latter is incorrect, as it would imply that
Harry is a RedListSpecies—clearly an undesirable conclusion. It is better to say that
Eagle is type of RedListSpecies. Thus, RedListSpecies acts as a metaconcept for Eagle.
Modeling with metaconcepts we call metamodeling.

Metamodeling can be used to build concise models if we axiomatize the properties
of metaconcepts. For example, by stating that “It is not allowed to hunt the individuals
of species listed in the Red List,” we formalize the logical properties of the metaconcept
RedListSpecies, which allows us to deduce that “It is not allowed to hunt Harry .”

The examples, such as the one given previously, are often dismissed with an argu-
ment that “eagle as a species” and “eagle as a set of all individual eagles” are not the

1http://www.redlist.org/

183

http://www.redlist.org/

184 11. The Semantics of Metamodeling

one and the same thing, and should therefore not be referred to using the same symbol.
Whereas an in-depth philosophical investigation might provide a more definitive an-
swer, we believe that the notion of an “eagle” in most people’s minds invokes a notion
of a “mighty bird of prey.” The interpretation of this notion as a concept or as an
individual is of secondary concern, and is often context-dependent, so using different
symbols for the same intuitive notion makes the model unnecessarily complex.

Metamodeling is supported in OWL-Full [106], the most expressive language of the
OWL family. However, its semantics is controversial, mainly because it is nonstandard,
which makes realizing practical reasoning systems difficult [68]. Therefore, OWL-DL
was conceived as a “well-behaved” subset of OWL-Full by imposing the following re-
strictions: (i) logical and metalogical symbols are strictly separated, (ii) the symbols
used as concepts, roles, and individuals are strictly separated, and (iii) restrictions
required to yield a decidable logic, such as using only simple roles in number restric-
tions [73], are enforced. These restrictions make OWL-DL a syntactical variant of the
SHOIN (D) description logic, which is decidable. This is desirable since, to practi-
cally implement reasoners for expressive logics, advanced optimization techniques are
essential, and these are much easier to develop for decidable logics [4, Chapter 9].

Since it does not enforce (iii), OWL-Full is trivially undecidable. To obtain a
decidable logic supporting metamodeling, it is natural to ask whether OWL-DL, ex-
tended with metamodeling in the style of OWL-Full, remains decidable. However, in
Section 11.1 we show that even the basic description logic ALC becomes undecidable
if restrictions (i) and (ii) are not enforced.

We analyze this result, and show that it is actually due to (i)—that is, to free
mixing of logical and metalogical symbols. In a way, metamodeling in OWL-Full goes
beyond its original purpose, and allows the user to tamper with the semantics of the
modeling primitives themselves. In Section 11.2 we address this issue and present two
alternative semantics: a contextual or π-semantics, which is essentially first-order, and
a HiLog or ν-semantics, which is based on HiLog [33]—a logic that provides a second-
order flavor to first-order logic. We show that, under some technical assumptions,
both semantics can be combined with SHIQ(D), yielding a decidable fragment of
OWL-Full. We show that this does not increase the complexity of reasoning, so our
results may provide a basis for practical implementation. Finally, in Section 11.3 we
discuss the added expressivity of metamodeling on a concrete example.

11.1 Undecidability of Metamodeling in OWL-Full

In this section we show that the style of metamodeling adopted in OWL-Full leads to
undecidability, even if combined with a very simple description logic ALC. We start by
presenting the definition of the ALC-Full syntax and semantics. We base the semantics
on the one of OWL-Full [106]; however, the latter is quite complex, so for readability
we abstract from numerous technical details. We assume rdf:, rdfs: and owl: to be the
RDF, RDFS, and OWL namespace prefixes, respectively [106].

11.1 Undecidability of Metamodeling in OWL-Full 185

Table 11.1: Semantics of ALC-Full

1. 〈s, p, o〉 ∈ KB implies (sI , oI) ∈ EXTI(pI)
2. CEXTI(owl:ThingI) = 4I

3. CEXTI(owl:NothingI) = ∅
4. (x, y) ∈ EXTI(rdfs:subClassOf I) implies CEXTI(x) ⊆ CEXTI(y)
5. (x, y) ∈ EXTI(owl:sameAsI) implies x = y

6. (x, y) ∈ EXTI(owl:differentFromI) implies x 6= y

7. (x, y) ∈ EXTI(owl:complementOf I) implies CEXTI(x) = 4I \ CEXTI(y)
8. (x, y) ∈ EXTI(owl:unionOf I

1) and (x, z) ∈ EXTI(owl:unionOf I
2) imply

CEXTI(x) = CEXTI(y) ∪ CEXTI(z)
9. (x, y) ∈ EXTI(owl:intersectionOf I

1) and (x, z) ∈ EXTI(owl:intersectionOf I
2) imply

CEXTI(x) = CEXTI(y) ∩ CEXTI(z)
10. (x, y) ∈ EXTI(owl:someValuesFromI) and (x, p) ∈ EXTI(owl:onProperty I) imply

CEXTI(x) = {w | (w, z) ∈ EXTI(p) ∧ z ∈ CEXTI(y)}
11. (x, y) ∈ EXTI(owl:allValuesFromI) and (x, p) ∈ EXTI(owl:onProperty I) imply

CEXTI(x) = {w | (w, z) ∈ EXTI(p)→ z ∈ CEXTI(y)}

Definition 11.1.1. Let V be the vocabulary set consisting of these symbols:

owl:Thing, owl:Nothing, rdf:type, rdfs:subClassOf, owl:sameAs,
owl:differentFrom, owl:complementOf, owl:unionOf1, owl:unionOf2,
owl:intersectionOf1, owl:intersectionOf2, owl:someValuesFrom,
owl:allValuesFrom, owl:onProperty

Let N be the set of names such that V ⊆ N . An ALC-Full knowledge base KB is a
finite set of triples of the form 〈s, p, o〉, where s, p, o ∈ N .

An interpretation I is a triple (4I , ·I ,EXTI), where 4I is a nonempty domain
set, ·I : N → 4I is a name interpretation function, and EXTI : 4I → 24

I×4I
is an

extension function. Let CEXTI : 4I → 24
I

be the concept extension function defined
as CEXTI(x) = {y | (y, x) ∈ EXTI(rdf:typeI)}. An interpretation I is a model of KB
if it satisfies all conditions from Table 11.1. KB is satisfiable if and only if a model
of KB exists.

ALC-Full differs from OWL-Full in that (i) it does not provide for concrete predi-
cates; (ii) it does not include the axiomatic triples that define the semantics for built-in
resources, such as rdf:type; and (iii) it allows only binary union and intersection. These
distinctions are not relevant for our undecidability proof. In the rest of this section, we
use 〈at b, p, o〉 as a syntactic shortcut for the triples 〈x, p, o〉, 〈x, owl:unionOf1, a〉, and
〈x, owl:unionOf2, b〉, where x is a new name. We use similar shortcuts for 〈s, p, a t b〉
and for u.

186 11. The Semantics of Metamodeling

We show now that checking satisfiability of an ALC-Full knowledge base KB is
undecidable by a reduction from the Domino Tiling problem [20]. A domino system
is a triple D = (D,H, V), where D = {D1, . . . , Dn} is a finite set of domino types,
H ⊆ D × D is the horizontal compatibility relation, and V ⊆ D × D is the vertical
compatibility relation. A D-tiling of an infinite grid is a function t : N×N→ D such
that t(0, 0) = D0 and, for all i, j ∈ N, (t(i, j), t(i, j+1)) ∈ H and (t(i, j), t(i+1, j)) ∈ V .
For a domino system D, determining whether a D-tiling exists is undecidable [20].

For a domino system D, let KBD be the ALC-Full knowledge base containing
axioms (11.1)–(11.9). Lemma 11.1.2 shows that KBD exactly encodes the domino
tiling problem.

〈Di uDj , rdfs:subClassOf, owl:Nothing〉 for 1 ≤ i < j ≤ n(11.1)
〈GRID , rdfs:subClassOf, D1 t . . . tDn〉(11.2)
〈NotGRID , owl:complementOf,GRID〉(11.3)

〈Di, rdfs:subClassOf, αi〉, 〈αi, owl:onProperty, owl:allValuesFrom〉,(11.4)
〈αi, owl:allValuesFrom,NotGRID t

⊔
(Di,d)∈H d〉 for 1 ≤ i ≤ n

〈Di, rdfs:subClassOf, βi〉, 〈βi, owl:onProperty, rdf:type〉,(11.5)
〈βi, owl:allValuesFrom,NotGRID t

⊔
(Di,d)∈V d〉 for 1 ≤ i ≤ n

〈GRID , owl:someValuesFrom,GRID〉(11.6)
〈GRID , owl:onProperty, owl:allValuesFrom〉(11.7)

〈GRID , owl:onProperty, rdf:type〉(11.8)
〈GRID , rdfs:subClassOf, owl:allValuesFrom〉(11.9)

〈rdf:type, owl:sameAs, owl:onProperty〉(11.10)
〈a0,0, rdf:type,GRID uD0〉(11.11)

Lemma 11.1.2. A D-tiling exists if and only if KBD is satisfiable.

Proof. (⇒) For a D-tiling t, let I be an interpretation depicted in Figure 11.1, with
CEXTI(GRIDI) = {ai,j} and CEXTI(DI

k) = {ai,j | t(i, j) = Dk}, for i, j ≥ 0 and
1 ≤ k ≤ n. The triples (11.3)–(11.5) encode the compatibility relations of D (including
NotGRID into (11.3) and (11.4) ensures that compatibility is enforced only among
instances of GRID). It is easy to see that I is a model of KBD.

(⇐) Let I be a model of KBD. An excerpt of I is shown in Figure 11.1, in
which a triple 〈s, p, o〉 is represented as an arc pointing from the node s to the node
o, whereas p is encoded by the line type according to the legend. To refer easily
to arcs, we assign them labels ti, hi, and vi (these do not correspond to p). For
example, the arc s1 represents the triple 〈a0,0, rdf:type, owl:allValuesFrom〉. Due to
(11.10), rdf:type and owl:onProperty are synonyms, so s1 also represents the triple
〈a0,0, owl:onProperty, owl:allValuesFrom〉. By an abuse of notation, we do not distin-
guish between the symbols and their interpretations.

Due to (11.11), a0,0 is linked by t1 to GRID . Due to (11.6), (11.7), and (11.8), a0,0

is linked to a0,1 and a1,0 through h1 and v1, respectively, and a0,1 and a1,0 are in the

11.1 Undecidability of Metamodeling in OWL-Full 187

Figure 11.1: Grid Structure in a Model of KBD

concept extension of GRID by t2 and t3, respectively. Due to (11.6) and (11.7), a1,0 is
linked by h2 to a1,1, and by t4 to GRID . Finally, by (11.9), all ai,j are in the concept
extension of owl:allValuesFrom; that is, all ai,j have an sl arc to it.

Consider now the arcs at the node a1,0. The arc s3 can, due to (11.10), be read
as 〈a1,0, owl:onProperty, owl:allValuesFrom〉. By applying Item 11 of Table 11.1 for
x = a1,0 and y = a1,1, we see that, if w is in the concept extension of a1,0 and it
is connected via p = owl:allValuesFrom to some z, then z must be in the concept
extension of a1,1. By setting w = a0,0 due to v1 and z = a0,1 due to h1, we get that
a0,1 is in the concept extension of a1,1. Hence, a0,1 is connected to a1,1 by v2, so a0,0,
a0,1, a1,0, and a1,1 are arranged in a two-dimensional grid, which continues indefinitely
due to (11.6)–(11.8).

A node ai,j in I is allowed to have multiple owl:allValuesFrom and rdf:type suc-
cessors, and all ai,j need not be distinct, so I need not be a two-dimensional grid.
However, a two-dimensional grid can easily be extracted from I: one can choose any
owl:allValuesFrom successor ai,j+1 and any rdf:type successor ai+1,j of ai,j , as well as
any owl:allValuesFrom successor ai+1,j+1 of ai+1,j . Regardless of the choices, ai,j+1

is always connected to ai+1,j+1 by rdf:type, so ai,j , ai,j+1, ai+1,j , and ai+1,j+1 are
connected in a grid-like manner.

Hence, I contains a two-dimensional infinite grid in which owl:allValuesFrom are
horizontal, and rdf:type are vertical arcs. The triples (11.1)–(11.5) ensure that each grid
node is assigned a single domino type that corresponds to the compatibility relations
H and V of D, so a D-tiling can easily be constructed from I.

We briefly comment on an important issue in the proof of Lemma 11.1.2. Namely,
the main difficulty in the reduction is to ensure that each member of the GRID con-
cept has an owl:onProperty arc to the owl:allValuesFrom node, so that we can apply
Item 11 of Table 11.1. In the case of OWL-Full, this might be done using nominals,
by adding to the GRID concept an existential restriction on owl:onProperty to the
nominal owl:allValuesFrom. However, to obtain a more general result, we refrain from

188 11. The Semantics of Metamodeling

using nominals, and employ the following trick instead. By (11.9) we say that GRID
is a subclass of owl:allValuesFrom, which ensures that every member of GRID has
an rdf:type arc to the owl:allValuesFrom node. Furthermore, by (11.10) we say that
rdf:type and owl:allValuesFrom are synonyms. Now these two axioms are sufficient to
obtain the necessary owl:onProperty arc pointing to the owl:allValuesFrom node for
each member of the GRID concept.

Undecidability of ALC-Full follows as an immediate consequence of Lemma 11.1.2
and the known undecidability result for the domino tiling problem [20]:

Theorem 11.1.3. Checking satisfiability of an ALC-Full knowledge base KB is unde-
cidable.

11.2 Extending DLs with Decidable Metamodeling

The proof of Lemma 11.1.2 reveals the causes for the undecidability of metamodeling
in OWL-Full. Namely, this logic not only allows treating concepts as individuals,
but it also allows mixing logical and metalogical symbols, thus exposing its modeling
primitives as individuals. We exploited this in axioms (11.5) and (11.6) of KBD,
by stating an existential restriction on owl:allValuesFrom and rdf:type symbols, thus
affecting their semantics. One would easily agree that tampering with the semantics
of the ontology language is hardly desirable in practice, so in this section we present
two alternative semantics for metamodeling. Due to certain technical problems, we
add metamodeling to ALCHIQ(D) first, and consider transitive roles subsequently.

11.2.1 Metamodeling Semantics for ALCHIQ(D)

To allow for metamodeling, we extend the syntax of description logics (Definitions
3.1.1 and 3.2.3) such that NC , NIa , NRa , and NRc are not necessarily disjoint, and are
contained in a set of names N , for which n ∈ N implies Inv(n) ∈ N . Hence, the same
symbol can be used to denote a concept, an abstract individual, an abstract role, and
a concrete role. This causes problems for axioms of the form A v B: from the axiom
alone, it is not clear whether the inclusion refers to concept, to abstract role, or to
concrete role interpretations of A and B. To distinguish these three types of inclusions,
we write A va B for abstract role inclusion, A vc B for concrete role inclusion, and
A vn B for concept inclusion. To simplify the presentation, we do not consider axioms
of the form A ≡ B, as they are simply shortcuts for A vn B and B vn A.

To avoid technical complications, we assume that the set of names N , the set of
concrete predicates ΦD, and the set of concrete individuals RIc are pair-wise disjoint.
We believe that this is not a practically important restriction: we cannot think of an
example in which treating concrete predicates as individuals, or mixing abstract and
concrete individuals might be required. This also allows us to syntactically distinguish
complex concepts: because A ∈ N and d ∈ ΦD, it is clear that ∃R.A denotes existential
quantification over the abstract domain, whereas ∃T.d denotes existential quantifica-

11.2 Extending DLs with Decidable Metamodeling 189

tion over the concrete domain. Similarly, this allows us to syntactically distinguish
abstract and concrete ABox axioms, such as S(a, b) and T (a, bc).

For thus modified syntax, we now define the contextual semantics of metamodeling,
whose name reflects that a symbol in the knowledge base is interpreted as a concept, a
role, or an individual according to the syntactic context where it occurs. We use this
semantics mainly for comparison with the HiLog semantics, which we introduce later.

Definition 11.2.1 (Contextual Semantics). Let KB be an ALCHIQ(D) knowledge
base over an admissible concrete domain D. A π-interpretation I = (4I , ·I , CI

n, R
I
a, R

I
c)

is a 5-tuple where 4I is a domain set, ·I : N →4I is a symbol interpretation function,
CI

n : N → 24
I

is an atomic concept extension function, RI
a : N → 24

I×4I
is an

abstract role extension function, and RI
c : N → 24

I×4D is a concrete role extension
function.

The function CI
n is extended to concepts as specified in Table 11.2, upper left sec-

tion, where symbols are interpreted contextually—that is, depending on their syntactic
position. A π-interpretation I is a π-model of KB if it satisfies all conditions from
Table 11.2, lower left section. The notions of π-satisfiability, π-unsatisfiability, and
π-entailment (written |=π) are defined as usual.

The contextual semantics is essentially equivalent to the contextual semantics from
[33], and to the standard first-order semantics. Namely, in a first-order formula, the
role of a symbol can be inferred from the place at which the symbol occurs in a formula,
so the sets of constant, function, and predicate symbols do not need to be pairwise
disjoint. Hence, KB is π-satisfiable if and only if π(KB) is (first-order) satisfiable,
which can be decided, for example, using the algorithms from Chapters 5 and 6. Note
that, as mentioned in Section 2.5, in basic superposition we encode literals as E-terms.
For a correct encoding under the contextual semantics, we additionally use a separate
sort for the E-general function symbols obtained by encoding predicate symbols.

We now define the HiLog semantics for metamodeling, which follows the ideas of
OWL-Full more closely.

Definition 11.2.2 (HiLog Semantics). Let KB be an ALCHIQ(D) knowledge base
over an admissible concrete domain D. A ν-interpretation I = (4I , ·I , CI

n, R
I
a, R

I
c) is

a 5-tuple where 4I is a domain set, ·I : N →4I is a symbol interpretation function,
CI

n : 4I → 24
I

is an atomic concept extension function, RI
a : 4I → 24

I×4I
is an

abstract role extension function, and RI
c : 4I → 24

I×4D is a concrete role extension
function.

The extension of the function CI
n to concepts, and the interpretation of axioms are

specified in Table 11.2, right section. The notions of ν-satisfiability, ν-unsatisfiability,
and ν-entailment (written |=ν) are defined as usual.

We briefly discuss the essential difference between these two semantics. Consider
the knowledge base consisting only of one axiom a(a), where the symbol a is used as an
individual and as a concept. A π-model of such a knowledge base is depicted on the left-
hand side of Figure 11.2, where both the individual interpretation ·I and the concept

190 11. The Semantics of Metamodeling

Table 11.2: Two Semantics for SHIQ(D) with Metamodeling

π-semantics ν-semantics
Extending CI

n to concepts
A CI

n(A) ⊆ 4I

¬D 4I \ CI
n(D)

D1 uD2 CI
n(D1) ∩ CI

n(D2)
D1 tD2 CI

n(D1) ∪ CI
n(D2)

∃S.D {x | (x, y) ∈ RI
a(S) ∧ y ∈ CI

n(D)}
∀S.D {x | (x, y) ∈ RI

a(S)→ y ∈ CI
n(D)}

≤ nS.D {x |]{y | (x, y) ∈ RI
a(S) ∧ y ∈ CI

n(D)} ≤ n}
≥ nS.D {x |]{y | (x, y) ∈ RI

a(S) ∧ y ∈ CI
n(D)} ≥ n}

(∀T1, . . . , Tm.d)I {x | ∀y1, . . . , ym :
∧

(x, yi) ∈ RI
c(Ti)→

(y1, . . . , ym) ∈ dD}
(∃T1, . . . , Tm.d)I {x | ∃y1, . . . , ym :

∧
(x, yi) ∈ RI

c(Ti)∧
(y1, . . . , ym) ∈ dD}

(≤ nT)I {x |]{y | (x, y) ∈ RI
c(T)} ≤ n}

(≥ nT)I {x |]{y | (x, y) ∈ RI
c(T)} ≥ n}

Interpretation of axioms
RI

a(S) = RI
a(Inv(S))−

S va T RI
a(S) ⊆ RI

a(T)
S vc T RI

c(S) ⊆ RI
c(T)

D1 vn D2 CI
n(D1) ⊆ CI

n(D2)
Trans(S) RI

a(S)+ ⊆ RI
a(S)

D(a) aI ∈ CI
n(D)

S(a, b) (aI , bI) ∈ RI
a(S)

¬S(a, b) (aI , bI) /∈ RI
a(S)

T (a, bc) (aI , (bc)I) ∈ RI
c(T)

¬T (a, bc) (aI , (bc)I) /∈ RI
c(T)

a(c) ≈ b(c) (a(c))I = (b(c))I

a(c) 6≈ b(c) (a(c))I 6= (b(c))I

CI
n and the interpretation of

axioms are obtained from the
ones for π-semantics by ap-
plying the following changes:

CI
n(A) CI

n(AI)

RI
a(Inv(S)) RI

a(Inv(S)I)

RI
a(S) RI

a(SI)

RI
a(T) RI

a(T I)

RI
c(S) RI

c(S
I)

RI
c(T) RI

c(T
I)

Note:]N is the number of elements in N ; S+ is the transitive closure of S;
and S− is the inverse relation of S.

interpretation CI
n are assigned directly to the symbol a. On the contrary, a ν-model

of the knowledge base is depicted on the right-hand side of Figure 11.2. There, the
individual interpretation ·I assigns the domain individual x to the symbol a; however,
the concept interpretation is not assigned to a, but to the domain individual x. We
discuss the practical consequences of such a definition on entailment in Section 11.3.

Since our algorithms are based on resolution calculi, we present an alternative but
equivalent definition of ν-models by translation into first-order logic. This translation
follows the principles of transforming HiLog formulae into first-order formulae: it reifies
concept, abstract, and concrete role symbols into constants, and represents functions
CI

n, RI
a, and RI

c explicitly by predicates isa, arole, and crole, respectively.

11.2 Extending DLs with Decidable Metamodeling 191

Figure 11.2: π- and ν-models of the Example Knowledge Base

Definition 11.2.3. For an ALCHIQ(D) knowledge base KB, let ν(KB) be the trans-
lation of KB into first-order formulae, as specified in Table 11.3, where isa is a binary
predicate with signature a× a, arole is a ternary predicate with signature a× a× a, and
crole is a ternary predicate with signature a× a× c.

Lemma 11.2.4. For an ALCHIQ(D) knowledge base KB, KB is ν-satisfiable if and
only if a first-order model of ν(KB) exists.

Proof. For the (⇒) direction, let Iν be a ν-model of KB . We construct a first-order
interpretation I for ν(KB) by setting 4I = 4Iν , aI = aIν , (x, y) ∈ isaI if y ∈ CIν

n (x),
(x, y, z) ∈ aroleI if (y, z) ∈ RIν

a (x), and (x, y, z) ∈ croleI if (y, z) ∈ RIν
c (x). By induction

on the structure of formulae in ν(KB), one can easily show that I is a model of ν(KB).
The (⇐) direction is similar.

In [106], it was stressed that the semantics of OWL-Full and OWL-DL coincide,
provided that resources defining modeling primitives are not used in the knowledge
base axioms, and that the sets of concept, role, and individual symbols are disjoint.
Similarly, it is possible to show that the HiLog semantics coincides with the OWL-Full
semantics if resources defining modeling primitives are not used in knowledge base
axioms. The formal proof for this is simple, but it is lengthy due to the very complex
semantics of OWL-Full, so we omit it for the sake of brevity.

11.2.2 Deciding ν-Satisfiability

We now show that ν-satisfiability can be decided by extending the algorithms from
Chapters 5 and 6, without increasing the complexity of reasoning.

It is difficult to ensure termination of direct saturation of closures obtained by
structural transformation of ν(KB), since such closures contain unmarked constants
corresponding to names of concepts and roles. Consider, for example, the following set
of closures obtained during saturation:

192 11. The Semantics of Metamodeling

Table 11.3: Semantics of Metamodeling by Mapping into First-Order Logic

Mapping Concepts to FOL
νy(A,X) = isa(A,X)

νy(¬D,X) = ¬νy(D,X)
νy(D1 uD2, X) = νy(D1, X) ∧ νy(D2, X)
νy(D1 tD2, X) = νy(D1, X) ∨ νy(D2, X)
νy(∀R.D,X) = ∀y : arole(R,X, y)→ νx(D, y)
νy(∃R.D,X) = ∃y : arole(R,X, y) ∧ νx(D, y)

νy(≤ nR.D,X) = ∀y1, . . . , yn+1 :
∧n+1

i=1 [arole(R,X, yi) ∧ νx(D, yi)]→
∨n+1

i=1
n+1
j=i+1 yi ≈ yj

νy(≥ nR.D,X) = ∃y1, . . . , yn :
∧n

i=1[arole(R,X, yi) ∧ νx(D, yi)] ∧
∧n

i=1
n
j=i+1 yi 6≈ yj

νy(∀T1, . . . , Tm.d,X) = ∀yc
1, . . . , y

c
m :

∧m
i=1 crole(Ti, X, y

c
i)→ d(yc

1, . . . , y
c
m)

νy(∃T1, . . . , Tm.d,X) = ∃yc
1, . . . , y

c
m :

∧m
i=1 crole(Ti, X, y

c
i) ∧ d(yc

1, . . . , y
c
m)

νy(≤ nT ,X) = ∀yc
1, . . . , y

c
n+1 :

∧n+1
i=1 crole(T,X, yc

i)→
∨n+1

i=1
n+1
j=i+1 y

c
i ≈D yc

j

νy(≥ nT ,X) = ∃yc
1, . . . , y

c
n :

∧n
i=1 crole(T,X, yc

i) ∧
∧n

i=1
n
j=i+1 y

c
i 6≈D yc

j

Mapping Axioms to FOL
ν(R va S) = ∀x, y : arole(R, x, y)→ arole(S, x, y)
ν(T vc U) = ∀x, y : crole(T, x, y)→ crole(U, x, y)

ν(D1 vn D2) = ∀x : νy(D1, x)→ νy(D2, x)
ν((¬)D(a)) = (¬)νy(D, a)

ν((¬)R(a, b)) = (¬)arole(R, a, b)
ν((¬)T (a, bc)) = (¬)crole(T, a, bc)

ν(a ◦ b) = a ◦ b for ◦ ∈ {≈, 6≈}
ν(ac ◦ bc) = ac ◦D bc for ◦ ∈ {≈, 6≈}

Mapping KB to FOL
ν(R) = ∀x, y : arole(R, x, y)↔ arole(R−, y, x)

ν(KBR) =
∧

α∈KBR
ν(α) ∧

∧
R∈N ν(R)

ν(KBT) =
∧

α∈KBT
ν(α)

ν(KBA) =
∧

α∈KBA
ν(α)

ν(KB) = ν(KBR) ∧ ν(KBT) ∧ ν(KBA)
Notes:
(i): X is a meta-variable and is substituted by the actual term;
(ii): νx is obtained from νy by simultaneously substituting in the definition

all y(i) with x(i), νy with νx, and vice versa.

11.2 Extending DLs with Decidable Metamodeling 193

isa(C, x)(11.12)
isa(D,x)(11.13)

C ≈ C ′ ∨D ≈ D′(11.14)

Superposition of (11.14) into (11.12) and (11.13) yields (11.15). The problem with
this closure is that it contains two variables. Further inferences with it might yield a
closure with even more variables, so we cannot establish a bound on closure length.

isa(C ′, x) ∨ isa(D′, x′)(11.15)

We solve this problems by modifying the preprocessing step. A closure such as
(11.12) is decomposed into closures ¬OC(z) ∨ isa(z, x) and OC(C). Furthermore, the
literal ¬OC(z) is selected, so the first resolution inference produces isa([C] , x). The
constant C now occurs at substitution position, so superposition into it is not necessary.
Moreover, we decompose a ground closure OP (〈Q〉) ∨ C · ρ into ¬qP,Q ∨ OP (Q) and
qP,Q∨C ·ρ to prevent closures of types other than 8 to contain arbitrary ground literals.

Definition 11.2.5. For an ALCHIQ(D)-closure C, let Clsν be defined as follows:

Clsν(C) =
⋃

D∈Def(C)

Cls(∀x : νy(D,x))

Let ζ(C) be the closure obtained from C by replacing all literals according to the
following table, where the predicate OP is globally unique for the predicate symbol P ,
zP is a new variable globally unique for P , and u and v are arbitrary terms:

isa(P, u) isa(zP , u) ∨ ¬OP (zP)
arole(P, u, v) arole(zP , u, v) ∨ ¬OP (zP)
crole(P, u, vc) crole(zP , u, vc) ∨ ¬OP (zP)

The operator ζ is extended to a set of closures by applying it to each member of the
set. For an extensionally reduced ALCHIQ(D) knowledge base KB, Ξν(KB) is the
smallest set of closures satisfying the following conditions:

• For each name R ∈ N , ζ(Cls(ν(R))) ⊆ Ξν(KB);

• For each RBox or ABox axiom α in KB, ζ(Cls(ν(α))) ⊆ Ξν(KB);

• For each TBox axiom C vn D in KB, ζ(Clsν(¬C tD)) ⊆ Ξν(KB);

• For each predicate OP introduced by ζ, OP (P) ∈ Ξν(KB).

If KB is not extensionally reduced, then Ξν(KB) = Ξν(KB ′), where KB ′ is an
extensionally reduced knowledge base obtained from KB as explained in Section 3.1.

194 11. The Semantics of Metamodeling

It is easy to see that Ξν(KB) is satisfiable if and only if KB is ν-satisfiable.

Lemma 11.2.6. Let KB be an ALCHIQ(D) knowledge base. Then KB is ν-satisfiable
if and only if Ξν(KB) is satisfiable. Furthermore, Ξν(KB) can be computed in time
polynomial in |KB |, for unary coding of numbers in input.

Proof. By Lemma 11.2.4, KB is ν-satisfiable if and only if ν(KB) is satisfiable. Ξν(KB)
is obtained from ν(KB) by applying structural transformation, which is known not to
affect satisfiability, and by applying decomposition to literals isa(P, u), arole(P, u, v),
and crole(P, u, vc), which does by affect satisfiability by Theorem 5.4.4.

Definition 11.2.7. Let BSD,+
ν be the BSD calculus parameterized as follows:

• The E-term ordering � is a lexicographic path ordering induced by a total prece-
dence > over function, constant, and predicate symbols such that, for any func-
tion symbol f , constant symbol c, predicate symbol P , and a propositional symbol
qP,Q, we have f > c > P > qP,Q > T.

• If a closure contains a literal of the form ¬OC(z), then all such literals are
selected; otherwise, all negative arole and crole literals are selected.

• Inference conclusions, whenever possible, are decomposed according to the follow-
ing table, for an arbitrary term t:

D · ρ ∨ arole([R] , [t] , [f(t)])
D · ρ ∨ QR,f ([t])

¬QR,f (x) ∨ arole([R] , x, [f(x)])

D · ρ ∨ arole([R] , [f(x)] , x)
D · ρ ∨ QInv(R),f (x)

¬QInv(R),f (x) ∨ arole([R] , [f(x)] , x)

OP (〈Q〉) ∨ C · ρ
C · ρ ∨ qP,Q

¬qP,Q ∨ OP (Q)

We define ν-ALCHIQ(D)-closures to be of the same form asALCHIQ(D)-closures
from Tables 5.1 and 6.1 with the following differences:

• Conditions (iii)–(vi) are dropped;

• Atoms of the form C(t) take the form isa([C] , t);

• Atoms of the form R(u, v) take the form arole([R] , u, v);

• Atoms of the form T (u, vc) take the form crole([T] , u, vc);

• All closures can contain a disjunction of the form q =
∨

(¬)qP,Q.

11.2 Extending DLs with Decidable Metamodeling 195

Note that closures in Ξν(KB) are technically not ν-ALCHIQ(D)-closures: instead
of literals of the form (¬)isa([C] , x), they contain (¬)isa(z, x) ∨ ¬OC(z). We call such
closures initial closures.

Lemma 11.2.8. Let Ξν(KB) = N0, . . . , Ni ∪ {C} be a BSD,+
ν -derivation, where C

is the conclusion derived from premises in Ni. Then, C is either a ν-ALCHIQ(D)-
closure, or it is redundant in Ni.

Proof. Due to decomposition, it is obvious that the following property (*) holds: pos-
itive literals of the form OP (Q) occur only in unit closures, or in closures of the form
OP (Q) ∨ ¬qP,Q.

Now consider an inference with an initial closure C. Since C contains literals
of the form ¬OP (z), and all such literals are selected, C can participate only in a
hyperresolution inference on all ¬OP (zi). Because of (*), the inference instantiates all
variables zi, and the conclusion is a ν-ALCHIQ(D)-closure.

Due to the E-term ordering of BSD,+
ν , only a literal with a term of the maximum

depth can be maximal in a ν-ALCHIQ(D)-closure. Also, the E-term ordering ensures
that a propositional letter qP,Q is not maximal if a closure contains some other literal.
Finally, appropriate inferences are eligible for decomposition in the same way as in
Theorem 5.4.8. Hence, the claim of this lemma can be shown in the same way as in
the proofs of Lemma 5.3.6, Theorem 5.4.8, and Lemma 6.2.1.

Theorem 11.2.9. Let KB be an ALCHIQ(D) knowledge base, defined over an admis-
sible concrete domain D, for which D-satisfiability of finite conjunctions over ΦD can
be decided in deterministic exponential time. Then, saturation of Ξν(KB) by BSD,+

ν

with eager application of redundancy elimination rules decides ν-satisfiability of KB,
and runs in time exponential in |KB |, for unary coding of numbers and assuming a
bound on the arity of concrete predicates.

Proof. The number of propositional letters qP,Q is quadratic in |KB |, and the number
of predicates OP is linear in |KB |. Therefore, it is possible to obtain an exponential
bound on the number of closures derived in the same way as in Lemma 5.3.9, Theorem
5.4.8, and Theorem 6.2.5. Since decomposition is sound and complete by Theorem
5.4.4, the claim of this theorem follows.

Note that ν-semantics reifies concept and roles; however, it is more like π-semantics,
and less like OWL-Full semantics in the way it handles modeling primitives. In ν- and
π-semantics, the modeling primitives are expressed as formulae, so they cannot be
tampered with. On the contrary, OWL-Full reifies the modeling primitives as well, so
their semantics can be affected by statements in the knowledge base.

11.2.3 Metamodeling and Transitivity

Since the algorithm for checking ν-satisfiability of an ALCHIQ(D) knowledge base
KB does not differ essentially from the algorithm for checking π-satisfiability of KB ,

196 11. The Semantics of Metamodeling

one might intuitively expect that allowing transitivity axioms in KB does not cause
problems. However, consider the following knowledge base KB :

> vn ≥ 3R(11.16)
R ≈ S(11.17)

Trans(S)(11.18)

Note that KB is a SHIQ knowledge base: the role S is simple, since it passes
the syntactic criterion specified in Definition 3.1.1 (it is neither transitive, nor it has a
transitive subrole). However, in any ν-interpretation I, the axiom (11.17) ensures that
SI = T I = α. Furthermore, due to (11.18), RI

a(α) is transitive. Effectively, in (11.16)
a transitive role R is used in a number restriction, even though it is syntactically a
simple role.

Since equality of roles might be nontrivially entailed by KB , identifying simple
roles would itself require theorem proving. Therefore, it is difficult, if not impossible,
to define simple roles under ν-semantics. In [73], it was shown that transitive roles in
number restrictions lead to undecidability, so we get the following result:

Proposition 11.2.10. Checking ν-satisfiability of a SHIQ knowledge base KB is
undecidable.

Decidability can be regained by using unique role assumption. Intuitively, this
assumption requires two distinct role symbols to be interpreted as distinct domain
individuals. In such a case, simple roles can be defined and checked as usual.

Definition 11.2.11 (Unique Role Assumption). A SHIQ(D) knowledge base KB
employs the unique role assumption if it contains an axiom R 6≈ S, for each two
distinct symbols R and S occurring as roles in KB.

It is easy to see that transitivity axioms can be eliminated from knowledge bases
employing unique roles assumption using the transformation from Section 5.2, so we
thus obtain an algorithm for checking ν-satisfiability of such knowledge bases.

Theorem 11.2.12. Let KB be a SHIQ(D) knowledge base KB employing the unique
role assumption, or containing neither explicit equality statements, nor number restric-
tions. Then, KB is ν-satisfiable if and only if Ω(KB) is ν-satisfiable.

Proof. The (⇒) direction of the proof of Theorem 5.2.3 obviously holds in this case
as well. For the (⇐) direction, by the lemma assumptions on KB , if Ω(KB) is ν-
satisfiable, then it has a ν-model such that RIν 6= SIν , for each two distinct symbols
R and S occurring as roles in KB . Hence, it is possible to construct a ν-model of KB
in the same way as in the proof of the (⇐) direction of Theorem 5.2.3.

11.3 Expressivity of Metamodeling 197

11.3 Expressivity of Metamodeling

In this section we investigate in which way metamodeling increases the expressivity
of the logic. Here we consider only the logical aspects—that is, what kinds of new
consequences can be drawn. Our discussion in this section does not consider nonlogical
aspects that may be relevant in practice (such as increased search flexibility). The
following results are similar to the ones for HiLog [33].

It is easy to see that ν-satisfiability is a strictly stronger notion than π-satisfiability.
Consider the following knowledge base KB :2

Eagle(Harry)(11.19)
¬Aquila(Harry)(11.20)
Eagle ≈ Aquila(11.21)

Under the contextual semantics, the interpretations of symbols C andD as concepts
and as individuals are completely independent, so KB is π-satisfiable. However, KB
is ν-unsatisfiable: in each ν-interpretation, EagleI = AquilaI = α, so it cannot be that
HarryI ∈ CI

n(EagleI) and HarryI /∈ CI
n(AquilaI). For the other direction, we have the

following lemma:

Lemma 11.3.1. Each ν-satisfiable ALCHIQ(D) knowledge base is π-satisfiable.

Proof. Let Iν be a ν-model of an ALCHIQ(D) knowledge base KB . We construct
from Iν a π-interpretation Iπ as follows: 4Iπ = 4Iν , nIπ = nIν , CIπ

n (n) = CIν
n (nIν),

RIπ
a (n) = RIν

a (nIν), and RIπ
c (n) = RIν

c (nIν), for each n ∈ N . By a simple induction on
the concept structure, it can be shown that, for each concept X, CIπ

n (X) = CIν
n (X),

so Iπ is a π-model of KB .

Furthermore, for a knowledge base with unique name assumption or without equal-
ity (either explicit or implicit, introduced through number restrictions), π-satisfiability
and ν-satisfiability coincide:

Lemma 11.3.2. Let KB be an ALCHIQ(D) knowledge base such that it employs
unique name assumption, or it contains neither explicit equality statements, nor num-
ber restrictions. Then, KB is π-satisfiable if and only if it is ν-satisfiable.

Proof. The (⇐) direction follows from Lemma 11.3.1. For the (⇒) direction, let KB
be π-satisfiable in some model Iπ. Due to the lemma assumptions, we can assume
without loss of generality that ni 6= nj implies ni

Iπ 6= nj
Iπ , for all for ni, nj ∈ N (in

the first case, this is because KB employs unique name assumption, and in the second
case this is because KB does not employ equality).

Given such a π-model Iπ, we construct a ν-interpretation Iν by setting 4Iν = 4Iπ ,
nIν = nIπ , CIν

n (nIν) = CIπ
n (n), RIν

a (nIν) = RIπ
a (n), and RIν

c (nIν) = RIπ
c (n), where

n ∈ N . Furthermore, for all x ∈ 4Iν such that there is no n ∈ N with x = aIν , let
2Aquila is the Latin name for eagle.

198 11. The Semantics of Metamodeling

CIν
n (x) = RIν

a (x) = RIν
c (x) = ∅. Since we can assume that different names from N

are interpreted as different elements from 4Iν , such a construction defines exactly one
value of CIν

n (x), RIν
a (x), and RIν

c (x) for each x ∈ 4Iν , so Iν is correctly defined. By
a simple induction on the concept structure, it can be shown that CIν

n (X) = CIπ
n (X)

for each concept X, so Iν is a ν-model of KB .

To summarize, ν-semantics derives new consequences only if two symbols can be
derived to be equal: for example, from (11.19) and (11.21) it is possible to derive
Aquila(Harry). Furthermore, under unique name assumption (which is often used in
practice), ν-semantics does not produce any new consequences. This seems to suggest
that the benefits of ν-semantics do not outweigh its drawbacks—that it is nonstandard,
and that it introduces problems for transitive roles. Moreover, π-semantics might be
sufficient for many practical applications.

However, ν-semantics unlocks its full potential when combined with a language
more expressive than OWL. For example, by combining ν-semantics with the Seman-
tic Web Rule Language (SWRL) [69], one can explicitly axiomatize the semantics of
metaclasses. Returning to the example from the beginning of this chapter, by (11.22)
we state that Eagle is a RedListSpecies, and by a SWRL rule (11.23) we state that
instances of species listed in the Red List are not allowed to be hunted. Note that
we use in atom x(y) the variable x at the predicate position. Under ν-semantics this
is equivalent to isa(x, y), but under π-semantics this would not be possible without
leaving the confines of first-order logic. Now from (11.19), (11.22), and (11.23), we can
infer CannotHunt(Harry); hence, RedListSpecies semantically acts as a metaconcept
of the Eagle concept.

RedListSpecies(Eagle)(11.22)
RedListSpecies(x) ∧ x(y)→ CannotHunt(y)(11.23)

To summarize, from the logical perspective ν-semantics alone does not make much
of a difference, and π-semantics may be sufficient for numerous applications. However,
ν-semantics provides a sound foundation for metamodeling, which, when combined
with a more expressive logic, such as SWRL, allows us to precisely axiomatize the
interaction between classes and metaclasses. It is easy to see that, if ν-semantics is
combined with DL-safe rules from Chapter 9, it yields a decidable formalism. Thus,
we believe ν-semantics to be very relevant for future extensions of OWL.

11.4 Related Work

The definition of ν-satisfiability given in Section 11.2 is inspired by HiLog [33], a logic
in which general terms are allowed to occur in place of function and predicate symbols
in formulae. The semantics is defined by interpreting each individual as a member of
the interpretation domain, and by assigning a functional and a relational interpretation
to domain objects. The authors show that HiLog can be considered “syntactic sugar,”

11.4 Related Work 199

since each HiLog formula can be encoded into an equisatisfiable first-order formula; the
definition of the ν operator in Table 11.3 closely resembles this encoding. Finally, the
authors show that a satisfiable first-order formula without equality is also satisfiable
under HiLog semantics.

In [102], the RDFS Model Theory was criticized for allowing infinitely many meta-
layers. The authors argue that such a semantics is inadequate for the Semantic Web
since (i) it does not provide adequate support for inferencing; (ii) it allows defining
classes that contain themselves, which may potentially lead to paradoxes; and (iii) by
adding classes, one necessarily introduces objects in the interpretation universe. The
authors propose RDFS-FA, a stratified four-level approach, consisting of the meta-
language layer, the language layer, the ontology layer, and the instance layer. In
[68], similar arguments were used to criticize the semantics of OWL-Full. We follow
the principles of RDFS-FA by strictly separating the modeling primitives from the
ontology and the instance layers; however, to provide for metamodeling, our definition
of ν-semantics merges the ontology and the instance layers. Furthermore, we show
that the consequences of (iii) actually match the intuition behind metamodeling.

In [149], the authors point out the usefulness of metamodeling in many application
domains. They propose separation of modeling layers, which are connected using
spanning instances. However, the authors do not consider the logical consequences of
their approach.

By means of an example very similar to ours, in [132] the author argues for the
compelling need of metamodeling in practical knowledge representation systems.

200 11. The Semantics of Metamodeling

Part IV

Practical Considerations

201

Chapter 12

Implementation of KAON2

Whereas the techniques presented in previous chapters provide new theoretical insights
into the relationship between description logics and disjunctive datalog, our primary
motivation for developing them was to obtain a practical alternative to tableau cal-
culi, capable of handling knowledge bases with reasonably large ABoxes. To validate
practicability of our algorithms, we implemented them in a new DL reasoning system
KAON2.1 In this chapter, we describe the implementation of the system, and discuss
numerous practical aspects. Namely, the implemented algorithms are of high computa-
tional complexity, so it is unrealistic to expect that one can directly cast them into code
and obtain an efficient implementation. To avoid unnecessary overhead, we developed
several important optimizations. In the following section we present the architecture
of the system, followed by a detailed discussion of important system components.

12.1 KAON2 Architecture

KAON2 fully implements the satisfiability checking algorithm from Chapter 5, the
reduction algorithm from Chapter 7, and the DL-safe rules from Chapter 9. Hence,
the supported logic is SHIQ extended with DL-safe rules. Datatypes are not sup-
ported yet because it is currently not clear how to combine concrete domain resolution
with optimization techniques, such as magic sets. Furthermore, answering conjunctive
queries and metamodeling are not supported because it is currently unclear how to
cast the presented algorithms into the setting of disjunctive datalog.

KAON2 was implemented completely in Java 1.5. Figure 12.1 describes its technical
architecture. The Ontology API provides ontology manipulation tasks, such as adding
and retrieving ontology axioms. The API fully supports OWL and the Semantic Web
Rule Language (SWRL) at the syntactic level. Several similar APIs already exist,
such as OWL API [17] or Jena.2 However, to obtain an efficient system, we had to
exert complete control over the internals of the API, which we could not have achieved

1http://kaon2.semanticweb.org/
2http://jena.sourceforge.net/

203

http://kaon2.semanticweb.org/
http://jena.sourceforge.net/

204 12. Implementation of KAON2

Figure 12.1: KAON2 Architecture

by reusing an existing implementation. Ontologies can be saved in files, using either
OWL RDF3 or OWL XML4 syntax. Alternatively, ABox assertions can be stored
in a relational database (RDBMS): by mapping ontology entities to database tables,
KAON2 will query the database on the fly during reasoning.

The Reasoning API allows invoking various reasoning tasks, and retrieving their
results.

KAON2 can be used as a dynamic library, or as a stand-alone server. In the
latter case, the client applications can access KAON2 through either Remote Method
Invocation (RMI) protocol or the DL Implementors Group (DIG) API [16]. Thus, the
system can be used with Protégé5 and OilEd6 ontology editors.

The Reasoning Engine is the central component of KAON2, consisting of three
subcomponents. The Ontology Clausification subcomponent is responsible for trans-
lating a SHIQ knowledge base KB into a set of first-order clauses Ξ(KB). In Section
12.2 we preset several optimizations of the basic clausification algorithm. The Theo-
rem Prover for BS implements the basic superposition calculus [14], which is used in
the reduction algorithm. The design of this component is discussed in more detail in
Section 12.3. Finally, the Disjunctive Datalog Engine is used for answering queries in
the program obtained by the reduction. The design of this component is discussed in
more detail in Section 12.4.

12.2 Ontology Clausification

The saturation of TBox and ABox clauses by basic superposition is a critical step of
the reduction algorithm, because it can introduce an exponential blowup. Each clause

3http://www.w3.org/TR/owl-semantics/
4http://www.w3.org/TR/owl-xmlsyntax/
5http://progete.stanford.edu/
6http://oiled.man.ac.uk/

http://www.w3.org/TR/owl-semantics/
http://www.w3.org/TR/owl-xmlsyntax/
http://progete.stanford.edu/
http://oiled.man.ac.uk/

12.2 Ontology Clausification 205

can potentially participate in an inference that generates many conclusions, so it is
important to keep the size of the input clause set minimal. To achieve this, we present
several optimizations of the clausification algorithm from Definition 5.3.1; they are also
applicable to the clausification algorithm from Definition 8.2.2.

12.2.1 Reusing Replacement Predicates

A concept often occurs in many other concepts in KB , which allows us to reuse the
replacement concepts:

Definition 12.2.1. For QD and QD new concepts unique for D, the optimized clausi-
fication is obtained by modifying Definition 5.3.1 to use for Q the concept as follows:

Q =
{
QD if pol(C, p) = 1 and C|p = D
QD if pol(C, p) = −1 and C|p = D

For example, consider the knowledge base KB , consisting of axioms (12.1)–(12.3)
shown on the left-hand side:

A v ∃S.∃R.D
A v ∃S.Q∃R.D

Q∃R.D v ∃R.D(12.1)

B v ∃T.∃R.D B v ∃T.Q∃R.D(12.2)

∃U.∃R.D v C
∃U.Q∃R.D v C
∃R.D v Q∃R.D

(12.3)

The concept ∃R.D occurs in KB twice under positive, and once under negative
polarity. Hence, we replace ∃R.D in (12.1) and (12.2) with Q∃R.D, and in (12.3) with
Q∃R.D, yielding the axioms shown in (12.1)–(12.3) on the right-hand side.

Note that Q∃R.D should not be used to replace ∃R.D in (12.3): the negation-normal
form of (12.3) is ∀U.∀R.¬DtC, and it does not contain ∃R.D. Hence, the subconcept
∀R.¬D must be replaced by a concept different from Q∃R.D.

Lemma 12.2.2. KB and Ξ(KB) are equisatisfiable, even if optimized structural trans-
formation is applied to an ALCHIQ(D) knowledge base KB.

Proof. The (⇐) direction is trivial, and the (⇒) direction can be proved by choosing
the interpretation of QD and QD as done for decomposition in Subsection 5.4.1.

12.2.2 Optional Positions

Certain nonliteral predicates need not be replaced with an atomic concept in the
clausification process. Consider clausification of an axiom A v ∃R.B: by Definition
5.3.1, Cls(¬At∃R.B) = {¬AtQ1, ¬Q1t∃R.B}; that is, the concept ∃R.B is replaced
by Q1. However, clausifying ¬A t ∃R.B produces clauses of the form from Table 5.2
even without replacing the nonliteral subconcept ∃R.B. This allows for the following
optimization:

206 12. Implementation of KAON2

Definition 12.2.3. In a concept C = Dt
⊔
Li, where D is a possibly complex concept

and all Li are literal concepts, the positions of D and Li are optional for renaming.

Lemma 12.2.4. Each clause in Ξ(KB) is of a type from Table 5.2, even if Def(C) is
computed by omitting in Λ(C) the positions that are optional for renaming.

Proof. By definition of π from Table 3.1, clausifying a concept C = Dt
⊔
Li produces

clauses from Table 5.2.

Renaming optional positions can sometimes be beneficial. Consider the knowledge
base KB , consisting of axioms shown in (12.4)–(12.6) on the left-hand side:

A v ∃R.C
¬A(x) ∨R(x, f(x))
¬A(x) ∨ C(f(x))

(12.4)

B v ∃R.C
¬B(x) ∨R(x, g(x))
¬B(x) ∨ C(g(x))

(12.5)

> v ≤ 1R ¬R(x, y1) ∨ ¬R(x, y2) ∨ y1 ≈ y2(12.6)

In ¬At∃R.C and ¬B t∃R.C, the positions of ∃R.C are optional for renaming, so
KB can be clausified without introducing new predicates. This yields clauses shown
in (12.4)–(12.6) on the right-hand side.

The concept ∃R.C is now skolemized twice, yielding clauses ¬A(x)∨R(x, f(x)) and
¬B(x) ∨ R(x, g(x)) as candidates for an inference with (12.6). Additional axioms of
the form Ai v ∃R.C would produce additional clauses of the form ¬Ai(x)∨R(x, f(x)),
which could participate in an inference with (12.6), thus significantly increasing the
search space.

The search space can be reduced by renaming ∃R.C, although it occurs at optional
positions in axioms. The axioms and the clauses obtained by applying the structural
transformation to KB are shown in (12.7)–(12.10):

A v Q ¬A(x) ∨Q(x)(12.7)
B v Q ¬B(x) ∨Q(x)(12.8)

Q v ∃R.C
¬Q(x) ∨R(x, f(x))
¬Q(x) ∨ C(g(x))

(12.9)

> v ≤ 1R ¬R(x, y1) ∨ ¬R(x, y2) ∨ y1 ≈ y2(12.10)

This set contains one clause ¬Q(x) ∨ R(x, f(x)), which can participate in an in-
ference with (12.10); also, any additional axiom Ai v ∃R.C produces only a clause
¬Ai(x) ∨ Q(x). Note that renaming ∃R.C pays off because the concept ∃R.C occurs
in KB twice.

Hence, in Definition 5.3.1, Λ(C) should be the set of all positions p 6= ε in C such
that (i) C|p is not a literal concept, and, for all positions q below p, C|q is a literal
concept; and (ii) p is either not optional for renaming, or C|p occurs in KB more than
once.

12.2 Ontology Clausification 207

12.2.3 Handling Functional Roles

Consider the knowledge base KB , containing the axioms shown in (12.11)–(12.13) on
the left-hand side:

> v ≤ 1R ¬R(x, y1) ∨ ¬R(x, y2) ∨ y1 ≈ y2(12.11)

A v ∃R.C
¬A(x) ∨R(x, f(x))
¬A(x) ∨ C(f(x))

(12.12)

B v ∃R.D
¬B(x) ∨R(x, f(x))
¬B(x) ∨D(f(x))

(12.13)

The role R is functional by (12.11), which means that an object in a model can have
at most one R-successor. This allows using the same function symbol f in skolemizing
∃R.C and ∃R.D, yielding clauses (12.11)–(12.13) shown on the right-hand side.

The main benefit of such clausification is that resolving ¬A(x) ∨ R(x, f(x)) and
¬B(x) ∨ R(x, f(x)) with (12.11) produces a clause with a literal f(x) ≈ f(x); such a
clause is a tautology (and can be deleted). Without reusing function symbols, clausify-
ing (12.12) would produce ¬B(x)∨R(x, g(x)), which, resolved with ¬A(x)∨R(x, f(x))
and (12.11), produces a clause containing a literal f(x) ≈ g(x). Such a clause is not a
tautology, and should be used in further inferences.

This optimization is also very important for the reduction to disjunctive datalog.
Namely, for each function symbol f occurring in Ξ(KB), the program DD(KB) contains
a new predicate Sf . By reducing the number of function symbols, we reduce the number
of datalog predicates.

Definition 12.2.5. Clausification with optimized skolemization is obtained from De-
finition 5.3.1 such that, if > v ≤ 1R ∈ KB, then the existential quantifiers in ∃R.C
and ≥ nR.C are skolemized using a function symbol fR unique for R.

Lemma 12.2.6. KB and Ξ(KB) are equisatisfiable, even if clausification with opti-
mized skolemization is used.

Proof. If R is functional, then an object x is allowed to have at least one R-successor
in a model I, which is represented by the functional term fR(x).

12.2.4 Discussion

The techniques presented in this chapter are all geared towards reducing the number
of clauses in Ξ(KB). It is instructive to compare the effects that such optimizations
would have in a tableau calculus such as [73].

Tableau calculi try to construct a model of a knowledge base by applying tableau
expansion rules if some tableau constraint is not satisfied. Consider, for example, a
knowledge base KB consisting of the following axioms:

208 12. Implementation of KAON2

C(a)(12.14)
R(a, b)(12.15)
D(b)(12.16)

C v ∃R.D(12.17)

The axiom (12.17), when applied to (12.14), yields a constraint ∃R.D(a), which
does not need to be further expanded: a already has an R-successor b that is a member
of D, so there is no need to introduce a new R-successor for a.

The situation is quite different in resolution calculi. The clausification algorithm
translates (12.17) into these two clauses:

¬C(x) ∨R(x, f(x))(12.18)
¬C(x) ∨D(f(x))(12.19)

In resolution, skolemization plays a role that is analogous to expanding existential
concepts in tableau calculi: in clauses (12.18) and (12.19), the term f(x) plays the
role of the existentially implied R-successor for x. Thus, skolemization expands all
existential quantifiers before the theorem proving process starts, regardless of whether
it is actually necessary to do so in order to build a model.

Another important difference between resolution and tableau is that clauses ob-
tained by skolemization are nonground; that is, they encode successor information for
many individuals. For example, (12.18) and (12.19) encode successor information for
any individual x that is a member of C. When resolution inferences are applied to
such nonground clauses, they act on the set of all those successors. In contrast, a
tableau calculus expands each successor separately, and repeats an inference step for
each successor separately.

The optimizations from Subsections 12.2.1, 12.2.2, and 12.2.3 can be understood
as an attempt to reduce the number of existential individuals introduced in advance.

12.3 The Theorem Prover for BS
As discussed in [116], implementing an efficient theorem prover is a very complex task.
Apart from excellent software engineering skills, it also requires knowledge of numerous
techniques in order to implement various modules of the system.

However, our goal is not to provide a general first-order theorem prover applicable
to any first-order problem. Rather, we need a theorem prover that can handle only
ALCHIQ-closures. As shown in Table 5.2, such closures are of a rather limited form.
Hence, general implementation techniques can be radically simplified, thus yielding a
simpler, leaner, and more efficient implementation.

12.3 The Theorem Prover for BS 209

12.3.1 Inference Loop

The main design element of a resolution-based theorem prover is the inference loop,
which is responsible for saturating a set of closures under the given set of inference
and redundancy elimination rules. In KAON2, we use a simplified variant of the
DISCOUNT loop, introduced first in the equational theorem prover E [133]. The
pseudo-code of the inference loop is presented in Algorithm 12.1.

The inference loop is parameterized with a set of inference rules C (explained in
more detail in Subsection 12.3.3) and a set of redundancy elimination rules D (ex-
plained in more detail in Subsection 12.3.4), and is given a set of closures N to be
saturated. To ensure that the saturation is fair—that is, that each nonredundant in-
ference is eventually performed—, the closures are partitioned into two sets. The set
U is the set of unprocessed closures—that is, closures that have not taken part in any
inference. The set W is the set of worked-off closures—that is, closures for which all
inferences with other members from W have been performed.

In the beginning, U contains the set of closures N to be saturated and W is empty.
In each step of the saturation, a given closure g is don’t-care nondeterministically
chosen and removed from U . We describe the algorithm for choosing the given closure,
encapsulated in the function PickGivenClosure, in more detail in Subsection 12.3.7.

Next, redundancy elimination rules are applied sequentially to g, transforming it
into a potentially simpler closure. We use a convention that, if a closure is made
redundant by a simplification rule, then SimplifyClosure returns null. We discuss
the redundancy elimination rules of KAON2 in Subsection 12.3.4.

If the simplified closure is not redundant and it is not equal to the empty closure,
then backward subsumption is performed: using RetrieveSubsumedClosures, all
closures from W that are properly subsumed by g are retrieved and removed from W .
We describe the index structures used to optimize the retrieval of subsumed closures
in Subsection 12.3.8.

Finally, all inferences between g and the closures from W are performed. All
conclusions that are not syntactic tautologies are added to the set of unprocessed
closures U , after which the entire process is repeated.

If the given closure is the empty closure, then N is unsatisfiable. Otherwise, the
process terminates if U becomes empty; at this point, W is the saturated set.

12.3.2 Representing ALCHIQ-Closures

ALCHIQ-closures of types 3, 4, 5, 6, and 8 have at most one variable, and any LPO is
total on such terms and literals. This allows us to represent closures as totally ordered
arrays without repeated literals. This has two main benefits. First, the maximal literal
is the first literal, so the literal on which an inference should take place can be located
in constant time. Second, conclusions between inferences can be computed using merge
sort in time that is linear in the size of the premises.

Moreover, the restricted form of ALCHIQ-closures allows us to use a polynomial
subsumption checking algorithm. Namely, the general subsumption problem is known

210 12. Implementation of KAON2

Algorithm 12.1 The Inference Loop of KAON2
Input:
C: the set of inference rules
D: the set of redundancy elimination rules
N : the set of closures to be saturated

Output:
the set of closures W obtained by saturating N by C and D

Local variables:
W : the set of worked-off closures
U : the set of unprocessed closures

1: W ←− ∅
2: U ←− N
3: while U 6= ∅ do
4: g ←− PickGivenClosure(U)
5: U ←− U \ {g}
6: for each redundancy elimination rule r ∈ D do
7: g ←− SimplifyClosure(g, r,W)
8: end for
9: if g 6= null then

10: if g = � then
11: return {�} . N is unsatisfiable
12: end if
13: S ←− RetrieveSubsumedClosures(g,W)
14: W ←− (W \ S) ∪ {g}
15: T ←− ∅
16: for each inference rule r ∈ C do
17: T ←− T ∪ComputeConclusions(r, g,W)
18: end for
19: for each conclusion t ∈ T do
20: if IsSyntacticTautology(t) = false then
21: U ←− U ∪ {t}
22: end if
23: end for
24: end if
25: end while
26: return W . W is the saturated set

12.3 The Theorem Prover for BS 211

to be NP-complete [52], and experience has shown that theorem provers spend up to 90
percent of running time in subsumption checking. Therefore, improving the efficiency
of subsumption is expected to have a significant effect on the performance.

The subsumption checking procedure for closures of types 3, 4, 5, 6, and 8 is shown
in Algorithm 12.2. To determine if C subsumes D, the algorithm essentially scans the
literals of D (lines 1–14), trying to match then with the first literal of C (line 2). If a
substitution σ exists such that C1σ = Di, because C1 contains all variables of C, the
substitution σ binds all variables in C. Hence, in lines 5–8 the algorithm simply checks
whether, for each literal Ci, one can find a literal Dj such that Ciσ = Dj and that
each marked position of Ciσ can be overlaid in a substitution position in Dj . Since
the closures are totally ordered, the literals can be matched sequentially. To estimate
the complexity, note that the inner loop (lines 1–14) is executed at most |D| times,
whereas the inner loop (lines 5–8) is executed at most |C| + |D| times. Hence, the
algorithm runs in time O(|C| · (|C|+ |D|)), which is obviously polynomial.

Additionally, we store with each closure a flag specifying its type, as this enables
further optimizations. For example, a closure of type 3 or 4 cannot subsume a closure
of any other type. Similarly, closures of types 1, 2, or 7 can subsume only closures of
the same type. Hence, a quick check whether closure types are compatible can be used
to quickly identify subsumption tests that are bound to fail.

12.3.3 Inference Rules

The theorem prover of KAON2 encodes the literals with a predicate other than equality
as E-terms (see Section 2.5), allowing a more or less straightforward implementation
of the inferences rules of the BS calculus. The implementation can be somewhat
simplified by observing that closures of types 1, 2, and 7 can only participate in hyper-
resolution inferences, in which unification can be performed in constant time. Hence,
the theorem prover handles closures of types 1, 2, and 7 by a separate hyperresolution
inference rule, whereas inferences among other closures are handled using positive and
negative superposition.

Furthermore, negative superposition inferences can result in closures containing
literals of the form T 6≈ T and x 6≈ x. For such closures, reflexivity resolution produces
a closure that always subsumes the superposition conclusion, and is therefore applied
eagerly to each conclusion.

12.3.4 Redundancy Elimination Rules

The simplification rules are applied to the given closure in the order as explained in
the following paragraphs. It may come as a surprise that KAON2 does not implement
so-called rewriting simplification inferences. Namely, given a unit closure s ≈ t and a
closure A∨C, under certain conditions, A∨C can be replaced with A[tσ]p ∨C, where
σ is a substitution such that A|p = sσ. In general first-order theorem provers, such
as E [133] or Vampire [119], such inferences are essential for solving hard problems.
However, most DL problems do not contain unit equalities at all. Equalities occur only

212 12. Implementation of KAON2

Algorithm 12.2 Closure Subsumption Algorithm in KAON2
Input:

C: the potential subsumer
D: the potential subsuming closure

Output:
a substitution σ such that Cσ ⊆ D

Note:
Ci is the i-th literal of a closure C, and |C| is the number of literals in C.

1: for i = 1 . . . |D| do
2: σ = Match(C1, Di)
3: if σ 6= null then
4: j ←− 0
5: for k = i . . . |D| and j < |C| do
6: if Cjσ = Dk and MarkersCompatible(Cjσ,Dk) then
7: j ←− j + 1
8: end if
9: end for

10: if j = |C| then
11: return σ
12: end if
13: end if
14: end for
15: return null . No subsumption

16: function Match(s,t)
17: if s is a variable x then
18: return {x 7→ t}
19: else if s = f(s1, . . . , sn) and t = f(t1, . . . , tn) then
20: σ ←− {}
21: for i = 1 . . . n do
22: θ ←−Match(siσ, ti)
23: if θ = null then
24: return null
25: else
26: σ ←− σθ
27: end if
28: end for
29: return σ
30: else
31: return null
32: end if
33: end function

34: function MarkersCompatible(s,t)
35: true if t|p is at substitution position whenever s|p is marked, for each position p
36: end function

12.3 The Theorem Prover for BS 213

in ALCHIQ-closures of type 5, 6, or 8, where they are usually accompanied by at least
one literal with a predicate other than ≈. Hence, rewriting is not applicable to the vast
majority of DL problems, and we therefore do not include it into our implementation.

Semantic Tautology Deletion. As mentioned in Section 2.4, checking if a closure
is a tautology requires theorem proving, so simple syntactic approximate checks are
used in practice. However, a feasible semantic check was presented in [133]: a closure
is a tautology if it contains a disjunction of the form s1 6≈ t1 ∨ . . . ∨ sn 6≈ tn ∨ s ≈ t
such that s1σ ≈ t1σ, . . . , snσ ≈ tnσ |= sσ ≈ tσ, where σ is a substitution mapping all
variables in the closure to distinct new constants.

Since deciding entailment in a ground equality theory is decidable, the check from
the previous paragraph is decidable, but implementing it may introduce a significant
amount of overhead. However, the syntactic structure of ALCHIQ-closures makes
the check easy to implement in certain situations. Namely, it is easy to see that the
conditions of semantic tautology deletion are satisfied for any closure of type 5 or 6
that contains a disjunction of the following form:

f1(t) 6≈ f2(t) ∨ f2(t) 6≈ f3(t) ∨ . . . ∨ fn−1(t) 6≈ fn(t) ∨ f1(t) ≈ fn(t)

Namely, for any substitution σ, it is easy to see that the following condition holds:

f1(tσ) ≈ f2(tσ) ∧ f2(tσ) ≈ f3(tσ) ∧ . . . ∧ fn−1(tσ) ≈ fn(tσ) |= f1(tσ) ≈ fn(tσ)

Hence, semantic tautology deletion can be applied to a closure C of type 5 or 6 as
follows. We first construct an unoriented graph GC whose nodes are function symbols
from C, and where nodes fi and fj are connected if C contains a literal fi(t) 6≈ fj(t).
Next, we compute the transitive closure G+

C of GC . Finally, we check if C contains a
literal fi(t) ≈ fj(t) such that fi and fj are connected by an edge in G+

C . This check
can be performed in time that is polynomial in |C|, and, if it succeeds, C is deleted.

Forward Subsumption. A closure C is deleted if the set of worked-off closures
W contains a closure D that subsumes C. We discuss the index structures used to
optimize subsumption checking in more detail in Subsection 12.3.8.

Contextual Literal Cutting. This subsumption-based simplification rule [134] al-
lows eliminating certain literals from a closure. Namely, a closure C∨L can be replaced
with C, provided that C ∨ L is subsumed in the set of worked-off closures W . Hence,
contextual literal cutting can be implemented by complementing each literal, and then
checking whether the resulting closure is subsumed in W .

The correctness of the rule can intuitively be explained as follows: let D be a
closure from W that subsumes C ∨ L through a substitution σ—that is, Dσ ⊆ C ∨ L.
Furthermore, because D is in W , we have W |= Dσ∨L. But now we can resolve C ∨L
with Dσ ∨ L; because Dσ ∈ C, we obtain the closure C, which obviously subsumes
C ∨L. Hence, contextual literal cutting can be understood as a macro, combining the
effects of the mentioned inferences.

214 12. Implementation of KAON2

12.3.5 Optimizing Number Restrictions

It is not difficult to see that resolution-based techniques are not well suited for rea-
soning with number restrictions. Namely, a concept of the form ≤ nR.C is translated
into a closure of type 7, containing (n+1)n

2 literals of the form yi ≈ yj . If such a clo-
sure is hyperresolved with m R-generators of type 3, each hyperresolution produces
closures containing many literals of the form [fi(x)] ≈ [fj(x)]. Furthermore, such a
literal is produced by each inference with a pair of side premises containing fi and fj ,
thus resulting in many similar closures. Because each literal fi(x) ≈ fj(x) is a poten-
tial source of a superposition inference, number restrictions dramatically increase the
number of superposition inferences in a saturation.

The number of superposition inferences can be somewhat reduced by applying de-
composition and replacing literals of the form [fi(t)] ≈ [fj(t)] with Qfi,fj

([t]). Consider
the closures (12.20)–(12.21), obtained by resolving Ci(x)∨R(a, fi(x)), 1 ≤ i ≤ 4, with
¬R(x, y1) ∨ ¬R(x, y2) ∨ ¬R(x, y3) ∨ y1 ≈ y2 ∨ y2 ≈ y3 ∨ y1 ≈ y3:

C ∨ [f1(x)] ≈ [f2(x)] ∨ [f1(x)] ≈ [f3(x)] ∨ [f2(x)] ≈ [f3(x)](12.20)
D ∨ [f1(x)] ≈ [f2(x)] ∨ [f1(x)] ≈ [f4(x)] ∨ [f2(x)] ≈ [f4(x)](12.21)

Using decomposition, (12.20)–(12.21) can be transformed into (12.22)–(12.28):

C ∨Qf1,f2(x) ∨Qf1,f3(x) ∨Qf2,f3(x)(12.22)
D ∨Qf1,f2(x) ∨Qf1,f4(x) ∨Qf2,f4(x)(12.23)

¬Qf1,f2(x) ∨ [f1(x)] ≈ [f2(x)](12.24)
¬Qf1,f3(x) ∨ [f1(x)] ≈ [f3(x)](12.25)
¬Qf1,f4(x) ∨ [f1(x)] ≈ [f4(x)](12.26)
¬Qf2,f3(x) ∨ [f2(x)] ≈ [f3(x)](12.27)
¬Qf2,f4(x) ∨ [f2(x)] ≈ [f4(x)](12.28)

Now there is exactly one closure containing a literal of the form [fi(x)] ≈ [fj(x)], so
superposition from such a literal is performed only once, and not for each closure where
[fi(x)] ≈ [fj(x)] occurs.

A disadvantage of this transformation is that it does not allow us to apply semantic
tautology deletion (see Subsection 12.3.4), since literals fi(x) ≈ fj(x) occur only in
isolation. This can be remedied as follows: for each pair of function symbols fi and fj ,
we additionally introduce a closure Qfi,fj

(x)∨ [fi(x)] 6≈ [fj(x)], which makes Qfi,fj
(x)

equivalent to [fi(x)] ≈ [fj(x)]. Now semantic tautology deletion can be applied as
described previously with the difference that, instead of [fi(x)] ≈ [fj(x)], the literals
Qfi,fj

([t]) are used in building the graph GC .

12.3.6 Tuning the Calculus Parameters

The main role of the parameters of BSDL is to guarantee termination of the calculus.
However, Definition 5.3.3 provides some room for fine-tuning the parameters.

12.3 The Theorem Prover for BS 215

More concretely, we can choose the precedence of predicate symbols > based on
the frequency of occurrences of symbols in a knowledge base. Practical experiments
have shown that in many cases, it is beneficial to use a precedence based on decreasing
frequency of symbols—that is, a precedence where the most-frequent predicate is the
smallest in the precedence.

Furthermore, we can tweak the selection function. It is known that selecting and
hyperresolving multiple negative literals in practice often leads to better performance.
Intuitively, such inferences are efficient because they do not derive many intermediary
consequences. In the case of BSDL, we can use a selection function that selects negative
literals containing the deepest terms in a closure. Lemma 5.3.6 still holds in such a
case, because Lemma 5.3.5 is still satisfied.

12.3.7 Choosing the Given Closure

General theorem provers are geared towards solving hard problems in first-order logic.
However, first-order logic is semidecidable: given a finite amount of time, we can
hope only to detect unsatisfiability. For satisfiable problems, no guarantee of finding a
solution exists. Therefore, most existing theorem provers are geared towards detecting
unsatisfiability.

It is widely believed that many hard first-order problems have relatively short
proofs. Hence, the performance of first-order reasoning is expected to depend a lot
on choosing a good proof strategy, which is mainly determined by the algorithm for
choosing the given closure (line 4 of Algorithm 12.1). Therefore, numerous different
heuristics for choosing the given closure have been explored.

Unlike most general first-order provers, the theorem prover in KAON2 is applied
mostly to satisfiable problems. Namely, ontologies are typically satisfiable (if this is not
so, they usually contain an error). Furthermore, in computing a reduction to disjunc-
tive datalog, the saturation of the TBox axioms is computed. Finally, our experience
and that of other authors of DL reasoning systems shows that most problems encoun-
tered while computing a subsumption hierarchy are satisfiable. Hence, the strategy for
choosing the given closure is less important in our case, because the theorem prover in
most cases performs all inferences anyway.

Therefore, we adopt a simple strategy of always choosing a closure from U that has
the smallest number of literals, and of resolving ties in an arbitrary manner. Intuitively,
a short closure is more likely to subsume a closure in W .

12.3.8 Indexing Terms and Closures

As discussed in [116], a critical aspect of an implementation of a first-order theorem
prover is to provide appropriate clause indexes—auxiliary data structures used to effi-
ciently identify closures used at particular steps in the saturation. Unification indexes
are used to retrieve potential candidate closures that can participate in an inference,
whereas subsumption indexes are used to retrieve closures that subsume or that are
subsumed by a certain closure.

216 12. Implementation of KAON2

Many different indexing techniques were developed; for an extensive overview,
please refer to [79]. A prominent indexing technique is partially adaptive code trees
[117], pioneered in the theorem prover Vampire [119]. Whereas this technique is known
to give excellent performance, the restricted structure of ALCHIQ-closures allows us
to employ simpler, but still efficient indexing techniques.

Unification Indexes. The problem of unification indexing can be formalized as
follows: given a query term s, a unification index identifies the subset M of a set
of terms N such that each term t ∈ M unifies with s. In practice, one usually also
associates with each term t a closure in which t occurs.

Consider now the type of BSDL inferences applicable to ALCHIQ-closures. The
candidates for (hyper)resolution with a closure of type 1, 2, or 7 are closures of types
3, 4, or 8, and their suitability is determined uniquely by the role symbol. Hence,
indexing can be simply performed by hashing the closures on the role symbol.

More complex are superposition inferences between closures of types 5 and 6, su-
perposition into generator closures, and superposition into unary literals of closures of
type 8. These closures can be indexed using a simplified variant of the well-known path
indexing technique [140, 113]. Namely, inferences with these closures take place only
on unary E-terms, which contain at most one variable. This allows for the following
simple indexing strategy. Each unary E-term f1(f2(. . .)) can be represented as a string
of function symbols f1.f2 . . ., and by encoding variables using a special symbol ∗. To
build an index over a set of terms, we use the well-known trie data structure over the
strings (for more information on the trie data structures, please refer to [137]). Given
a term s, locating all terms from the trie can be performed by traversing the trie using
the string corresponding to s. The trie traversal algorithm is standard, with a minor
difference that the symbol ∗ can be matched with zero or more arbitrary symbols.

Moreover, observe that, for closures as described in the previous paragraph, a
superposition inference can be performed either into the outermost position p = ε (for
example, on a literal A(f(x))), into the position p = 1 (for example, at position of
f(x) in a literal A(f(x))), or into the position p = 2 (for example, at position of f(x)
in a literal R(x, f(x))); at all other positions, the terms are always marked. Hence, the
closures that are possible targets of superposition inferences are indexed using three
indexes Iε, I1, and I2. Furthermore, superposition can be performed only from the
outermost position of a positive equality, so the closures that are possible sources of
superposition inferences are indexed using a single index Fε.

A closure C is then indexed as follows. First, the literal L eligible for inference is
determined. Then, if L is a positive literal of the form s ≈ t, the term s is added to Fε.
Finally, all positions p ∈ {ε, 1, 2} are examined. If L|p is not at substitution position,
and either p 6= ε or L is not of the form A ≈ T, then the term L|p is added to Ip.
The case of p = ε and L of the form A ≈ T is treated differently because performing
superposition into such A always results in a tautology T ≈ T; such inferences are
prevented by simply not entering A into Iε.

12.4 Disjunctive Datalog Engine 217

Subsumption Indexes. Subsumption indexes are used for two related problems.
Forward subsumption is the problem of determining whether a set of closures N con-
tains a closure that subsumes some closure C, whereas backward subsumption is the
problem of determining the subset M of a set of closures N such that C subsumes
each closure in M .

The main problem in subsumption indexing is that, if Cσ ⊆ D for some substitution
σ, the literals in D matched to the literals of Cσ need not be consecutive. For example,
let C = A2(x)∨A5(x) and let D = A1(x)∨A2(x)∨A3(x)∨A4(x)∨A5(x)∨A6(x). It is
clear that C subsumesD; however, the closureD contains the disjunction A3(x)∨A4(x)
between literals A2(x) and A5(x). Because C can be matched in general to an arbitrary
subset of D and there are exponentially many such subsets, it is difficult to design an
efficient indexing structure.

In KAON2, we apply an approximate technique, inspired by feature vector indexing
from [134]. Our algorithm works as follows. To index a closure C, we build a string
C1.C2 . . . Cn of predicate names occurring in C, order it by the LPO precedence >,
and insert it into a trie.

For forward subsumption, given a closureD, we build a string ∗.D1.∗.D2.∗. . .∗.Dn.∗
of predicate names occurring in D, order it by the LPO precedence >, and use it to
search the trie. As a result, we obtain a set of closures containing the predicates of D.
Hence, the retrieved closures are potential subsumers of D. For each such closure, we
check subsumption using Algorithm 12.2.

For backward subsumption, given a closure D, we build a string D1.D2 . . . Dn of
predicate names occurring in D and order it by the LPO precedence >. We then search
the trie using this string, but we treat each trie entry as ∗.C1. ∗ .C2. ∗ . . . ∗ .Cn.∗. This
again gives us the set of potential subsumption candidates, which is then filtered using
Algorithm 12.2.

12.4 Disjunctive Datalog Engine

Several disjunctive datalog engines, such as DLV [41] or Smodels [141], were imple-
mented and successfully applied to practical problems. However, we decided to imple-
ment a new datalog engine for KAON2 because of the following three reasons.

First, interfacing with existing engines is currently difficult. Available systems were
implemented in different programming languages. Furthermore, the primary mode of
interaction with them is through command line. Efforts to enable access to existing
systems by means of an established API are currently in progress, but such an API
has not been available at the time of writing. Hence, implementing our own system
seemed preferable to having to struggle with low-level implementation issues.

Second, available disjunctive datalog engines are designed to provide practical sup-
port for nonmonotonic reasoning under stable models. In contrast, disjunctive pro-
grams obtained by our algorithms are positive, so they do not require nonmonotonic
reasoning. Hence, it seemed reasonable to expect that a more specialized implementa-
tion will provide better performance.

218 12. Implementation of KAON2

Third, nonground query answering in existing systems is typically solved by re-
ducing the problem to ground query answering, and then checking the correctness of
each answer using model building. We wanted to investigate whether nonground query
answering can be better realized using direct methods, without grounding.

In the rest of this section we describe the important aspects of the implementation
of our disjunctive datalog engine.

12.4.1 Magic Sets

After eliminating the equality predicate using the algorithm from Section 7.5, the magic
sets transformation, presented in [34], is applied to P ∪P≈. A detailed presentation of
the transformation is beyond the scope of this subsection; we just explain the intuition
behind this technique.

Magic sets were motivated by a significant advantage of top-down over bottom-up
query evaluation techniques. Namely, in a top-down algorithm, the query guides the
computation. Consider the following program P :

T (x, y)← R(x, y)(12.29)
T (x, z)← R(x, y), T (y, z)(12.30)

A bottom-up algorithm for answering a query T (a, x) in P first computes all facts
that follow from P , and then selects the tuples from T containing a in the first position.
This is inefficient, because the algorithm computes entire transitive closure of R.

However, starting from the query, a top-down technique first retrieves only those
tuples from R that contain a at the first position, and, for each such tuple, it recursively
invokes T (y, z). Hence, the bindings for y, determined by querying R(a, y), guide the
query answering process; this is also called binding propagation. Hence, a top-down
engine does not compute the entire relation T , but only the part receiving the bindings
from the query and the data.

Magic sets [18] simulate top-down binding propagation in bottom-up query eval-
uation. A program P is modified by introducing magic predicates, whose role is to
keep track of the bindings that would be propagated during top-down evaluation of a
query Q in P . Magic predicates are then used to constrain the rules of P such that
evaluating them performs only those inferences that are relevant to the query. Note
that the magic program depends on the query Q; that is, for different queries, the
magic program must be computed from scratch.

To the best of our knowledge, the first generalization of the magic sets techniques to
nondisjunctive programs was presented in [55]. Apart from the theoretical results, the
author provides empirical evidence for the benefits of the technique. The technique was
further refined in [34]. Because of the simpler structure of the transformed programs,
we decided to use the latter variant in KAON2.

12.4 Disjunctive Datalog Engine 219

In the presence of equality, magic set transformation becomes less effective. Con-
sider, for example, the following equality-free program P :

C(x)← D(x, y), E(y, z)(12.31)
R(x, y)← S(x, y)(12.32)

To answer the query C(x) in P , only the extensions of C, D, and E are relevant;
the extensions of R and S need not be considered. Moreover, magic sets are very
effective at identifying the relevant parts of D and E. Now let P ′ be the program P
extended with (12.33), stating that R is functional:

y1 ≈ y2 ← R(x, y1), R(x, y2)(12.33)

Answering the query C(x) in P ′ is now more involved because (12.33) can poten-
tially make any two objects equal. If C(a) is an answer in P , then in P ′ the rule
(12.33) should be invoked to check whether any other object is equal to a. Thus, the
extensions of R and S are now relevant for the query.

12.4.2 Bottom-Up Saturation

After applying the magic sets, the query Q is answered in P ∪P≈ using the algorithm
from Definition 7.6.1. To avoid redundant computation of facts derived by rules, we
apply the general seminäıve strategy [112]. A detailed presentation of the algorithm is
beyond the scope of this subsection; we just explain the intuition behind it.

The algorithm is an optimization of the bottom-up saturation, developed to prevent
recomputing the same conclusions. Consider a datalog program P containing only the
following rule:

C(y)← R(x, y), C(x)(12.34)

Moreover, let F0 contain the facts C(a0) and R(ai−1, ai) for 0 < i ≤ n. A query
C(x) can be answered in P and F0 using bottom-up saturation: we compute sets of
facts F0, F1, . . . , Fm, where each Fi is obtained by applying the rules of P to the facts
in Fi−1. The saturation terminates when no new facts are derived—that is, when
Fm = Fm−1. In our example, the saturation yields Fi = Fi−1 ∪ {C(ai)}. Note that
Fi−1 ⊆ Fi; hence, the rules of P that are applicable to facts in Fk for k < i, are also
applicable to Fi. Hence, each iteration computes only one additional fact, but to do
so, it also recomputes all facts from Fi−1 \ F0.

Recomputing facts might be avoided by evaluating, instead of P , a sequence of
programs P0, P1, . . . , Pm, where each Pi contains the following rule:

∆Ci(y)← R(x, y),∆Ci−1(x)

The iteration is initialized by asserting ∆C0(α) for each C(α) ∈ F0, and the result is
obtained as C =

⋃
∆Ci. By evaluating each Pi, only facts derived by Pi−1 are used,

and no fact is computed twice.

220 12. Implementation of KAON2

The seminäıve evaluation algorithm uses this basic idea, while solving several prac-
tical issues, such as minimizing the number of extensions ∆Ci used in the computation.
Furthermore, it can be combined with our resolution approach for answering queries
in a disjunctive program from Section 7.6.

Chapter 13

Performance Evaluation

In this chapter we present a comparison of the performance of KAON2 with that of
existing tableau DL reasoning systems, and thus obtain an insight into the practical
applicability of our algorithms.

While conducting the experiments, we observed that it is very difficult, if not
impossible, to separate the reasoning method from its implementation. Reasoning
algorithms in general are quite complex, and to implement them efficiently, a lot of
time should be invested in low-level implementation details. Overheads in maintaining
various data structures or memory management can easily dominate the reasoning
time. The choice of the implementation language also matters a lot, as its limitations
may easily become critical in dealing with large data sets.

Therefore, the results we present in this chapter should not be taken as a definitive
measure of practicability of either algorithm. However, they do show that deduc-
tive database techniques can significantly improve the performance of reasoning. This
seems to hold even if the TBox is complex, as long as it is relatively small. For TBox
reasoning, our results reflect a mixed picture: on certain ontologies the resolution al-
gorithms perform relatively well, whereas, on other ontologies, they are slower than
the tableau algorithms. This suggests that resolution-based techniques might be in-
teresting in practice, but that further research is needed to match the robustness of
tableau algorithms on TBox reasoning problems.

13.1 Test Setting

We compared KAON2 with RACER and Pellet. We did not consider other DL rea-
soners because they follow different design choices: FaCT1 [67], FaCT++,2 and DLP3

do not support ABoxes; LOOM [91] is incomplete; and CLASSIC [22] supports only a
very inexpressive logic.

1http://www.cs.man.ac.uk/∼horrocks/FaCT/
2http://owl.man.ac.uk/factplusplus/
3http://www.bell-labs.com/user/pfps/dlp/

221

http://www.cs.man.ac.uk/~horrocks/FaCT/
http://owl.man.ac.uk/factplusplus/
http://www.bell-labs.com/user/pfps/dlp/

222 13. Performance Evaluation

RACER4 [59] was developed at the Concordia University and the Hamburg Uni-
versity of Technology, and is written in Common Lisp. We used the version 1.8.2, to
which we connected using the JRacer library. RACER provides an optimized reasoning
mode (so-called nRQL mode 1) that provides significant performance improvements,
but which is complete only for certain types of knowledge bases. At the time of writing,
RACER did not automatically recognize whether the optimized mode is applicable to
a particular knowledge base, so we used RACER in the mode that guarantees com-
pleteness (so-called nRQL mode 3). Namely, determining whether optimizations are
applicable is a form of reasoning that, we believe, should be taken into account in a
fair comparison.

Pellet5 [105] was developed at the University of Maryland, and it is the first system
that fully supports OWL-DL, taking into account all the nuances of the specification.
It is implemented in Java, and is freely available with the source code. We used the
version 1.3 beta.

We asked the authors of each tool for an appropriate sequence of API calls for
running tests. For each reasoning task, we started a fresh instance of the reasoner and
loaded the test knowledge base. Then, we measured the time required to execute the
task. We made sure that all systems return the same answers.

Many optimizations of tableau algorithms involve caching computation results,
so the performance of query answering should increase with each subsequent query.
Furthermore, both RACER and Pellet check ABox consistency before answering the
first query, which typically takes much longer than computing query results. Hence,
starting a new instance of the reasoner for each query might seem unfair. We justify
our approach as follows.

First, the effectiveness of caching depends on the type of application: if an ABox
changes frequently, caching is not very useful. Second, usefulness of caches also depends
on the degree of similarity between queries. Third, we did not yet consider caching for
KAON2; however, materialized views were extensively studied in deductive databases,
and were applied in [148] to ontology reasoning. Finally, KAON2 does not perform a
separate ABox consistency test because ABox inconsistency is discovered automatically
during query evaluation. Hence, we decided to measure only the performance of the
actual reasoning algorithm, and to leave a study of possible materialization and caching
strategies for future work. Since ABox consistency check is a significant source of
overhead for tableau systems, we measured the time required to execute it separately.
Hence, in our tables, we distinguish one-time setup time (S) and query processing time
(Q) for Pellet and Racer. The time for computing the datalog program in KAON2 was
not significant, so we include it into the query processing time.

All tests were performed on a laptop computer with a 2 GHz Intel processor, 1 GB
of RAM, running Windows XP Service Pack 2. For Java-based tools, we used Sun’s
Java 1.5.0 Update 5. The virtual memory of the Java virtual machine was limited to

4http://www.racer-systems.com/
5http://www.mindswap.org/2003/pellet/index.shtml

http://www.racer-systems.com/
http://www.mindswap.org/2003/pellet/index.shtml

13.2 Test Ontologies 223

Table 13.1: Statistics of Test Ontologies

KB C v D C ≡ D C uD v ⊥ functional domain range RBox C(a) R(a, b)
vicodi 0 16942 36711
vicodi 1 33884 73422
vicodi 2 193 0 0 0 10 10 10 50826 110133
vicodi 3 67768 146844
vicodi 4 84710 183555

semintec 0 17941 47248
semintec 1 35882 94496
semintec 2 55 0 113 16 16 16 6 53823 141744
semintec 3 71764 188992
semintec 4 89705 236240

lubm 1 18128 49336
lubm 2 36 6 0 0 25 18 9 40508 113463
lubm 3 58897 166682
lubm 4 83200 236514
wine 0 247 246
wine 1 741 738
wine 2 1235 1230
wine 3 1729 1722
wine 4 2223 2214
wine 5 126 61 1 6 6 9 9 2717 2706
wine 6 5187 5166
wine 7 10127 10086
wine 8 20007 19926
wine 9 39767 39606
wine 10 79287 78966
dolce 203 27 42 2 253 253 522 0 0
galen 3237 699 0 133 0 0 287 0 0

800 MB, and each reasoning task was allowed to run for at most 5 minutes. Tests that
ran either out of memory or out of time are denoted in tables with a value of 10000.

13.2 Test Ontologies

We based our tests on ontologies available in the Semantic Web community. To obtain
sufficiently large test ontologies, we used ABox replication—duplication of ABox ax-
ioms with appropriate renaming of individuals. The information about the structure
of ontologies we used is summarized in Table 13.1. All test ontologies are available on
the KAON2 Web site.6

6http://kaon2.semanticweb.org/download/test ontologies.zip

http://kaon2.semanticweb.org/download/test_ontologies.zip

224 13. Performance Evaluation

An ontology about European history was manually created in the EU-funded VI-
CODI project.7 The TBox is relatively small and simple: it consists of role and
concept inclusion axioms, and domain and range specifications; it does not contain
disjunctions, existential quantification, or number restrictions. However, the ABox is
relatively large, with many interconnected instances. With vicodi 0, we denote the
ontology from the project, and with vicodi n the one obtained by replicating n times
the ABox of vicodi 0.

An ontology about financial services was created in the SEMINTEC project8 at
the University of Poznan. Like VICODI, this ontology is relatively simple: it does
not use existential quantifiers or disjunctions; it does, however, contain functionality
assertions and disjointness. With semintec 0, we denote the ontology from the project,
and with semintec n the one obtained by replicating n times the ABox of semintec 0.

Lehigh University Benchmark (LUBM)9 was developed by [58] as a benchmark for
testing performance of ontology management and reasoning systems. The ontology
describes organizational structure of universities, and is relatively simple: it does not
use disjunctions or number restrictions, but it does use existential quantifiers, so it is
in Horn-ALCHI fragment. Each lubm n is generated automatically by specifying the
number n of universities.

The Wine10 ontology contains a classification of wines. It uses nominals, which
our algorithms cannot handle. Therefore, we apply a sound but an incomplete ap-
proximation: we replace each enumerated concept {i1, . . . , in} with a new concept O,
and add assertions O(ik). The resulting ontology is relatively complex: it contains
functionality axioms, disjunctions, and existential quantifiers. With wine 0, we denote
the original ontology, and with wine n the one obtained by replicating 2n times the
ABox of wine 0.

This approximation of nominals is incomplete for query answering: for complete-
ness one should further add a clause ¬O(x)∨x ≈ i1∨ . . .∨x ≈ in. Furthermore, Pellet
fully supports nominals, so one may question whether the Wine ontology is suitable
for our tests. Unfortunately, in our search for test data, we could easily find ontologies
with a complex TBox but without an ABox, or ontologies with an ABox and only
a simple TBox, or a TBox with nominals. The (approximated) Wine ontology was
the best ontology we found that contained both a nontrivial TBox and an ABox. We
also used this approximated ontology in tests with Pellet, in order to ensure that all
systems are dealing with the same problem.

DOLCE11 is a foundational ontology developed at the Laboratory for Applied
Ontology of Italian National Research Council. It is very complex, and no reasoner
currently available can handle it. Therefore, the ontology has been factored into several

7http://www.vicodi.org/
8http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm
9http://swat.cse.lehigh.edu/projects/lubm/index.htm

10http://www.schemaweb.info/schema/SchemaDetails.aspx?id=62
11http://www.loa-cnr.it/DOLCE.html

http://www.vicodi.org/
http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm
http://swat.cse.lehigh.edu/projects/lubm/index.htm
http://www.schemaweb.info/schema/SchemaDetails.aspx?id=62
http://www.loa-cnr.it/DOLCE.html

13.3 Querying Large ABoxes 225

Figure 13.1: VICODI Ontology Test Results

modules. We used the DOLCE OWL version 397, up to the Common module (this
includes the DOLCE-Lite, ExtDnS, Modal, and Common modules).

GALEN12 is a medical terminology ontology developed in the GALEN project
[114]. It has a very large and complex TBox, and has traditionally been used as a
benchmark for terminological reasoning.

13.3 Querying Large ABoxes

We now show the results of our tests of querying large ABoxes.

13.3.1 VICODI

Because VICODI does not contain existential quantifiers or disjunctions, it can be
converted into disjunctive datalog directly, without invoking the reduction algorithm.
Hence, reasoning with VICODI requires only an efficient deductive database. From
the ontology author we received the following two queries, used in the project:

QV1(x) ≡ Individual(x)
QV2(x, y, z) ≡ Military-Person(x), hasRole(y, x), related(x, z)

The results in Figure 13.1 show that Pellet and RACER spend the bulk of their
time in checking ABox consistency by computing a completion of the ABox. Because
the ontology is simple, no branch splits are performed, so the process yields a single
completion representing a model. Query answering is then very fast, as it amounts to
model lookup.

According to the authors of Racer, the gap in performance between Pellet and
Racer should be resolved in the next release of Racer.

12We obtained GALEN through private communication with Ian Horrocks.

226 13. Performance Evaluation

Figure 13.2: SEMINTEC Ontology Test Results

13.3.2 SEMINTEC

The SEMINTEC ontology is also very simple; however, it is interesting because it
contains functional roles and therefore requires equality reasoning. From the ontology
author we obtained the following two queries, used in the project:

QS1(x) ≡ Person(x)
QS2(x, y, z) ≡ Man(x), isCreditCardOf (y, x),Gold(y), livesIn(x, z),Region(z)

The results of running the queries are shown in Figure 13.2. The SEMINTEC
ontology is roughly of the same size as the VICODI ontology; however, the time that
KAON2 takes to answer a query on SEMINTEC are one order of magnitude larger
than for the VICODI ontology. This is mainly due to equality, which is difficult for
deductive databases.

13.3.3 LUBM

LUBM is comparable in size to the VICODI and the SEMINTEC ontologies, but its
TBox contains complex concepts. It uses existential quantifiers, so our reduction algo-
rithm must be used to eliminate function symbols. Also, the ontology does not contain
disjunctions or equality, so the translation yields an equality-free Horn program.

We wanted a mix of simple and complex queries, so we selected the following three
queries from the LUBM Web site:

QL1(x) ≡ Chair(x)
QL2(x, y) ≡ Chair(x),worksFor(x, y),Department(y),

subOrganizationOf (y,http://www.University0.edu)
QL3(x, y, z) ≡ Student(x),Faculty(y),Course(z), advisor(x, y), takesCourse(x, z),

teacherOf (y, z)

As our results from Figure 13.3 show, LUBM does not pose significant problems
for KAON2; namely, the translation produces an equality-free Horn program, which

13.3 Querying Large ABoxes 227

Figure 13.3: LUBM Ontology Test Results

KAON2 evaluates in polynomial time. Although LUBM is roughly of the same size as
VICODI, both Pellet and Racer performed better on the latter; namely, Pellet was not
able to answer any of the LUBM queries within the given resource constraints, and
Racer performed significantly better on VICODI than on LUBM. We were surprised
by this result: the ontology is still Horn, so an ABox completion can be computed
in advance and used as a cache for query answering. By analyzing a run of Pellet
on lubm 1 in a debugger, we observed that the system performs disjunctive reasoning
(that is, it performs branch splits). Further investigation showed that this is due to
absorption [66]—a well-known optimization technique used by all tableau reasoners.
Namely, an axiom of the form C v D, where C is a complex concept, increases the
amount of don’t-know nondeterminism in a tableau because it yields a disjunction
¬C t D in the label of each node. If possible, such an axiom is transformed into an
equivalent definition axiom A v C ′ (where A is an atomic concept), which can be
handled in a deterministic way. The LUBM ontology contains several axioms that are
equivalent to A v B u ∃R.C and B u ∃R.C v A. Now the latter axiom contains a
complex concept on the left-hand side of v, so it is absorbed into an equivalent axiom
B v A t ∀R.¬C. Whereas this is a definition axiom, it contains a disjunction on the
right-hand side, and thus causes branch splits.

228 13. Performance Evaluation

Figure 13.4: Wine Ontology Test Results

13.3.4 Wine

The Wine ontology is a fairly complex ontology, using advanced DL constructors, such
as disjunctions and equality. The translation of nominals is incomplete, so we ran only
the following query:

QW1(x) ≡ AmericanWine(x)

The results from Figure 13.4 show that the ontology complexity affects the per-
formance: wine 0 is significantly smaller than, say, lubm 1, but the time required to
answer the query is roughly the same. The degradation of performance in KAON2
is mainly due to disjunctions. On the theoretical side, disjunctions increase the data
complexity of our algorithm from P to NP [153]. On the practical side, the tech-
nique for answering queries in disjunctive programs used in KAON2 should be further
optimized.

13.4 TBox Reasoning

Although TBox reasoning was not in the focus of our work, to better understand the
limitations of our algorithms, we also conducted several TBox reasoning tests. In
particular, we measured the time required to compute the subsumption hierarchies of
Wine, DOLCE, and GALEN. Furthermore, we observed that a considerable source of
complexity for KAON2 on DOLCE are the transitivity axioms, so we also performed
the tests for a version of DOLCE in which all transitivity axioms were removed.

The results from Figure 13.5 show that the performance of TBox reasoning in
KAON2 lags behind the performance of the state-of-the-art tableau reasoners. This
should not come as a surprise: in the past decade, many techniques for optimizing

13.4 TBox Reasoning 229

Figure 13.5: TBox Test Results

TBox reasoning in tableau algorithms were developed; these techniques are not di-
rectly applicable to the resolution setting. Still, KAON2 can classify DOLCE without
transitivity axioms, which is known to be a fairly complex ontology. Hence, we believe
that developing additional optimization techniques for resolution algorithms might
yield some interesting and practically useful results.

By analyzing the ontologies for which KAON2 was unable to compute the sub-
sumption hierarchy within given resource limits, we noticed that they all contain many
ALCHIQ-closures of types 3 and 7 with the same role symbol, which generate many
consequences. This explains why KAON2 is not able to classify the original DOLCE
ontology, but why it works well if the transitivity axioms are removed: the transfor-
mation used to deal with transitivity introduces axioms that, when clausified, produce
many closures of types 3 and 7.

230 13. Performance Evaluation

Chapter 14

Conclusion

Motivated primarily by the prospects of reusing well-known deductive database tech-
niques to optimize query answering in description logics, we developed several novel
algorithms for reasoning with description logics related to SHIQ.

Our algorithms can handle the description logic SHIQ(D), which is closely related
to the ontology language for the Semantic Web OWL-DL. The logical underpinning of
OWL-DL is actually the SHOIN (D) description logic, which differs from SHIQ(D)
in that it supports nominals, but does not provide for qualified number restrictions.

The first algorithm we presented is an algorithm for checking satisfiability of SHIQ
knowledge bases based on basic superposition, a clausal calculus for theorem proving
with equality. The novel aspect is that the procedure allows clauses to contain terms
of depth two, and relies on basic superposition to block certain undesirable inferences.
Furthermore, it relies on subsumption to restrict the term depth, and not just the
clause length. Our procedure runs in time exponential in the size of the knowledge
base for unary coding of numbers, which makes it worst-case optimal. It is worth noting
that the assumption on unary coding of numbers is standard in practical description
logic reasoning systems. Basic superposition alone decides only a slightly weaker logic
SHIQ−, so to handle SHIQ, we extend basic superposition with the decomposition
rule, for which we show soundness and completeness.

An important aspect of OWL-DL is that it provides constructs for representing
concrete data, such as strings or integers. Generally, such capabilities are integrated
into description logics using so-called concrete domains. Until now, reasoning with a
concrete domain has been studied predominantly in the context of tableaux and au-
tomata calculi. These existing approaches to reasoning with a concrete domain are
not directly applicable to clausal calculi, so we devised an algorithm for reasoning
with a concrete domain in the resolution framework. This approach is general and is
applicable to any clausal calculus whose completeness proof is based on the model gen-
eration method. Furthermore, we applied this approach to derive a decision procedure
for SHIQ(D). Assuming unary coding of numbers, an upper bound on the arity of
concrete predicates, and an exponential decision procedure for checking satisfiability

231

232 14. Conclusion

of concrete predicates, adding a concrete domain does not increase the complexity of
reasoning; that is, our algorithm still runs in exponential time.

We applied the decision procedure for SHIQ(D) to obtain an algorithm for reduc-
ing a SHIQ(D) knowledge base to a disjunctive datalog program. The reduction is
based on the idea of simulating the inference steps of basic superposition in disjunctive
datalog. This allows reusing various optimizations for ABox query answering, such as
join order optimizations or the magic sets transformation.

Based on this reduction, we showed that checking satisfiability of SHIQ(D) knowl-
edge bases is data complete for NP. This is a somewhat surprising result, since, under
the assumption that NP ⊂ ExpTime, it is better than the combined complexity of the
same problem. To further reduce data complexity, we proposed a Horn fragment of
SHIQ(D), in which the capability for modeling disjunctive information is traded for
polynomial data complexity. We believe that this fragment is very relevant in practice,
since it is still very expressive, but provides hope for a tractable implementation.

We extended our algorithms with a simple, but useful feature. Namely, we showed
that so-called DL-safe rules can freely be appended to the resulting disjunctive pro-
gram. The DL-safe rules are characterized by the restriction that each variable oc-
curring in a rule also occurs in a non-DL-atom in the rule body, which limits the
applicability of rules to individuals introduced explicitly in the ABox. Since the num-
ber of such individuals is finite, adding DL-safe rules to SHIQ(D) does not cause
termination problems.

We also showed that basic superposition can be used to answer conjunctive queries
over SHIQ(D) knowledge bases. Using the well-known reduction of conjunctive query
containment to query answering, this algorithm can be used for deciding query con-
tainment as well. Conjunctive queries provide an expressive language for querying
description logic knowledge bases.

We also considered extending SHIQ(D) with metamodeling. We showed that the
approach to metamodeling adopted in the Semantic Web standard OWL-Full leads to
undecidability. Therefore, we proposed an alternative semantics for metamodeling, for
which we give a decision procedure.

To show that our algorithms are practically relevant, we implemented them in
a new DL reasoning system KAON2, and conducted a performance evaluation. For
ABox query answering, our measurements show an increase of one and more orders
of magnitude, when compared to the performance of existing tableaux-based systems,
such as Pellet or RACER. For TBox reasoning, our system does not match the per-
formance of tableaux-based ones; however, it is still able to solve certain nontrivial
problems. Hence, we believe that developing additional optimization techniques might
yield additional improvements, making resolution match and perhaps even outperform
tableau-based reasoners.

For our future work, an important theoretical challenge is to extend the algorithms
to handle nominals. A tableau decision procedure for SHIQ extended with nominals
has been presented recently in [71]; it is interesting to see whether the ideas presented
there can be transferred into the framework of resolution.

233

Another theoretical challenge is to provide a decision procedure capable of dealing
with transitivity directly, without encoding transitivity axioms. Namely, practical
experience has shown that dealing with constructors by an encoding usually results
in suboptimal performance. Furthermore, a method for handling transitivity directly
would allow using transitive roles in conjunctive queries and DL-safe rules.

Finally, an important challenge is to extend our approach by some form of non-
monotonic reasoning. Namely, recent experience has shown that features such as
closed-world and default reasoning are very important in numerous applications of
description logics. Furthermore, disjunctive datalog has been traditionally consid-
ered a platform for nonmonotonic reasoning. Hence, it is interesting to see whether
nonmonotonic features of disjunctive datalog can be reused to provide some kind of
nonmonotonic reasoning in description logics.

234 14. Conclusion

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley,
1995.

[2] G. Alsaç and C. Baral. Reasoning in description logics using declarative logic
programming. Technical report, Arizona State University, Arizona, USA, 2002.
http://www.public.asu.edu/∼cbaral/papers/descr-logic-aaai2.pdf.

[3] H. Andréka, J. van Benthem, and I. Németi. Modal Languages and Bounded
Fragments of Predicate Logic. Journal of Philosophical Logic, 27(3):217–274,
1998.

[4] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation and Applica-
tions. Cambridge University Press, January 2003.

[5] F. Baader and P. Hanschke. A Scheme for Integrating Concrete Domains into
Concept Languages. In J. Mylopoulos and R. Reiter, editors, Proc. of the 12th
Int. Joint Conf. on Artificial Intelligence (IJCAI ’91), pages 452–457, Sydney,
Australia, August 24–30 1991. Morgan Kaufmann Publishers.

[6] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

[7] F. Baader and W. Snyder. Unification Theory. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, volume I, chapter 8, pages 445–532.
Elsevier Science, 2001.

[8] M. Baaz, U. Egly, and A. Leitsch. Normal Form Transformations. In A. Robin-
son and A. Voronkov, editors, Handbook of Automated Reasoning, volume I,
chapter 5, pages 273–333. Elsevier Science, 2001.

[9] L. Bachmair and H. Ganzinger. Rewrite-based Equational Theorem Proving with
Selection and Simplification. Journal of Logic and Computation, 4(3):217–247,
1994.

[10] L. Bachmair and H. Ganzinger. Equational Reasoning in Saturation-Based The-
orem Proving. In W. Bibel and P. H. Schmidt, editors, Automated Deduction: A

235

http://www.public.asu.edu/~cbaral/papers/descr-logic-aaai2.pdf

236 REFERENCES

Basis for Applications, volume I: Foundations, Calculi and Methods, chapter 11,
pages 353–397. Kluwer, 1998.

[11] L. Bachmair and H. Ganzinger. Ordered Chaining Calculi for First-Order The-
ories of Transitive Relations. Journal of the ACM, 45(6):1007–1049, 1998.

[12] L. Bachmair and H. Ganzinger. Strict Basic Superposition. In Proc. of the 15th
Int. Conf. on Automated Deduction (CADE-15), volume 1421 of LNAI, pages
160–174, Lindau, Germany, July 5–10 1998. Springer.

[13] L. Bachmair and H. Ganzinger. Resolution Theorem Proving. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 2,
pages 19–99. Elsevier Science, 2001.

[14] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic Paramodulation.
Information and Computation, 121(2):172–192, 1995.

[15] P. Baumgartner. An Ordered Theory Resolution Calculus. In A. Voronkov, edi-
tor, Proc. of the 3rd Int. Conf. on Logic Programming and Automated Reasoning
(LPAR ’92), volume 624 of LNAI, pages 119–130, St. Petersburg, Russia, July
15–20 1992. Springer.

[16] S. Bechhofer, R. Möller, and P. Crowther. The DIG Description Logic Interface.
In D. Calvanese, G. de Giacomo, and F. Franconi, editors, Proc. of the 2003
Int. Workshop on Description Logics (DL 2003), volume 81 of CEUR Workshop
Proceedings, Rome, Italy, September 5–7 2003.

[17] S. Bechhofer, R. Volz, and P. W. Lord. Cooking the Semantic Web with the
OWL API. In D. Fensel, K. P. Sycara, and J. Mylopoulos, editors, Proc. of the
2nd Int. Semantic Web Conference (ISWC 2003), volume 2870 of LNCS, pages
659–675, Sanibel Island, FL, USA, October 20–23 2003. Springer.

[18] C. Beeri and R. Ramakrishnan. On the power of magic. In Proc. of the 6th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (PODS ’87), pages 269–283, San Diego, CA, USA, March 23–25 1987.
ACM Press.

[19] S. Bergamaschi, S. Castano, M. Vincini, and D. Beneventano. Semantic Inte-
gration of Heterogeneous Information Sources. Data & Knowledge Engineering,
36(3):215–249, 2001.

[20] R. Berger. The undecidability of the dominoe problem. Memoirs of the American
Mathematical Society, 66:1–72, 1966.

[21] A. Borgida. On the Relative Expressiveness of Description Logics and Predicate
Logics. Artificial Intelligence, 82(1–2):353–367, 1996.

REFERENCES 237

[22] A. Borgida, R. J. Brachman, D. L. McGuinness, and L. A. Resnick. CLASSIC:
a structural data model for objects. ACM SIGMOD Record, 18(2):58–67, 1989.

[23] R. Boyer. Locking: A Restriction of Resolution. PhD thesis, University of Texas
at Austin, TX, USA, 1971.

[24] R. J. Brachman and J. G. Schmolze. An Overview of the KL-ONE Knowledge
Representation System. Cognitive Science, 9(2):171–216, 1985.

[25] S. Brass and U. W. Lipeck. Generalized Bottom-Up Query Evaluation. In
A. Pirotte, C. Delobel, and G. Gottlob, editors, Proc. of the 3rd Int. Conf. on
Extending Database Technology (EDBT ’92), volume 580 of LNCS, pages 88–103,
Vienna, Austria, March 23–27 1992. Springer.

[26] C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, Inc., 1997.

[27] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite:
Tractable Description Logics for Ontologies. In M. M. Veloso and S. Kambham-
pati, editors, Proc. of the 20th National Conf. on Artificial Intelligence (AAAI
2005), pages 602–607, Pittsburgh, PA, USA, July 9–13 2005. AAAI Press.

[28] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the Decidability of Query
Containment under Constraints. In Proc. of the 17th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS ’98), pages 149–
158, Seattle, WA, USA, June 1–3 1998. ACM Press.

[29] D. Calvanese, G. De Giacomo, and M. Lenzerini. Answering queries using views
over description logics knowledge bases. In Proc. of the 17th National Conf.
on Artificial Intelligence (AAAI 2000), pages 386–391, Austin, TX, USA, July
30–August 3 2000. AAAI Press.

[30] D. Calvanese, G. De Giacomo, and M. Lenzerini. Conjunctive Query Contain-
ment and Answering under Description Logics Constraints. Submitted to an
international journal, 2005.

[31] D. Calvanese, M. Lenzerini, and D. Nardi. Unifying Class-Based Representation
Formalisms. Journal of Artificial Intelligence Research (JAIR), 11:199–240, 1999.

[32] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries
in relational data bases. In J. E. Hopcroft, E. P. Friedman, and M. A. Harri-
son, editors, Proc. of the 9th annual ACM Symposium on Theory of Computing
(STOC ’77), pages 77–90, Boulder, CO, USA, May 2–4 1977. ACM Press.

[33] W. Chen, M. Kifer, and D. S. Warren. A Foundation for Higher-Order Logic
Programming. Journal of Logic Programming, 15(3):187–230, 1993.

238 REFERENCES

[34] C. Cumbo, W. Faber, G. Greco, and N. Leone. Enhancing the Magic-Set Method
for Disjunctive Datalog Programs. In B. Demoen and V. Lifschitz, editors, Proc.
of the 20th Int. Conf. on Logic Programming (ICLP 2004), volume 3132 of LNCS,
pages 371–385, Saint-Malo, France, September 6–10 2004. Springer.

[35] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive
power of logic programming. ACM Computing Surveys, 33(3):374–425, 2001.

[36] H. de Nivelle. A Resolution Decision Procedure for the Guarded Fragment. In
C. Kirchner and H. Kirchner, editors, Proc. of the 15th Int. Conf. on Automated
Deduction (CADE-15), volume 1421 of LNAI, pages 191–204, Lindau, Germany,
July 5–10 1998. Springer.

[37] H. de Nivelle. Splitting Through New Proposition Symbols. In R. Nieuwenhuis
and A. Voronkov, editors, Proc. of the 8th Int. Conf. on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR 2001), volume 2250 of LNAI, pages
172–185, Havana, Cuba, December 3–7, 2001. Springer.

[38] N. Dershowitz and D. A. Plaisted. Rewriting. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, volume I, chapter 9, pages 535–610.
Elsevier Science, 2001.

[39] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating
Datalog and Description Logics. Journal of Intelligent Information Systems,
10(3):227–252, 1998.

[40] J. Edelmann and B. Owsnicki. Data Models in Knowledge Representation Sys-
tems: A Case Study. In C.-R. Rollinger and W. Horn, editors, Proc. of the
10th German Workshop on Artificial Intelligence (GWAI’86) and the 2nd Aus-
trian Symposium on Artificial Intelligence (ÖGAI’86), volume 124 of Informatik-
Fachberichte, pages 69–74. Springer, Ottenstein/Niederösterreich, September 22–
26 1986.

[41] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative problem-solving using
the DLV system. Logic-Based Artificial Intelligence, pages 79–103, 2000.

[42] T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM Transactions
on Database Systems, 22(3):364–418, 1997.

[43] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A Deductive System
for Non-Monotonic Reasoning. In J. Dix, U. Furbach, and A. Nerode, editors,
Proc. of the 4th Int. Conf. on Logic Programming and Non-monotonic Reasoning
(LPNMR ’97), volume 1265 of LNAI, pages 364–375, Dagstuhl, Germany, July
28–31 1997. Springer.

[44] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining Answer
Set Programming with Description Logics for the Semantic Web. In D. Dubois,

REFERENCES 239

C. A. Welty, and M.-A. Williams, editors, Proc. of the 9th Int. Conf. on the
Principles of Knowledge Representation and Reasoning (KR 2004), pages 141–
151, Whistler, Canada, June 2–5, 2004 2004. AAAI Press.

[45] C. Fermüller, T. Tammet, N. Zamov, and A. Leitsch. Resolution Methods for
the Decision Problem, volume 679 of LNAI. Springer, 1993.

[46] M. Fitting. First-Order Logic and Automated Theorem Proving, 2nd Edition.
Texts in Computer Science. Springer, 1996.

[47] H. Ganzinger and H. de Nivelle. A Superposition Decision Procedure for the
Guarded Fragment with Equality. In Proc. of the 14th IEEE Symposium on
Logic in Computer Science (LICS ’99), pages 295–305, Trento, Italy, July 2–5
1999. IEEE Computer Society.

[48] H. Ganzinger, U. Hustadt, C. Meyer, and R. A. Schmidt. A Resolution-Based
Decision Procedure for Extensions of K4. In M. Zakharyaschev, K. Segerberg,
M. de Rijke, and H. Wansing, editors, Proc. of the 2nd Int. Workshop on Ad-
vances in Modal Logic (AiML ’98), pages 243–263, Uppsala, Sweden, October
16–18 2000. CSLI Publications.

[49] L. Georgieva, U. Hustadt R. A., and Schmidt. Hyperresolution for Guarded
Formulae. Journal of Symbolic Computation, 36(1–2):163–192, 2003.

[50] B. Glimm and I. Horrocks. Handling Cyclic Conjunctive Queries. In I. Horrocks,
U. Sattler, and F. Wolter, editors, Proc. of the 2005 Int. Workshop on Descrip-
tion Logics (DL 2005), volume 147 of CEUR Workshop Proceedings, Edinburgh,
UK, July 26-28 2005. Poster.

[51] F. Goasdoué and M.-C. Rousset. Answering Queries using Views: A KRDB
Perspective for the Semantic Web. ACM Transactions on Internet Technology,
4(3):255–288, 2004.

[52] G. Gottlob and C. G. Fermüeller. Removing redundancy from a clause. Artificial
Intelligence, 61(2):263–289, 1993.

[53] G. Gottlob and A. Leitsch. On the Efficiency of Subsumption Algorithms. Jour-
nal of the ACM, 32(2):280–295, 1985.

[54] E. Grädel, M. Otto, and E. Rosen. Two-Variable Logic with Counting is De-
cidable. In Proc. of the 12th IEEE Symposium on Logic in Computer Science
(LICS ’97), pages 306–317, Warsaw, Poland, June 29–July 2 1997. IEEE Com-
puter Society.

[55] S. Greco. Binding Propagation Techniques for the Optimization of Bound Dis-
junctive Queries. IEEE Transactions on Knowledge and Data Engineering,
15(2):368–385, 2003.

240 REFERENCES

[56] C. Green. Theorem proving by resolution as a basis for question-answering
systems. In B. Meltzer and D. Michie, editors, Proc. of the 4th Annual Machine
Intelligence Workshop, pages 183–208. Edinburgh University Press, 1969.

[57] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs:
Combining Logic Programs with Description Logic. In Proc. of the 12th Int.
World Wide Web Conference (WWW 2003), pages 48–57, Budapest, Hungary,
May 20–24 2003. ACM Press.

[58] Y. Guo, Z. Pan, and J. Heflin. An Evaluation of Knowledge Base Systems for
Large OWL Datasets. In S. A. McIlraith, D. Plexousakis, and F. van Harmelen,
editors, Proc. of the 3rd Int. Semantic Web Conference (ISWC 2004), volume
3298 of LNCS, pages 274–288, Hiroshima, Japan, November 7–11 2004. Springer.

[59] V. Haarslev and R. Möller. RACER System Description. In R. Goré, A. Leitsch,
and T. Nipkow, editors, Proc. of the 1st Int. Joint Conf. on Automated Reasoning
(IJCAR 2001), volume 2083 of LNAI, pages 701–706, Siena, Italy, June 18–23
2001. Springer.

[60] V. Haarslev and R. Möller. Optimization Strategies for Instance Retrieval. In
I. Horrocks, S. Tessaris, and J. Z. Pan, editors, Proc. of the 2002 Int. Workshop
on Description Logics (DL 2002), volume 53 of CEUR Workshop Proceedings,
Toulouse, France, April 19–21 2002.

[61] V. Haarslev and R. Möller. Incremental Query Answering for Implementing
Document Retrieval Services. In D. Calvanese, G. de Giacomo, and F. Fran-
coni, editors, Proc. of the 2003 Int. Workshop on Description Logics (DL 2003),
volume 81 of CEUR Workshop Proceedings, Rome, Italy, September 5–7 2003.

[62] V. Haarslev, R. Möller, and M. Wessel. The Description Logic ALCNHR+ Ex-
tended with Concrete Domains: A Practically Motivated Approach. In R. Goré,
A. Leitsch, and T. Nipkow, editors, Proc. of the 1st Int. Joint Conf. on Au-
tomated Reasoning (IJCAR 2001), volume 2083 of LNAI, pages 29–44, Siena,
Italy, June 18–23 2001. Springer.

[63] P. Hanschke, A. Abecker, and D. Drollinger. TAXON: A Concept Language with
Concrete Domains. In H. Boley and M. M. Richter, editors, Proc. of the Int.
Workshop on Processing Declarative Knowledge (PDK’91), volume 567 of LNAI,
pages 411–413, Kaiserslautern, Germany, July 1–3 1991. Springer.

[64] S. Heymans and D. Vermeir. Integrating Semantic Web Reasoning and Answer
Set Programming. In M. De Vos and A. Provetti, editors, Proc. of the 2nd Int.
Workshop on Answer Set Programming, Advances in Theory and Implementation
(ASP’03), volume 78 of CEUR Workshop Proceedings, pages 194–208, Messina,
Italy, September 26–28 2003.

REFERENCES 241

[65] I. Hodkinson. Loosely Guarded Fragment of First-Order Logic has the Finite
Model Property. Studia Logica, 70(2):205–240, 2002.

[66] I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics.
PhD thesis, University of Manchester, UK, 1997.

[67] I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In A. G.
Cohn, L. Schubert, and S. C. Shapiro, editors, Proc. of the 6th Int. Conf. on the
Principles of Knowledge Representation and Reasoning (KR ’98), pages 636–647,
Trento, Italy, June 2–5 1998. Morgan Kaufmann Publishers.

[68] I. Horrocks and P. F. Patel-Schneider. Three Theses of Representation in the
Semantic Web. In Proc. of the 12th Int. World Wide Web Conference (WWW
2003), pages 39–47, Budapest, Hungary, May 20–24 2003. ACM Press.

[69] I. Horrocks and P. F. Patel-Schneider. A Proposal for an OWL Rules Language.
In Proc. of the 13th Int. World Wide Web Conference (WWW 2004), pages
723–731, New York, NY, USA, May 17–22 2004. ACM Press.

[70] I. Horrocks and U. Sattler. Ontology Reasoning in the SHOQ(D) Description
Logic. In B. Nebel, editor, Proc. of the 7th Int. Joint Conf. on Artificial In-
telligence (IJCAI 2001), pages 199–204, Seattle, WA, USA, August 4–10 2001.
Morgan Kaufmann Publishers.

[71] I. Horrocks and U. Sattler. A Tableaux Decision Procedure for SHOIQ. In
Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pages
448–453, Edinburgh, UK, July 30–August 5 2005. Morgan Kaufmann Publishers.

[72] I. Horrocks, U. Sattler, S. Tessaris, and S. Tobies. How to decide Query Con-
tainment under Constraints using a Description Logic. In M. Parigot and
A. Voronkov, editors, Proc. of the 7th Int. Conf. on Logic for Programming
and Automated Reasoning (LPAR 2000), volume 1955 of LNAI, pages 326–343,
Reunion Island, France, November 11–12 2000. Springer.

[73] I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very Expressive
Description Logics. Logic Journal of the IGPL, 8(3):239–263, 2000.

[74] I. Horrocks, U. Sattler, and S. Tobies. Reasoning with Individuals for the De-
scription Logic SHIQ. In D. MacAllester, editor, Proc. of the 17th Int. Conf. on
Automated Deduction (CADE-17), volume 1831 of LNAI, pages 482–496, Pitts-
burgh, PA, USA, June 17–20 2000. Springer.

[75] I. Horrocks and S. Tessaris. Querying the Semantic Web: a Formal Approach.
In I. Horrocks and J. A. Hendler, editors, Proc. of the 1st Int. Semantic Web
Conference (ISWC 2002), volume 2342 of LNCS, pages 177–191, Sardinia, Italy,
June 9–12 2002. Springer.

242 REFERENCES

[76] U. Hustadt. Resolution-Based Decision Procedures for Subclasses of First-Order
Logic. PhD thesis, Universität des Saarlandes, Germany, 1999.

[77] U. Hustadt and R. A. Schmidt. Issues of Decidability for Description Logics
in the Framework of Resolution. In R. Caferra and G. Salzer, editors, Selected
Papers from Automated Deduction in Classical and Non-Classical Logics, volume
1761 of LNAI, pages 191–205. Springer, 1999.

[78] N. Immerman. Relational queries computable in polynomial time. Information
and Control, 68(1–3):86–104, 1986.

[79] I.V. Ramakrishnan and R. Sekar and A. Voronkov. Term indexing. In A. Robin-
son and A. Voronkov, editors, Handbook of Automated Reasoning, volume II,
chapter 26, pages 1853–1964. Elsevier Science, 2001.

[80] W. H. Joyner Jr. Resolution Strategies as Decision Procedures. Journal of the
ACM, 23(3):398–417, 1976.

[81] B. Kallick. A decision procedure based on the resolution method. In A. J. H.
Morrell, editor, Proc. of the Int. Federation for Information Processing Congress
(IFIP ’68), volume 1 - Mathematics, Software, pages 269–275, Edinburgh, UK,
August 5–10 1968. Horth-Holland.

[82] Y. Kazakov and H. de Nivelle. A Resolution Decision Procedure for the Guarded
Fragment with Transitive Guards. In D. Basin and M. Rusinowitch, editors, Proc.
of 2nd Int. Joint Conf. on Automated Reasoning (IJCAR 2004), volume 3097 of
LNAI, pages 122–136, Cork, Ireland, July 4–8 2004. Springer.

[83] A. Leitsch. Deciding clause classes by semantic clash resolution. Fundamenta
Informaticae, 18:163–182, 1993.

[84] A. Y. Levy and M.-C. Rousset. Combining Horn Rules and Description Logics
in CARIN. Artificial Intelligence, 104(1–2):165–209, 1998.

[85] A. Y. Levy, D. Srivastava, and T. Kirk. Data Model and Query Evaluation
in Global Information Systems. Journal of Intelligent Information Systems,
5(2):121–143, 1995.

[86] B. Löchner. Things to know when implementing LPO. In S. Schulz, G. Sutcliffe,
and T. Tammet, editors, The IJCAR 2004 Workshop on Empirically Successful
First OrderReasoning (ESFOR), Cork, Ireland, July 4–8 2004.

[87] C. Lutz. The Complexity of Reasoning with Concrete Domains. PhD thesis,
Teaching and Research Area for Theoretical Computer Science, RWTH Aachen,
Germany, 2002.

REFERENCES 243

[88] C. Lutz. Description Logics with Concrete Domains—A Survey. In P. Balbiani,
N.-Y. Suzuki, F. Wolter, and M. Zakharyaschev, editors, Proc. of the 4th Int.
Workshop on Advances in Modal Logic (AiML 2002), pages 265–296, Toulouse,
France, September 30–October 2 2003. King’s College Publications.

[89] C. Lutz. NExpTime-complete Description Logics with Concrete Domains. ACM
Transactions on Computational Logic, 5(4):669–705, 2004.

[90] C. Lutz and U. Sattler. The Complexity of Reasoning with Boolean Modal
Logics. In F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyaschev, editors,
Proc. of the 3rd Int. Conf. on Advances in Modal Logic (AiML 2000), pages
329–348, Leipzig, Germany, October 4–7 2001. World Scientific.

[91] R. M. MacGregor. Inside the LOOM Description Classifier. SIGART Bulletin,
2(3):88–92, 1991.

[92] W. McCune. Solution of the Robbins Problem. Journal of Automated Reasoning,
19(3):263–276, 1997.

[93] D. L. McGuinness and J. R. Wright. An Industrial-Strength Description-Logics-
Based Configurator Platform. IEEE Intelligent Systems, 13(4):69–77, 1998.

[94] M. Minsky. A Framework for Representing Knowledge. In J. Haugeland, editor,
Mind Design: Philosophy, Psychology, Artificial Intelligence, pages 95–128. MIT
Press, Cambridge, MA, USA, 1981.

[95] B. Nebel. Terminological Cycles: Semantics and Computational Properties. In
J. F. Sowa, editor, Principles of Semantic Networks: Explorations in the Rep-
resentation of Knowledge, pages 331–361. Morgan Kaufmann Publishers, San
Mateo, CA, USA, 1991.

[96] R. Nieuwenhuis and A. Rubio. Theorem Proving with Ordering and Equality
Constrained Clauses. Journal of Symbolic Computation, 19(4):312–351, 1995.

[97] R. Nieuwenhuis and A. Rubio. Paramodulation-Based Theorem Proving. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, vol-
ume I, chapter 7, pages 371–443. Elsevier Science, 2001.

[98] H. De Nivelle, R. A. Schmidt, and U. Hustadt. Resolution-Based Methods for
Modal Logics. Logic Journal of the IGPL, 8(3):265–292, 2000.

[99] A. Nonnengart and C. Weidenbach. Computing Small Clause Normal Forms.
In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning,
volume I, chapter 6, pages 335–367. Elsevier Science, 2001.

[100] L. Pacholski, W. Szwast, and L. Tendera. Complexity Results for First-Order
Two-Variable Logic with Counting. SIAM Journal on Computing, 29(4):1083–
1117, 2000.

244 REFERENCES

[101] J. Z. Pan and I. Horrocks. Extending Datatype Support in Web Ontology Rea-
soning. In R. Meersman and Z. Tari, editors, Proc. of the 2002 Int. Conf. on
Ontologies, Databases and Applications of SEmantics (ODBASE 2002), volume
2519 of LNCS, pages 1067–1081, Irvine, CA, USA, October 30–November 1 2002.
Springer.

[102] J. Z. Pan and I. Horrocks. RDFS(FA) and RDF MT: Two Semantics for RDFS.
In D. Fensel, K. P. Sycara, and J. Mylopoulos, editors, Proc. of the 3rd Int.
Semantic Web Conference (ISWC 2003), volume 2870 of LNCS, pages 30–46,
Sanibel Island, FL, USA, October 20–23 2003. Springer.

[103] J. Z. Pan and I. Horrocks. Web Ontology Reasoning with Datatype Groups.
In D. Fensel, K. P. Sycara, and J. Mylopoulos, editors, Proc. of the 2nd Int.
Semantic Web Conference (ISWC 2003), volume 2870 of LNCS, pages 47–63,
Sanibel Island, FL, USA, October 20–23 2003. Springer.

[104] C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1993.

[105] B. Parsia and E. Sirin. Pellet: An OWL-DL Reasoner. Poster, In Proc. of the
3rd Int. Semantic Web Conference (ISWC 2004), Hiroshima, Japan, November
7–11, 2004.

[106] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language:
Semantics and Abstract Syntax, W3C Recommendation, February 10 2004.
http://www.w3.org/TR/owl-semantics/.

[107] N. Peltier. On the decidability of the PVD class with equality. Logic Journal of
the IGPL, 9(4):601–624, 2001.

[108] D. A. Plaisted and S. Greenbaum. A Structure-Preserving Clause Form Trans-
lation. Journal of Symbolic Logic and Computation, 2(3):293–304, 1986.

[109] D. Poole, A. Mackworth, and R. Goebel. Computational Intelligence: A Logical
Approach. Oxford University Press, New York, NY, USA, 1997.

[110] I. Pratt-Hartmann. Counting Quantifiers and the Stellar Fragment. Technical
report, University of Manchester, UK, 2003. submitted for publishing.

[111] M. R. Quillian. Word concepts: A theory and simulation of some basic capabil-
ities. Behavioral Science, 12:410–430, 1967.

[112] R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Rule Ordering in Bottom-
Up Fixpoint Evaluation of Logic Programs. IEEE Transactions on Knowledge
and Data Engineering, 6(4):501–517, 1994.

[113] R. Ramesh, I. V. Ramakrishnan, and D. S. Warren. Automata-Driven Indexing
of Prolog Clauses. Journal of Logic Programming, 23(2):151–202, 1995.

http://www.w3.org/TR/owl-semantics/

REFERENCES 245

[114] A. L. Rector, W. A. Nowlan, and A. Glowinski. Goals for concept representation
in the galen project. In C. Safran, editor, Proc. of the 17th Annual Sympo-
sium on Computer Applications in Medical Care (SCAMC ’93), pages 414–418,
Washington DC, USA, November 1–3 1993. McGraw-Hill.

[115] R. Reiter. Two Results on Ordering for Resolution with Merging and Linear
Format. Journal of the ACM, 18(4):630–646, 1971.

[116] A. Riazanov. Implementing an Efficient Theorem Prover. PhD thesis, University
of Manchester, UK, 2003.

[117] A. Riazanov and A. Voronkov. Partially Adaptive Code Trees. In M. Ojeda-
Aciego, I. P. de Guzmán, G. Brewka, and L. Moniz Pereira, editors, Proc. Euro-
pean Workshop on Logics in Artificial Intelligence, European Workshop (JELIA
2000), volume 1919 of LNAI, pages 209–223, Malaga, Spain, September 29–
October 2 2000. Springer.

[118] A. Riazanov and A. Voronkov. Splitting Without Backtracking. In B. Nebel,
editor, Proc. of the 7th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001),
pages 611–617, Seattle, WA, USA, August 4–10 2001. Morgan Kaufmann Pub-
lishers.

[119] A. Riazanov and A. Voronkov. The design and implementation of VAMPIRE.
AI Communications, 15(2–3):91–110, 2002.

[120] G. Robinson and L. Wos. Paramodulation and theorem-proving in first-order
theories with equality. In B. Meltzer and D. Michie, editors, Proc. of the 4th
Annual Machine Intelligence Workshop, pages 135–158. Edinburgh University
Press, 1969.

[121] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle.
Journal of the ACM, 12(1):23–41, 1965.

[122] J. A. Robinson. Automatic deduction with hyper-resolution. International Jour-
nal of Computational Mathematics, 1(3):227–234, 1965.

[123] R. Rosati. On the decidability and complexity of integrating ontologies and
rules. Journal of Web Semantics: Science, Services and Agents on the World
Wide Web, 3(1):61–73, 2005.

[124] R. Rosati. Semantic and Computational Advantages of the Safe Integration of
Ontologies and Rules. In F. Fages and S. Soliman, editors, Proc. of the 3rd
Int. Workshop on Principles and Practice of Semantic Web Reasoning (PPSWR
2005), volume 3703 of LNCS, pages 50–64, Dagstuhl Castle, Germany, September
11–16 2005. Springer.

246 REFERENCES

[125] A. Schaerf. On the Complexity of the Instance Checking Problem in Concept
Languages with Existential Quantification. Journal of Intelligent Information
Systems, 2(3):265–278, 1993.

[126] A. Schaerf. Query Answering in Concept-Based Knowledge Representation Sys-
tems: Algorithms, Complexity, and Semantic Issues. PhD thesis, Dipartimento
di Informatica e Sistemistica, Università di Roma “La Sapienza”, Italy, 1994.

[127] K. Schild. A Correspondence Theory for Terminological Logics: Preliminary
Report. In J. Mylopoulos and R. Reiter, editors, Proc. of 12th Int. Joint Conf.
on Artificial Intelligence (IJCAI ’91), pages 466–471, Sydney, Australia, August
24–30 1991. Morgan Kaufmann Publishers.

[128] R. A. Schmidt and U. Hustadt. A Resolution Decision Procedure for Fluted
Logic. In D. McAllester, editor, Proc. of the 17th Int. Conf. on Automated
Deduction (CADE-17), volume 1831 of LNAI, pages 433–448, Pittsburgh, PA,
USA, June 17–20 2000. Springer.

[129] R. A. Schmidt and U. Hustadt. A Principle for Incorporating Axioms into the
First-Order Translation of Modal Formulae. In F. Baader, editor, Proc. of the
19th Int. Conf. on Automated Deduction (CADE-19), volume 2741 of LNAI,
pages 412–426, Miami Beach, FL, USA, July 28–August 2 2003. Springer.

[130] M. Schmidt-Schauß. Subsumption in KL-ONE is undecidable. In R. J. Brach-
man, H. J. Levesque, and R. Reiter, editors, Proc. of the 1st Int. Conf. on the
Principles of Knowledge Representation and Reasoning (KR ’89), pages 421–431,
Toronto, Canada, May 15–18 1989. Morgan Kaufmann Publishers.

[131] M. Schmidt-Schauß and G. Smolka. Attributive Concept Descriptions with Com-
plements. Artificial Intelligence, 48(1):1–26, 1991.

[132] G. Schreiber. The Web is not well-formed. IEEE Intelligent Systems, 17(2):79–80,
2002. Contribution to the section “Trends & Controversies: Ontologies KISSES
in Standardization”, edited by S. Staab.

[133] S. Schulz. E—A Brainiac Theorem Prover. AI Communications, 15(2–3):111–
126, 2002.

[134] S. Schulz. Simple and Efficient Clause Subsumption with Feature Vector In-
dexing. In S. Schulz, G. Sutcliffe, and T. Tammet, editors, The IJCAR 2004
Workshop on Empirically Successful First OrderReasoning (ESFOR), Cork, Ire-
land, July 4–8 2004.

[135] O. Shmueli. Decidability and expressiveness aspects of logic queries. In Proc. of
the 6th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS ’87), pages 237–249, San Diego, CA, USA, March 23–25 1987.
ACM Press.

REFERENCES 247

[136] O. Shmueli. Equivalence of DATALOG Queries is Undecidable. Journal of Logic
Programming, 15(3):231–241, 1993.

[137] S. S. Skiena. The Algorithm Design Manual. Springer, 1997.

[138] W. Snyder. On the complexity of recursive path orderings. Information Process-
ing Letters, 46(5):257–262, 1993.

[139] M. E. Stickel. Automated Deduction by Theory Resolution. Journal of Auto-
mated Reasoning, 1(4):333–355, 1985.

[140] M. E. Stickel. The Path-Indexing Method For Indexing Terms. Technical Report
473, Artificial Intelligence Center, SRI International, Menlo Park, California,
October 1989.

[141] T. Syrjänen and I. Niemelä. The Smodels System. In T. Eiter, W. Faber,
and M. Truszczynski, editors, Proc. 6th Int. Conf. on Logic Programming and
Nonmonotonic Reasoning (LPNMR 2001), volume 2173 of LNAI, pages 434–438,
Vienna, Austria, September 17–19 2001. Springer.

[142] T. Tammet. Resolution Methods for Decision Problems and Finite-Model Build-
ing. PhD thesis, Göteborg University, Sweden, 1992.

[143] S. Tessaris. Questions and answers: reasoning and querying in Description Logic.
PhD thesis, University of Manchester, UK, 2001.

[144] S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, RWTH Aachen, Germany, 2001.

[145] M. Vardi. The Complexity of Relational Query Languages (Extended Abstract).
In H. R. Lewis, B. B. Simons, W. A. Burkhard, and L. Landweber, editors, Proc.
of the 14th annual ACM Symposium on Theory of Computing (STOC ’82), pages
137–146, San Francisco, CA, USA, May 5–7 1982. ACM Press.

[146] M. Y. Vardi. On the Complexity of Bounded-Variable Queries. In Proc. of the
14th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS ’95), pages 266–276, San Jose, CA, USA, May 22–25 1995. ACM
Press.

[147] M. Y. Vardi. Why Is Modal Logic So Robustly Decidable? In N. Immerman
and P. Kolaitis, editors, Proc. of a DIMACS Workshop on Descriptive Complex-
ity and Finite Models, volume 31 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 149–184, Princeton University, USA,
January 14–17 1996. American Mathematical Society.

[148] R. Volz. Web Ontology Reasoning With Logic Databases. PhD thesis, Universität
Fridericiana zu Karlsruhe (TH), Germany, 2004.

248 REFERENCES

[149] C. Welty and D. Ferrucci. What’s in an instance? Technical Report 94–18, RPI
Computer Science, 1994.

Relevant Publications

[150] U. Hustadt, B. Motik, and U. Sattler. Reasoning in Description Logics with a
Concrete Domain in the Framework of Resolution. In R. López de Mántaras
and L. Saitta, editors, Proc. of the 16th European Conf. on Artificial Intelligence
(ECAI 2004), pages 353–357, Valencia, Spain, August 22–27 2004. IOS Press.

[151] U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ− Description Logic to
Disjunctive Datalog Programs. In D. Dubois, C. A. Welty, and M.-A. Williams,
editors, Proc. of the 9th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR 2004), pages 152–162, Whistler, Canada, June 2–5, 2004
2004. AAAI Press.

[152] U. Hustadt, B. Motik, and U. Sattler. A Decomposition Rule for Decision Proce-
dures by Resolution-based Calculi. In F. Baader and A. Voronkov, editors, Proc.
of the 11th Int. Conf. on Logic for Programming Artificial Intelligence and Rea-
soning (LPAR 2004), volume 3452 of LNAI, pages 21–35, Montevideo, Uruguay,
March 14–18 2005. Springer.

[153] U. Hustadt, B. Motik, and U. Sattler. Data Complexity of Reasoning in Very
Expressive Description Logics. In Proc. of the 19th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2005), pages 466–471, Edinburgh, UK, July 30–August 5
2005. Morgan Kaufmann Publishers.

[154] B. Motik. On the Properties of Metamodeling in OWL. In Y. Gil, E. Motta, V.R.
Benjamins, and M. Musen, editors, Proc. of the 4th Int. Semantic Web Conf.
(ISWC 2005), volume 3729 of LNCS, pages 548–562, Galway, Ireland, November
6–10 2005. Springer.

[155] B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with Rules.
In S. A. McIlraith, D. Plexousakis, and F. van Harmelen, editors, Proc. of the 3rd
Int. Semantic Web Conf. (ISWC 2004), volume 3298 of LNCS, pages 549–563,
Hiroshima, Japan, November 7–11 2004. Springer.

[156] B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with rules.
Journal of Web Semantics: Science, Services and Agents on the World Wide
Web, 3(1):41–60, 2005.

249

	I Foundations
	1 Introduction
	2 Preliminary Definitions
	2.1 Multi-Sorted First-Order Logic
	2.2 Relations and Orderings
	2.3 Rewrite Systems
	2.4 Ordered Resolution
	2.5 Basic Superposition
	2.6 Splitting
	2.7 Disjunctive Datalog

	3 Introduction to Description Logics
	3.1 The Description Logic SHIQ
	3.1.1 Example

	3.2 Description Logics with Concrete Domains
	3.2.1 Concrete Domains
	3.2.2 The Description Logic SHIQ(D)
	3.2.3 Example

	II From Description Logics to Disjunctive Datalog
	4 Reduction Algorithm at a Glance
	4.1 The Main Difficulty in Reducing DLs to Datalog
	4.2 The General Idea
	4.3 Translating KB into Clauses
	4.4 Deciding Satisfiability of Xi(KB) by R
	4.5 Translating ALC to Disjunctive Datalog
	4.6 Examples
	4.7 Extending the Algorithms to SHIQ(D)
	4.8 Discussion
	4.8.1 Independence of the Reduction and the Query
	4.8.2 Minimal vs. Arbitrary Models
	4.8.3 Complexity
	4.8.4 Descriptive vs. Minimal-Model Semantics
	4.8.5 Unique Name Assumption
	4.8.6 The Size of DD(KB)
	4.8.7 The Benefits of Reducing DLs to Disjunctive Datalog

	5 Deciding SHIQ by Basic Superposition
	5.1 Decision Procedure Overview
	5.2 Eliminating Transitivity Axioms
	5.3 Deciding ALCHIQ-
	5.3.1 Preprocessing
	5.3.2 Parameters for Basic Superposition
	5.3.3 Closure of ALCHIQ--Closures under Inferences by BS_DL
	5.3.4 Termination and Complexity Analysis

	5.4 Removing the Restriction to Very Simple Roles
	5.4.1 Transformation by Decomposition
	5.4.2 Deciding ALCHIQ by Decomposition
	5.4.3 Safe Role Expressions

	5.5 Example
	5.6 Related Work

	6 Reasoning with a Concrete Domain
	6.1 Resolution with a Concrete Domain
	6.1.1 Preliminaries
	6.1.2 d-Satisfiability
	6.1.3 Concrete Domain Resolution with Ground Clauses
	6.1.4 Most General Partitioning Unifiers
	6.1.5 Concrete Domain Resolution with General Clauses
	6.1.6 Deleting D-Tautologies
	6.1.7 Combining Concrete Domains with Other Resolution Calculi

	6.2 Deciding SHIQ(D)
	6.2.1 Closures with Concrete Predicates
	6.2.2 Closure of ALCHIQ(D)-Closures under Inferences
	6.2.3 Termination and Complexity Analysis

	6.3 Example
	6.4 Related Work

	7 Reducing Description Logics to Disjunctive Datalog
	7.1 Overview
	7.2 Eliminating Function Symbols
	7.3 Removing Irrelevant Clauses
	7.4 Reduction to Disjunctive Datalog
	7.5 Equality Reasoning in DD(KB)
	7.6 Answering Queries in DD(KB)
	7.7 Example
	7.8 Related Work

	8 Data Complexity of Reasoning
	8.1 Data Complexity of Satisfiability
	8.2 A Horn Fragment of SHIQ(D)
	8.3 Discussion
	8.4 Related Work

	III Extensions
	9 Integrating Description Logics with Rules
	9.1 Reasons for Undecidability of SHIQ(D) with Rules
	9.2 Combining Description Logics and Rules
	9.3 DL-Safety Restriction
	9.4 Expressivity of DL-Safe Rules
	9.5 Query Answering for DL-Safe Rules
	9.6 Related Work

	10 Answering Conjunctive Queries
	10.1 Definition of Conjunctive Queries
	10.2 Answering Conjunctive Queries
	10.3 Deciding Conjunctive Query Containment
	10.4 Related Work

	11 The Semantics of Metamodeling
	11.1 Undecidability of Metamodeling in OWL-Full
	11.2 Extending DLs with Decidable Metamodeling
	11.2.1 Metamodeling Semantics for ALCHIQ(D)
	11.2.2 Deciding nu-Satisfiability
	11.2.3 Metamodeling and Transitivity

	11.3 Expressivity of Metamodeling
	11.4 Related Work

	IV Practical Considerations
	12 Implementation of KAON2
	12.1 KAON2 Architecture
	12.2 Ontology Clausification
	12.2.1 Reusing Replacement Predicates
	12.2.2 Optional Positions
	12.2.3 Handling Functional Roles
	12.2.4 Discussion

	12.3 The Theorem Prover for BS
	12.3.1 Inference Loop
	12.3.2 Representing ALCHIQ-Closures
	12.3.3 Inference Rules
	12.3.4 Redundancy Elimination Rules
	12.3.5 Optimizing Number Restrictions
	12.3.6 Tuning the Calculus Parameters
	12.3.7 Choosing the Given Closure
	12.3.8 Indexing Terms and Closures

	12.4 Disjunctive Datalog Engine
	12.4.1 Magic Sets
	12.4.2 Bottom-Up Saturation

	13 Performance Evaluation
	13.1 Test Setting
	13.2 Test Ontologies
	13.3 Querying Large ABoxes
	13.3.1 VICODI
	13.3.2 SEMINTEC
	13.3.3 LUBM
	13.3.4 Wine

	13.4 TBox Reasoning

	14 Conclusion

