1,210 research outputs found

    Systematic approach for the test data generation and validation of ISC/ ESC detection methods

    Get PDF
    Various methods published in recent years for reliable detection of battery faults (mainly internal short circuit (ISC)) raise the question of comparability and cross-method evaluation, which cannot yet be answered due to significant differences in training data and boundary conditions. This paper provides a Monte Carlo-like simulation approach to generate a reproducible, comprehensible and large dataset based on an extensive literature background on common assumptions and simulation parameters. In some cases, these assumptions are quite different from field data, as shown by comparison with experimentally determined values. Two relatively simple ISC detection methods are tested on the generated dataset and their performance is evaluated to illustrate the proposed approach. The evaluation of the detection performance by quantitative measures such as the Youden-index shows a high divergence with respect to internal and external parameters such as threshold level and cell-to-cell variations (CtCV), respectively. These results underline the importance of quantitative evaluations based on identical test data. The proposed approach is able to support this task by providing cost-effective test data generation with incorporation of known factors affecting detection quality

    Systematic approach for the test data generation and validation of ISC/ESC detection methods

    Get PDF
    Various methods published in recent years for reliable detection of battery faults (mainly internal short circuit (ISC)) raise the question of comparability and cross-method evaluation, which cannot yet be answered due to significant differences in training data and boundary conditions. This paper provides a Monte Carlo-like simulation approach to generate a reproducible, comprehensible and large dataset based on an extensive literature search on common assumptions and simulation parameters. In some cases, these assumptions are quite different from field data, as shown by comparison with experimentally determined values. Two relatively simple ISC detection methods are tested on the generated dataset and their performance is evaluated to illustrate the proposed approach. The evaluation of the detection performance by quantitative measures such as the Youden-index shows a high divergence with respect to internal and external parameters such as threshold level and cell-to-cell variations (CtCV), respectively. These results underline the importance of quantitative evaluations based on identical test data. The proposed approach is able to support this task by providing cost-effective test data generation with incorporation of known factors affecting detection quality

    Artificial Intelligence Opportunities to Diagnose Degradation Modes for Safety Operation in Lithium Batteries

    Get PDF
    The degradation and safety study of lithium-ion batteries is becoming increasingly important given that these batteries are widely used not only in electronic devices but also in automotive vehicles. Consequently, the detection of degradation modes that could lead to safety alerts is essential. Existing methodologies are diverse, experimental based, model based, and the new trends of artificial intelligence. This review aims to analyze the existing methodologies and compare them, opening the spectrum to those based on artificial intelligence (AI). AI-based studies are increasing in number and have a wide variety of applications, but no classification, in-depth analysis, or comparison with existing methodologies is yet available

    Algorithms for Fault Detection and Diagnosis

    Get PDF
    Due to the increasing demand for security and reliability in manufacturing and mechatronic systems, early detection and diagnosis of faults are key points to reduce economic losses caused by unscheduled maintenance and downtimes, to increase safety, to prevent the endangerment of human beings involved in the process operations and to improve reliability and availability of autonomous systems. The development of algorithms for health monitoring and fault and anomaly detection, capable of the early detection, isolation, or even prediction of technical component malfunctioning, is becoming more and more crucial in this context. This Special Issue is devoted to new research efforts and results concerning recent advances and challenges in the application of “Algorithms for Fault Detection and Diagnosis”, articulated over a wide range of sectors. The aim is to provide a collection of some of the current state-of-the-art algorithms within this context, together with new advanced theoretical solutions

    Advances in Batteries, Battery Modeling, Battery Management System, Battery Thermal Management, SOC, SOH, and Charge/Discharge Characteristics in EV Applications

    Get PDF
    The second-generation hybrid and Electric Vehicles are currently leading the paradigm shift in the automobile industry, replacing conventional diesel and gasoline-powered vehicles. The Battery Management System is crucial in these electric vehicles and also essential for renewable energy storage systems. This review paper focuses on batteries and addresses concerns, difficulties, and solutions associated with them. It explores key technologies of Battery Management System, including battery modeling, state estimation, and battery charging. A thorough analysis of numerous battery models, including electric, thermal, and electro-thermal models, is provided in the article. Additionally, it surveys battery state estimations for a charge and health. Furthermore, the different battery charging approaches and optimization methods are discussed. The Battery Management System performs a wide range of tasks, including as monitoring voltage and current, estimating charge and discharge, equalizing and protecting the battery, managing temperature conditions, and managing battery data. It also looks at various cell balancing circuit types, current and voltage stressors, control reliability, power loss, efficiency, as well as their advantages and disadvantages. The paper also discusses research gaps in battery management systems.publishedVersio

    Comparison of model-based and sensor-based detection of thermal runaway in Li-ion battery modules for automotive application

    Get PDF
    In recent years, research on lithium-ion (Li-ion) battery safety and fault detection has become an important topic providing a broad range of methods for evaluating the cell state based on voltage and temperature measurements. However, other measurement quantities and close-to-application test setups were only sparsely considered yet, not has been a comparison in between methods. In this work the feasibility of a multi-sensor setup for detection of Thermal Runaway failure of automotive-size Li-ion battery modules have been investigated in comparison to a model-based approach. For experimental validation Thermal Runaway tests were conducted in a close-to-application configuration of module and battery case – triggered by external heating with two different heating rates. By two repetitions of each experiment high accordance of characteristics and results has been achieved and the signal feasibility for fault detection has been discussed. The before published model-based method recognised the thermal fault in the fastest way – significantly previously the required 5 min pre-warning time. This requirement was also achieved with smoke and gas sensors in most test runs. Additional criteria for evaluating detection approaches besides detection time have been discussed to provide a good starting point for choosing a suitable approach dependent on application defined requirements e.g. acceptable complexity

    Comparison of model-based and sensor-based detection of thermal runaway in Li-ion battery modules for automotive application

    Get PDF
    In recent years, research on lithium–ion (Li-ion) battery safety and fault detection has become an important topic, providing a broad range of methods for evaluating the cell state based on voltage and temperature measurements. However, other measurement quantities and close-to-application test setups have only been sparsely considered, and there has been no comparison in between methods. In this work, the feasibility of a multi-sensor setup for the detection of Thermal Runaway failure of automotive-size Li-ion battery modules have been investigated in comparison to a model-based approach. For experimental validation, Thermal Runaway tests were conducted in a close-to-application configuration of module and battery case—triggered by external heating with two different heating rates. By two repetitions of each experiment, a high accordance of characteristics and results has been achieved and the signal feasibility for fault detection has been discussed. The model-based method, that had previously been published, recognised the thermal fault in the fastest way—significantly prior to the required 5 min pre-warning time. This requirement was also achieved with smoke and gas sensors in most test runs. Additional criteria for evaluating detection approaches besides detection time have been discussed to provide a good starting point for choosing a suitable approach that is dependent on application defined requirements, e.g., acceptable complexity

    Detection and Isolation of Small Faults in Lithium-Ion Batteries via the Asymptotic Local Approach

    Full text link
    This contribution presents a diagnosis scheme for batteries to detect and isolate internal faults in the form of small parameter changes. This scheme is based on an electrochemical reduced-order model of the battery, which allows the inclusion of physically meaningful faults that might affect the battery performance. The sensitivity properties of the model are analyzed. The model is then used to compute residuals based on an unscented Kalman filter. Primary residuals and a limiting covariance matrix are obtained thanks to the local approach, allowing for fault detection and isolation by chi-squared statistical tests. Results show that faults resulting in limited 0.15% capacity and 0.004% power fade can be effectively detected by the local approach. The algorithm is also able to correctly isolate faults related with sensitive parameters, whereas parameters with low sensitivity or linearly correlated are more difficult to precise.Comment: 8 pages, 2 figures, 3 tables, conferenc

    Prognostics and health management for maintenance practitioners - Review, implementation and tools evaluation.

    Get PDF
    In literature, prognostics and health management (PHM) systems have been studied by many researchers from many different engineering fields to increase system reliability, availability, safety and to reduce the maintenance cost of engineering assets. Many works conducted in PHM research concentrate on designing robust and accurate models to assess the health state of components for particular applications to support decision making. Models which involve mathematical interpretations, assumptions and approximations make PHM hard to understand and implement in real world applications, especially by maintenance practitioners in industry. Prior knowledge to implement PHM in complex systems is crucial to building highly reliable systems. To fill this gap and motivate industry practitioners, this paper attempts to provide a comprehensive review on PHM domain and discusses important issues on uncertainty quantification, implementation aspects next to prognostics feature and tool evaluation. In this paper, PHM implementation steps consists of; (1) critical component analysis, (2) appropriate sensor selection for condition monitoring (CM), (3) prognostics feature evaluation under data analysis and (4) prognostics methodology and tool evaluation matrices derived from PHM literature. Besides PHM implementation aspects, this paper also reviews previous and on-going research in high-speed train bogies to highlight problems faced in train industry and emphasize the significance of PHM for further investigations
    • 

    corecore