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Abstract: Various methods published in recent years for reliable detection of battery faults (mainly 1

internal short circuit (ISC)) raise the question of comparability and cross-method evaluation, which 2

cannot yet be answered due to significant differences in training data and boundary conditions. 3

This paper provides a Monte Carlo-like simulation approach to generate a reproducible, compre- 4

hensible and large dataset based on an extensive literature background on common assumptions 5

and simulation parameters. In some cases, these assumptions are quite different from field data, as 6

shown by comparison with experimentally determined values. Two relatively simple ISC detection 7

methods are tested on the generated dataset and their performance is evaluated to illustrate the 8

proposed approach. The evaluation of the detection performance by quantitative measures such as 9

the Youden-index shows a high divergence with respect to internal and external parameters such as 10

threshold level and cell-to-cell variations (CtCV), respectively. These results underline the importance 11

of quantitative evaluations based on identical test data. The proposed approach is able to support this 12

task by providing cost-effective test data generation with incorporation of known factors affecting 13

detection quality. 14

Keywords: Lithium-ion Battery; Battery Safety; Internal Short Circuit; Fault Detection; Test Data 15

Generation; Method Comparison 16

1. Introduction 17

The transformation process towards electrical power systems such as from vehicles 18

with combustion engines towards electrical vehicles (EV) has led to a significant increase 19

in the demand for energy storage systems, which is mainly met by lithium-ion batteries 20

(LIB) [1]. With increasing energy and power densities of such LIB, the thermal stability has 21

captured great attention as potential failures might result in the explosive release of the 22

stored chemical energy [2]. This destructive process called Thermal Runaway (TR) [3] has 23

also come to public interest after the supra-regional media coverage of certain incidents 24

and the consecutive recalls like the grounding of Boeing 787 [4], the fire incidents of the 25

Samsung Note 7 [5], burning electric buses in Germany [6] or problems with the Chevrolet 26

Bolt [7]. 27

Besides the characteristic TR reactions as described in detail by Feng et al. [2] such field TR 28

failures often show a chain-reaction-like behaviour since nearly every battery system in 29

application consists of multiple cells forming battery modules and packs to fulfil the power 30

and energy requirements. In case of a single-cell TR in such a dense-packed assembly, the 31

released thermal energy can trigger a thermal failure of adjacent cells, propagating the TR 32

through the whole battery system. Therefore, this failure is called Thermal Propagation 33

and proposes significantly higher risks than a single TR due to the larger amounts of 34

energy-release potential [8]. 35

To address this problem – one of the greatest challenges in battery technology [9] – various 36
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solutions have been published and already integrated in battery systems. Despite the broad 37

range of methods, in our previous work [10] three main approaches have been identified: 38

1. Increasing the thermal stability of cells by alternative active materials or additives, as 39

extensively summarized by Tidblad et al. [11] or Liu et al. [12]. 40

2. Decreasing the heat transfer from cell to cell by constructive changes [13,14], optimized 41

active or passive cooling strategies [15,16] and/ or thermal isolation [17] to slow down 42

or rather stop Thermal Propagation (and increase warning and evacuation times). 43

This approach is in agreement with the US Vehicle Battery Safety Roadmap Guidance that 44

states Thermal Propagation must not occur [18] acknowledging the imminent risk of 45

one-cell faults [19]. 46

3. Early detection of battery faults to provide warning and evacuation time, which is also 47

the subject of this work. In this context, the Global Technical Regulation on Electrical 48

Vehicle Safety (GTR-EVS) specifies at least 5 min pre-warning time [20]. 49

The first two methods require the implementation of additional material into the 50

battery system or supplementation, reducing the power and energy density or the perfor- 51

mance per cost in exchange for increased safety and thermal stability. [11,21] It was also 52

found that reduction of the heat transfer capabilities causes further disadvantages such 53

as limited cooling performance [22] and increased thermal differences within the battery 54

system [23]. In addition, Grabow et al. [24] have proven in a recent study that battery 55

failures like particle-induced internal short circuits (ISC) cannot be safely ruled out. A 56

passive safety concept might advert, and the affected cell will remain in an unknown – 57

most likely more unstable – state. 58

By implementation of a fault detection method, however, both disadvantages can be ad- 59

dressed. The knowledge of the fault appearance even provides the possibility of active 60

counter-measures such as increasing the cooling power or just the warning of operators 61

and the surrounding. Therefore, various methods for fault detection have been proposed 62

in recent years, as extensively summarized by Hu et al. [25]. In accordance with Klink 63

et al. [10] who prove the advantage of evaluating the cell voltage compared to external 64

sensors, these methods are mostly focused on the electrical quantities voltage and current 65

– sometimes extended by temperature. The algorithms and methods utilized to evaluate 66

the battery data originate from various scientific disciplines like outlier detection [26] from 67

statistics, neural networks from machine learning/ data science [27] or modelling [28]. 68

These adoptions of common techniques to improve the detection capabilities underline the 69

importance of the topic. 70

Despite these very promising studies, no systematic side-by-side comparison of differ- 71

ent methods has been published yet – not even in the context of recent extensive review 72

studies [25,29–31]. There are, however, studies evaluating advantages and disadvantages 73

of certain methods, e.g. by Hu et al. [25], but the classification based on measures like 74

sensitivity for noise or high precision [25] is rather subjective and vague [32]. In addition, 75

some researches have published a brief comparison with alternative methods, e.g. [33–35], 76

but both implementation and evaluation criteria are limited. 77

This lack of the ability for comparison is, inter alia, caused by the large variance in testing 78

data and the known or unknown boundary conditions compared with the sensitivity of 79

gathered results to the experimental design [36]. In addition, the results are often based on 80

assumptions [37], which further hampers comparability. Especially, simulation studies are 81

repeatedly criticized for the missing consideration of measurement noise [38] as well as 82

possible cell-to-cell-variations (CtCV) [39–43] when scaling the application from cell level 83

to modules. 84

Thus, comparison and recreation of published results or selection of an optimal method is 85

not possible in general due to the lack of similar boundary conditions and assumptions 86

concerning testing data as well as non-standardized evaluation criteria. Consequently, it 87

is not possible to derive an optimal method for error detection in practice. To address 88

this problem, this work proposes a data generation methods for ISC faults leaned on 89

Monte-Carlo simulation. Due to the similar electrical behaviour, external short-circuit faults 90
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(ESC) can be identically analysed. The Monte-Carlo approach allows full controllability of 91

boundary conditions and parameters, guarantees the comprehensibility of the data and 92

simplifies the creation of large datasets. The main contributions of this paper are: 93

• Extensive literature review of disturbances on the measurement signal and their 94

magnitudes 95

• Summary of common qualitative and quantitative evaluation criteria 96

• Generation of test data with stochastic disturbances and variations with consideration 97

of both fault-free and fault-containing samples with the scope of ISC and ESC 98

• Example comparison based on binary classifiers and identification of optimum param- 99

eter combinations 100

The remainder of this paper is as follows: First, the literature review on common 101

assumptions and previous evaluation aspects is given in Section 2 side-by-side with experi- 102

mentally determined values. In Section 3, the proposed Monte-Carlo simulation framework 103

and the underlying assumptions are described in detail. Furthermore, the simulation 104

boundaries are defined as well as two exemplary fault detection methods briefly intro- 105

duced. The performance of both methods is presented and discussed in Section 4 before 106

the main findings are summarized in Section 5. 107

2. State of the Art 108

As mentioned above, recent methods for battery fault detection have been evaluated 109

or criticized – mostly qualitatively – with respect to various measures. Although a complete 110

overview of aspects is not possible due to the broad range, recurring aspects are listed 111

below: 112

• Complexity or difficulty of the application e.g. 113

– Large battery model parameter sets [27,28,35,37,44–46] 114

– Large fault model parameter sets [26] 115

– Model limitations [47–50] 116

– Processing time [30,33,35,37–39,42–44,48,51–64] 117

– Dependency of training data [26,30,33–35,37,38,48,52,65–68] 118

– General complexity [40,60,62,66,69–72] 119

• Simplifications and assumptions concerning 120

– Imperfect monitoring data [37,38,46,58–60,62,66,72–74] 121

– Deviation from homogeneous cell parameter [39–43,58,68] 122

• Limitation to single cells [39,41,75,76] 123

Therefore, origin, experimentally estimated values and implementations in testing of 124

fault detection methods are briefly described in the following. 125

2.1. Measurement uncertainty 126

It is commonly known that every practical measurement is distorted, and the quantity 127

estimated as such is always just an – often sufficient – approximation of the true value due to 128

the existence of random and systematic errors. To standardize definitions, procedures and 129

for extensive reference, the Guide to the expression of uncertainty in measurement (GUM) 130

was published. Here, the definitions for the above-mentioned errors can be found at [77, 131

B.2.20 -B.2.22]. Following this vocabulary, this expected deviation is given as uncertainty of 132

the measurement. The uncertainty itself generally results from various sources, e.g. the 133

measurement device, the conducting person, environmental conditions, the measurement 134

strategy and the measured object itself [78, transl.]. 135

It should be noted that strict adherence to the GUM requires each source to be identified 136

and its individual contribution to the measurement uncertainty to be assessed. The GUM 137

differentiates the origin of the information of the uncertainty, which either is by statistical 138

analysis or by knowledge and classified as Type A and Type B, respectively. 139

In the context of the commonly used voltage measurements, the resolution and accuracy, 140
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sample rate, temperature correction and signal-to-noise ratio can be identified as possible 141

sources of uncertainty. With respect to the finite resolution d of both the sensor and the cor- 142

responding analog-to-digital converter the estimate X̂ of the true value X can be expressed 143

as X − d
2 ≤ X̂ ≤ X + d

2 . Here, the corresponding probability function is uniform and not 144

(Gaussian) normally distributed. Strictly following GUM, this distribution must be used if 145

no information is known on the nature of the uncertainty and the probability function [77, 146

4.3.7]. 147

It is obvious that this task becomes impractical with more complex systems outside well- 148

controlled laboratory boundary conditions. Here, the central limit theorem becomes handy 149

when assuming the presence of multiple independent any-distributed uncertainties. It 150

states that the sum of independently distributed variables will converge towards a nor- 151

mal distribution [77, G.2.1]. Thus, expressing measurement uncertainty with normally 152

distributed behaviour, e.g. by Xia et al. and Zhao et al. [72,79], is feasible but still an 153

approximation. 154

To model this normal distributed uncertainty, an additive component [69,75,80,81] with 155

zero mean µ (Eq. 1) and given standard variation σ (Eq. 2) is commonly used [62,72,73,82] 156

as the given exemplary for a voltage measurement by Equation (3). 157

µ =
1
N

N

∑
i=1

xi (1) σ =

√√√√ 1
N

N

∑
i=1

(xi − µ)2 (2) 158

Û = U + ∆U where ∆U ∼ N (µ = 0; σU) (3)

Please note that in this simple approach, the uncertainty ∆U is independent of the measured 159

quantity U. 160

For application of Equation (3) in simulation, a realistic value for the standard deviation 161

σ has to be defined for each measurement quantity independently. Referencing recent 162

approaches, this task is not trivial, as illustrated by the findings for voltage, current and 163

temperature measurements presented in Table 1. On the one hand, investigation of mea- 164

surement uncertainty in the context of fault detection is not often done, despite the many 165

mentions of advantages or disadvantages of certain detection methods. On the other hand, 166

each study defines the uncertainty differently, e.g. in dB [35], as RMS [83], by variance [52], 167

by standard deviation [46] or by accuracy [84]. Furthermore, in some studies the uncer- 168

tainty seems to be meant Gaussian distributed, but only an amplitude is given [49,53] 169

which is not a useful definition. For the representation in Table 1 a reference voltage of 170

3.7 V was assumed. The amplitudes and accuracy were treated as standard deviation. 171

For further illustration, an incomplete overview of exemplary values for measurement 172

uncertainty from application is given in Table 2. Here, given specifications for real monitor- 173

ing systems from published studies are summarized as well as application notes, e.g. the 174

guaranteed accuracy of battery management systems (BMS) integrated circuits (IC). 175

With focus on the voltage measurement uncertainty, a significant deviation between some 176

model representations given in Table 1 with values >50 mV and the values from application 177

<10 mV is visible. 178

Assuming that the exemplary chosen commercial BMS-ICs represent close-to-application 179

values of the measurement uncertainty a selection of 1 mV to 10 mV for σU seems feasible. 180

2.2. Cell-to-Cell variations 181

For nearly every battery application, multiple cells have to be combined to achieve the 182

electrical requirements. Since every cell in such a pack is subjected to small variations from 183

production and material quality, for realistic simulation cell-to-cell variations (CtCV) have 184

to be considered, too. Since the CtCV are suspected for self-amplifying behaviour [19] the 185

magnitude of variation is generally expected to increase over the module lifetime by indi- 186

vidual ageing progresses. [19]. Among other things, different operational conditions [92] 187

like temperature gradients cause uneven current distribution of parallel connected cells [93]. 188

Similar to the measurement uncertainty, most approaches for describing the CtCV assume 189
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Table 1. Assumptions for the level of measurement uncertainty for the common battery system
quantities cell voltage (U), current (I) and temperature (ϑ) if modelled by zero-mean Gaussian noise
with standard deviation σ. Displayed values were derived from publication if standard deviation
was not given. Please refer to the table footnotes for limitations due to the provided data.

σU / mV σI / mA σϑ / ◦C Source
Author et al.

Alavi 0.316 [85]*

Dey 50 0.08 0.5 [51]
Dey 100 3.16 0.447 [52]*

Dey 5 10 0.3 [86]
Dey 5 10 0.3 [87]
Feng 2 0.1 [84]
Feng 1 0.01 [84]*1

Kang 100 [49]*2

Kang 100 [53]*2

Kim 10 [55]
Pan 10 [88]*2

Shang 10 [35]*

Son 450 [67]
Xia 1 [46]
Zhang 2 10 [83]*

Zhao 6 [79]
* Standard deviation was calculated
1 Definition by accuracy
2 Definition by amplitude

Table 2. Reference values describing the measurement uncertainty from real application for common battery system quantities. For
better comparability in case of percentages given, the absolute values were calculated based on 3.7 V and 44.4 V as nominal voltages for
cell and module levels, respectively. The values derived as such are indicated by parenthesis.

Description Value Comment Source

Accuracy from analysed SMC-EV1 platform <10 mV [89]

Accuracy from investigated EV ±5 mV with resolution 1 mV Cell voltage [41]
±1 ◦C Cell temperature [41]
±0.1 A if I <30 A else ±1 % Pack current [41]
±1 % (±444 mV) Pack voltage [41]

BMS accuracy of EV ±0.1 % (±37 mV) General assumption, no source [53]

Standard deviation of investigated module 0.3806 mV Data from previous study; not published [10]

Accuracy from BMS-IC2 ±2.8 mV Cell voltage, max. Value [90]
±2.5 % (±1110 mV) Pack voltage [90]
±5 ◦C Temperature [90]

Accuracy from BMS-IC2 ±1.4 mV Cell voltage [91]

1 Service and Management Center for Electric Vehicles in Beijing
2 Integrated circuit
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an underlying normal distribution. Thus, both mean µ and standard deviation σ (see 190

Equations (1) and (2)) are used for quantifying the variations. Since both measures will 191

change significantly with cell types and sizes, scaling the standard deviation with the 192

mean as described by Equation (4) simplifies the comparability. This ratio from standard 193

deviation relative to the mean is called coefficient of variation (CV) and is often given in %. 194

CV =
σ

µ
(4)

While CtCV should be incorporated into models for realistic results, [94] there is no publicly 195

available information on production quality of commercial cells. Thus, researchers have 196

to assume proper variations based on educated guesses [95,96] or on the findings from 197

extensive cell characterization studies. Within Table 3 a broad overview over recent studies 198

and the corresponding results is given. Please refer to Wildfeuer et al. [97] for an in-depth 199

analysis of previous studies and measurement procedures. 200

As indicated by the presented findings, these studies focus on quantities like capacity, 201

internal resistance and sometimes weight, since these characteristics can be determined by 202

standard measurement procedures with acceptable complexity and time effort. The internal 203

origin of these externally expressed variations is theoretically understood and suspected, 204

e.g in variations of electrolyte, electrode balancing, etc., as extensively summarized by Beck 205

et al. [98] but no internal root-cause analysis is done in general by the listed studies. Paul 206

et al. [99] have investigated this aspect by simulating the influence of internal variations 207

on the external parameters R and C; backtracking measured variations onto variations on 208

material level, however, is not possible. Therefore, the only valid data basis for simulating 209

CtCV is external parameters on the basis of a simplified equivalent circuit. 210

With respect to the given capacities of the investigated cells, with a few exceptions, a clear 211

focus on small size – often cylindrical 18650 – formats is recognizable. Thus, cells with 212

capacities <5 Ah predominate the presented findings. In addition, only very few studies 213

have achieved sample sizes ≈1000 as the majority is ≤200, which is relatively close to a 214

statistical significant sample size. Nevertheless, a very good accordance over all estimated 215

CVs for both capacity and resistance is observable, where CVC seems to be smaller than 216

CVR in general. It was assumed that this behaviour is caused by the aim of the manu- 217

factures for lower variations of the capacity due to its property as the main performance 218

indicator [100,101]. Recent findings by Wildfeuer et al. after revising previous datasets, 219

however, indicate that the observed differences between CVR and CVC may originate 220

significantly by uncompensated measurement errors [97]. Thus, approximation of the 221

CtCV by values in the magnitude of CVC≈1 % and CVC≈1 % to 5 % seems feasible. 222

It has to be mentioned that the authors of the listed studies identified both a high depen- 223

dency on the cell batch and transformation of the normal distribution towards a Weibul 224

distribution with the lifetime [96]. 225

When consulting non-academic sources for close-to-application CtCV-values, a broad range 226

from capacity variations of <2.5 % [118] up to expected resistance variations of 15 % [119] 227

can be found. Since this range differs significantly from the experimentally determined val- 228

ues as given above, a proper definition of CtCV for implementation in simulation remains 229

unclear. 230

This discrepancy is continued when revisiting the implemented levels of CtCV to validate 231

fault detection methods, as summarized in Table 4. Similar to the non-academic range, the 232

variation is assumed to be ≫1 %, which is not supported by the experimentally determined 233

values. Therefore, these values have to be understood as the worst case approximation. 234

Based on the gathered findings, two configurations of CtCV simulation seem feasible: 235

• Orientation at statistical founded experimentally determined variations 236

• Assessment of the worst case boundaries 237

Independent of the chosen configuration, the underlying design decisions and database 238

should be disclosed. 239
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Table 3. Literature overview of experimental determined CtCV of cell capacity and resistance, given as coefficient of variation (CV);
see Equation (4). Please refer to Table 2 for comparison with common approximations for CtCV simulation. Cell specifications were
taken from source; please refer to Wildfeuer et al. [97] for an in depth analysis of recent studies.

N Cell State Cnom / Ah CVR / % CVC / % Source
Author et al. Year

Dubarry 2009 100 - - 0.30 - 1.86 [102]
2010 100 - - 0.30 30.12 1.86 [103]
2011 10 - - 1.90 5.66 0.16 [94]

Shin 2013 10 000 - Model - 4.40 0.00 [104]
Paul 2013 20 000 - - 4.40 - 1.30 [99]
Zheng 2013 96 - - 70.00 19.47 - [41]
Baumhofer 2014 48 Sanyo/Panasonic UR18650E - 1.85 - 0.50 [105]
Rothgang 2014 700 HP prismatic Cell New - 2.87 2.36 [106]
Schuster 2015 954 IHR18650A Aged, from EV 2 1.95 3.19 1.57 [107]

2015 954 IHR18650A Aged, from EV 1 1.95 2.56 2.25 [107]
2015 484 IHR18650A New 1.95 1.94 0.80 [107]

Devie 2016 100 NCR 18650B New 3.35 0.30 0.80 [108]
An 2016 198 - - 5.30 2.85 1.34 [109]
Campestrini 2016 250 Panasonic NCR18650PD New 2.80 0.72 0.16 [110]
An 2016 7739 - - 5.30 - 1.45 [101]
Rumpf 2017 600 Sony US26650FTC1 New, Batch 1 3.00 1.81 0.23 [96]

2017 500 Sony US26650FTC1 New, Batch 2 3.00 0.73 0.33 [96]
2017 1100 Sony US26650FTC1 - 3.00 - - [96]

Barreras 2017 208 SLPB 120216216 New 53.00 5.63 0.35 [111]
Devie 2018 51 LG ICR18650 C2 New 2.80 3.55 2.00 [112]

2018 15 LG ICR18650 C2 Aged, 1000 cycles 2.80 5.00 2.80 [112]
Baumann 2018 185 BatteryPack, GS Yuasa (LEV50) Aged, from EV 50.00 4.40 0.85 [113]

2018 164 Panasonic NCR18650PF Aged, 3 years 2.90 0.92 0.35 [113]
Zou 2018 248 - New 3.00 0.95 0.37 [114]
Zilberman 2019 48 LG MJ1 New 3.35 0.68 0.20 [115]

2019 24 LG MJ1 Aged, 10 months 3.35 0.75 0.38 [115]
2019 13 LG Chem INR18650-MJ1 New 3.50 1.08 0.22 [116]
2020 48 LG Chem INR18650-MJ1 New 3.35 0.79 0.20 [117]

Schindler 2021 48 LG MJ1 New, Batch 1 3.35 0.65 0.20 [100]
2021 160 LG MJ1 New, Batch 2 3.35 1.04 0.36 [100]
2021 200 LG MJ1 New, Batch 3 3.35 3.40 0.40 [100]

Wildfeuer 2021 568 Sony US18650VTC5A New 2.50 0.86 0.24 [97]

2.2.1. Voltage offset 240

Despite assumptions to the contrary [50], during the operation of battery packs, no 241

perfect temperature homogeneity can be achieved [64], due to finite heat conductivity. Thus, 242

the cells within a battery system are exposed to slightly different temperatures [15,121,122], 243

which cause variations of the open circuit voltage (OCV) due to entropy effects. Since the 244

entropy coefficient alters with respect to the state of charge (SOC), e.g. within −0.07 mV K−1
245

to 0.2 mV K−1 [123], no general statement of the effect can be made. With respect to 246

published maximum temperature differences inside battery modules of <10 K [124–128] 247

the voltage variation is expected to be <1 mV. In addition, the already mentioned CtCV 248

causes further voltage variations since the differences in internal resistance will cause slight 249

variations of the voltage-drop and overvoltage during charge and discharge, respectively. 250

Starting from an approximately identical state, the cells will drift as self-discharge [116], 251

capacity and internal properties vary from cell-to-cell. To compensate for these influences 252

and re-calibrate the cells towards a similar SOC, battery packs and systems are equipped 253

with a monitoring unit (BMS) that will re-balance such deviations – usually by discharging 254

cells with high voltage. Since this balancing causes losses and will never reach perfection 255

due to the above-mentioned measurement uncertainty, a hysteresis is usually implemented. 256

Due to this hysteresis, the open-circuit-voltage (OCV) of cells in battery packs will always 257

slightly deviate. As the balancing is often performed at the end of the charge process, it can 258

be assumed that the ∆OCV is approximately constant in-between. Please refer to Table 5 259

for an overview of exemplary values for this OCV offset. Similar to the previous aspects, 260

the published range is rather wide and identification of a proper realistic value not trivial. 261
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Table 4. Assumptions of CtCV for both capacity (C) and resistance (R) utilized in recent studies in the context of battery fault detection
evaluation. For three studies, no cell type was specified. Please refer to Table 3 for comparison with experimental determined CtCV
values.

Cell Cnom. / Ah ∆R / % ∆C / % Source
Author et al. Year

Dey 2016 5, 10 and 15 [73]
Chen 2019 A123 ANR26650-M1A 2 ±3 [26]
Dubarry 2019 ±0, 4, 8, 13 and 15 ±0, 1, 3, 4 and 5 [120]
Zhang 2019 −5, −3, 2 and 5 −5, −3, 2 and 5 [64]
Schmid 2021 Samsung INR18650-25R 3 10 [38]

When these magnitudes are compared with the values given for measurement uncertainty 262

(Tab. 2), CtCV of the measured voltage is significantly more influenced by the balancing 263

hysteresis, thus a constant voltage offset, than by the imperfection of measurement accuracy 264

and resolution. Nevertheless, to our best knowledge, the performance of fault detection 265

methods have not been evaluated under the influence of constant OCV-offset yet. 266

Table 5. Published values for the balancing hysteresis ∆OCV taken from sources close to field-
application, such as application guidelines from BMS-manufacturers or accuracy values given for
BMS in academic literature.

Description ∆OCV / mV Comment Source

Guideline 100 Trigger for balancing [129]
Guideline 10 Recommendation for Umax − Umin [130]
Guideline 50 Acceptable static voltage [131]

100 Acceptable dynamic voltage
Application 20 Optimized balancing [132]
Application 100 Common hysteresis [118]
Application 20 Measurement of EV [133]

7 Experimental balancing

2.3. Evaluation aspects 267

Irrespective of the chosen approximations of the influencing factors discussed before 268

for the test data, after applying a fault detection method to this dataset, the result needs 269

to be evaluated. First, the calculated defect feature or detection signal can be analysed 270

qualitatively, e.g. by visual inspection as seen in [33,35,134]. However, this simple ap- 271

proach quickly reaches its limits when the properties of interest go beyond, e.g. consistency 272

among few variations. In particular, when different detection parameters, methods or 273

datasets are to be compared, it is necessary to transform the complex fault characteristics 274

and corresponding fault features into a low-dimensional measure. Therefore, the detection 275

time has been used in many studies. [37,39,46–48,68,69,71,73,75,88,135]. Here, the detection 276

time is defined as the time between the trigger of the fault tISC and the time of detection 277

tdetection, as given by the Equation (5). Using ∆tdetection also evaluates the requirement for 278

fault detection in an early stage due to the unpredictable development of ISC faults from 279

mild towards sudden TR. [136] This measure is also in line with the GTR requirements 280

mentioned above, where a time between the trigger of the thermal failure and a dangerous 281

situation for the passenger is defined. In addition to the simple evaluation of ∆tdetection, 282

Liu et al. [75] have calculated the average (see Eq. 1), minimum and maximum value of 283

∆tdetection for multiple repetitions of the same test. 284

285

∆tdetection = tdetection − tISC (5)
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Table 6. Summary of quality indicators for evaluation of a binary test, their definition and usage
in recent battery fault detection studies. See also [137,138]. Please note that the reference figure is
different in-between indicators and therefore the sum is not equal to 1.

Symbol Name Definition Used in

TPR True positive rate1 Tp
Tp+Fn

[36]

FNR False negative rate2 Fn
Tp+Fn

[36,37,59,69,75]

TNR True negative rate Tn
Tn+Fp

FPR False positive rate Fp
Tn+Fp

[37,47,51,59,69,75]

PPV Positive predictive value Tp
Tp+Fp

NPV Negative predictive value Tn
Tn+Fn

Y Youden-index TPR + FNR -1
1 Alias: Sensitivity
2 Alias: Specificity

By varying the fault size, both Dey et al. and Marcicki et al. have further investigated the 286

smallest fault that was still detectable by their methods [73,82]. This becomes interesting 287

when the disturbances discussed above are included in the test, as these are likely to mask 288

the fault signal of a low magnitude fault. 289

The process of applying a detection method to a dataset with and without faults is not a 290

battery specific task, but known as binary classifier from many other disciplines, such as 291

pharmacy [137]. As indicated by its name, with each investigated sample two possible 292

states are considered – e.g. a present fault and normal operation. In addition, the applied 293

test has two outputs, indicating either a fault situation (positive) or no fault (negative). 294

Based on these prerequisites, four outcomes of the applied test are possible, as summarized 295

below: 296

tp True positive tn True negative
fp False positive fn False negative

297

If evaluated and summed over all conducted tests, the total number of, for example, true 298

positive states Tp is calculated. With these total counts, further measures are defined as 299

listed in Table 6 as well as studies utilizing them. 300

One observation of the given table is that – to our best knowledge – there is no published 301

TNR in the context of battery fault detection yet. This illustrates that usually the presented 302

detection methods are not tested against fault-free data and therefore Tn = 0. If TPR 303

(sensitivity) and FNR (specificity) have been calculated for different detection method 304

parameters and test boundaries, they can be plotted as done by Meng et al. [36]. The 305

resulting curves are called the receiver operating characteristic (ROC) curve and provide 306

the opportunity to identify the parameters for an optimized classification result. A similar 307

assessment is possible with the Youden-index, in which both sensitivity and specificity are 308

considered. Please note that TPR and FNR have to be evaluated together, since a method 309

which always outputs the presence of a fault will obviously catch all faults (TPR = 1) but is 310

not useful at all (FNR = 0). Due to the severity of the TR, the response to a detection will be 311

dramatic, such as immediate evacuation of an EV. Thus, fp must not occur regularly, which 312

is measured by the FNR. Nevertheless, due to the severity, TR must not occur without 313

warning ( fn) which is incorporated in the TPR. 314

In addition, some studies have analysed the functionality of the investigated methods, like 315

the correct identification of the type of fault [48]. Similarly, the convergence of the employed 316

algorithms has been evaluated [86,87]. Methods that estimate the fault magnitude, e.g. 317

the resistance of the ISC, have been accessed on the basis of the accordance between the 318

estimated and correct magnitude [34,47,51]. 319

With respect to the intended application of the various methods within a BMS and in 320
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Figure 1. Workflow for generating a data set with variable characteristics (disturbances and faults)
for setting up and validating different fault detection methods. External inputs represent parameter
presets that are used either in the Monte Carlo-like data generation process or for different fault
detection configurations.

real-time, computational effort becomes a critical factor [63] – especially when tools from 321

data-science are applied that are usually used on computational clusters. Thus, the compu- 322

tational time has been included into the analysis of recent studies [35,55,63,67,139]. This 323

measure, however, has a significant drawback as it is very sensitive to the implementation 324

of the algorithm in detail. To illustrate this problem, a comparison of different moving 325

average implementations written in Python™ is given in the appendix (see A.1). While 326

the result of all functions is the same, the computational time differs significantly. Thus, 327

deriving an advantage or disadvantage just from the computational time is problematic 328

and most likely biased from the algorithm design. In addition, the importance of this aspect 329

is expected to decrease as the cost of computing power continues to decrease. 330

3. Material and Methods 331

To demonstrate a method that incorporates the before-mentioned requirements for a 332

sensible data-generation, an exemplary workflow of fault simulation under the influence of 333

disturbances and the subsequent fault detection and final evaluation of detection methods 334

is presented in the following. After the introduction of the cell chosen as sample for 335

simulation in Section 3.1 the descriptions of model (Sec. 3.2) and fault detection (Sec. 3.4) 336

follow. 337

Within Figure 1 the overall workflow is given - detailed descriptions on certain aspects 338

can be found in the following. First, a simulation case is initialized by the definition of 339

the simulation boundaries (see Tab. 8) for the underlying random influences on the model. 340

Under consideration of both Monte Carlo parameters and fault representation parameters, 341

the model defined as such is repeatedly simulated for no-fault and fault conditions. These 342

two datasets are evaluated using a chosen detection method configuration (see Sec. 3.4) 343

which gives the fault feature signal for each simulation run. Based on the defined threshold, 344

the fault feature under no-fault condition is evaluated, and a proper threshold ζ is calculated. 345

This value is then checked against the test dataset with mixed fault and no-fault conditions, 346

and each simulation is classified with t/ fp/n. Besides evaluation of individual simulation 347

runs, the summary performance of the individual investigated configurations is analysed 348

in the end. 349

3.1. Reference Cell 350

For this study, a commercial off-the-shelf pouch cell by Kokam has been chosen to 351

represent common cell properties. The model name is SLPB98106100 and the nominal 352

capacity is 10 Ah, which is in the range of typical industrially used large-format-sized cells. 353

Following the classification of the manufacturer, the cell is a high energy version. Please 354

refer to Table 7 for an overview of cell properties. 355
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Table 7. Selected datasheet properties of the SLPB98106100 pouch cell from Kokam that was used as
reference cell for the simulation.

Parameter Symbol Value

Nominal capacity Cnom. 10 Ah
Nominal voltage Unom. 3.7 V
Upper voltage limit Umax. 4.2 V
Lower voltage limit Umin. 2.7 V
Charge current Inom.|Imax. 5 A|20 A
Discharge current Inom.|Imax.|I<10 s 5 A|20 A|30 A
Weight m 0.210 kg

3.2. Model 356

This simulation study is based on an equivalent circuit model (ECM) as the repre- 357

sentation of the dynamic cell behaviour. The model of cell and fault was implemented 358

within Matlab/Simulink®[140] with pre- and post-processing was done in native Matlab. 359

As displayed in Figure 2 a second order ECM was chosen, which is in accordance with 360

many other studies, where either a first or second order model was chosen as compromise 361

between accuracy and complexity as investigated by Zhang et al. [141]. 362

Using an ECM instead of elaborated models such as mathematical [142] or electrochemical 363

models [84] comes with some advantages: 364

1. Parameterization is doable by standard electrochemical tests 365

2. Implementation of parameter distribution is simplified 366

3. Fault representation (see below) is well-defined 367

4. Simulation time is fast 368

By parallel simulation of N cell models with the same load current a Ns1p configuration 369

is emulated. In this study N = 12 was chosen as common module configuration. Based 370

on the simulated cell voltages Uk, the module voltage is calculated by summation of all 371

cells. The cell voltage Uk, however, is calculated within a second order equivalent model as 372

stated in Equation (6). 373

Uk(t) = OCV − (Iload+IISC) ·
[

R0 +
i=2

∑
i=1

Ri ·
(

1 − exp
−t

Ri · Ci

)]
(6)

OCV

R0

R1

C1

R2

C2

I Iload

Uk

IISC

RISC

f (tISC, ∆tISC)

OCV, R0, R1, R2, C1, C2 = f (SOC)

Figure 2. Second order ECM as implemented in this simulation study to emulate the dynamic
behaviour of one cell. All parameters describing the normal operation of the cell are implemented
dependent on the SOC. Parallel simulation of multiple models results in the dynamic characteristics
of one module in ks1p configuration. Emulation of ISC-fault by parallel resistance is indicated in red.
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In accordance with previous studies such as [56,60,143] the dependency of the model 374

parameters and the OCV by the SOC is incorporated as look-up-table (LUT). Values between 375

provided points are approximated by linear interpolation. The required SOC is calculated 376

using integration of the load current Iload (coulomb-counting) as described by equation (7). 377

SOC(t) = SOC0 −
1

Cnom.

∫ t

t=0
Iload(t)dt (7)

For this study, the simulated sample-rate was set to 10 Hz and the simulation output was 378

stored in as double data type. 379

As indicated in Figure 2 the thermal dependency of parameters was neglected. With respect 380

to the mild ISC-resistances and short fault duration, this simplification seems reasonable. 381

However, the proposed method is also applicable to more advanced models without 382

changes. 383

3.2.1. ISC-/ESC-Fault representation 384

Besides some electrochemical fault simulation [84], simplified P2D-models [144] or 385

reduced network models [145] in most cases both ISC and ESC faults are represented by a 386

parallel fault resistance as highlighted by red colour in Figure 2 as well as in Equation (6). 387

Thus, the cell voltage is further reduced by the internal voltage drop caused by the short 388

circuit current. When the fault resistance RISC is decreased, the deviation towards the 389

normal cell behaviour increases. 390

The sudden fault appearance and clearance is realized by a time controlled switching 391

behaviour. 392

3.2.2. Randomness and Variation 393

The influence of the previously discussed disturbance variables on a realistic voltage 394

measurement signal should also be included in the generated test data. For this purpose, 395

the ECM is extended to take into account both the imperfection of the measurement and the 396

variation of the individual battery cells. The details of the implementation are described 397

below. 398

Measurement uncertainty 399

In accordance with most before-mentioned studies (see above, Sec. 2.1) additive zero- 400

mean Gaussian noise (∆U(t, k) ∼ N (µ = 0, σU)) is used in this work. As indicated by the 401

dependency of t and k, the noise value is generated randomly for each sample and cell. 402

Cell-to-cell variation 403

Both voltage offsets ∆OCVk and impedance parameter variations ∆Zk are imple- 404

mented into the simulation framework. Variances of cell capacity, however, are not consid- 405

ered separately. First, according to the literature review (see Sec. 2.2) the expected coefficient 406

of variation is rather small (<1 %), causing only small variations in the OCV-SOC behaviour. 407

Second, this small variation is already implemented by the voltage offsets. 408

Unlike the measurement uncertainty, both variations are assumed to be approximately 409

constant over the simulated time period. Therefore, the value is only set for each cell 410

during model initialization. In contrast to the ∆OCV, which is implemented as an additive 411

variation, the parameter variation causes a deviation relative to the reference cell parameter 412

as exemplary shown in Equation (8) for R0 (see Figure 2), where ∆Z represents the relative 413

deviation. 414

R0 = R0,ref.
1

100 %
(100 % + ∆Z) with [∆Z] = % (8)

The LUT of all parameters given in Figure 2 (R0,1,2, C1,2) are scaled analogously by the same 415

value. Since the impedance has experimentally proven (see Sec. 2.2) to behave normally 416

distributed, the scaling factor ∆Zk for each cell k is generated from a normal distribution 417

with given standard deviation (∆Zk ∼ N (0, σZ)). In contrast, the voltage offset ∆OCVk 418
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has been found to be significantly influenced by the balancing hysteresis and resolution, 419

which behave uniform distributed according to GUM. Thus, the ∆OCVk was generated for 420

each cell from a uniform distribution following ∆OCVk ∼ U (− d
2 , d

2 ) where d is the selected 421

hysteresis width. 422

3.2.3. Parameterization 423

The parameters of the ECM shown above were measured beforehand at 20 ◦C using 424

the SL1002 6 V/1000 A/0.6 kW battery test bench from Keysight/Scienlab. For all tests, 425

the cell was clamped between two aluminium plates to emulate the clamping force within 426

a battery module [146]. Using screws to tighten the setup, a pre-tension of approximate 427

0.1 MPa was established, which is close to realistic applications [146,147]. Using screwed 428

connections, the pouch cell tabs were connected to the battery test bench. 429

The correlation between OCV and SOC was measured by charging and discharging the cell 430

at very low (0.05 C) current, which is called pseudo-OCV (P-OCV) measurement. Averaging 431

the both voltage curves and normalization of the charge with the nominal capacity (see 432

Tab. 7) gives the OCV(SOC) relationship. The passive parameters of the ECM pictured in 433

Figure 2 were calculated based on current steps with 1 C and 2 C in charge and discharge 434

direction. Both pulses were applied for 10 s and were followed by a 50 s relaxation. To 435

incorporate the SOC-dependency of the parameters, this pulse procedure was conducted 436

for every 10 %-SOC increment. Due to the operational limits for 100 % and 0 % no charge, 437

respectively, no discharge pulse was applied. 438

Using the SciPy implementation of the Powell-algorithm [148] the model parameters were 439

fitted to the data. Here, both the pulse and the relaxation were considered as well as both 440

currents directions and amplitudes and an overall fit was performed. 441

The parameterized model was evaluated by means of both standard and normalized root 442

mean squared error (RMSE and NRMSE) compared with a reference dynamic drive cycle 443

test. Please refer to Equations (9) and (10) for the calculation of both metrics. The dynamic 444

load was emulated using the WLTP drive cycle [149] six time, which results in a validation 445

time period of 10 800 s. The achieved simulation quality was 0.0253 V and 0.0286 for RMSE 446

and NRMSE, respectively. These values are in range to similar published results [37,50]. 447

RMSE =

√√√√ 1
N

N

∑
i
(Umeas. − Usim.)2 (9)

NRMSE =
RMSE

max(Umeas.)− min(Umeas.)
(10)

3.3. Simulation cases 448

For proof of concept of the above-described simulation framework, the following 449

test cases were defined: First, only the measurement uncertainty ∆U is incorporated to 450

the model (Default), which is the source of uncertainty most often used in recent studies. 451

Second, the two other disturbance ∆OCV and ∆Z are implemented both separately and 452

combined to create test datasets with more kinds of variation. The values for all variations 453

were chosen in accordance to the literature review given in Section 2.1 and Section 2.2 as 454

given in Table 8. For investigation of the sensitivity of the detection results towards the 455

magnitude of the disturbances, a modified (mod.) parameter set was created as well. The 456

considered ranges are given in Table 8. 457

The fault appearance, however, was kept constant for all simulation cases and was based 458

on the following assumptions: 459

• The fault chance is 80 % 460

• Only one cell fault per time 461

• Only one fault event per simulation run 462

All four fault-defining parameters were selected randomly from a uniform distribution. 463

For incorporation of fault-free cases the fault was applied with a chance of 80 %. While 464
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Table 8. Parameters of the Monte-Carlo data generation including simulated uncertainty and ISC-fault replication. The individual
parameter-set was generated randomly based on either a uniform (U ) or a gaussian (N ) distribution. Left: Values for the implemented
model disturbances dependent on the simulation case, where measurement uncertainty only is considered as Default. Please refer to
Section 2.1 and Section 2.2 for further details on the implementation. Right: Intervals for generation of a fault-simulation parameter-set
based on a uniform distribution.

∆U ∆OCV ∆Z
Distribution ∼ N (0, σU) ∼ U (− d

2 , d
2 ) ∼ N (0, σZ)

Case σU / mV d / mV σZ / %

Default (∆U) 1.0 0.0 0.0
Modified Default 0.5, 1, 2, 10 0.0 0.0
∆U +∆OCV or +∆Z 1.0 10 1.0
∆U +∆OCV and +∆Z 1.0 10 0.1

Symbol Range
Distribution ∼ U (Range)
Parameter

Cell index of fault k ∈ [1; N]*

Time of fault tISC ∈ [1; T]s**

Fault duration ∆tISC ∈ [1; 120]s
Fault resistance RISC ∈ [1; 100] Ω

* In this study N = 12
** Using the WLTP cycle T = 1800 s

the cell index k was chosen within the cell count, 1 to 12 the time of fault tISC was chosen 465

from the simulation duration T. Thus, for simulation of the WLTP 1 s to 1800 s were con- 466

sidered. In addition, 1 Ω to 100 Ω and ∆tISC ∈ [1; T − tISC] were chosen as boundaries for 467

the fault resistance RISC and fault duration, respectively. The selected range is in accor- 468

dance with various recent studies [36,45,57,84] and the range incorporates both resistances 469

commonly considered as safety-critical (<4 Ω [150], <10 Ω [84] and mild criticality (1 Ω to 470

100 Ω [71,151], >10 Ω [152]. 471

472

3.4. Fault Detection Methods 473

To illustrate the proposed approach, two rather simple fault detection algorithms 474

were implemented. Both the implementation of the detection methods and the pre- and 475

post-processing were done in Python™ (V3.9.12) and are heavily based on the NumPy 476

(V1.21.5) [153], SciPy (V1.7.3) [154] and pandas (V1.4.2) [155] packages. 477

First, the deviation between individual cell voltages and the mean of the module is consid- 478

ered. Normalization of this deviation with the standard deviation leads to the z-score that 479

is investigated as well. Please find the algorithms defined below. In accordance with other 480

methods, a rolling window filter can be applied to the calculated fault signal for further 481

signal refinement. 482

To eliminate small deviations stemming from the machine precision the calculated fault 483

signal is rounded to the nearest 8 digits. 484

Based on the fault signals estimated as such, the required thresholds have to be defined. 485

Within this study, a deterministic approach was chosen to ensure comparability. Since 486

the threshold is often defined by trial-and-error with given reference and fault data, a 487

deterministic approach as done by Ouyang et al. [71] is seldom documented. The process 488

is described as follows: 489

490

1. Generate many samples without presence of a fault. 491

2. Calculate the fault signals for the detection method for each sample. 492

3. Determine the maximal fault signal value for each sample. 493

4. Calculate the mean µ and standard deviation σ (see Equations (1) and (2)) of the 494

determined maximal values. 495

5. Define the threshold ζ as ζ = µ + λσ. 496

6. If the fault signal is greater than ζ a fault will be assumed. 497

Thus, by changing the threshold level λ the quality of the results (see Tab. 6) e.g. 498

false positive values (FPR) can be altered. By approximation of an underlying normal 499

distribution, the relationship between λ and the samples inside the so-defined boundaries 500
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is as given in Table 9. Due to the definition of the fault occurrence as excess of the threshold, 501

the one side-probability is given in addition to the more common two-sided one. Within 502

this work λ ∈ 1, 2 and 3 was investigated. 503

504

3.4.1. Deviation from Mean 505

The input of the detection method is the voltage measurement matrix of the module 506

UT×N with elements ut,k. Here, N represents the number of cells and T is the number 507

of samples. For each sample step t, the vector u1×N
t is evaluated and the mean as well 508

the difference to each cell is calculated as defined by Equation (12) and Equation (11). 509

In addition, following Equation (13) this fault signal vector F1×N
t can be smoothed by 510

subsequent application of a rolling average filter with window length w using previous 511

sample steps. 512

ft,k = ut − ut,k (11)

where

ut =
1
N

N

∑
j=1

ut,j (12)

f w
t,k =

1
w

t

∑
i=t−w+1

fi,k (13)

Assuming that ut,k of the cell under fault condition will be smaller than without an ISC due 513

to the additional voltage drop (see Figure 2) a positive correlation between amplitude of 514

the fault signal and fault magnitude is expected. 515

3.4.2. Z-score 516

The z-score as utilized inter alia in [55,156] is quite similar to the above-mentioned 517

deviation from the mean. However, the deviation as calculated in Equation (11) is standard- 518

ized by the standard deviation σ (see Equation (2)) as shown by Equation (14). Thus, the 519

resulting fault signal indicates its deviation from the mean relative to σ. Similar to before, 520

by application of a moving average filter (see Eq. 13) the z-score can be smoothed, too. 521

ft,k = σ−1(ut − ut,k) (14)

As the definition is similar to Equation (11) and the difference just normalized, a positive 522

correlation between fault magnitude and fault signal is expected as well. 523

4. Results and Discussion 524

Using the described simulation workflow, first the simulation setup and the validity 525

of the gathered results are investigated in Sections 4.1 and 4.2. Based on these prerequisites, 526

the generated data and implemented fault detection methods are used to evaluate the 527

fault detection functionality and transform the individual result per simulation into an 528

Table 9. Probability of samples within multiple standard deviations around the mean of a normal
distribution. The two-sided values describe P(µ − λσ ≤ x ≤ µ + λσ) and for the one-sided case
P(x ≤ µ + λσ). Here, the left side of the distribution is already fully incorporated.

2-side / % 1-side / %
λ

1 68.27 84.13
2 95.45 97.72
3 99.73 99.87
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Table 10. Summary statistic coefficient of variation (CV) for the default simulation case with 300 sim-
ulation runs. Evaluated maximum fault signal for deviation from mean ∆µ and z-score z dependent
on the filter window size w. Required minimal simulation runs N to achieve 2 % accuracy results
with 95 % confidence.

CV / % N95 %
min.

Evaluation ∆µ z ∆µ z
w

1 5.84 1.56 33 3
2 5.45 3.28 29 11
5 6.24 5.24 38 27
10 5.70 5.37 32 28
20 6.48 6.29 41 38
100 8.76 8.02 74 62
200 8.31 7.85 67 60
1000 11.17 10.80 120 113

overall describing metric within Section 4.3. The analysis is complemented by further 529

investigations in Section 4.4 where individual simulation and evaluation parameters are 530

investigated in detail. 531

4.1. Number of Simulations 532

Since the threshold definition is based on the estimated mean and standard deviation 533

of the simulations without fault, the minimum number of simulations required for a good 534

estimation of these statistics has to be determined. Due to the asymptotic convergence of 535

the sample mean to the population mean with ∼ n− 1
2 , increasing the estimation accuracy 536

will significantly increase the number of simulations. Thus, a trade-off between the two 537

aspects is necessary. 538

Assuming a normal distribution, the confidence interval of the estimated mean of a sample 539

with size n is defined by the limits x± z σ√
n . Here, x is the sample mean, σ the corresponding 540

standard deviation and z the quantile of the t-distribution associated with the sample size 541

n and the desired confidence level, e.g. 95 %. With n > 100, the t-distribution can be 542

approximated by the normal distribution, thus z95 % = 1.96 (see Tab. 9). Rearranging the 543

equation above gives 544

n = (
100zσ

xϵ
)2 , (15)

where ϵ is the acceptable deviation in %. 545

Evaluating both detection methods with different window sizes w for a sample of 300 546

simulations gives the statistics summarized in Table 10. The derived minimum number 547

of simulations for a 2 % deviation with 95 % confidence is given as well. Thus, due to the 548

small sample variation observed, even few simulations <100 achieve high reliability. 549

In order to represent the additional variations due to the error simulation, at least 100 550

simulations for the loads Zero and CC and 1000 simulations for the WLTP are used arbi- 551

trarily in the following for no-fault simulations. With respect to the additional variations 552

under fault simulation, here, the number of simulations were doubled. Please also refer 553

to Table A3 for a comparison of the evaluation (see below) of two simulation studies with 554

identical boundary conditions. The high agreement between the two datasets proves that 555

the number of simulations is sufficient and that the gathered results are valid. 556

4.2. Distribution of Fault Feature 557

For both the definition of the threshold and the approximation of the required number 558

of simulation runs, a normal distribution of the maximum values of the calculated fault 559

signals was assumed. However, as displayed exemplary for the z-score maximums at 1200 560
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µ σ µ3 FPR / %
Evaluation ∆µ z ∆µ z ∆µ z ∆µ z
w

1 4.340 × 10−3 3.110 2.410 × 10−4 0.051 1.053 0.079 0.833 0.167
10 1.349 × 10−3 1.364 8.200 × 10−5 0.076 0.937 0.763 0.583 0.833
100 3.920 × 10−4 0.408 3.200 × 10−5 0.033 0.932 0.935 1.083 1.500
1000 1.060 × 10−4 0.111 1.100 × 10−5 0.011 0.624 0.669 0.583 0.917

Table 11. Statistical properties average µ, standard deviation σ and skewness µ3 for maximum fault
signal distribution of the fault-free simulation setup with N = 1200. Fault signals evaluated for the
detection methods z and ∆µ for selected window sizes w. The corresponding FPR in % is calculated
based on a threshold ζ associated with 3σ which should result in a FPR of 0.18 % according to
Table 9. Left margin: Exemplary histogram for the z-score of w = 10 and approximation by normal
distribution. Peak position of both distributions is marked in white.

simulations (Zero load: 100, CC-load: 100, WLTP: 1000) and window w = 10 on the left 561

side of Table 11 the actual distribution is skewed towards the right, which is quantified 562

by positive values for the skewness µ3 (see Eq. 17 from [157]). The skewness is also given 563

in Table 11 for selected window sizes. This behaviour is in accordance with the known 564

properties of sample maximum distributions. These sample maximum distributions are 565

either Weibull, Fréchet or Gumbel distributions dependent on the underlying population 566

distribution. For an underlying normal distribution that can be assumed for this case due 567

to the implementation of the disturbances, a Gumbel distribution is expected as sample 568

maximum distribution. [158] 569

µ3 =
κ3

κ3/2
2

where (16)

κi =
1
N

N

∑(xi − µ)i (17)

Due to the positive skewness, more values are located on the right side of the mean 570

compared to the normal distribution. Thus, the assumed FPR associated with a certain 571

σ-based threshold is underestimated, as shown in Table 11 for a 3σ-range. Based on this 572

threshold, the FPR should result in the range of ≈0.18 %, as given in Table 9. It is shown 573

that with one exception the FPR is larger but ≤1.5 %. Despite the rather small error due to 574

the simplification of assuming a normal distribution the comparison made should raise 575

awareness that any assumptions regarding the basic distribution functions should be 576

carefully examined in order to be able to estimate and explain the resulting behaviour. 577

4.3. Fault detection 578

The voltage profile of a simulated ISC-fault (here cell 11) is presented exemplary 579

within the top axis in Figure 3 in comparison to a fault-free cell (01) during dynamic WLTP 580

load. For illustrational purposes, a severe ISC-fault of 1 Ω was chosen, causing a significant 581

voltage drop along the internal resistances as visible in the magnification on the right side. 582

The fault was initiated at tISC = 1518 s and lasts for ∆tISC = 85 s, as marked within the 583

right axis and indicated by the red background colour. Due to the additional discharge 584

during the ISC-fault, a remaining voltage offset between the faulty cell and the unaffected 585

cell is visible. 586

In addition, the corresponding fault signal f 10
z of both cells is given in the bottom part of 587

the Figure. Here, the z-score filtered by 10 sample periods, thereby 1 s, was chosen. Please 588

also note the detection threshold ζ based on a 3σ interval as indicated by the horizontal 589

line. 590

At the start of simulation – just under the influence of measurement noise – the fault signal 591

is noisy but with the presence of the fault the z-score of the faulty cell increases virtually 592



Version June 20, 2023 submitted to Batteries 18 of 35

Figure 3. Simulated voltages for faulty cell (C11) and fault-free cell (here C01) for simulation of 1 Ω ISC-fault at 1518 s for 85 s. The
period of fault is magnified at the right and marked in all axis in red color. The corresponding z-score fault signal with w = 10 ( f 10

z ) is
given in the lower figure, as well as the 3σ threshold level.

immediately and surpasses the threshold. Thus, the fault is already detected after 0.3 s. 593

After the fault is gone, however, the fault signal remains above the threshold due to the 594

above-mentioned voltage offset. While this sensitivity of the z-score to offsets simplifies the 595

detection of smaller faults with less initial voltage-drop, it causes problems when voltage 596

offsets exist already in fault-free samples, as discussed within Section 3.2.2.2. 597

Following the observations, this simulation in combination with the method z10 and ζ3
598

is classified as true positive (tp). Evaluating all 2400 simulations for this method and 599

threshold gives the results presented on the left side of Figure 4. Here, each simulation is 600

coloured based on the achieved classification, where tp is green and fn is red. Please also 601

note the simulation discussed above marked by a star in the upper left part. 602

An approximate linear dependency between both fault resistance RISC and fault duration 603

∆tISC and the achieved classification is observable. In contrast, no such dependency was 604

observed for the fp classification that occurred randomly with low frequency. To illustrate 605

the dependency between detection and no detection under the presence of a fault, the 606

decision boundary for tp and fn was calculated by using a support vector machine (SVM) 607

algorithm. This boundary is marked by a dashed line in the figure. Although the change 608

from tp to fn is not so much sharp and other contrary classifications can be found beyond 609

the boundary line, the chosen representation represents a good summary of the individual 610

simulations: 611

First, the right and left hand side area approximates the FNR and TPR, respectively, since 612

the figure displays all fault-cases (Tp + Fn, see Tab. 6). Secondly, the intercept with the 613

horizontal axis (bottom and top) indicates the smallest detectable fault (see Sec. 2.3). In 614

combination with the slope of the boundary, the smallest detectable fault with respect to 615

the fault duration can be approximated as well. Thus, the slope can be used to understand 616

which parameter has more impact on the classification quality. 617

With these prerequisites, the results of both detection methods and with variable window 618

sizes w can be compared as given on the right in Figure 4. Here, each line is the calculated 619

decision boundary between tp and fn. 620

It is visible that with the same filter size the z-score is always left to the ∆µ. Thus, the 621



Version June 20, 2023 submitted to Batteries 19 of 35

Figure 4. Left: Classification of simulation runs to truepositive, falsepositive and falsenegative with respect to the fault resistance RISC and
fault duration ∆tISC for z-score and window size w = 10. Please note that truenegative (see Sec. 2.3) will not appear in this representation.
The boundary between tp and fn is visualized by fitted model using linear support vector classification (SVC). Right: Decision
boundaries for both detection methods and variable window sizes.

FNR is expected higher and the smallest detectable fault or rather the highest detectable 622

fault resistance is smaller. In addition, both methods show similar behaviour when the 623

filter size is increased w → 100 as the slope decreases and the intercept with the horizontal 624

axis increases, resulting in a significant better detection performance based on FNR and 625

detectable resistances. For filter sizes w > 100, however, this trend is reversed, and a 626

decreasing performance is observed. 627

This behaviour is due to two effects that occur with increasing filter size: First, the influence 628

of the measurement noise on the fault signal is reduced, which also results in significant 629

smaller threshold levels. Therefore, smaller faults can be detected since the signal-to-noise 630

ratio increases. Secondly, the sudden fault signal deviation at fault appearance (see Figure 3) 631

is filtered as well, which increases the time to surpass the threshold. Thus, the fault duration 632

becomes more important on the detection results with increasing filter size. In addition, 633

the charge difference between the faulty cell and the remaining cells also increases with 634

the fault duration. Since both methods are biased by offsets, this developing deviation 635

provides a second possibility for fault detection besides the initial voltage drop. 636

Therefore, an optimum between filtering noise and removing fault information has to be 637

found, which was observed in this study at approximate w = 100. 638

Within Table 12 the calculated quality indicators of the discussed study are given. The table 639

is accompanied by a graphical illustration of the values for the z-score with λ = 3 for each 640

given w. 641

Please note the decreasing FNR values with increasing w as visually analysed before. In 642

addition, the approximately opposing characteristic of TPR is found in the data as well. 643

Taking TPR of the z-score at w = 100 (Tab. 12, grey backfill) it seems that λ = 1 is the 644

best option, since it has the highest value and nearly every fault was detected. The FPR, 645

however, also gives a high rating, meaning that ≈ 1/3 of fault-free cases were also classified 646

as fault. Thus, the TPR alone is not a suitable measure, since identifying just every test case 647

as fault would give TPR = 1. This problem can be solved by the Youden-index, since it 648

combines both sensitivity and specificity into one indicator. Using this index, the visually 649

determined best configuration of window and threshold level at w = 100 and λ = 3, 650

respectively, is confirmed. 651

While the former analysis is focused on the classification into fault and no-fault, other po- 652
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TPR FPR FNR Youden
Evaluation z ∆µ z ∆µ z ∆µ z ∆µ

w λ

1 1 0.208 0.336 0.491 0.391 0.792 0.664 −0.283 −0.055
2 0.136 0.268 0.123 0.123 0.864 0.732 0.013 0.144
3 0.079 0.227 0.006 0.033 0.921 0.773 0.073 0.194

10 1 0.774 0.820 0.354 0.362 0.226 0.180 0.420 0.458
2 0.686 0.731 0.091 0.121 0.314 0.269 0.596 0.610
3 0.617 0.665 0.022 0.024 0.383 0.335 0.595 0.642

100 1 0.966 0.966 0.353 0.337 0.034 0.034 0.613 0.630
2 0.962 0.963 0.118 0.108 0.038 0.037 0.845 0.855
3 0.955 0.958 0.035 0.029 0.045 0.042 0.920 0.929

1000 1 0.941 0.946 0.379 0.391 0.059 0.054 0.562 0.555
2 0.931 0.935 0.104 0.100 0.069 0.065 0.826 0.835
3 0.919 0.924 0.014 0.014 0.081 0.076 0.905 0.910

Table 12. Classification quality indicators for the fault detection with both z-score and ∆µ for a fault
simulation setup with N = 2400 and ≈80 % fault cases under default measurement uncertainty.
The classification is evaluated under different filter sizes w and underlying threshold level λ.
Please refer to Table 6 for the definition of the indicators. The graphical illustration visualizes the
values for λ = 3, where the corresponding window is marked by colour.

tential measures are feasible as well, e.g. the before-mentioned detection time ∆tdetection. 653

With this indicator, however, only cases that were classified with tp are considered due to 654

the definition of time between fault and detection. Thus, the meaning is rather limited – 655

similar to using just TPR. With respect to the values given in Table 12 only ≈20 % of the 656

fault cases are integrated into the analysis. Please keep in mind that analysing ∆tdetection 657

quite significant chunks from the data might be removed. 658

The characteristic of the ∆tdetection of the z-score methods, for the configuration λ = 3, 659

w = 10 is given in Figure 5. For an investigation of dependencies with fault characteristics, 660

the achieved values are given with respect to a) the fault resistance RISC, b) the fault dura- 661

tion ∆tISC and c) the time of fault tISC. While no correlation with the last one is recognizable, 662

formation of an upper boundary is visible for both RISC and ∆tISC. With one exception that 663

is outside the given axes, no detection beyond ∆tISC was possible. In comparison, the first 664

plot indicates that it is possible to estimate the upper limit of ∆tdetection dependent on the 665

resistance value. 666

Figure 5. Achieved detection times ∆tdetection of the z-score method (λ = 3, w = 10) with respect to
fault resistance RISC, fault duration ∆tISC and time of fault tISC. Please note that only tp classified
cases are considered in this analysis.
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Figure 6. Achieved detection quality for both methods ∆µ and z-score with respect to the underlying threshold level λ and filter size w.
Left: Youden-index (Y), Right: Approximation of criticality of faults that were not detected (κ).

Removing all fault-cases without detection from the analysis for evaluating a fault detec- 667

tion method seems counter-intuitive; therefore, an opposing approach is described in the 668

following: 669

For comparison of two not-detected ISC faults, the assessment of the corresponding crit- 670

icality seems feasible. However, due to limited understanding of the ISC processes and 671

the highly stochastic behaviour [159] the fault characteristic often remains unclear and the 672

dynamic state not feasible for proper assessment [29,160,161]. 673

Therefore, in the context of this study, the released energy during the fault duration ∆tISC 674

starting at the ISC trigger tISC is utilized for comparison. Since the energy increases with 675

the ∆tISC and decreases with the fault resistance RISC the fraction of both is taken as an ap- 676

proximation of the associated criticality κ of an unidentified fault as given in Equation (18). 677

678

κ =
∆tISC

RISC
(18)

Thus, in addition to the smallest detectable fault (see above), this indicator provides 679

information on the severity of potential misses. In Figure 6 the highest criticality value that 680

was not detected is presented for the before-mentioned variations of detection methods 681

and parameter are given. Here, a higher value represents an undetected fault with either 682

longer fault duration or smaller resistance. Thus, for most applications, a small value is 683

desired. 684

It is clearly visible that with increasing filter size the most severe missed fault becomes 685

less and less significant. Increasing the threshold limit, however, has a contrary effect. 686

The former observation is most likely linked to the already identified improvement of the 687

detection results with increasing filter size (see Figure 3). On the contrary, enlarging the 688

threshold will cause longer detection times and misses of smaller faults, which leads to a 689

higher not-detected criticality. 690

4.4. Further investigations 691

For the previous analysis, the unlimited range of parameters had to be restricted to 692

certain values in order to allow clear evaluation and comparison. The sensitivity of these 693

restrictions is examined below. 694

4.4.1. Threshold level 695

In the previous discussion, the dependence of the classification result on the chosen 696

threshold λ was repeatedly observed. However, the observed characteristic of increasing 697

performance with increasing threshold could not be predicted, as two effects are to be 698

expected: On the one hand, increasing the threshold reduces the probability of fp. On 699

the other hand, the significance of the error signal required to detect an error increases. 700

Accordingly, an a-priori consideration is difficult to make. Therefore, and since the values 701
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of 1, 2 and 3 were chosen rather arbitrary, the deviation of the Youden-index due to λ was 702

evaluated. 703

The corresponding characteristics are given in Figure 7 for both methods and the known 704

selection of w. First, the dependency between achieved detection performance – assessed 705

by the Youden-index Y – and threshold level λ is clearly visible. This dependency is in 706

high accordance to literature statements that the threshold definition has significant impact 707

on the detection result [31,67]. The observation, however, calls into question the general 708

validity of results obtained by means of the often described trial-and-error procedure based 709

on experimental data, which was also used by the authors in previous work. Due to the 710

limited amount of test data in the context of timely and expensive experimental abuse test 711

and the large sample size needed [40], the trial-and-error procedure is advantageous. 712

The evaluation in Figure 7 additionally shows that the achievable improvement decreases 713

asymptotically for both methods and for all filter sizes. Thus, the reduction of fp, which is 714

associated with higher thresholds, is advantageous in terms of classification quality. How- 715

ever, due to the asymptotic behaviour, further increases such as the 6σ-level as described 716

by Ouyang et al. [71] do not lead to large improvements. 717

4.4.2. Noise level 718

For the preceding analysis, the default simulation case with normal distributed noise 719

with σ = 1 mV was considered. Although this value was chosen based on the broad 720

literature review in Section 2.1, this value is not physically derived. Thus, the influence of 721

the underlying noise level on the achieved detection results has to be evaluated. 722

In Figure 8 the detection results for simulation studies with σ = 0.5 mV, 1 mV, 2 mV and 5 mV 723

as separated by colour are given. According to the previous discussion, the Youden-index 724

is chosen to represent both sensitivity and specificity. For each filter size w, the Youden 725

value of both z-score and ∆µ is given side-by-side with different fill-patterns. Please note 726

the different alpha levels corresponding to the threshold levels. 727

The decrease of classification quality with increasing noise level is clearly observable for 728

each w, which even results in negative Youden values when only a small filter is utilized. 729

In addition, the differences between certain noise levels diminish for higher filter sizes. 730

Besides the unfiltered case (w = 1), no significant difference between z-score and ∆µ can be 731

observed – ∆µ seem to be slightly higher more often. 732

The figure also shows the significant improvement of classification with higher threshold 733

levels for all cases in accordance with the discussion before. Especially the improvement 734

from λ = 1 to λ = 2 is advantageous for the overall performance. 735

Figure 7. Achieved detection quality for both methods ∆µ and z-score with respect to the underlying
filter size w dependent of the threshold level λ and corresponding threshold ζ expressed by the
Youden-index (Y).
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Figure 8. Achieved classification accuracy of both methods ∆µ and z-score (hatch) at discrete window
sizes w under the influence of various levels of measurement noise ∆U ∼ N (0, σU). The result
corresponding to each threshold level λ is indicated by the alpha level.

Based on the results, no linear dependency between noise level and detection quality is 736

identified. The level of decrease seems to be dependent on both w and σ in a non-linear 737

fashion. 738

4.4.3. CtCV 739

In contrast to the investigated simplified simulation case with only consideration of 740

the measurement uncertainty, the initial review has discussed further influences of dis- 741

turbances. Thus, the preceding analysis was performed under the influence of additional 742

CtCV in the form of parameter variation σZ and voltage offset ∆OCV. The corresponding 743

fault detection accuracy is given in Figure 9 based on the already utilized Youden-index. 744

For reference, the simplified simulation case is also presented. 745

It is visually obvious that the performance of the investigated methods decreases signifi- 746

cantly under the influence of additional disturbance that are either constant (∆OCV) or load 747

dependent (σZ). Especially, adding ∆OCV into the data generation prevents any reliable 748

fault detection. Under consideration of the discussion of the fault feature characteristic 749

in Figure 3 this behaviour has become apparent due to the sensitivity of the fault feature 750

towards the remaining charge deviation or rather voltage offset. 751

Thus, both methods – as implemented in this study – are not suitable for proper fault detec- 752

tion under the influence of CtCV in addition to measurement uncertainty and optimization 753

is required. Here, one solution could be to evaluate dUk/dt instead of Uk to compensate for 754

∆OCV. As long as the load current is constant – which it is usually not – this will also work 755

for the deviation between cells due to the slightly deviated cell impedance. 756

While the performance of the investigated methods is limited by these results, the impor- 757

tance of implementing CtCV into the test datasets of fault detection methods has been 758

underlined. As presented in Section 2.2 this has not been done in general yet. Thus, the 759

performance of the published detection methods has to be evaluated with respect to CtCV. 760

5. Conclusion 761

Within this publication, the well-known and much discussed factors influencing the 762

measurement signal of battery systems, which can affect the possibilities of reliable detec- 763

tion of ISC faults, were presented first. In accordance with the literature, this overview was 764

focused on the voltage signal. By comparing common literature assumptions of these influ- 765

encing variables for the validation of fault detection methods and corresponding values 766
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Figure 9. Achieved classification accuracy of both methods ∆µ and z-score (hatch) at discrete window
sizes w under the influence of various kinds of disturbances. In addition to the default case with
∆U, parameter variation ∆Z and ∆OCV as well as the combination of them was added. The result
corresponding to each threshold level is indicated by the alpha level.

from experimental investigations or from the application, significant differences could be 767

identified. While the measurement inaccuracy and scatter of cell parameters tend to be 768

overestimated, no considerations of voltage offsets due to BMS hysteresis could be found. 769

With respect to the orders of magnitude to be expected here compared to, for example, 770

measurement inaccuracy, this influence should be taken more into account in future work. 771

Based on this preliminary work, a simulation workflow was presented to generate test 772

data for the validation of fault detection methods in a controllable manner, with different 773

boundary conditions and in a statistically sufficient quantity. 774

The resulting possibilities were tested exemplarily on two simple methods and the obtained 775

results were compared with corresponding indicators. Here, among other things, the 776

greatest criticality of false-negative classifications was introduced as a modification of the 777

smallest detectable fault. In addition, established indicators such as sensitivity, specificity 778

and the Youden-index were used to test the methods under different boundary conditions. 779

Based on the generated dataset, the limits of common evaluation indicators like TPR-only 780

or detection time were discussed. For both methods, the best performance was found 781

for a filter width of w = 100 using a sample rate of 10 Hz and a deterministic threshold 782

definition of ζ = µ + λσ with λ = 3. Here, µ and σ represent the mean and standard 783

deviation of the fault signal under fault-free conditions, respectively. It could additionally 784

be shown that the gain in performance decreases asymptotically by an additional increase 785

of the limit value. Increasing the threshold limit further results in a higher energy release as 786

expressed by the criticality κ. By simulating variants with higher measurement noise and 787

with additional parameter and OCV deviations, it could be shown that the performance 788

decreases significantly with additional disturbances. 789

These observed dependencies have already been partially investigated in the literature, 790

but not regularly or under non-uniform boundary conditions. The results of this work 791

emphasize the necessity of investigating these confounding variables, since the detection 792

performance is significantly affected. The partly significant deviations of the results de- 793

pending on the definition of threshold and filter width show that published results are 794

only comparable to a very limited extent if the boundary conditions and test data are 795

not guaranteed to be identical. This results in the necessity mentioned above to compare 796

the numerous published methods under identical conditions and on identical data. The 797

adaptation of a Monte Carlo simulation for data generation presented here can be used 798
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very well for this purpose. The main underlying concept as displayed in Figure 1 can 799

be also adopted to more advanced battery models and fault representation if required. 800

Furthermore, by using a simulation approach, the extension of the investigation on the 801

basis of another reference cell, as well as the investigation of a generic cell, is possible. 802

The identified influences of the signal disturbances on the detection quality can be further 803

used to optimize the requirements of the BMS e.g. an acceptable noise level with respect to 804

the required detection accuracy. 805

Based on the preliminary work and methodology presented, the next step will be to 806

expand the evaluation to include other established detection methods. Furthermore, it is 807

planned to supplement the simulated data with experimentally determined faults in order 808

to take into account the dynamic unsteady behaviour of a more realistic ISC. 809
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BMS Battery management system
CC Constant current
CtCV Cell-to-cell variation
CV Coefficient of variation
ECM Equivalent circuit model
ESC External short circuit
EV Electric vehicle
FNR False negative rate (specificity)
FPR False positive rate
GTR Global Technical Regulation
GTR-EVS Global Technical Regulation on Electrical Vehicle Safety
GUM Guide to the expression of uncertainty in measurment
IC Integrated circuit
ISC Internal short circuit
LIB Lithium-ion battery
LUT Look-up-table
MA Moving average
NPV Negative predictive value
NRMSE Normalized root mean squared error
OCV Open circuit voltage
P2D Pseudo two-dimensional
P-OCV Pseudo open circuit voltage
PPV Positive predictice value
RMS Root mean square
RMSE Root mean squared error
ROC Reciever operating characteristic
SOC State of Charge
SVM Support vector maschine
TNR True negative rate
TPR True positive rate (sensitivity)
TR Thermal runaway
WLTP Worldwide Harmonized Light-Duty Vehicles Test Procedure
Y Youden-Inde

824

Appendix A 825

Appendix A.1 Evaluation of computational effort 826

As discussed in Section 2.3 the complexity of individual methods with respect to 827

application on a BMS in real-time has been repeatedly measured by the observed compu- 828

tational time. This comparison, however, can end significantly biased due to difference 829

in the implementation of the certain algorithms and independent of the actual algorithm. 830

To illustrate this problem, three different Python™ implementations of a rolling average 831

algorithm are presented in the following. The algorithms are then both compared for 832

calculation time and result. 833

To recreate the presented example the implementations as given in Listing 1 have to be 834

saved in a file SampleFunctions.py and the remaining code of Listings 2, 3, 4 within a Jupyter 835

notebook-file e.g. Evaluation.ipynb. 836

The mathematical background of the implemented rolling average calculations is as follows: 837

Given an array Amxn where n denotes the columns and m represents the number of rows, 838

the moving average (MA) with window length w is calculated for each element – defined 839

by row i and columns j – as shown in Equation (A1). 840

MAi,j =
1
w

i

∑
k=i−w+1

ak,j (A1)

Values for i < w are set to np.nan, which represents not a number. 841

The first implementation (rollingMeanPandas) is based on using the pandas package, which 842
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Listing 1: Implementation of the moving average algorithms using functions from pandas,
numpy and numba.
import numpy as np
from numba import njit, prange, float64, int16

def rollingMeanPandas(data, w=10):
return data.rolling(w).mean()

def rollingMeanNumpy(data, w=10):
result=np.empty_like(data)
for row in range(data.shape[0]):

window=np.zeros((w, data.shape[1]))
window[:]=np.nan # Initialise with np.nan

# Relevant for the first w rows
tmp=data[max(0,row−w+1):row+1, :] # Selection of data with window w
window[−len(tmp):, :]=tmp
result[row]= np.mean(window,axis=0) # Calculate mean over each column selection

return result

@njit(float64[:,:](float64[:,:],int16), parallel = True) # See above rollingMeanNumpy
def rollingMeanNumba(data, w=10):

result=np.empty_like(data)
for row in prange(data.shape[0]):

window=np.zeros((w, data.shape[1]))
window[:]=np.nan
tmp=data[max(0,row−w+1):row+1, :]
window[−len(tmp):, :]=tmp
avg=np.empty(window.shape[1], dtype=float64)
# np.mean(axis=0) is not implemented by numba−>custom calculation
for col in range(window.shape[1]):

avg[col]=window[:,col].mean()
result[row]=avg

return result

is known for broad functionally when handling tabular data. Thus, the application of the 843

algorithm has low complexity and the already implemented optimizations are used. In 844

contrast, the algorithm was also implemented using the more basic functionality of the 845

numpy package by iterating over each row. Since most numpy-only algorithms can be easily 846

converted into code that can be processed by numba such an implementation was added as 847

well. 848

849

To evaluate the three functions, sample data with both dimensions A100 000x12 and A100 000x100
850

was generated randomly. The same data was stored both as pandas DataFrame and NumPy 851

array as shown in Listing 2. 852

The following results were obtained both on a standard notebook (A) and a dedicated 853

simulation workstation (B). The specifications are given in Table A1. 854

855
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Table A1. Technical specifications utilized to calculate the mov-
ing average on both a standard notebook (A) and a simulation
workstation (B).

Specification A B

Processor Intel Core i5-8265U Intel Xeon W-2275
Total cores 4 14
RAM 8 GB 256 GB
Year 2020 2022

Table A2. Computational times of the investigated moving aver-
age implementations on both standard notebook (A) and simula-
tion workstation (B) and sample sizes.

A B
Implementation n = 12 n = 100 n = 12 n = 100

Pandas 114 ms 63.7 ms 41.3 ms 573 ms
Numpy 2.34 s 1.93 s 1.34 s 1.56 s
Numba 23.1 ms 18.3 ms 15.2 ms 24.1 ms

856

The timeit function (see Listing 3) was used to evaluate the calculation time of each 857

function. This function calls every implementation multiple times to reduce the influence 858

of parallel processes. In addition, the similarity of all three results is verified in Listing 4. 859

860

Listing 2: Import of both functions and required pack-
ages. Random generation of test data with two different
dimensions.

from SampleFunctions import *
import pandas as pd
import numpy as np

sampleData=np.random.rand(100000,12)
# SampleData=np.random.rand(100000,100)
sampleDF=pd.DataFrame(sampleData)

Listing 3: Evaluation of the computational time for each
implemented function with respect to the required data
structure.

%timeit rollingMeanPandas(sampleDF, 10)
%timeit rollingMeanNumba(sampleData, 10)
%timeit rollingMeanNumpy(sampleData, 10)

Listing 4: Validation of correct implementation by pair-
to-pair comparison of the calculated results based on the
same random test data.

# Comparison of the evaluated arrays
print(np.allclose(rollingMeanNumba(sampleData, 10),

rollingMeanPandas(sampleDF, 10), equal_nan=True))
print(np.allclose(rollingMeanNumpy(sampleData, 10),

rollingMeanPandas(sampleDF, 10), equal_nan=True))
print(np.allclose(rollingMeanNumba(sampleData, 10),

rollingMeanNumpy(sampleData, 10), equal_nan=True))

861

The summarized computational times for all three implementations are given in 862

Table A2. For the same calculation, a significant variation in-between the different imple- 863

mentations is found. Furthermore, the step from n = 12 to n = 100 shows that both NumPy 864

and numba implementation scaling much better even by the reduction of the estimated 865

computational time. Following these results, the initial hypothesis that computational 866

time is significantly dependent on the implementation itself and therefore not feasible for 867

comparison of different methods is confirmed. 868

Appendix A.2 Consistency of separate simulation studies 869

Within Section 4.1 a proper number of simulations for generating a reproducible 870

dataset was defined. The main goal is to ensure that the results gathered from evaluation 871

of this dataset are significant and not biased by the influences implemented randomly into 872

the data generation. To validate this desired property, the default case (see Tab. 8) was 873

simulated twice with identical parameters but different random seeds. For comparison, the 874

z-score method with λ = 3 was chosen, and the results are given for a selection of window 875

sizes in Table A3. Both a completely fault-free simulation study and a simulation with 876

≈80 % error rate are shown. The former configuration was used to define the trip limits, 877

which were then used to evaluate the latter. (See also diagram in Fig. 1). 878

It can be seen that for both variants, the differences between the two analyses (I and II) 879

are neither non-existent nor negligible due to their magnitude. In particular, the overall 880
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Table A3. Achieved detection quality of z-score method with threshold level of λ = 3 for repetitive simulation of the default simulation
case with no-fault condition (left) and with 80 % failure rate (right). Results were obtained on the basis of 1200 and 2400 repetitions
for fault-free and fault datasets, respectively. The mean µ of the maximum fault signal per simulation run is also given. For detailed
information on the given indicators FPR and TNR please refer to Table 6.

µ FPR / % TNR / %
No I II I II I II
w

1 3.108 3.110 0.167 0.167 99.833 99.833
10 1.369 1.364 1.000 0.833 99.000 99.167
100 0.408 0.408 1.083 1.500 98.917 98.500
1000 0.111 0.111 1.083 0.917 98.917 99.083

FPR / % TNR / %
No I II I II
w

1 0.600 0.832 99.400 99.168
10 2.183 3.854 97.817 96.146
100 3.523 2.474 96.477 97.526
1000 1.394 2.053 98.606 97.947

behaviour such as the optimum at w = 100 is seen in both variants with error replication. 881

The slightly larger variation in the results obtained in comparison to the fault-free cases can 882

be explained by the larger number of variation possibilities with the active error simulation. 883

While the error-free simulations differ only by the measurement noise, the latter add the 884

variance of the error resistance, the duration and the timing. 885

Thus, the chosen number of simulations was proven sufficient for generating valid results 886

despite the random influences. 887
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