
System Description: E 1.8

Stephan Schulz

Institut für Informatik, Technische Universität München,
D-80290 München, Germany

schulz@eprover.org

Abstract. E is a theorem prover for full first-order logic with equal-
ity. It reduces first-order problems to clause normal form and employs
a saturation algorithm based on the equational superposition calculus.
E is built on shared terms with cached rewriting, and employs several
innovations for efficient clause indexing. Major strengths of the system
are automatic problem analysis and highly flexible search heuristics. The
prover can provide verifiable proof objects and answer substitutions with
very little overhead. E performs well, solving more than 69% of TPTP-
5.4.0 FOF and CNF problems in automatic mode.

1 Introduction

E is a theorem prover for full first-order logic with equality, built around a fully
equational implementation of the superposition calculus. For the last 12 years
the prover has been one of the major participants at the CADE ATP System
Competition in the MIX, CNF, FOF, UEQ and LTB categories, usually finishing
among the top systems in all these categories. E is available as Free Software
under the GNU GPL. It is implemented in C, widely portable, and has been
used, in whole or part, as a component in many other systems.

Fig. 1 shows the high-level functional decomposition of the theorem prover,
and the data flow between the components. A proof problem is read into main
memory, and is passed through several different processing stages:

– The problem is parsed and converted into a set of clauses and formulas by
a simple but efficient recursive descent parser. The parser supports E-LOP,
and the TPTP CNF/FOF syntax [13].

– In the next stage, Relevancy Pruning, the problem is optionally simplified by
discarding clauses and formulas deemed unlikely to contribute to a proof. E
implements both strict relevancy pruning and a configurable variant of the
SInE algorithm [4].

– The third stage, Clausification, converts the problem from full first-order
logic to clausal form. Clausification uses a slightly simplified version of the
algorithm presented by Nonnengart and Weidenbach [8]. The implementa-
tion takes advantage of E’s shared term/shared formula representation

– The resulting clause set can be pre-processed. Preprocessing removes redun-
dant literals and tautologies, and optionally expands equational definitions.
If requested, preprocessing can also perform complete interreduction of the
problem specification.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24061015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Relevancy Pruning

Clausification

Clausal Preprocessing

Saturation

Proof Extraction

Raw Analysis

CNF Analysis

User
clauses/formulas
control information

Dashed parts are optional

Parser
full first-order
specification

(pruned) first-oder
specification

clausal version of
(pruned) specification

(preprocessed)
clause set

saturated clause
set (with derivation

history)

proof/saturation

problem/solution
communicated

Fig. 1. Decomposition of E and major data flows

– After preprocessing, the clause set is passed to the main saturation algo-
rithm. This is realized as an instance of the DISCOUNT variant of the
given-clause algorithm and implements a variant of the superposition cal-
culus with a number of contraction techniques. The saturation ends when
the empty clause has been derived, the set is saturated, or a user-defined
resource limit is reached.

– The prover can store enough information to generate a checkable proof ob-
ject. In the final (optional) step, this information is collected into a proof
tree (or saturation derivation), which can be printed in E’s original PCL-2
or TPTP-3/TSTP syntax.

Various aspects of the process are controlled by parameters that are either
provided by the user or heuristically determined by the automatic mode of the
prover.

2 Saturation

The core of the prover is a saturation procedure that tries to show the incon-
sistency of a set of clauses (the search state). New clauses are deduced using
generating inference rules, and existing clauses are simplified or discarded using
contraction rules. The algorithm terminates either when it has derived the empty
clause as an explicit witness of inconsistency, or if all non-redundant inferences
have been computed. In this case, the resulting saturated set describes a model
of the clause set.

2.1 Calculus

E implements an instance of the superposition calculus with negative literal
selection, as originally described by Bachmair and Ganzinger [2]. It uses the
rules equality resolution (ER), equality factoring (EF), and superposition into
positive and negative literals, (SP) and (SN). Alternatively, the latter two rules
can be replaced by simultaneous superposition (SSP and SSN), which often re-
sults in slightly better search behaviour and hence is the default. Simultaneous
superposition is inspired by simultaneous paramodulation [3], and maintains
completeness1.

Contraction is critical for practical performance. E implements deletion of du-
plicate and resolved literals (DD, DR), syntactic and semantic tautology deletion
(TD1, TD2, SD), destructive equality resolution (DR), unconditional rewriting
(RP, RN), equational literal cutting (PS, NS), subsumption (CS, ES), contex-
tual literal cutting (CLC), condensing (CD), AC-tautology deletion (ACD) and
AC-simplification (ACS). The last two rules handle associative and commutative
function symbols as suggested in [1].

2.2 Implementation

Fig. 2 sketches the proof procedure. The algorithm maintains the invariant that
the set P of unprocessed clauses is interreduced, and that all generating infer-
ences between clauses from P have been performed. Derivations are fair if no
clause remains unprocessed forever.

The implementation is built around perfectly shared terms. Each distinct
term is represented exactly once in a term bank. Unconditional rewriting is
cached. Whenever a possible simplification is detected, it is recorded in the term
bank. Future simplifications simply follow these rewrite links before trying new
equations.

Indexing enables the prover to quickly find inference partners for a given
premise. E indexes the set P of processed clauses. It uses Perfect Discrimination
Trees [7] with size- and age-constraints for forward rewriting (finding positive

1 On the ground level, a simultaneous superposition inference can be simulated by a
single conventional superposition step, followed by a series of (simplifying) condi-
tional rewrite steps.

Search state: U ∪ P
U contains unprocessed clauses, P contains processed clauses.
Initially, all clauses are in U , P is empty.
The given clause is denoted by g.

while U 6= {}
g = delete best(U)
g = simplify(g, P)
if g == �

SUCCESS, Proof found
if g is not subsumed by any clause in P (or otherwise redundant w.r.t. P)

P = P\{c ∈ P | c subsumed by (or otherwise redundant w.r.t.) g}
T = {c ∈ P | c can be simplified with g}
P = (P\T) ∪ {g}
T = T ∪ generate(g, P)
foreach c ∈ T

c = cheap simplify(c, P)
if c is not trivial

U = U ∪ {c}
SUCCESS, original U is satisfiable

Remarks: delete best(U) finds and extracts the clause with the best heuristic eval-
uation (see 3.3) from U . generate(g, P) performs all generating inferences using g
as one premise, and clauses from P as additional premises. It uses inference rules
(SP) or (SSP), (SN) or (SSN), (ER) and (EF).
simplify(c, S) applies all simplification inferences in which the main (simplified)
premise is c and all the other premises are clauses from S. This typically includes
full rewriting, (CD) and (CLC). cheap simplify(c, S) works similarly, but only ap-
plies inference rules with a particularly low cost implementation, usually including
rewriting with orientable units, but not (CLC). The exact set of contraction rules
used is configurable in either case.

Fig. 2. Saturation procedure of E

unit clauses that can rewrite new clauses), Fingerprint Indexing [10] for back-
ward rewriting (finding clauses in P that can be rewritten with the given clause)
and superposition, and Feature Vector Indexing [11] for subsumption and con-
textual literal cutting.

Term orderings (LPO and KBO) are implemented using the elegant and
efficient reformulations presented by Löchner [5, 6].

3 Search Control

Proof search depends on a number of different parameters. The three major
choice points are the selection of a term ordering, the (optional) selection of
inference literals, and the order in which clauses from U are picked for processing.

3.1 Term Orderings

E supports KBO and LPO. Both orderings are parameterized. KBO uses a weight
function assigning weights to individual function symbols (and a fixed weight to
all variables), and both orderings use a precedence on the function symbols.
E currently supports about a dozen precedence generation schemes, and more
than two dozen weight generation schemes. Orderings showing the best perfor-
mance use the frequency of symbols in the specification, making terms with rarer
symbols larger in the ordering.

3.2 Literal Selection

Literal selection is a major strength of E. Even quite naive approaches (always
select the largest negative literal, if any) lead to a significant improvement over
the plain superposition calculus. Good literal selection strategies seem to prefer
ground literals, literals that are large in the term ordering, and to avoid literals
that contain little structure, e.g. literals of the form p(X,Y, Z).

3.3 Clause Evaluation

The given-clause algorithm selects clauses according to a heuristic evaluation.
In the simplest case, this is a single value, representing the number of symbols
in the clause (smaller is better). E generalizes this concept and allows the user
to specify an arbitrary number of priority queues and a weighted round-robin
scheme that determines how many clauses are picked from each queue. A major
feature is the use of goal-directed evaluation functions. These give a lower weight
to symbols that occur in the goal, and a higher weight to other symbols, thus
preferring clauses which a likely connection to the conjecture. As an alternative,
E can also learn good clause evaluations from previous proof experience [9].

3.4 Automatic Prover Configuration

Performance of first-order theorem provers critically depends on the search strat-
egy and heuristics. Finding good heuristics for a given problem is challenging
even for an experienced user. E supports a number of automatic modes that
analyze the problem and apply either a single strategy or a schedule of several
strategies. The selection of strategies and generation of schedules for each class
of problems is determined automatically by analyzing previous performance of
the prover on similar problems.

4 Proofs and Answers

4.1 Proofs

E 1.8 can internally record all necessary information for proof output. It makes
use of the DISCOUNT loop property that only processed clauses (usually a

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

R
un

 ti
m

es
 w

ith
 p

ro
of

 g
en

er
at

io
n

(s
)

Run times without proof generation (s)

All problems
Similar search

Fig. 3. Comparison of run times

small subset of all clauses in the search state) can ever participate in generating
inferences or be used to simplify other clauses. For each clause, the system stores
its origin (usually a generating inference and the parents), and a history of
simplifications (inference rules and side premises). A processed clause is archived
and replaced by a simplified copy (pointing to the original as the parent) only
if it itself is back-simplified.

When the empty clause has been derived and hence a proof concluded, the
proof tree is extracted by tracing the recorded dependencies. Proof steps are
topologically sorted, ensuring that all dependencies of a step are listed before
the step itself. The linearized proof can then be printed.

Recording of the derivation history does not systematically change the search
behaviour. However, changes in memory usage and layout can cause some opera-
tions (e.g. iteration over a set) to be performed differently, potentially disturbing
the proof search. Fig. 3 shows the run times of the prover in automatic mode
with and without proof generation over TPTP 5.4.0, for both the majority of
problems where both versions performed the same search and the small number
with differing search behaviour. Performing a simple linear regression over the
problems with the same search suggests an overhead of only 0.24% for proof
generation.

4.2 Answers

The system supports the proposed TPTP standard for answers [14]. An answer is
an instantiation for an existential conjecture (or query) that makes the conjecture

Strategy UEQ CNE CEQ FNE FEQ All
Class size (1179) (2352) (5867) (1713) (5867) (15560)

Best 764 1642 3211 1251 3211 9305
. . . with proof object 764 1648 3210 1251 3210 9301

SatAuto 800 1833 3671 1418 3671 10334
. . . with proof object 799 1833 3664 1421 3664 10326

Auto 801 1834 3758 1424 3758 10432
. . . with proof object 799 1834 3749 1424 3749 10415

Auto-Scheduling 824 1867 3939 1430 3939 10783
. . . with proof object 823 1864 3936 1430 3936 10776

UEQ: Unit equational problems, CNE: (non-unit) CNF problems without equality, CEQ: CNF problems
with equality, FNE: Full first-order problems without equality, FEQ: Full first-order problems with
equality

Table 1. Number of proofs/models found within 300 seconds CPU limit

true. In practice, E supplies bindings for the outermost existentially quantified
variables in a TPTP formula with type question.

The implementation is straightforward. The query is extended by adding
the atomic formula ~$answer(new_fun(<varlist>)), where new_fun is a pre-
viously unused function symbol, and <varlist> is the list of outermost existen-
tially quantified variables. This atom is carried through clausification and ends
up as a positive literal in the CNF. The literal ordering is automatically cho-
sen so that the answer literal never participates in inferences. Semantically, the
$answer predicate always evaluates to false. It is evaluated only in clauses where
all remaining literals are answer literals. Answers are extracted and printed in
tuple form at the time of the evaluation. Consider the following example:

Specification

fof(greeks, axiom, (philosopher(socrates)|philosopher(plato))).

fof(scot, axiom, (philosopher(hume))).

fof(phils_wise, axiom, (![X]:(philosopher(X) => wise(X)))).

fof(is_there_wisdom, question, (?[X]:wise(X))).

Answers (eprover --tptp3-format -s --answers)

SZS status Theorem

SZS answers Tuple [[hume]|_]

SZS answers Tuple [([socrates]|[plato])|_]

Proof found!

The system correctly handles disjunctive answers (at least one of socrates or
plato is a philosopher and hence wise, but the theory does not allow us to decide who
is). While the example has been kept intentionally simple, the system also supports
complex terms and variables as parts of answers, in that case representing the set of
all instances.

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 10500

 11000

 0 50 100 150 200 250 300

So
lu

tio
ns

Time (s)

Auto-Scheduling (proofs)
Auto (proofs)

SatAuto (proofs)
Best (proofs)

Fig. 4. Performance (number of solutions over time) of E with different strategies and
meta-strategies

5 Performance

Table 1 lists the performance of E for 4 different search regimens and different classes
of problems. Tests were run on the University of Miami Pegasus cluster. Each node
of the cluster is equipped with 8 Intel Xeon cores, running at 2.5 GHz, and 16 GB of
RAM. Test runs were done with a CPU time limit of 300 seconds per job, a memory
limit of 1024 MB per job, and with 8 jobs scheduled per node. All 15560 untyped
first-order problems (including CNF, FOF and UEQ) from TPTP 5.4.0 were used as
test examples.

Best is the currently strongest single strategy known. SatAuto analyses the input
problem and picks an appropriate strategy based on the performance on similar prob-
lems. Auto additionally performs problem pruning, potentially losing completeness,
but improving behaviour on very large problems. Finally, Auto-Scheduling runs up to
5 complementary strategies for each problem class.

Search performance over time is visualized in Fig. 4 for all 15560 problems. In
all cases, the first 7000 solutions are found within less than 1 second. Of the 10783
solutions found by AutoScheduling, 1000 are saturations, 9783 are proofs.

6 Conclusion

E has reached good maturity for untyped first-order logic. It is stable, reliable, and has
improved usability with strong automatic search, proof object generation and answer
substitutions.

Future planned changes include support for simply typed first-order logic with
arithmetic as defined in [12], improved support for repetitive queries against large
axiom sets, and the use of new data-driven methods for search control.

Acknowledgements: I thank the University of Miami’s Center for Computational Sci-
ence HPC team for making their cluster available for the evaluation.

References

1. Avenhaus, J., Hillenbrand, T., Löchner, B.: On Using Ground Joinable Equations
in Equational Theorem Proving. Journal of Symbolic Computation 36(1-2), 217–
233 (2003)

2. Bachmair, L., Ganzinger, H.: Rewrite-Based Equational Theorem Proving with Se-
lection and Simplification. Journal of Logic and Computation 3(4), 217–247 (1994)

3. Benanav, D.: Simultaneous paramodulation. In: Proc. of the 10th CADE, Kaiser-
slautern. LNCS, vol. 449, pp. 442–455. Springer (1990)

4. Hoder, K., Voronkov, A.: Sine Qua Non for Large Theory Reasoning. In: Bjørner,
N., Stokkermans, S.V. (eds.) Proc. of the 23rd CADE, Wroclav. LNAI, vol. 6803,
pp. 299–314. Springer (2011)

5. Löchner, B.: Things to Know when Implementing KBO. Journal of Automated
Reasoning 36(4), 289–310 (2006)

6. Löchner, B.: Things to Know When Implementing LPO. International Journal on
Artificial Intelligence Tools 15(1), 53–80 (2006)

7. McCune, W.: Experiments with Discrimination-Tree Indexing and Path Indexing
for Term Retrieval. Journal of Automated Reasoning 9(2), 147–167 (1992)

8. Nonnengart, A., Weidenbach, C.: Computing Small Clause Normal Forms. In:
Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I,
chap. 5, pp. 335–367. Elsevier Science and MIT Press (2001)

9. Schulz, S.: Learning Search Control Knowledge for Equational Theorem Proving.
In: Baader, F., Brewka, G., Eiter, T. (eds.) Proc. of the Joint German/Austrian
Conference on Artificial Intelligence (KI-2001). LNAI, vol. 2174, pp. 320–334.
Springer (2001)

10. Schulz, S.: Fingerprint Indexing for Paramodulation and Rewriting. In: Gramlich,
B., Sattler, U., Miller, D. (eds.) Proc. of the 6th IJCAR, Manchester. LNAI, vol.
7364, pp. 477–483. Springer (2012)

11. Schulz, S.: Simple and Efficient Clause Subsumption with Feature Vector Indexing.
In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics:
Essays in Memory of William W. McCune, LNAI, vol. 7788, pp. 45–67. Springer
(2013)

12. Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP Typed First-
order Form with Arithmetic. In: Bjørner, N., Voronkov, A. (eds.) Proc. of the 18th
LPAR, Merida. LNAI, vol. 7180, pp. 406–419. Springer (2012)

13. Sutcliffe, G., Schulz, S., Claessen, K., Gelder, A.V.: Using the TPTP Language
for Writing Derivations and Finite Interpretations . In: Fuhrbach, U., Shankar, N.
(eds.) Proc. of the 3rd IJCAR, Seattle. LNAI, vol. 4130, pp. 67–81. Springer, 4130
(2006)

14. Sutcliffe, G., Stickel, M., Schulz, S., Urban, J.: Answer Extraction for
TPTP. http://www.cs.miami.edu/~tptp/TPTP/Proposals/AnswerExtraction.

html, (acccessed 2013-07-08)

