12,962 research outputs found

    “Constructal Theory: From Engineering to Physics, and How Flow Systems Develop Shape and Structure”

    Get PDF
    Constructal theory and its applications to various fields ranging from engineering to natural living and inanimate systems, and to social organization and economics, are reviewed in this paper. The constructal law states that if a system has freedom to morph it develops in time the flow architecture that provides easier access to the currents that flow through it. It is shown how constructal theory provides a unifying picture for the development of flow architectures in systems with internal flows (e.g., mass, heat, electricity, goods, and people). Early and recent works on constructal theory by various authors covering the fields of heat and mass transfer in engineered systems, inanimate flow structures (river basins, global circulations) living structures, social organization, and economics are reviewed. The relation between the constructal law and the thermodynamic optimization method of entropy generation minimization is outlined. The constructal law is a self-standing principle, which is distinct from the Second Law of Thermodynamics. The place of the constructal law among other fundamental principles, such as the Second Law, the principle of least action and the principles of symmetry and invariance is also presented. The review ends with the epistemological and philosophical implications of the constructal law

    A GPU-Computing Approach to Solar Stokes Profile Inversion

    Full text link
    We present a new computational approach to the inversion of solar photospheric Stokes polarization profiles, under the Milne-Eddington model, for vector magnetography. Our code, named GENESIS (GENEtic Stokes Inversion Strategy), employs multi-threaded parallel-processing techniques to harness the computing power of graphics processing units GPUs, along with algorithms designed to exploit the inherent parallelism of the Stokes inversion problem. Using a genetic algorithm (GA) engineered specifically for use with a GPU, we produce full-disc maps of the photospheric vector magnetic field from polarized spectral line observations recorded by the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectromagnetograph (VSM) instrument. We show the advantages of pairing a population-parallel genetic algorithm with data-parallel GPU-computing techniques, and present an overview of the Stokes inversion problem, including a description of our adaptation to the GPU-computing paradigm. Full-disc vector magnetograms derived by this method are shown, using SOLIS/VSM data observed on 2008 March 28 at 15:45 UT

    Optimization method for the determination of material parameters in damaged composite structures

    Get PDF
    An optimization method to identify the material parameters of composite structures using an inverse method is proposed. This methodology compares experimental results with their numerical reproduction using the finite element method in order to obtain an estimation of the error between the results. This error estimation is then used by an evolutionary optimizer to determine, in an iterative process, the value of the material parameters which result in the best numerical fit. The novelty of the method is in the coupling between the simple genetic algorithm and the mixing theory used to numerically reproduce the composite behavior. The methodology proposed has been validated through a simple example which illustrates the exploitability of the method in relation to the modeling of damaged composite structures.Peer ReviewedPostprint (author’s final draft

    A metabolite-sensitive, thermodynamically-constrained model of\ud cardiac cross-bridge cycling: Implications for force development during ischemia

    Get PDF
    We present a metabolically regulated model of cardiac active force generation with which we investigate the effects of ischemia on maximum forceproduction. Our model, based on the Rice et al. (2008) model of cross-bridge kinetics, reproduces many of the observed effects of MgATP, MgADP, Pi and H+ on force development while still retaining the force/length/Ca2+ properties of the original model. We introduce three new parameters to account for the competitive binding of H+ to the Ca2+ binding site on troponin C and the binding of MgADP within the cross-bridge cycle. These parameters along with the Pi and H+ regulatory steps within the cross-bridge cycle were constrained using data from the literature and validated using a range of metabolic and sinusoidal length perturbation protocols. The placement of the MgADP binding step between two strongly-bound and force-generating states leads to the emergence of an unexpected effect on the force-MgADP curve, where the trend of the relationship (positive or negative) depends on the concentrations of the other metabolites and [H+]. The model is used to investigate the sensitivity of maximum force production to changes in metabolite concentrations during the development of ischemia

    Positive displacement compounding of a heavy duty diesel engine

    Get PDF
    A helical screw type positive displacement (PD) compressor and expander was considered as an alternative to the turbocharger and the power turbine in the Cummins advanced turbocompound engine. The Institute of Gas Technology (IGT) completed the design, layout, and performance prediction of the PD machines. The results indicate that a screw compressor-expander system is feasible up to at least 750 HP, dry operation of the rotors is feasible, cost and producibility are uncertain, and the system will yield about 4% improvement in brake specific fuel consumption (BSFC) over the advanced turbocompound engine

    Frustrated antiferromagnets with entanglement renormalization: ground state of the spin-1/2 Heisenberg model on a kagome lattice

    Get PDF
    Entanglement renormalization techniques are applied to numerically investigate the ground state of the spin-1/2 Heisenberg model on a kagome lattice. Lattices of N={36,144,inf} sites with periodic boundary conditions are considered. For the infinite lattice, the best approximation to the ground state is found to be a valence bond crystal (VBC) with a 36-site unit cell, compatible with a previous proposal. Its energy per site, E=-0.43221, is an exact upper bound and is lower than the energy of any previous (gapped or algebraic) spin liquid candidate for the ground state.Comment: 6 pages, 7 figures, RevTeX 4. Revised version with improved numerical results
    • …
    corecore