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Abstract: Various methods published in recent years for reliable detection of battery faults (mainly
internal short circuit (ISC)) raise the question of comparability and cross-method evaluation, which
cannot yet be answered due to significant differences in training data and boundary conditions. This
paper provides a Monte Carlo-like simulation approach to generate a reproducible, comprehensible
and large dataset based on an extensive literature search on common assumptions and simulation
parameters. In some cases, these assumptions are quite different from field data, as shown by
comparison with experimentally determined values. Two relatively simple ISC detection methods
are tested on the generated dataset and their performance is evaluated to illustrate the proposed
approach. The evaluation of the detection performance by quantitative measures such as the Youden-
index shows a high divergence with respect to internal and external parameters such as threshold
level and cell-to-cell variations (CtCV), respectively. These results underline the importance of
quantitative evaluations based on identical test data. The proposed approach is able to support this
task by providing cost-effective test data generation with incorporation of known factors affecting
detection quality.

Keywords: lithium-ion battery; battery safety; internal short circuit; fault detection; test data generation;
method comparison

1. Introduction

The transformation process towards electrical power systems such as from vehicles
with combustion engines towards electrical vehicles (EV) has led to a significant increase
in the demand for energy storage systems, which is mainly met by lithium-ion batteries
(LIB) [1]. With increasing energy and power densities of such LIB, the thermal stability has
captured great attention as potential failures might result in the explosive release of the
stored chemical energy [2]. This destructive process called Thermal Runaway (TR) [3] has
also come to public interest after the supra-regional media coverage of certain incidents
and the consecutive recalls such as the grounding of Boeing 787 [4], the fire incidents of the
Samsung Note 7 [5], burning electric buses [6] or problems with the Chevrolet Bolt [7].

The TR is characterized by a sequence of characteristic reactions which significantly
influence the fault behaviour in certain temperature ranges. For more detailed information
on the individual chemical reactions and mechanisms, please refer to the extensive work
of Feng et al. in [2,8,9] as well as Li et al. [10] and Zheng et al. [11] in which the results
of accelerating rate calorimetry tests is given. In [9], the authors also provide a detailed
discussion of the various failure paths for initiating a TR.

Reported field failures as mentioned above often show a chain-reaction-like behaviour,
since nearly every battery system in application consists of multiple cells forming battery
modules and packs to fulfil the power and energy requirements. In case of a single-cell TR
in such a dense-packed assembly, the released thermal energy can trigger a thermal failure
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of adjacent cells, propagating the TR through the whole battery system. Therefore, this
failure is called Thermal Propagation (TP) and proposes significantly higher risks than a
single TR due to the larger amounts of energy-release potential [12].

To address this problem—one of the greatest challenges in battery technology [13]—
various solutions have been published and already integrated in battery systems. De-
spite the broad range of methods, in our previous work [14] three main approaches
were identified:

1. Reduction or delay of energy release by additives and alternative cell materials [15,16].
2. Reduction in heat influx from adjacent TRs to slow down or rather prevent TP in

accordance with the US Vehicle Battery Safety Roadmap Guidance, which states that TP
must not be initiated [17] if a never fully excluded cell-level TR occurs [18]. Prevention
by smart module design [19,20], active or passive cooling strategies [21,22] and/or
thermal isolation [23].

3. Detection of battery faults and abnormal conditions for countermeasures, warning
and evacuation before a hazardous situation develops. Here, the Global Technical
Regulation on Electrical Vehicle Safety (GTR-EVS) specifies at least 5 min or enough
time for egress [24].

The first two methods require the implementation of additional material into the bat-
tery system or supplementation, reducing the power and energy density or the performance
per cost in exchange for increased safety and thermal stability [15,25]. It was also found
that reduction in the heat transfer capabilities causes further disadvantages such as limited
cooling performance [26] and increased thermal differences within the battery system [27].
In addition, Grabow et al. [28] have proven in a recent study that battery failures such as
particle-induced internal short circuits (ISC) cannot be safely ruled out. A passive safety
concept might advert, and the affected cell will remain in an unknown—most likely more
unstable—state.

Through implementation of a fault detection method, however, both disadvantages
can be addressed. The knowledge of the fault appearance even provides the possibility
of active counter-measures such as increasing the cooling power or just the warning of
operators and the surrounding. Therefore, various methods for fault detection have been
proposed in recent years, as extensively summarized by Hu et al. [29]. In accordance
with Klink et al. [14], who prove the advantage of evaluating the cell voltage compared
to external sensors, these methods are mostly focused on the electrical quantities voltage
and current—sometimes extended by temperature. The algorithms and methods utilized
to evaluate the battery data originate from various scientific disciplines such as outlier
detection [30] from statistics, neural networks from machine learning/data science [31] or
modelling [32]. These adoptions of common techniques to improve the detection capabili-
ties underline the importance of the topic.

Despite these very promising studies, no systematic side-by-side comparison of differ-
ent methods has been published yet—not even in the context of recent extensive review
studies [29,33–35]. There are, however, studies evaluating advantages and disadvantages
of certain methods, e.g., by Hu et al. [29], but the classification based on measures such
as sensitivity for noise or high precision [29] is rather subjective and vague [36]. In addition,
some researches have published a brief comparison with alternative methods, e.g., [37–39],
but both implementation and evaluation criteria are limited.

This lack of the ability for comparison is, inter alia, caused by the large variance in
validation data and the known or unknown boundary conditions and due to the sensitivity
of gathered results to the experimental design [40]. In addition, the results are often based
on assumptions [41], which further hampers comparability. Especially, simulation studies
are repeatedly criticized for the missing consideration of measurement noise [42] as well as
possible cell-to-cell-variations (CtCV) [43–47] when investigating modules.

In summary, the combination of non-standardized evaluation criteria and lack of
similar boundary conditions and assumptions hinders the comparison of published results.
Therefore, the selection of the optimal method for a certain application from all published



Batteries 2023, 9, 339 3 of 36

approaches is currently not possible. To address these issues, three requirements were
identified. First, all methods should be validated on the same dataset. For statistical
evaluations, this dataset must contain several test cases with variable default conditions.
For the analysis of the detection performance, comprehensible data are advantageous.
Second, the dataset should contain sources of uncertainty to represent real application.
Consequently, the implemented uncertainty should be based on real world data. Third,
the evaluation of the detection methods should be focused on quantitative and statistical
measures to guarantee a fair and rational comparison.

This study proposes a methodology for the first two requirements by a data gener-
ation method leaned on Monte Carlo simulation. The Monte Carlo approach allows full
controllability of boundary conditions and parameters, guarantees the comprehensibility
of the data and simplifies the creation of large datasets. Although this work focusses on
ISC faults, most statements are also valid for external short-circuit faults (ESC) due to
the similar electrical behaviour. Furthermore, the main approach is applicable for other
faults by changing the fault simulation part. Besides the variable fault simulation, further
variance is integrated into the data by simulation of measurement noise and CtCV. Based on
this comprehensible and large dataset the third requirement—qualitative evaluation—can
be achieved using established statistical indicators.

The main contributions of this paper are:

• Extensive literature review of disturbances on the measurement signal and
their magnitudes;

• Summary of common qualitative and quantitative evaluation criteria;
• Generation of test data with stochastic disturbances and variations with consideration

of both fault-free and fault-containing samples with the scope of ISC and ESC;
• Example comparison based on binary classifiers and identification of optimum param-

eter combinations.

The remainder of this paper is organized as follows. First, the literature review on
common assumptions and previous evaluation aspects is given in Section 2 side-by-side
with experimentally determined values. In Section 3, the proposed Monte Carlo simulation
framework and the underlying assumptions are described in detail. Furthermore, the
simulation boundaries are defined as well as two exemplary fault detection methods briefly
introduced. The performance of both methods is presented and discussed in Section 4
before the main findings are summarized in Section 5.

2. State of the Art

As mentioned above, recent methods for battery fault detection have been evaluated
or criticized—mostly qualitatively—with respect to various measures. Although a com-
plete overview of aspects is not possible due to the broad range, recurring aspects are
listed below:

• Complexity or difficulty of the application, e.g.,

– Large battery model parameter sets [31,32,39,41,48–50];
– Large fault model parameter sets [30];
– Model limitations [51–54];
– Processing time [34,37,39,41–43,46–48,52,55–68];
– Dependency of training data [30,34,37–39,41,42,52,56,69–72];
– General complexity [44,64,66,70,73–76].

• Simplifications and assumptions concerning:

– Imperfect monitoring data [41,42,50,62–64,66,70,76–78];
– Deviation from homogeneous cell parameter [43–47,62,72].

• Limitation to single cells [43,45,79,80].

Therefore, origin, experimentally estimated values and implementations in testing of
fault detection methods are briefly described in the following.
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2.1. Measurement Uncertainty

It is commonly known that every practical measurement is distorted, and the quantity
estimated as such is always just an—often sufficient—approximation of the true value due
to the existence of random and systematic errors. To standardize definitions, procedures
and for extensive reference, the guide to the expression of uncertainty in measurement
(GUM) was published. Here, the definitions for the above-mentioned errors can be found
at ([81], [B.2.20–B.2.22]). Following this vocabulary, this expected deviation is given as
uncertainty of the measurement. The uncertainty itself generally results from various
sources, e.g., the measurement device, the conducting person, environmental conditions,
the measurement strategy and the measured object itself ([82], [transl.]).

It should be noted that strict adherence to the GUM requires each source to be identi-
fied and its individual contribution to the measurement uncertainty to be assessed. The
GUM differentiates the origin of the information of the uncertainty, which either is by
statistical analysis or by knowledge and classified as Type A and Type B, respectively.

In the context of the commonly used voltage measurements, the resolution and ac-
curacy, sample rate, temperature correction and signal-to-noise ratio can be identified as
possible sources of uncertainty. With respect to the finite resolution d of both the sensor
and the corresponding analogue-to-digital converter, the estimate X̂ of the true value X
can be expressed as X− d

2 ≤ X̂ ≤ X + d
2 . Here, the probability function is uniform and not

(Gaussian) normally distributed. Strictly following GUM, a normal distribution must be
used if the nature of the uncertainty and the probability function are unknown ([81], [4.3.7]).

It is obvious that this task becomes impractical with more complex systems outside
well-controlled laboratory conditions. Here, the central limit theorem becomes handy
when assuming the presence of multiple independent any-distributed uncertainties. It
states that the sum of independently distributed variables will converge towards a normal
distribution ([81], [G.2.1]). Thus, expressing measurement uncertainty with normally
distributed behaviour, e.g., by Xia et al. and Zhao et al. [76,83], is feasible but still an
approximation.

To model this normal distributed uncertainty, an additive component [73,79,84,85]
with zero mean µ (Equation (1)) and given standard variation σ (Equation (2)) is commonly
used [66,76,77,86] as the given exemplary for a voltage measurement by Equation (3).

µ =
1
N

N

∑
i=1

xi (1)

σ =

√√√√ 1
N

N

∑
i=1

(xi − µ)2 (2)

Û = U + ∆U where ∆U ∼ N (µ = 0; σU) (3)

Please note that in this simple approach, the uncertainty ∆U is independent of the
measured quantity U.

For application of Equation (3) in simulation, a realistic value for the standard devia-
tion σ has to be defined for each measurement quantity independently. Referencing recent
approaches, this task is not trivial, as illustrated by the findings for voltage, current and
temperature measurements presented in Table 1. On the one hand, investigation of mea-
surement uncertainty in the context of fault detection is not often performed, despite the
many mentions of advantages or disadvantages of certain detection methods. On the other
hand, each study defines the uncertainty differently, e.g., in dB [39], as RMS [87], by vari-
ance [56], by standard deviation [50] or by accuracy [88]. Furthermore, in some studies the
uncertainty seems to be meant Gaussian distributed, but only an amplitude is given [53,57],
which is not a useful definition. For the representation in Table 1 a reference voltage of
3.7 V was assumed. The amplitudes and accuracy were treated as standard deviation.
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Table 1. Assumptions for the level of measurement uncertainty for the common battery system
quantities cell voltage (U), current (I) and temperature (ϑ) if modelled by zero-mean Gaussian noise
with standard deviation σ. Displayed values were derived from publication if standard deviation
was not given. Please refer to the table footnotes for limitations due to the provided data.

Author et al. σU /mV σI /mA σϑ /◦C Source

Alavi 0.316 [89] *
Dey 50 0.08 0.5 [55]
Dey 100 3.16 0.447 [56] *
Dey 5 10 0.3 [90]
Dey 5 10 0.3 [91]
Feng 2 0.1 [88]
Feng 1 0.01 [88] *,1

Kang 100 [53] *,2

Kang 100 [57] *,2

Kim 10 [59]
Pan 10 [92] *,2

Shang 10 [39] *
Son 450 [71]
Xia 1 [50]
Zhang 2 10 [87] *
Zhang 2 25 0.05 [93]
Zhao 6 [83]

* Standard deviation was calculated. 1 Definition by accuracy. 2 Definition by amplitude.

For further illustration, an incomplete overview of exemplary values for measurement
uncertainty from application is given in Table 2. Here, given specifications for real monitor-
ing systems from published studies are summarized as well as application notes, e.g., the
guaranteed accuracy of battery management systems (BMS) integrated circuits (IC).

Table 2. Reference values describing the measurement uncertainty from real application for common
battery system quantities. For better comparability in case of percentages given, the absolute values
were calculated based on 3.7 V and 44.4 V as nominal voltages for cell and module levels, respectively.
The values derived as such are indicated by parenthesis.

Description Value Comment Source

Accuracy from analysed SMC-EV 1 platform <10 mV [94]
Accuracy from investigated EV ±5 mV with resolution 1 mV Cell voltage [45]

±1◦ C Cell temperature [45]
±0.1 A if I <30 A else ±1% Pack current [45]
±1% (±444 mV) Pack voltage [45]

BMS accuracy of EV ±0.1% (±37 mV) General assumption, no source [57]
Standard deviation of investigated module 0.3806 mV Data from previous study; not published [14]
Accuracy from BMS-IC 2 ±2.8 mV Cell voltage, max. Value [95]

±2.5% ( ±1110 mV) Pack voltage [95]
±5 ◦ C Temperature [95]

Accuracy from BMS-IC 2 ±1.4 mV Cell voltage [96]
1 Service and Management Center for Electric Vehicles in Beijing. 2 Integrated circuit.

With focus on the voltage measurement uncertainty, a significant deviation between
some model representations given in Table 1 with values > 50 mV and the values from
application < 10 mV is visible.

Assuming that the exemplary chosen commercial BMS-ICs represent close-to-application
values of the measurement uncertainty a selection of 1 mV to 10 mV for σU seems feasible.
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2.2. Cell-to-Cell Variations

For nearly every battery application, multiple cells have to be combined to achieve
the electrical requirements. Since every cell in such a pack is subjected to small variations
from production and material quality, for realistic simulation cell-to-cell variations (CtCV)
have to be considered too. Since the CtCV are suspected for self-amplifying behaviour [18]
the magnitude of variation is generally expected to increase over the module lifetime by
individual ageing progresses [18]. Among other things, different operational conditions [97]
such as temperature gradients cause uneven current distribution of parallel connected
cells [98]. Similar to the measurement uncertainty, most approaches for describing the CtCV
assume an underlying normal distribution. Thus, both mean µ and standard deviation σ
(see Equations (1) and (2)) are used for quantifying the variations. Since both measures will
change significantly with cell types and sizes, scaling the standard deviation with the mean
as described by Equation (4) simplifies the comparability. This ratio from standard deviation
relative to the mean is called coefficient of variation (CV) [99] and is often given in %.

CV =
σ

µ
(4)

While CtCV should be incorporated into models for realistic results [100], there is no
publicly available information on production quality of commercial cells. Thus, researchers
have to assume proper variations based on educated guesses [101,102] or on the findings
from extensive cell characterization studies. Within Table 3, a broad overview over recent
studies and the corresponding results is given.

Table 3. Overview of the literature on experimental determined CtCV of cell capacity and resistance,
given as coefficient of variation (CV); see Equation (4). Please refer to Table 2 for comparison with
common approximations for CtCV simulation. Cell specifications were taken from source; please
refer to Wildfeuer et al. [103] for an in depth analysis of recent studies.

Author et al. Year N Cell State Cnom/Ah CVR/% CVC/% Source

Dubarry 2009 100 - - 0.30 - 1.86 [104]
2010 100 - - 0.30 30.12 1.86 [105]
2011 10 - - 1.90 5.66 0.16 [100]

Shin 2013 10,000 - Model - 4.40 0.00 [106]
Paul 2013 20,000 - - 4.40 - 1.30 [107]
Zheng 2013 96 - - 70.00 19.47 - [45]
Baumhofer 2014 48 Sanyo/Panasonic UR18650E - 1.85 - 0.50 [108]
Rothgang 2014 700 HP prismatic Cell New - 2.87 2.36 [109]
Schuster 2015 954 IHR18650A Aged, from EV 2 1.95 3.19 1.57 [110]

2015 954 IHR18650A Aged, from EV 1 1.95 2.56 2.25 [110]
2015 484 IHR18650A New 1.95 1.94 0.80 [110]

Devie 2016 100 NCR 18650B New 3.35 0.30 0.80 [111]
Campestrini 2016 250 Panasonic NCR18650PD New 2.80 0.72 0.16 [112]
An 2016 198 - - 5.30 2.85 1.34 [113]

2016 7739 - - 5.30 - 1.45 [114]
Rumpf 2017 600 Sony US26650FTC1 New, Batch 1 3.00 1.81 0.23 [102]

2017 1100 Sony US26650FTC1 - 3.00 - - [102]
Barreras 2017 208 SLPB 120216216 New 53.00 5.63 0.35 [115]
Rumpf 2017 500 Sony US26650FTC1 New, Batch 2 3.00 0.73 0.33 [102]
Devie 2018 51 LG ICR18650 C2 New 2.80 3.55 2.00 [116]

2018 15 LG ICR18650 C2 Aged, 1000 cycles 2.80 5.00 2.80 [116]
Oeser 2018 50 ICR 18650 26F Aged, 1464 cycles, 77.8% SOH 2.60 - 1.10 [117]
Baumann 2018 185 BatteryPack, GS Yuasa (LEV50) Aged, from EV 50.00 4.40 0.85 [118]

2018 164 Panasonic NCR18650PF Aged, 3 years 2.90 0.92 0.35 [118]
Zou 2018 248 - New 3.00 0.95 0.37 [119]
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Table 3. Cont.

Author et al. Year N Cell State Cnom/Ah CVR/% CVC/% Source

Zilberman 2019 13 LG Chem INR18650-MJ1 New 3.50 1.08 0.22 [120]
2019 48 LG MJ1 New 3.35 0.68 0.20 [121]
2019 24 LG MJ1 Aged, 10 months 3.35 0.75 0.38 [121]
2020 48 LG Chem INR18650-MJ1 New 3.35 0.79 0.20 [122]

Wildfeuer 2021 568 Sony US18650VTC5A New 2.50 0.86 0.24 [103]
Schindler 2021 48 LG MJ1 New, Batch 1 3.35 0.65 0.20 [123]

2021 200 LG MJ1 New, Batch 3 3.35 3.40 0.40 [123]
2021 160 LG MJ1 New, Batch 2 3.35 1.04 0.36 [123]

Oeser 2022 137 ICR18650-26J Aged, 2 years 2.60 2.00 0.26 [124]
2022 480 ICR18650-26J New 2.60 1.69 0.26 [124]

Reiter 2023 14 - - 128.00 2.20 0.39 [125]
Hein 2023 200 ICR 18650-26J - 2.60 1.59 0.23 [126]

Please refer to Wildfeuer et al. [103] for an in-depth analysis of previous studies and
measurement procedures.

As indicated by the presented findings, these studies focus on quantities such as
capacity, internal resistance and sometimes weight, since these characteristics can be deter-
mined by standard measurement procedures with acceptable complexity and time effort.
The internal origin of these externally expressed variations is theoretically understood
and suspected, e.g., in variations of electrolyte, electrode balancing, etc., as extensively
summarized by Beck et al. [127] but no internal root-cause analysis is performed in general
by the listed studies. Paul et al. [107] have investigated this aspect by simulating the in-
fluence of internal variations on the external parameters R and C; backtracking measured
variations onto variations on material level, however, is not possible. Therefore, the only
valid data basis for simulating CtCV is external parameters on the basis of a simplified
equivalent circuit.

With respect to the given capacities of the investigated cells, with a few exceptions,
a clear focus on small size—often cylindrical 18650—formats is recognizable. Thus, cells
with capacities < 5 Ah predominate the presented findings. In addition, only very few
studies have achieved sample sizes ≈1000 as the majority are ≤200, which is relatively
close to a statistical significant sample size. Nevertheless, a very good accordance over
all estimated CVs for both capacity and resistance is observable, where CVC seems to be
smaller than CVR in general. It was assumed that this behaviour is caused by the aim
of the manufactures for lower variations of the capacity due to its property as the main
performance indicator [114,123]. Recent findings by Wildfeuer et al. after revising previous
datasets, however, indicate that the observed differences between CVR and CVC may
originate significantly by uncompensated measurement errors [103]. Thus, approximation
of the CtCV by values in the magnitude of CVC ≈ 1% and CVC ≈ 1 to 5% seems feasible.

It has to be mentioned that the authors of the listed studies identified both a high
dependency on the cell batch and transformation of the normal distribution towards a
Weibull distribution with the lifetime [102].

When consulting non-academic sources for close-to-application CtCV-values, a broad
range from capacity variations of <2.5% [128] up to expected resistance variations of
15% [129] can be found. Since this range differs significantly from the experimentally
determined values as given above, a proper definition of CtCV for implementation in
simulation remains unclear.

This discrepancy is continued when revisiting the implemented levels of CtCV to
validate fault detection methods, as summarized in Table 4. Similar to the non-academic
range, the variation is assumed to be »1%, which is not supported by the experimentally
determined values. Therefore, these values have to be understood as the worst case
approximation. Based on the gathered findings, two configurations of CtCV simulation
seem feasible:
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• Orientation at statistical founded experimentally determined variations;
• Assessment of the worst case boundaries.

Table 4. Assumptions of CtCV for both capacity (C) and resistance (R) utilized in recent studies in
the context of battery fault detection evaluation. For three studies, no cell type was specified. Please
refer to Table 3 for comparison with experimental determined CtCV values.

Author et al. Year Cell Cnom./Ah ∆R/% ∆C/% Source

Dey 2016 5, 10 and 15 [77]
Chang 2019 18650 cell 2 10, 20 and 40 20 [130]
Chen 2019 A123

ANR26650-M1A
2300 ±3 [30]

Dubarry 2019 0.0, 3.75, 7.5, 12.5 and 15 0.0, 1.25, 2.5, 3.75 and 5 [131]
Zhang 2019 −5, −3, 2 and 5 −5, −3, 2 and 5 [68]
Schmid 2021 Samsung

INR18650-25R
2500 +10 [42]

Song 2021 60 0, 1.5 and 2.8 [132]

Independent of the chosen configuration, the underlying design decisions and database
should be disclosed.

Voltage Offset

Despite assumptions to the contrary [54], during the operation of battery packs, no
perfect temperature homogeneity can be achieved [68], due to finite heat conductivity. Thus,
the cells within a battery system are exposed to slightly different temperatures [21,133,134],
which cause variations of the open circuit voltage (OCV) due to entropy effects. Since the en-
tropy coefficient alters with respect to the state of charge (SOC), e.g., within −0.07 mV K−1

to 0.2 mV K−1 [135], no general statement of the effect can be made. With respect to pub-
lished maximum temperature differences inside battery modules of <10 K [136–140] the
voltage variation is expected to be <1 mV. In addition, the already mentioned CtCV
causes further voltage variations since the differences in internal resistance will cause slight
variations of the voltage-drop and overvoltage during charge and discharge, respectively.

Starting from an approximately identical state, the cells will drift as self-discharge [120],
capacity and internal properties vary from cell-to-cell. To compensate for these influences
and re-calibrate the cells towards a similar SOC, battery packs and systems are equipped
with a monitoring unit (BMS) that will re-balance such deviations—usually by discharging
cells with high voltage. Since this balancing causes losses and will never reach perfection
due to the above-mentioned measurement uncertainty, a hysteresis is usually implemented.
Due to this hysteresis, the open-circuit-voltage (OCV) of cells in battery packs will always
slightly deviate. As the balancing is often performed at the end of the charge process, it can
be assumed that the ∆OCV is approximately constant in-between. Please refer to Table 5
for an overview of exemplary values for this OCV offset. Similar to the previous aspects,
the published range is rather wide and identification of a proper realistic value not trivial.
When these magnitudes are compared with the values given for measurement uncertainty
(Table 2), CtCV of the measured voltage is significantly more influenced by the balancing
hysteresis—thus a constant voltage offset—than by the imperfection of measurement
accuracy and resolution. Nevertheless, to best of our knowledge, the performance of fault
detection methods have not yet been evaluated under the influence of constant OCV-offset.
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Table 5. Published values for the balancing hysteresis ∆OCV taken from sources close to field-
application, such as application guidelines from BMS-manufacturers or accuracy values given for
BMS in the academic literature.

Description ∆OCV/mV Comment Source

Guideline 100 Trigger for balancing [141]
Guideline 10 Recommendation for Umax. −Umin. [142]
Guideline 50 Acceptable static voltage [143]

100 Acceptable dynamic voltage
Application 20 Optimized balancing [144]
Application 100 Common hysteresis [128]
Application 20 Measurement of EV [145]

7 Experimental balancing

2.3. Evaluation Aspects

Irrespective of the chosen approximations of the influencing factors discussed before
for the test data, after applying a fault detection method to this dataset, the result needs
to be evaluated. First, the calculated defect feature or detection signal can be analysed
qualitatively, e.g., by visual inspection as seen in [37,39,146]. However, this simple approach
quickly reaches its limits when the properties of interest go beyond, e.g., consistency among
few variations. In particular, when different detection parameters, methods or datasets
are to be compared, it is necessary to transform the complex fault characteristics and
corresponding fault features into a low-dimensional measure. Therefore, the detection
time has been used in many studies [41,43,50–52,72,73,75,77,79,92,147]. Here, the detection
time is defined as the time between the trigger of the fault tISC and the time of detection
tdetection, as given by Equation (5). Using ∆tdetection also evaluates the requirement for
fault detection in an early stage due to the unpredictable development of ISC faults from
mild towards sudden TR [148]. This measure is also in line with the GTR requirements
mentioned above, where a time between the trigger of the thermal failure and a dangerous
situation for the passenger is defined. In addition to the simple evaluation of ∆tdetection,
Liu et al. [79] have calculated the average (see Equation (1)), minimum and maximum
value of ∆tdetection for multiple repetitions of the same test.

∆tdetection = tdetection − tISC (5)

By varying the fault size, both Dey et al. and Marcicki et al. have further investigated
the smallest fault that was still detectable by their methods [77,86]. This becomes interesting
when the disturbances discussed above are included in the test, as these are likely to mask
the fault signal of a low magnitude fault.

The process of applying a detection method to a dataset with and without faults is
not a battery specific task, but known as binary classifier from many other disciplines,
such as pharmacy [149]. As indicated by its name, with each investigated sample two
possible states are considered—e.g., a present fault and normal operation. In addition,
the applied test has two outputs, indicating either a fault situation (positive) or no fault
(negative). Based on these prerequisites, four outcomes of the applied test are possible, as
summarized below:

tp True positive tn True negative
fp False positive fn False negative

If evaluated and summed over all conducted tests, the total number of, for example,
true positive states Tp is calculated. With these total counts, further measures are defined
as listed in Table 6 as well as studies utilizing them.
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Table 6. Summary of quality indicators for evaluation of a binary test, their definition and usage
in recent battery fault detection studies. See also [149,150]. Please note that the reference figure is
different in-between indicators and therefore the sum is not equal to 1.

Symbol Name Definition Used in

TPR True positive rate 1 Tp
Tp+Fn

[40]

FNR False negative rate 2 Fn
Tp+Fn

[40,41,63,73,79]

TNR True negative rate Tn
Tn+Fp

FPR False positive rate Fp
Tn+Fp

[41,51,55,63,73,79]

PPV Positive predictive value Tp
Tp+Fp

NPV Negative predictive value Tn
Tn+Fn

Y Youden-index TPR + FNR − 1
1 Alias: Sensitivity; 2 Alias: Specificity.

One observation of the given table is that—to the best of our knowledge—there is no
published TNR in the context of battery fault detection yet. This illustrates that usually the
presented detection methods are not tested against fault-free data and therefore Tn = 0. If
TPR (sensitivity) and FNR (specificity) have been calculated for different detection method
parameters and test boundaries, they can be plotted as conducted by Meng et al. [40]. The
resulting curves are called the receiver operating characteristic (ROC) curve and provide
the opportunity to identify the parameters for an optimized classification result. A similar
assessment is possible with the Youden-index, in which both sensitivity and specificity are
considered. Please note that TPR and FNR have to be evaluated together, since a method
which always outputs the presence of a fault will obviously catch all faults (TPR = 1) but is
not useful at all (FNR = 0). Due to the severity of the TR, the response to a detection will be
dramatic, such as immediate evacuation of an EV. Thus, fp must not occur regularly, which
is measured by the FNR. Nevertheless, due to the severity, TR must not occur without
warning ( fn), which is incorporated in the TPR.

In addition, some studies have analysed the functionality of the investigated methods,
such as the correct identification of the type of fault [52]. Similarly, the convergence of
the employed algorithms has been evaluated [90,91]. Methods that estimate the fault
magnitude, e.g., the resistance of the ISC, have been accessed on the basis of the accordance
between the estimated and correct magnitude [38,51,55].

With respect to the intended application of the various methods within a BMS and in
real-time, computational effort becomes a critical factor [67]—especially when tools from
data-science are applied that are usually used on computational clusters. Thus, the com-
putational time has been included into the analysis of recent studies [39,59,67,71,151]. This
measure, however, has a significant drawback as it is very sensitive to the implementation
of the algorithm in detail. To illustrate this problem, a comparison of different moving
average implementations written in Python™ is given in the appendix (see Appendix A.1),
while the result of all functions is the same, the computational time differs significantly.
Thus, deriving an advantage or disadvantage just from the computational time is problem-
atic and most likely biased from the algorithm design. In addition, the importance of this
aspect is expected to decrease as the cost of computing power continues to decrease.

3. Material and Methods

To demonstrate a method that incorporates the before-mentioned requirements for a
sensible data-generation, an exemplary workflow of fault simulation under the influence
of disturbances and the subsequent detection and evaluation of detection methods is
presented in the following. After the introduction of the cell chosen as sample for simulation
in Section 3.1 the descriptions of model (Section 3.2) and fault detection (Section 3.4) follow.
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Within Figure 1 the overall workflow is given—detailed descriptions on certain aspects
can be found in the following. First, a simulation case is initialized by the definition of
the simulation boundaries for the underlying random influences on the model. Under
consideration of both Monte Carlo parameters and fault representation parameters, the
model defined as such is repeatedly simulated for no-fault and fault conditions. These
two datasets are evaluated using a chosen detection method configuration (see Section 3.4)
which gives the fault feature signal for each simulation run. Based on the defined threshold,
the fault feature under no-fault condition is evaluated, and a proper threshold ζ is calculated.
This value is then checked against the test dataset with mixed fault and no-fault conditions,
and each simulation is classified with t/ fp/n. Besides evaluation of individual simulation
runs, the summary performance of the individual investigated configurations is analysed
in the end.

Figure 1. Workflow for generating a dataset with variable characteristics (disturbances and faults)
for setting up and validating different fault detection methods. External inputs represent parameter
presets that are used either in the Monte Carlo-like data generation process or for different fault
detection configurations.

3.1. Reference Cell

For this study, a commercial off-the-shelf pouch cell by Kokam has been chosen to
represent common cell properties. The model name is SLPB98106100 and the nominal
capacity is 10 Ah, which is in the range of typical industrially used large-format-sized cells.
Following the classification of the manufacturer, the cell is a high energy version. Please
refer to Table 7 for an overview of cell properties.

Table 7. Selected datasheet properties of the SLPB98106100 pouch cell from Kokam that was used as
reference cell for the simulation.

Parameter Symbol Value

Nominal capacity Cnom. 10 Ah
Nominal voltage Unom. 3.7 V
Upper voltage limit Umax. 4.2 V
Lower voltage limit Umin. 2.7 V
Charge current Inom.|Imax. 5 A|20 A
Discharge current Inom.|Imax.|I<10s 5 A|20 A|30 A
Weight m 0.210 kg

3.2. Model

This simulation study is based on an equivalent circuit model (ECM) as the represen-
tation of the dynamic cell behaviour. The model of cell and fault was implemented within
Matlab/Simulink® [152] with pre- and post-processing was performed in native Matlab.
As displayed in Figure 2, a second order ECM was chosen, which is in accordance with
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many other studies, where either a first or second order model was chosen as compromise
between accuracy and complexity as investigated by Zhang et al. [153].

Using an ECM instead of elaborated models such as mathematical [154] or electro-
chemical models [88] comes with some advantages:

1. Parameterization is doable by standard electrochemical tests;
2. Implementation of parameter distribution is simplified;
3. Fault representation (see below) is well-defined;
4. Simulation time is fast.

To emulate a battery model in Ns1p configuration N cell models are simulated individ-
ually with the same load current. Within this study N = 12 was chosen as common module
configuration. In accordance with the ECM (see Figure 2) the individual cell voltage Uk is
calculated by Equation (6). The module voltage is then estimated by summation of all N
cell voltages Uk.

Uk(t) = OCV− (Iload+IISC) ·
[

R0 +
i=2

∑
i=1

Ri ·
(

1− exp
−t

Ri · Ci

)]
(6)

OCV

R0

R1

C1

R2

C2

I Iload

Uk

IISC

RISC

f (tISC, ∆tISC)

OCV, R0, R1, R2, C1, C2 = f (SOC)

Figure 2. Second order ECM as implemented in this simulation study to emulate the dynamic
behaviour of one cell. All parameters describing the normal operation of the cell are implemented
dependent on the SOC. Parallel simulation of multiple models results in the dynamic characteristics
of one module in ks1p configuration. Emulation of ISC-fault by parallel resistance is indicated in red.

In accordance with previous studies such as [60,64,155] the dependency of the model
parameters and the OCV by the SOC is incorporated as look-up-table (LUT). Values between
provided points are approximated by linear interpolation. The required SOC is calculated
using integration of the load current Iload (coulomb-counting) as described by Equation (7).

SOC(t) = SOC0 −
1

Cnom.

∫ t

t=0
Iload(t)dt (7)

For this study, the simulated sample-rate was set to 10 Hz and the simulation output
was stored in as double data type.

As indicated in Figure 2 the thermal dependency of parameters was neglected. With
respect to the mild ISC-resistances and short fault duration, this simplification seems
reasonable. However, the proposed method is also applicable to more advanced battery
models without changes.

3.2.1. ISC/ESC-Fault Representation

Besides some electrochemical fault simulation [88], simplified P2D-models [156] or
reduced network models [157] in most cases both ISC and ESC faults are represented by a
parallel fault resistance as highlighted by red colour in Figure 2 as well as in Equation (6).
Thus, the cell voltage is further reduced by the internal voltage drop caused by the short
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circuit current. When the fault resistance RISC is decreased, the deviation towards the
normal cell behaviour increases.

The sudden fault appearance and clearance is realized by a time controlled
switching behaviour.

3.2.2. Randomness and Variation

The influence of the previously discussed disturbance variables on a realistic voltage
measurement signal should also be included in the generated test data. Thus, the ECM is
extended to take into account both the imperfection of the measurement and the variation
in the individual battery cells. The details of the implementation are described below.

Measurement Uncertainty

In accordance with most before-mentioned studies (see above, Section 2.1) additive
zero-mean Gaussian noise (∆U(t, k) ∼ N (µ = 0, σU)) is used in this work to emulate a
voltage signal with imperfect measurement. As indicated by the dependency of t and k, the
noise value is generated randomly for each sample and cell.

Cell-to-Cell Variation

Both voltage offsets ∆OCVk and impedance parameter variations ∆Zk are imple-
mented into the simulation framework. Variances of cell capacity, however, are not con-
sidered separately. First, according to the literature review (see Section 2.2) the expected
coefficient of variation is rather small (<1%), causing only small variations in the OCV-SOC
behaviour. Second, this small variation is already implemented by the voltage offsets.

Unlike the measurement uncertainty, both variations are assumed to be approximately
constant over the simulated time period. Therefore, the value is set for each cell during
model initialization. In contrast to the ∆OCV, which is also implemented as an additive
variation, the parameter variation causes a deviation relative to the reference cell param-
eter as exemplary shown in Equation (8) for R0 (see Figure 2), where ∆Z represents the
relative deviation.

R0 = R0,ref.
1

100%
(100% + ∆Z) with [∆Z] = % (8)

The LUT of all parameters given in Figure 2 (R0,1,2, C1,2) are scaled analogously by the
same value. Since the impedance has experimentally proven (see Section 2.2) to behave
normally distributed, the scaling factor ∆Zk for each cell k is generated from a normal
distribution with given standard deviation (∆Zk ∼ N (0, σZ)). In contrast, the voltage
offset ∆OCVk has been found to be significantly influenced by the balancing hysteresis and
resolution, which behave uniform distributed according to GUM. Thus, the ∆OCVk was
generated for each cell from a uniform distribution following ∆OCVk ∼ U (− d

2 , d
2 ) where d

is the selected hysteresis width.

3.2.3. Parameterization

The parameters of the ECM shown above were measured beforehand at 20◦ using
the SL1002 6 V/1000 A/0.6 kW battery test bench from Keysight/Scienlab. For all tests,
the cell was clamped between two aluminium plates to emulate the clamping force within
a battery module [158]. Using screws to tighten the setup, a pre-tension of approximate
0.1 MPa was established, which is close to realistic applications [158,159]. Using screwed
connections, the pouch cell tabs were connected to the battery test bench.

The correlation between OCV and SOC was measured by charging and discharging
the cell at very low (0.05 C) current, which is called pseudo-OCV (P-OCV) measurement.
Averaging the both voltage curves and normalization of the charge with the nominal
capacity (see Table 7) gives the OCV(SOC) relationship. The passive parameters of the
ECM pictured in Figure 2 were calculated based on current steps with 1 C and 2 C in charge
and discharge direction. Both pulses were applied for 10 s and were followed by a 50 s
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relaxation. To incorporate the SOC-dependency of the parameters, this pulse procedure
was conducted for every 10%-SOC increment. Due to the operational limits for 100% and
0% no charge, respectively, no discharge pulse was applied.

Using the SciPy implementation of the Powell-algorithm [160] the model parameters
were fitted to the data. Here, both the pulse and the relaxation were considered as well as
both currents directions and amplitudes and an overall fit was performed.

The parameterized model was evaluated by means of both standard and normalized
root mean squared error (RMSE and NRMSE) compared with a reference dynamic drive
cycle test. Please refer to Equations (9) and (10) for the calculation of both metrics. The
dynamic load was emulated using the WLTP drive cycle [161] six time, which results in
a validation time period of 10,800 s. The achieved simulation quality was 0.0253 V and
0.0286 for RMSE and NRMSE, respectively. These values are in range to similar published
results [41,54].

RMSE =

√√√√ 1
N

N

∑
i
(Umeas. −Usim.)2 (9)

NRMSE =
RMSE

max(Umeas.)−min(Umeas.)
(10)

3.3. Simulation Cases

For proof of concept of the above-described simulation framework, the following
test cases were defined: First, only the measurement uncertainty ∆U is incorporated to
the model (Default), which is the source of uncertainty most often used in recent studies.
Second, the two other disturbances ∆OCV and ∆Z are implemented both separately and
combined to create test datasets with more kinds of variation. The values for all variations
were chosen in accordance to the literature review given in Sections 2.1 and 2.2 as given in
Table 8. For investigation of the sensitivity of the detection results towards the magnitude
of the disturbances, multiple modified (mod.) parameter sets were created as well. The
considered ranges are given in Table 8.

The fault appearance, however, was kept constant for all simulation cases and was
based on the following assumptions:

• The fault chance is 80%;
• Only one cell fault per time;
• Only one fault event per simulation run.

All four fault-defining parameters were selected randomly from a uniform distribu-
tion. For incorporation of fault-free cases, the fault was applied with a chance of 80%,
while the cell index k was chosen within the cell count, 1 to 12 the time of fault tISC was
chosen from the simulation duration T. Thus, for simulation of the WLTP 1 s to 1800 s were
considered. In addition, 1 Ω to 100 Ω and ∆tISC ∈ [1; T− tISC] were chosen as boundaries
for the fault resistance RISC and fault duration, respectively. The selected range is in accor-
dance with various recent studies [40,49,61,88] and the range incorporates both resistances
commonly considered as safety-critical (<4 Ω [162], <10 Ω [88] and mild criticality (1 Ω to
100 Ω [75,163], >10 Ω [164].
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Table 8. Parameters of the Monte Carlo data generation, including simulated uncertainty and ISC-
fault replication. The individual parameter-set was generated randomly based on either a uniform
(U ) or a Gaussian (N ) distribution. Left: Values for the implemented model disturbances dependent
on the simulation case, where measurement uncertainty only is considered as Default. Please refer to
Sections 2.1 and 2.2 for further details on the implementation. Right: Intervals for generation of a
fault-simulation parameter-set based on a uniform distribution.

∆U ∆OCV ∆Z Range
Distribution ∼ N (0, σU) ∼ U(− d

2 , d
2 ) ∼ N (0, σZ) Distribution ∼ U (Range)

Case σU /mV d/mV σZ/% Parameter Symbol
Default (∆U) 1.0 0.0 0.0 Cell index of fault k ∈ [1; N] *
Modified Default 0.5, 1, 2 and 10 0.0 0.0 Time of fault tISC ∈ [1; T] s **
∆U +∆OCV or +∆Z 1.0 10 1.0 Fault duration ∆tISC ∈ [1; 120] s
∆U +∆OCV and +∆Z 1.0 10 0.1 Fault resistance RISC ∈ [1; 100] Ω

* In this study, N = 12; ** Using the WLTP cycle T = 1800 s.

3.4. Fault Detection Methods

To illustrate the proposed approach, two rather simple fault detection algorithms
were implemented. Both the implementation of the detection methods and the pre- and
post-processing were performed in Python™ (V3.9.12) and are heavily based on the NumPy
(V1.21.5) [165], SciPy (V1.7.3) [166] and pandas (V1.4.2) [167] packages.

First, the deviation between individual cell voltages and the mean of the module is
considered. Normalization of this deviation with the standard deviation leads to the z-score
that is investigated as well. Please find the algorithms defined below. In accordance with
other methods, a rolling window filter can be applied to the calculated fault signal for
further signal refinement.

To eliminate small deviations stemming from the machine precision the calculated
fault signal is rounded to the nearest 8 digits.

Based on the fault signals estimated as such, the required thresholds have to be defined.
Within this study, a deterministic approach was chosen to ensure comparability. Since
the threshold is often defined by trial-and-error with given reference and fault data, a
deterministic approach as performed by Ouyang et al. [75] is seldom documented. The
process is described as follows:

1. Generate many samples without presence of a fault.
2. Calculate the fault signals for the detection method for each sample.
3. Determine the maximal fault signal value for each sample.
4. Calculate the mean µ and standard deviation σ (see Equations (1) and (2)) of the

determined maximal values.
5. Define the threshold ζ as ζ = µ + λσ.
6. If the fault signal is greater than ζ a fault will be assumed.

Thus, by changing the threshold level λ the quality of the results (see Table 6), e.g.,
false positive values (FPR) can be altered. By approximation of an underlying normal
distribution, the relationship between λ and the samples inside the so-defined boundaries
is as given in Table 9. Due to the definition of the fault occurrence as excess of the threshold,
the one side-probability is given in addition to the more common two-sided one. Within
this work λ ∈ 1, 2 and 3 was investigated.

Table 9. Probability of samples within multiple standard deviations around the mean of a normal
distribution. The two-sided values describe P(µ− λσ ≤ x ≤ µ + λσ) and for the one-sided case
P(x ≤ µ + λσ). Here, the left side of the distribution is already fully incorporated.

λ 2-Side/% 1-Side/%

1 68.27 84.13
2 95.45 97.72
3 99.73 99.87
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3.4.1. Deviation from Mean

The input of the detection method is the voltage measurement matrix of the module
UT×N with elements ut,k. Here, N represents the number of cells and T is the number
of samples. For each sample step t, the vector u1×N

t is evaluated and the mean as well
the difference to each cell is calculated as defined by Equations (12) and (11). In addition,
following Equation (13) this fault signal vector F1×N

t can be smoothed by subsequent
application of a rolling average filter with window length w using previous sample steps.

ft,k = ut − ut,k (11)

where

ut =
1
N

N

∑
j=1

ut,j (12)

f w
t,k =

1
w

t

∑
i=t−w+1

fi,k (13)

Assuming that ut,k of the cell under fault condition will be smaller than without an ISC
due to the additional voltage drop (see Figure 2) a positive correlation between amplitude
of the fault signal and fault magnitude is expected.

3.4.2. z-Score

The z-score as utilized inter alia in [59,168] is quite similar to the above-mentioned
deviation from the mean. However, the deviation as calculated in Equation (11) is stan-
dardized by the standard deviation σ (see Equation (2) as shown by Equation (14). Thus,
the resulting fault signal indicates its deviation from the mean relative to σ. Similar to
before, by application of a moving average filter (see Equation (13)) the z-score can be
smoothed, too.

ft,k = σ−1(ut − ut,k) (14)

As the definition is similar to Equation (11) and the difference just normalized, a
positive correlation between fault magnitude and fault signal is expected as well.

4. Results and Discussion

Using the described simulation workflow, first the simulation setup and the validity
of the gathered results are investigated in Sections 4.1 and 4.2. Based on these prerequisites,
the generated data and implemented fault detection methods are used to evaluate the
fault detection functionality and transform the individual result per simulation into an
overall describing metric within Section 4.3. The analysis is complemented by further
investigations in Section 4.4 where individual simulation and evaluation parameters are
investigated in detail.

4.1. Number of Simulations

Since the threshold definition is based on the estimated mean and standard deviation
of the simulations without fault, the minimum number of simulations required for a good
estimation of these statistics has to be determined. Due to the asymptotic convergence of
the sample mean to the population mean with ∼n−

1
2 , increasing the estimation accuracy

will significantly increase the number of simulations. Thus, a trade-off between the two
aspects is necessary.

Assuming a normal distribution, the confidence interval of the estimated mean of
a sample with size n is defined by the limits x ± z σ√

n [81]. Here, x is the sample mean,
σ the corresponding standard deviation and z the quantile of the t-distribution associated
with the sample size n and the desired confidence level, e.g., 95%. With n > 100, the
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t-distribution can be approximated by the normal distribution, thus z95% = 1.96 (see
Table 9). Rearranging the equation above gives

n = (
100zσ

xε
)2 , (15)

where ε is the acceptable deviation in %.
Evaluating both detection methods with different window sizes w for a sample of

300 simulations gives the statistics summarized in Table 10. The derived minimum number
of simulations for a 2% deviation with 95% confidence is given as well. Thus, due to the
small sample variation observed, even few simulations <100 achieve high reliability.

In order to represent the additional variations due to the error simulation, at least
100 simulations for the loads Zero and CC and 1000 simulations for the WLTP are used
arbitrarily in the following for no-fault simulations. With respect to the additional variations
under fault simulation, here, the number of simulations were doubled. Please also refer
to Table A3 for a comparison of the evaluation (see below) of two simulation studies with
identical boundary conditions. The high agreement between the two datasets proves that
the number of simulations is sufficient and that the gathered results are valid.

Table 10. Summary statistic coefficient of variation (CV) for the default simulation case with 300 sim-
ulation runs. Evaluated maximum fault signal for deviation from mean ∆µ and z-score z dependent
on the filter window size w. Required minimal simulation runs N to achieve 2% accuracy results
with 95% confidence.

Evaluation CV/% N95%
min.

w ∆µ z ∆µ z

1 5.84 1.56 33 3
2 5.45 3.28 29 11
5 6.24 5.24 38 27
10 5.70 5.37 32 28
20 6.48 6.29 41 38
100 8.76 8.02 74 62
200 8.31 7.85 67 60
1000 11.17 10.80 120 113

4.2. Distribution of Fault Feature

For both the definition of the threshold and the approximation of the required num-
ber of simulation runs, a normal distribution of the maximum values of the calculated
fault signals was assumed. On the left side of Table 11 this maximum value distribu-
tion is exemplary visualized for the z-score -method of 1200 simulations (Zero load: 100,
CC-load: 100, WLTP: 1000) and window w = 10 as highlighted in Table 11. It is visible, that
the average is shifted (skewed) towards the right relative to the peak of the distribution,
which is quantified by positive values for the skewness µ3 (see Equation (17) from [169]).
The calculated skewness for w = 10 and further distinct windows sizes is given in Table 11.
This behaviour is in accordance with the known properties of sample maximum distri-
butions. These sample maximum distributions are either Weibull, Fréchet or Gumbel
distributions dependent on the underlying population distribution. For an underlying
normal distribution that can be assumed for this case due to the implementation of the
disturbances, a Gumbel distribution is expected as sample maximum distribution [170].

µ3 =
κ3

κ3/2
2

(16)

where

κi =
1
N

N

∑(xi − µ)i (17)
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Due to the positive skewness, more values are located on the right side of the mean
compared to the normal distribution. Thus, the assumed FPR associated with a certain
σ-based threshold is underestimated, as shown in Table 11 for a 3σ-range. Based on this
threshold, the FPR should result in the range of ≈0.18%, as given in Table 9. It is shown
that with one exception the FPR is larger but ≤1.5%. Despite the rather small error due
to the simplification of assuming a normal distribution, the comparison made should
raise awareness that any assumptions regarding the basic distribution functions should be
carefully examined in order to be able to estimate and explain the resulting behaviour.

Table 11. Statistical properties average µ, standard deviation σ and skewness µ3 for the maximum
fault signal distribution of the fault-free simulation setup with N = 1200. Evaluated of the fault
signals for the detection methods z and ∆µ for different window sizes w. The corresponding FPR
in % is calculated based on a threshold ζ associated with 3σ which should result in a FPR of 0,18%
according to Table 9. Left margin: Exemplary barplot of the maximum fault signal distribution for
the z-score of w = 10 (green, highlighted values) and approximation by a normal distribution based
on the statistical properties µ, σ (blue). Skewness is visualized by marked peak position (white).

µ σ µ3 FPR/%
Evaluation ∆µ z ∆µ z ∆µ z ∆µ z
w

1 0.004340 3.110 0.000241 0.051 1.053 0.079 0.833 0.167
10 0.001349 1.364 0.000082 0.076 0.937 0.763 0.583 0.833
100 0.000392 0.408 0.000032 0.033 0.932 0.935 1.083 1.500
1000 0.000106 0.111 0.000011 0.011 0.624 0.669 0.583 0.917

4.3. Fault Detection

The voltage profile of a simulated ISC-fault (here cell 11) is presented exemplary
within the top axis in Figure 3 in comparison to a fault-free cell (01) during dynamic WLTP
load. For illustrational purposes, a severe ISC-fault of 1 Ω was chosen, causing a significant
voltage drop along the internal resistances as visible in the magnification on the right side.
The fault was initiated at tISC = 1518 s and lasts for ∆tISC = 85 s, as marked within the
right axis and indicated by the red background colour. Due to the additional discharge
during the ISC-fault, a remaining voltage offset between the faulty cell and the unaffected
cell is visible.

In addition, the corresponding fault signal f 10
z of both cells is given in the bottom part

of the Figure. Here, the z-score filtered by 10 sample periods, thereby 1 s, was chosen. Please
note the detection threshold ζ based on a 3σ interval as indicated by the horizontal line.

At the start of simulation—just under the influence of measurement noise—the fault
signal is noisy but with the presence of the fault the z-score of the faulty cell increases
virtually immediately and surpasses the threshold. Thus, the fault is already detected
after 0.3 s. After the fault is gone, however, the fault signal remains above the threshold
due to the above-mentioned voltage offset, while this sensitivity of the z-score to offsets
simplifies the detection of smaller faults with less initial voltage-drop, it causes problems
when voltage offsets exist already in fault-free samples, as discussed within Section 3.2.2.

Following the observations, this simulation in combination with the method z10 and
ζ3 is classified as true positive (tp). Evaluating all 2400 simulations for this method and
threshold gives the results presented on the left side of Figure 4. Here, each simulation is
coloured based on the achieved classification, where tp is green and fn is red. Please also
note the simulation discussed above marked by a star in the upper left part.
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Figure 3. Simulated voltages for faulty cell (C11) and fault-free cell (here C01) for simulation of 1 Ω
ISC-fault at 1518 s for 85 s. The period of fault is magnified at the right and marked in all axis in red
colour. The corresponding z-score fault signal with w = 10 ( f 10

z ) is given in the lower figure, as well
as the 3σ threshold level.

Figure 4. Left: Classification of simulation runs to truepositive, falsepositive and falsenegative with
respect to the fault resistance RISC and fault duration ∆tISC for z-score and window size w = 10.
Please note that truenegative (see Section 2.3) will not appear in this representation. The boundary
between tp and fn is visualized by fitted model using linear support vector classification (SVC). Right:
Decision boundaries for both detection methods and variable window sizes.

An approximate linear dependency between both fault resistance RISC and fault dura-
tion ∆tISC and the achieved classification is observable. In contrast, no such dependency
was observed for the fp classification that occurred randomly with low frequency. To
illustrate the dependency between detection and no detection under the presence of a fault,
the decision boundary for tp and fn was calculated by using a support vector machine
(SVM) algorithm. This boundary is marked by a dashed line in the figure. Although the
change from tp to fn is not so much sharp and other contrary classifications can be found
beyond the boundary line, the chosen representation represents a good summary of the
individual simulations:
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First, the right and left hand side area approximates the FNR and TPR, respectively,
since the figure displays all fault-cases (Tp + Fn, see Table 6). Secondly, the intercept with
the horizontal axis (bottom and top) indicates the smallest detectable fault (see Section 2.3).
In combination with the slope of the boundary, the smallest detectable fault with respect to
the fault duration can be approximated as well. Thus, the slope can be used to understand
which parameter has more impact on the classification quality.

With these prerequisites, the results of both detection methods and with variable
window sizes w can be compared as given on the right in Figure 4. Here, each line is the
calculated decision boundary between tp and fn.

It is visible that with the same filter size the z-score is always left to the ∆µ. Thus, the
FNR is expected higher and the smallest detectable fault or rather the highest detectable
fault resistance is smaller. In addition, both methods show similar behaviour when the
filter size is increased w→ 100 as the slope decreases and the intercept with the horizontal
axis increases, resulting in a significant better detection performance based on FNR and
detectable resistances. For filter sizes w > 100, however, this trend is reversed, and a
decreasing performance is observed.

This behaviour is due to two effects that occur with increasing filter size: First, the
influence of the measurement noise on the fault signal is reduced, which also results
in significant smaller threshold levels. Therefore, smaller faults can be detected since
the signal-to-noise ratio increases. Secondly, the sudden fault signal deviation at fault
appearance (see Figure 3) is filtered as well, which increases the time to surpass the
threshold. Thus, the fault duration becomes more important on the detection results with
increasing filter size. In addition, the charge difference between the faulty cell and the
remaining cells also increases with the fault duration. Since both methods are biased by
offsets, this developing deviation provides a second possibility for fault detection besides
the initial voltage drop.

Therefore, an optimum between filtering noise and removing fault information has to
be found, which was observed in this study at approximate w = 100.

Within Table 12 the calculated quality indicators of the discussed study are given. The
table is accompanied by a graphical illustration of the values for the z-score with λ = 3 for
each given w.

Table 12. Classification quality indicators for the fault detection with both z-score and ∆µ for a fault
simulation setup with N = 2400 and ≈80% fault cases under default measurement uncertainty. The
classification is evaluated under different filter sizes w and underlying threshold level λ. Please refer
to Table 6 for the definition of the indicators. The graphical illustration visualizes the values for λ = 3,
where the corresponding window is marked by colour.

TPR FPR FNR Youden
Evaluation z ∆µ z ∆µ z ∆µ z ∆µ

w λ

1 1 0.208 0.336 0.491 0.391 0.792 0.664 −0.283 −0.055
2 0.136 0.268 0.123 0.123 0.864 0.732 0.013 0.144
3 0.079 0.227 0.006 0.033 0.921 0.773 0.073 0.194

10 1 0.774 0.820 0.354 0.362 0.226 0.180 0.420 0.458
2 0.686 0.731 0.091 0.121 0.314 0.269 0.596 0.610
3 0.617 0.665 0.022 0.024 0.383 0.335 0.595 0.642

100 1 0.966 0.966 0.353 0.337 0.034 0.034 0.613 0.630
2 0.962 0.963 0.118 0.108 0.038 0.037 0.845 0.855
3 0.955 0.958 0.035 0.029 0.045 0.042 0.920 0.929

1000 1 0.941 0.946 0.379 0.391 0.059 0.054 0.562 0.555
2 0.931 0.935 0.104 0.100 0.069 0.065 0.826 0.835
3 0.919 0.924 0.014 0.014 0.081 0.076 0.905 0.910

Please note the decreasing FNR values with increasing w, as was visually analysed
before. In addition, the approximately opposing characteristic of TPR is found in the data
as well.
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Taking TPR of the z-score at w = 100 (Table 12, grey backfill) it seems that λ = 1 is the
best option, since it has the highest value and nearly every fault was detected. The FPR,
however, also gives a high rating, meaning that ≈1/3 of fault-free cases were also classified
as fault. Thus, the TPR alone is not a suitable measure, since identifying just every test case
as fault would give TPR = 1. This problem can be solved by the Youden-index, since it
combines both sensitivity and specificity into one indicator. Using this index, the visually
determined best configuration of window and threshold level at w = 100 and λ = 3,
respectively, is confirmed. While the former analysis is focused on the classification into
fault and no-fault, other potential measures are feasible as well, e.g., the before-mentioned
detection time ∆tdetection. Due to its definition given in Equation (5), only cases with correct
fault-detection (tp) are considered by this indicator. Accordingly, the evaluation based on
only ∆tdetection can only provide a limited picture of the detection performance—similar to
using just TPR. Especially with low TPR rates (see Table 12) using ∆tdetection might remove
significant chunks from the data.

However, since ∆tdetection has been used in recent studies (see Section 2.3) the achieved
times are given in Figure 5 with respect to the corresponding fault parameter value. In
accordance with the fault parameter space described in Table 8 the variables are (a) the
fault resistance RISC, (b) the fault duration ∆tISC and (c) the time of fault tISC. For the sake
of clarity, only the z-score method is presented for the configuration λ = 3, w = 10 but
similar behaviour can be observed for other configurations as well.

Figure 5. Achieved detection times ∆tdetection of the z-score method (λ = 3, w = 10) with respect to
(a) the fault resistance RISC, (b) the fault duration ∆tISC and (c) the time of fault tISC. Please note that
only tp classified cases are considered in this analysis.

Despite the time-dependent load amplitude of the WLTP used, there is no correlation
between tISC and ∆tdetection in (c). Thus, the commonly found validation with fixed tISC
may be less prone to a biased result.

Neither with regard to RISC nor ∆tISC is a classical correlation to be observed. Instead,
however, the range of possible detection times seems to change as a function of the variables,
as can be seen from the relatively sharp edges in (a) and (b). The dashed border in
(b) represents the duration of the fault itself, so that no fault could be detected after
its clearing. This behaviour is disadvantageous for the application, as short faults may
remain undetected. With regard to the resistance, a minimum size can be recognised,
which is necessary for a detection within a certain period of time. This consideration is of
particular interest for designs according to the 5 min criterion of the GTR-EVS mentioned
at the beginning.

Removing all fault-cases without detection from the analysis for evaluating a fault
detection method seems counter-intuitive; therefore, an opposing approach is described in
the following:

For comparison of two not-detected ISC faults, the assessment of the corresponding
criticality seems feasible. However, due to limited understanding of the ISC processes and
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the highly stochastic behaviour [171] the fault characteristic often remains unclear and the
dynamic state not feasible for proper assessment [9,33,172].

Therefore, in the context of this study, the released energy during the fault duration
∆tISC starting at the ISC trigger tISC is utilized for comparison. Since the energy increases
with the ∆tISC and decreases with the fault resistance RISC the fraction of both is taken
as an approximation of the associated criticality κ of an unidentified fault as given in
Equation (18).

κ =
∆tISC

RISC
(18)

Thus, in addition to the smallest detectable fault (see above), this indicator provides
information on the severity of potential misses.

In Figure 6, the highest criticality value that was not detected is presented for the
before-mentioned variations of detection methods and parameter are given. Here, a higher
value represents an undetected fault with either longer fault duration or smaller resistance.
Thus, for most applications, a small value is desired.

Figure 6. Achieved detection quality for both methods ∆µ and z-score with respect to the underlying
threshold level λ and filter size w; Left: Youden-index (Y). Right: Approximation of criticality of
faults that were not detected (κ).

It is clearly visible that with increasing filter size the most severe missed fault becomes
less and less significant. Increasing the threshold limit, however, has a contrary effect.
The former observation is most likely linked to the already identified improvement of the
detection results with increasing filter size (see Figure 3). On the contrary, enlarging the
threshold will cause longer detection times and misses of smaller faults, which leads to a
higher not-detected criticality.

4.4. Further Investigations

For the previous analysis, the unlimited range of parameters had to be restricted to
certain values in order to allow clear evaluation and comparison. The sensitivity of these
restrictions is examined below.

4.4.1. Threshold Level

In the previous discussion, the dependence of the classification result on the chosen
threshold λ was repeatedly observed. However, the observed characteristic of increasing
performance with increasing threshold could not be predicted, as two effects are to be
expected: On the one hand, increasing the threshold reduces the probability of fp. On
the other hand, the significance of the error signal required to detect an error increases.
Accordingly, an a priori consideration is difficult to make. Therefore, and since the values
of 1, 2 and 3 were chosen rather arbitrary, the deviation of the Youden-index due to λ
was evaluated.

The corresponding characteristics are given in Figure 7 for both methods and the
known selection of w. First, the dependency between achieved detection performance—
assessed by the Youden-index Y—and threshold level λ is clearly visible. This dependency
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is in high accordance to literature statements that the threshold definition has significant
impact on the detection result [35,71]. The observation, however, calls into question
the general validity of results obtained by means of the often described trial-and-error
procedure based on experimental data, which was also used by the authors in previous
work. Due to the limited amount of test data in the context of timely and expensive
experimental abuse test and the large sample size needed [44], the trial-and-error procedure
is advantageous.

Figure 7. Achieved detection quality for both methods ∆µ and z-score with respect to the underlying
filter size w dependent on the threshold level λ and corresponding threshold ζ expressed by the
Youden-index (Y).

The evaluation in Figure 7 additionally shows that the achievable improvement de-
creases asymptotically for both methods and for all filter sizes. Thus, the reduction in
fp, which is associated with higher thresholds, is advantageous in terms of classification
quality. However, due to the asymptotic behaviour, further increases such as the 6σ-level
as described by Ouyang et al. [75] do not lead to large improvements.

4.4.2. Noise Level

For the preceding analysis, the default simulation case with normal distributed noise
with σ = 1 mV was considered. Although this value was chosen based on the broad
literature review in Section 2.1, this value is not physically derived. Thus, the influence of
the underlying noise level on the achieved detection results has to be evaluated.

In Figure 8, the detection results for simulation studies with σ = 0.5 mV, 1 mV, 2 mV
and 5 mV as separated by colour are given. According to the previous discussion, the
Youden-index is chosen to represent both sensitivity and specificity. For each filter size w,
the Youden value of both z-score and ∆µ is given side-by-side with different fill-patterns.
Please note the different alpha levels corresponding to the threshold levels.

The decrease in classification quality with increasing noise level is clearly observable
for each w, which even results in negative Youden values when only a small filter is utilized.
In addition, the differences between certain noise levels diminish for higher filter sizes.
Besides the unfiltered case (w = 1), no significant difference between z-score and ∆µ can be
observed—∆µ seem to be slightly higher more often.

The figure also shows the significant improvement of classification with higher thresh-
old levels for all cases in accordance with the discussion before. Especially the improvement
from λ = 1 to λ = 2 is advantageous for the overall performance.
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Figure 8. Achieved classification accuracy of both methods ∆µ and z-score (hatch) at discrete window
sizes w under the influence of various levels of measurement noise ∆U ∼ N (0, σU). The result
corresponding to each threshold level λ is indicated by the alpha level.

Based on the results, no linear dependency between noise level and detection qual-
ity is identified. The level of decrease seems to be dependent on both w and σ in a
non-linear fashion.

4.4.3. CtCV

In contrast to the investigated simplified simulation case with only consideration of the
measurement uncertainty, the initial review has discussed further influences of disturbances.
Thus, the preceding analysis was performed under the influence of additional CtCV in
the form of parameter variation σZ and voltage offset ∆OCV. The corresponding fault
detection accuracy is given in Figure 9 based on the already utilized Youden-index. For
reference, the simplified simulation case is also presented.

Figure 9. Achieved classification accuracy of both methods ∆µ and z-score (hatch) at discrete window
sizes w under the influence of various kinds of disturbances. In addition to the default case with
∆U, parameter variation ∆Z and ∆OCV as well as the combination of them was added. The result
corresponding to each threshold level is indicated by the alpha level.
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It is visually obvious that the performance of the investigated methods decreases
significantly under the influence of additional disturbance that are either constant (∆OCV)
or load dependent (σZ). Especially, adding ∆OCV into the data generation prevents any
reliable fault detection. Under consideration of the discussion of the fault feature charac-
teristic in Figure 3 this behaviour has become apparent due to the sensitivity of the fault
feature towards the remaining charge deviation or rather voltage offset.

Thus, both methods—as implemented in this study—are not suitable for proper
fault detection under the influence of CtCV in addition to measurement uncertainty and
optimization is required. Here, one solution could be to evaluate dUk/dt instead of Uk to
compensate for ∆OCV. As long as the load current is constant—which it is usually not—this
will also work for the deviation between cells due to the slightly deviated cell impedance.

While the performance of the investigated methods is limited by these results, the
importance of implementing CtCV into the test datasets of fault detection methods has
been underlined. As presented in Section 2.2 this has not been conducted in general yet.
Thus, the performance of the published detection methods has to be evaluated with respect
to CtCV.

5. Conclusions

Within this publication, the well-known and much discussed factors influencing
the measurement signal of battery systems, which can affect the possibilities of reliable
detection of ISC faults, were presented first. In accordance with the literature, this overview
was focused on the voltage signal. By comparing common assumptions in the literature of
these influencing variables for the validation of fault detection methods and corresponding
values from experimental investigations or from the application, significant differences
could be identified, while the measurement inaccuracy and scatter of cell parameters tend
to be overestimated, no considerations of voltage offsets due to BMS hysteresis could be
found. With respect to the orders of magnitude to be expected here compared to, for
example, measurement inaccuracy, this influence should be taken more into account in
future work.

Based on this preliminary work, a simulation workflow was presented to generate test
data for the validation of fault detection methods in a controllable manner, with different
boundary conditions and in a statistically sufficient quantity.

The resulting possibilities were tested exemplarily on two simple detection methods
and the obtained results were evaluated using various measures. Here, among other things,
the greatest criticality of false-negative classifications was introduced as a modification
of the smallest detectable fault. In addition, established indicators such as sensitivity,
specificity and the Youden-index were used to test the methods under different boundary
conditions. Based on the generated dataset, the limits of common evaluation indicators
such as TPR-only or detection time were discussed, since they give no information on
false-positive and false-negative detections. To obtain a complete picture of the detec-
tion performance, this study emphasizes both usage of non-fault validation data and
consideration of FPR or similar indicators.

For both methods, the best performance was found for a filter width of w = 100 using
a sample rate of 10 Hz and a deterministic threshold definition of ζ = µ + λσ with λ = 3.
Here, µ and σ represent the mean and standard deviation of the fault signal under fault-
free conditions, respectively. It could additionally be shown that the gain in performance
decreases asymptotically by an additional increase in the limit value. Increasing the
threshold limit further results in a higher energy release, as expressed by the criticality
κ. By simulating variants with higher measurement noise and with additional parameter
and OCV deviations, it could be shown that the performance decreases significantly with
additional disturbances.

These observed dependencies have already been partially investigated in the literature,
but not regularly or under non-uniform boundary conditions. The results of this work
emphasize the necessity of investigating these confounding variables, since the detection
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performance is significantly affected. The partly significant deviations of the results de-
pending on the definition of threshold and filter width show that published results are
only comparable to a very limited extent if the boundary conditions and test data are
not guaranteed to be identical. This results in the necessity mentioned above to compare
the numerous published methods under identical conditions and on identical data. The
adaptation of a Monte Carlo simulation for data generation presented here can be used
very well for this purpose. The main underlying concept as displayed in Figure 1 can
be also adopted to more advanced battery models and fault representation if required.
Furthermore, by using a simulation approach, the extension of the investigation on the
basis of another reference cell, as well as the investigation of a generic cell, is possible.

The identified influences of the signal disturbances on the detection quality can be
further used to optimize the requirements of the BMS, e.g., an acceptable noise level with
respect to the required detection accuracy.

Based on the preliminary work and methodology presented, the next step will be to
expand the evaluation to include other established detection methods. Furthermore, it is
planned to supplement the simulated data with experimentally determined faults in order
to take into account the dynamic unsteady behaviour of a more realistic ISC.
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Abbreviations
The following abbreviations are used in this manuscript:

BMS Battery management system
CC Constant current
CtCV Cell-to-cell variation
CV Coefficient of variation
ECM Equivalent circuit model
ESC External short circuit
EV Electric vehicle
FNR False negative rate (specificity)
FPR False positive rate
GTR Global Technical Regulation
GTR-EVS Global Technical Regulation on Electrical Vehicle Safety
GUM Guide to the expression of uncertainty in measurement
IC Integrated circuit
ISC Internal short circuit
LIB Lithium-ion battery
LUT Look-up-table
MA Moving average
NPV Negative predictive value
NRMSE Normalized root mean squared error
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OCV Open circuit voltage
P2D Pseudo two-dimensional
P-OCV Pseudo open circuit voltage
PPV Positive predictive value
RMS Root mean square
RMSE Root mean squared error
ROC Receiver operating characteristic
SOC State of Charge
SVM Support vector machine
TNR True negative rate
TPR True positive rate (sensitivity)
TR Thermal runaway
WLTP Worldwide Harmonized Light-Duty Vehicles Test Procedure
Y Youden-Index

Appendix A

Appendix A.1. Evaluation of Computational Effort

As discussed in Section 2.3, the complexity of individual methods with respect to
application on a BMS in real-time has been repeatedly measured by the observed compu-
tational time. This comparison, however, can end significantly biased due to difference
in the implementation of the certain algorithms and independent of the actual algorithm.
To illustrate this problem, three different Python™ implementations of a rolling average
algorithm are presented in the following. The algorithms are then both compared for
calculation time and result.

To recreate the presented example the implementations as given in Listing 1 have to
be saved in a file SampleFunctions.py and the remaining code of Listings 2, 3, 4 within a
Jupyter notebook-file, e.g., Evaluation.ipynb.

The mathematical background of the implemented rolling average calculations is
as follows. Given an array Amxn where n denotes the columns and m represents the
number of rows, the moving average (MA) with window length w is calculated for each
element—defined by row i and columns j—as shown in Equation (A1).

MAi,j =
1
w

i

∑
k=i−w+1

ak,j (A1)

Values for i < w are set to np.nan, which represents not a number.
The first implementation (rollingMeanPandas) is based on using the pandas package,

which is known for broad functionally when handling tabular data. Thus, the application
of the algorithm has low complexity and the already implemented optimizations are used.
In contrast, the algorithm was also implemented using the more basic functionality of the
NumPy package by iterating over each row. Since most NumPy-only algorithms can be
easily converted into code that can be processed by Numba such an implementation was
added as well.

Listing 1. Implementation of the moving average algorithms using functions from pandas, NumPy
and Numba.

import NumPy as np
from Numba import njit, prange, float64, int16

def rollingMeanPandas(data, w=10):
return data.rolling(w).mean()

def rollingMeanNumPy(data, w=10):
result=np.empty_like(data)
for row in range(data.shape[0]):
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window=np.zeros((w, data.shape[1]))
window[:]=np.nan # Initialise with np.nan

# Relevant for the first w rows
tmp=data[max(0,row−w+1):row+1, :] # Selection of data with window w
window[−len(tmp):, :]=tmp
result[row]= np.mean(window,axis=0) # Calculate mean over each column selection

return result

@njit(float64[:,:](float64[:,:],int16), parallel = True) # See above rollingMeanNumPy
def rollingMeanNumba(data, w=10):

result=np.empty_like(data)
for row in prange(data.shape[0]):

window=np.zeros((w, data.shape[1]))
window[:]=np.nan
tmp=data[max(0,row−w+1):row+1, :]
window[−len(tmp):, :]=tmp
avg=np.empty(window.shape[1], dtype=float64)
# np.mean(axis=0) is not implemented by Numba−>custom calculation
for col in range(window.shape[1]):

avg[col]=window[:,col].mean()
result[row]=avg

return result

Listing 2. Import of both functions and required packages. Random generation of test data with two
different dimensions.

from SampleFunctions import *
import pandas as pd
import NumPy as np

sampleData=np.random.rand(100000,12)
# SampleData=np.random.rand(100000,100)
sampleDF=pd.DataFrame(sampleData)

Listing 3. Evaluation of the computational time for each implemented function with respect to the
required data structure.

timeit rollingMeanPandas(sampleDF, 10)
timeit rollingMeanNumba(sampleData, 10)
timeit rollingMeanNumPy(sampleData, 10)

Listing 4. Validation of correct implementation by pair-to-pair comparison of the calculated results
based on the same random test data.

# Comparison of the evaluated arrays
print(np.allclose(rollingMeanNumba(sampleData, 10),

rollingMeanPandas(sampleDF, 10), equal_nan=True))
print(np.allclose(rollingMeanNumPy(sampleData, 10),

rollingMeanPandas(sampleDF, 10), equal_nan=True))
print(np.allclose(rollingMeanNumba(sampleData, 10),

rollingMeanNumPy(sampleData, 10), equal_nan=True))

To evaluate the three functions, sample data with both dimensions A100 000x12 and
A100 000x100 were generated randomly. The same data were stored both as pandas DataFrame
and NumPy array as shown in Listing 2.

The following results were obtained both on a standard notebook (A) and a dedicated
simulation workstation (B). The specifications are given in Table A1.
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The timeit function (see Listing 3) was used to evaluate the calculation time of each
function. This function calls every implementation multiple times to reduce the influence
of parallel processes. In addition, the similarity of all three results is verified in Listing 4.

Table A1. Technical specifications utilized to calculate the moving average on both a standard
notebook (A) and a simulation workstation (B).

Specification A B

Processor Intel Core i5-8265U Intel Xeon W-2275
Total cores 4 14
RAM 8 GB 256 GB
Year 2020 2022

The summarized computational times for all three implementations are given in
Table A2. For the same calculation, a significant variation in-between the different imple-
mentations is found. Furthermore, the step from n = 12 to n = 100 shows that both NumPy
and Numba implementation scaling much better even by the reduction in the estimated
computational time. Following these results, the initial hypothesis that computational
time is significantly dependent on the implementation itself and therefore not feasible for
comparison of different methods is confirmed.

Table A2. Computational times of the investigated moving average implementations on both stan-
dard notebook (A) and simulation workstation (B) and sample sizes.

A B
Implementation n = 12 n = 100 n = 12 n = 100

Pandas 114 ms 63.7 ms 41.3 ms 573 ms
NumPy 2.34 s 1.93 s 1.34 s 1.56 s
Numba 23.1 ms 18.3 ms 15.2 ms 24.1 ms

Appendix A.2. Consistency of Separate Simulation Studies

Within Section 4.1 a proper number of simulations for generating a reproducible
dataset was defined. The main goal is to ensure that the results gathered from evaluation
of this dataset are significant and not biased by the influences implemented randomly into
the data generation. To validate this desired property, the default case (see Table 8) was
simulated twice with identical parameters but different random seeds. For comparison,
the z-score method with λ = 3 was chosen, and the results are given for a selection of
window sizes in Table A3. Both a completely fault-free simulation study and a simulation
with ≈80% error rate are shown. The former configuration was used to define the trip
limits, which were then used to evaluate the latter (see also diagram in Figure 1). It can be
seen that for both variants, the differences between the two analyses (I and II) are neither
non-existent nor negligible due to their magnitude. In particular, the overall behaviour
such as the optimum at w = 100 is seen in both variants with error replication. The slightly
larger variation in the results obtained in comparison to the fault-free cases can be explained
by the larger number of variation possibilities with the active error simulation, while the
error-free simulations differ only by the measurement noise, the latter add the variance of
the error resistance, the duration and the timing.

Thus, the chosen number of simulations was proven sufficient for generating valid
results despite the random influences.
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Table A3. Achieved detection quality of z-score method with threshold level of λ = 3 for repetitive
simulation of the default simulation case with no-fault condition (left) and with 80% failure rate
(right). Results were obtained on the basis of 1200 and 2400 repetitions for fault-free and fault datasets,
respectively. The mean µ of the maximum fault signal per simulation run is also given. For detailed
information on the given indicators FPR and TNR please refer to Table 6.

µ FPR/% TNR/% FPR/% TNR/%
No I II I II I II No I II I II
w w
1 3.108 3.110 0.167 0.167 99.833 99.833 1 0.600 0.832 99.400 99.168
10 1.369 1.364 1.000 0.833 99.000 99.167 10 2.183 3.854 97.817 96.146
100 0.408 0.408 1.083 1.500 98.917 98.500 100 3.523 2.474 96.477 97.526
1000 0.111 0.111 1.083 0.917 98.917 99.083 1000 1.394 2.053 98.606 97.947
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