14 research outputs found

    All pure bipartite entangled states can be semi-self-tested with only one measurement setting on each party

    Full text link
    It has been known that all bipartite pure quantum states can be self-tested, i.e., any such state can be certified completely by initially measuring both subsystems of this state by proper local quantum measurements and subsequently verifying that the correlation between the measurement choices and the outcomes satisfies a specific condition. In such a protocol, a key feature is that the conclusion can still be reliable even if involved quantum measurements are untrusted, where quantum nonlocality is crucial and plays a central role, and this means that each party has to conduct at least two different quantum measurements to produce a desirable correlation. Here, we prove that when the underlying Hilbert space dimension is known beforehand, an arbitrary d×dd\times d bipartite pure state can be certified completely (up to local unitary transformations) by a certain correlation generated by a single measurement setting on each party, where each measurement yields only 3d3d outcomes. Notably, our protocols do not involve any quantum nonlocality. We believe that our result may provide us a remarkable convenience when certifying bipartite pure quantum states in quantum labs.Comment: 9 pages, comments are welcom

    Quantum skew divergence

    Get PDF
    In this paper we study the quantum generalisation of the skew divergence, which is a dissimilarity measure between distributions introduced by L. Lee in the context of natural language processing. We provide an in-depth study of the quantum skew divergence, including its relation to other state distinguishability measures. Finally, we present a number of important applications: new continuity inequalities for the quantum Jensen-Shannon divergence and the Holevo information, and a new and short proof of Bravyi's Small Incremental Mixing conjecture.Comment: Supersedes 1102:3041, as it contains many new results and applications. v2: minor modifications, including a streamlining of the proofs. 32 1/4 page

    Quantum Invariants of 3-manifolds and NP vs #P

    Full text link
    The computational complexity class #P captures the difficulty of counting the satisfying assignments to a boolean formula. In this work, we use basic tools from quantum computation to give a proof that the SO(3) Witten-Reshetikhin-Turaev (WRT) invariant of 3-manifolds is #P-hard to calculate. We then apply this result to a question about the combinatorics of Heegaard splittings, motivated by analogous work on link diagrams by M. Freedman. We show that, if #PFPNP\#\text{P}\neq\text{FP}^\text{NP}, then there exist infinitely many Heegaard splittings which cannot be made logarithmically thin by local WRT-preserving moves, except perhaps via a superpolynomial number of steps. We also outline two extensions of the above results. First, adapting a result of Kuperberg, we show that any presentation-independent approximation of WRT is also #P-hard. Second, we sketch out how all of our results can be translated to the setting of triangulations and Turaev-Viro invariants.Comment: 22 pages, 5 figure

    Developing indicators of appropriate and inappropriate end-of-life care in people with Alzheimer’s disease, cancer or chronic obstructive pulmonary disease for population-level administrative databases : a RAND/UCLA appropriateness study

    Get PDF
    Background: A substantial amount of aggressive life-prolonging treatments in the final stages of life has been reported for people with progressive life-shortening conditions. Monitoring appropriate and inappropriate end-of-life care is an important public health challenge and requires validated quality indicators. Aim: To develop indicators of appropriate and inappropriate end-of-life care for people with cancer, chronic obstructive pulmonary disease or Alzheimer's disease, measurable with population-level administrative data. Design: modified RAND/UCLA appropriateness method. Setting/participants: Potential indicators were identified by literature review and expert interviews and scored in a survey among three panels of experts (one for each disease group). Indicators for which no consensus was reached were taken into group discussions. Indicators with consensus among the experts were retained for the final quality indicator sets. Results: The final sets consist of 28 quality indicators for Alzheimer's disease, 26 quality indicators for cancer and 27 quality indicators for chronic obstructive pulmonary disease. The indicator sets measure aspects of aggressiveness of care, pain and symptom treatment, specialist palliative care, place of care and place of death and coordination and continuity of care. Conclusion: We developed a comprehensive set of quality indicators of appropriate and inappropriate end-of-life care in people with Alzheimer's disease, cancer or chronic obstructive pulmonary disease, to be used in population-level research. Our focus on administrative healthcare databases limits us to treatment and medication, excluding other important quality aspects such as communication, which can be monitored using complementary approaches. Nevertheless, our sets will enable an efficient comparison of healthcare providers, regions and countries in terms of their performance on appropriateness of end-of-life care

    Analytic quantum weak coin flipping protocols with arbitrarily small bias

    Full text link
    Weak coin flipping (WCF) is a fundamental cryptographic primitive for two-party secure computation, where two distrustful parties need to remotely establish a shared random bit whilst having opposite preferred outcomes. It is the strongest known primitive with arbitrarily close to perfect security quantumly while classically, its security is completely compromised (unless one makes further assumptions, such as computational hardness). A WCF protocol is said to have bias ϵ\epsilon if neither party can force their preferred outcome with probability greater than 1/2+ϵ1/2+\epsilon. Classical WCF protocols are shown to have bias 1/21/2, i.e., a cheating party can always force their preferred outcome. On the other hand, there exist quantum WCF protocols with arbitrarily small bias, as Mochon showed in his seminal work in 2007 [arXiv:0711.4114]. In particular, he proved the existence of a family of WCF protocols approaching bias ϵ(k)=1/(4k+2)\epsilon (k)=1/(4k+2) for arbitrarily large kk and proposed a protocol with bias 1/61/6. Last year, Arora, Roland and Weis presented a protocol with bias 1/101/10 and to go below this bias, they designed an algorithm that numerically constructs unitary matrices corresponding to WCF protocols with arbitrarily small bias [STOC'19, p.205-216]. In this work, we present new techniques which yield a fully analytical construction of WCF protocols with bias arbitrarily close to zero, thus achieving a solution that has been missing for more than a decade. Furthermore, our new techniques lead to a simplified proof of existence of WCF protocols by circumventing the non-constructive part of Mochon's proof. As an example, we illustrate the construction of a WCF protocol with bias 1/141/14.Comment: 13 + 14 pages, 3 figures; In v2, we give a new, simpler and shorter solution. For further details and updates see https://atulsingharora.github.io/WCF

    Power of Quantum Computation with Few Clean Qubits

    Get PDF
    This paper investigates the power of polynomial-time quantum computation in which only a very limited number of qubits are initially clean in the |0> state, and all the remaining qubits are initially in the totally mixed state. No initializations of qubits are allowed during the computation, nor intermediate measurements. The main results of this paper are unexpectedly strong error-reducible properties of such quantum computations. It is proved that any problem solvable by a polynomial-time quantum computation with one-sided bounded error that uses logarithmically many clean qubits can also be solvable with exponentially small one-sided error using just two clean qubits, and with polynomially small one-sided error using just one clean qubit. It is further proved in the case of two-sided bounded error that any problem solvable by such a computation with a constant gap between completeness and soundness using logarithmically many clean qubits can also be solvable with exponentially small two-sided error using just two clean qubits. If only one clean qubit is available, the problem is again still solvable with exponentially small error in one of the completeness and soundness and polynomially small error in the other. As an immediate consequence of the above result for the two-sided-error case, it follows that the TRACE ESTIMATION problem defined with fixed constant threshold parameters is complete for the classes of problems solvable by polynomial-time quantum computations with completeness 2/3 and soundness 1/3 using logarithmically many clean qubits and just one clean qubit. The techniques used for proving the error-reduction results may be of independent interest in themselves, and one of the technical tools can also be used to show the hardness of weak classical simulations of one-clean-qubit computations (i.e., DQC1 computations).Comment: 44 pages + cover page; the results in Section 8 are overlapping with the main results in arXiv:1409.677

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Device-independent certification of quantum resources

    Get PDF
    Premi extraordinari doctorat UPC curs 2017-2018. Àmbit de CiènciesThe last two decades have been a very fruitful period for the fundamental research related to quantum information theory. Today we have a fairly good understanding of how intrinsically quantum properties affect various computational and cryptographic tasks. Practical implementations are advancing as well. Devices performing quantum key distribution or quantum random number generation are already commercially available. As time goes more resources are being invested in building a device which would demonstrate and exploit quantum computational supremacy. In the context of the impending second quantum revolution it is of crucial importance to build new certification tools, improve the existing ones and understand their limits. When assessing the non-classicality of a given device it is essential to estimate which assumptions about the device are not jeopardizing the certification procedure. Device-independent scenario does not make any assumptions about the inner functioning of devices, but usually only assumes the correctness of quantum theory. It gained a lot of attention because it manages to certify the quantum character of certain devices while giving to potential adversaries all power allowed by the laws of physics. Device-independent certification of various quantum resources is the main subject of the thesis.In the first part of the thesis we focus on self-testing, one of the simplest device-independent protocols. It aims to recover quantum states solely from the observed measurement correlations. It has a fundamental importance for the device-independent paradigm because it shows which quantum states can leave a device-independent 'imprint'. Practically, it bears a significance as a possible first step in more complex protocols such as blind quantum computing, randomness generation or quantum key distribution. In this thesis we present several new self-testing results. Firstly, we provide a proof that chained Bell inequalities can be used to robustly self-test maximally entangled pair of qubits and an arbitrary number of real measurements. As a side result we also present a protocol for randomness generation based on the maximal violation of a chained Bell inequality. Secondly, we provide new self-testing protocols for several classes of multipartite quantum states: Dicke states, graph states and all states of arbitrary finite dimension admitting the Schmidt decomposition. Finally, we extend self-testing to the semi-device-independent scenario and explore its properties.In the second part we move to the certification of several quantum resources and protocols. While the device-independent scenario offers the utmost security, it has a few undesirable properties. Firstly, it is very difficult to implement. In some cases, depending on the scenario, stronger assumptions about the functioning of the devices can be made. Secondly, the scenario relies on the observation of nonlocal measurement correlations, which makes some classes of entangled states useless for device-independent protocols. We address the first difficulty by presenting quantification of entanglement and randomness in quantum networks in the measurement-device-independent scenario, in which parties are assumed to have characterized preparation devices. In this scenario all entangled states can be detected. To address the second issue, we merge measurement-device-independent entanglement detection with self-testing and present the first protocol for a completely device-independent detection of all entangled states. The protocol involves placing an entangled state to be detected in a quantum network. Finally, we identify quantum state teleportation as a representative of one-sided measurement-device-independent protocols, which helps us to propose a new benchmark for certifying the non-classicality of teleportation. By using this new benchmark we show that all entangled states can lead to a teleportation protocol that cannot be simulated classicallyLes dues darreres dècades han significat un període molt fructífer per a la investigació bàsica en relació a la teoria quàntica de la informació. Avui en dia tenim un grau de comprensió raonable sobre l'efecte que les propietats quàntiques tenen sobre diverses tasques computacionals i criptogràfiques. Paral·lelament, també es produeixen avenços en les implementacions pràctiques: Varis dispositius que realitzen distribució quàntica de claus o generació quàntica de nombres aleatoris són ja una realitat i estan disponibles comercialment. Mentrestant, més recursos s'estan invertint en construir un dispositiu que pugui provar i explotar l'anomenada superioritat quàntica. En el context d'aquesta imminent segona revolució quàntica, la importància de construir noves eines de certificació i millorar les existents és crucial. En el procés d'avaluar la no-classicalitat d'un dispositiu donat, és essencial poder estimar quines hipòtesis no comprometen el procés de certificació. L'escenari independent del dispositiu no fa cap hipòtesi sobre el funcionament intern dels dispositius, tan sols pren com a punt de partida que la teoria quàntica és correcta. Aquest escenari aconsegueix certificar el caràcter quàntic de certs dispositius, fins i tot en el supòsit que adversaris potencials tenen a la seva disposició tot el poder que les lleis de la física permeten. El tema principal d'aquesta tesi és la certificació de diversos recursos quàntics de manera independent del dispositiu. En la primera part de la tesi ens centrem en l'autoavaluació, un dels protocols independents del dispositiu més senzills. El seu objectiu és recuperar els estats quàntics que s'usen, només a partir de les correlacions observades al mesurar. Té una importància fonamental en el paradigma independent del dispositiu ja que mostra quins estats quàntics deixen una 'empremta'. En aquesta tesi presentem varis resultats referents a l'autoavaluació. Primerament, demostrem que les desigualtats de Bell encadenades poden ser usades per auto-avaluar parelles de qubits màximament entrellaçats de manera robusta, així com estats de Dicke, estats de grafs i estats de dimensió finita arbitrària que admetin la descomposició de Schmidt. Finalment, estenem l'autoavaluació a l'escenari semi-independent del dispositiu i n'explorem les seves propietats. En la segona part de la tesi anem a la certificació de varis recursos quàntics i protocols. Mentre que l'escenari independent del dispositiu ofereix seguretat en grau màxim, té algunes propietats que hom voldria evitar. És difícil d'implementar: En alguns casos es poden plantejar hipòtesis més fortes sobre el funcionament dels dispositius.En segon lloc, l'escenari es basa en l'observació de correlacions no locals, cosa que inutilitza certes classes d'estats entrellaçats per a protocols independents del dispositiu. Abordem el primer repte presentant una quantificació de l'entrellaçament i l'aleatorietat en xarxes quàntiques en l'escenari de mesurament independent del dispositiu, on se suposa que totes les parts tenen els seus aparells de preparació caracteritzats. En aquest cas, es poden detectar tots els estats entrellaçats. Quant al segon problema, combinem l'escenari de la mesurament independent del dispositiu amb l'autoavaluació i presentem el primer protocol per a una detecció de tots els estats entrellaçats de manera independent del dispositiu. El protocol implica la col·locació d'un estat entrellaçat per ser detectat en una xarxa quàntica. Finalment, identifiquem la teleportació d'estats quàntics com un representant dels protocols unilaterals de mesurament independent del dispositiu, el qual ens ajuda a proposar un nou punt de referència per certificar la no-classicalitat de la teleportació. Partint d'aquest punt de referència, demostrem que tots els estats entrellaçats indueixen un experiment de teleportació que no pot ser simulat de manera clàssica.Award-winningPostprint (published version

    Device-independent certification of quantum resources

    Get PDF
    The last two decades have been a very fruitful period for the fundamental research related to quantum information theory. Today we have a fairly good understanding of how intrinsically quantum properties affect various computational and cryptographic tasks. Practical implementations are advancing as well. Devices performing quantum key distribution or quantum random number generation are already commercially available. As time goes more resources are being invested in building a device which would demonstrate and exploit quantum computational supremacy. In the context of the impending second quantum revolution it is of crucial importance to build new certification tools, improve the existing ones and understand their limits. When assessing the non-classicality of a given device it is essential to estimate which assumptions about the device are not jeopardizing the certification procedure. Device-independent scenario does not make any assumptions about the inner functioning of devices, but usually only assumes the correctness of quantum theory. It gained a lot of attention because it manages to certify the quantum character of certain devices while giving to potential adversaries all power allowed by the laws of physics. Device-independent certification of various quantum resources is the main subject of the thesis.In the first part of the thesis we focus on self-testing, one of the simplest device-independent protocols. It aims to recover quantum states solely from the observed measurement correlations. It has a fundamental importance for the device-independent paradigm because it shows which quantum states can leave a device-independent 'imprint'. Practically, it bears a significance as a possible first step in more complex protocols such as blind quantum computing, randomness generation or quantum key distribution. In this thesis we present several new self-testing results. Firstly, we provide a proof that chained Bell inequalities can be used to robustly self-test maximally entangled pair of qubits and an arbitrary number of real measurements. As a side result we also present a protocol for randomness generation based on the maximal violation of a chained Bell inequality. Secondly, we provide new self-testing protocols for several classes of multipartite quantum states: Dicke states, graph states and all states of arbitrary finite dimension admitting the Schmidt decomposition. Finally, we extend self-testing to the semi-device-independent scenario and explore its properties.In the second part we move to the certification of several quantum resources and protocols. While the device-independent scenario offers the utmost security, it has a few undesirable properties. Firstly, it is very difficult to implement. In some cases, depending on the scenario, stronger assumptions about the functioning of the devices can be made. Secondly, the scenario relies on the observation of nonlocal measurement correlations, which makes some classes of entangled states useless for device-independent protocols. We address the first difficulty by presenting quantification of entanglement and randomness in quantum networks in the measurement-device-independent scenario, in which parties are assumed to have characterized preparation devices. In this scenario all entangled states can be detected. To address the second issue, we merge measurement-device-independent entanglement detection with self-testing and present the first protocol for a completely device-independent detection of all entangled states. The protocol involves placing an entangled state to be detected in a quantum network. Finally, we identify quantum state teleportation as a representative of one-sided measurement-device-independent protocols, which helps us to propose a new benchmark for certifying the non-classicality of teleportation. By using this new benchmark we show that all entangled states can lead to a teleportation protocol that cannot be simulated classicallyLes dues darreres dècades han significat un període molt fructífer per a la investigació bàsica en relació a la teoria quàntica de la informació. Avui en dia tenim un grau de comprensió raonable sobre l'efecte que les propietats quàntiques tenen sobre diverses tasques computacionals i criptogràfiques. Paral·lelament, també es produeixen avenços en les implementacions pràctiques: Varis dispositius que realitzen distribució quàntica de claus o generació quàntica de nombres aleatoris són ja una realitat i estan disponibles comercialment. Mentrestant, més recursos s'estan invertint en construir un dispositiu que pugui provar i explotar l'anomenada superioritat quàntica. En el context d'aquesta imminent segona revolució quàntica, la importància de construir noves eines de certificació i millorar les existents és crucial. En el procés d'avaluar la no-classicalitat d'un dispositiu donat, és essencial poder estimar quines hipòtesis no comprometen el procés de certificació. L'escenari independent del dispositiu no fa cap hipòtesi sobre el funcionament intern dels dispositius, tan sols pren com a punt de partida que la teoria quàntica és correcta. Aquest escenari aconsegueix certificar el caràcter quàntic de certs dispositius, fins i tot en el supòsit que adversaris potencials tenen a la seva disposició tot el poder que les lleis de la física permeten. El tema principal d'aquesta tesi és la certificació de diversos recursos quàntics de manera independent del dispositiu. En la primera part de la tesi ens centrem en l'autoavaluació, un dels protocols independents del dispositiu més senzills. El seu objectiu és recuperar els estats quàntics que s'usen, només a partir de les correlacions observades al mesurar. Té una importància fonamental en el paradigma independent del dispositiu ja que mostra quins estats quàntics deixen una 'empremta'. En aquesta tesi presentem varis resultats referents a l'autoavaluació. Primerament, demostrem que les desigualtats de Bell encadenades poden ser usades per auto-avaluar parelles de qubits màximament entrellaçats de manera robusta, així com estats de Dicke, estats de grafs i estats de dimensió finita arbitrària que admetin la descomposició de Schmidt. Finalment, estenem l'autoavaluació a l'escenari semi-independent del dispositiu i n'explorem les seves propietats. En la segona part de la tesi anem a la certificació de varis recursos quàntics i protocols. Mentre que l'escenari independent del dispositiu ofereix seguretat en grau màxim, té algunes propietats que hom voldria evitar. És difícil d'implementar: En alguns casos es poden plantejar hipòtesis més fortes sobre el funcionament dels dispositius.En segon lloc, l'escenari es basa en l'observació de correlacions no locals, cosa que inutilitza certes classes d'estats entrellaçats per a protocols independents del dispositiu. Abordem el primer repte presentant una quantificació de l'entrellaçament i l'aleatorietat en xarxes quàntiques en l'escenari de mesurament independent del dispositiu, on se suposa que totes les parts tenen els seus aparells de preparació caracteritzats. En aquest cas, es poden detectar tots els estats entrellaçats. Quant al segon problema, combinem l'escenari de la mesurament independent del dispositiu amb l'autoavaluació i presentem el primer protocol per a una detecció de tots els estats entrellaçats de manera independent del dispositiu. El protocol implica la col·locació d'un estat entrellaçat per ser detectat en una xarxa quàntica. Finalment, identifiquem la teleportació d'estats quàntics com un representant dels protocols unilaterals de mesurament independent del dispositiu, el qual ens ajuda a proposar un nou punt de referència per certificar la no-classicalitat de la teleportació. Partint d'aquest punt de referència, demostrem que tots els estats entrellaçats indueixen un experiment de teleportació que no pot ser simulat de manera clàssica
    corecore