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July 16, 2018



Acknowledgements

At the end of my PhD I feel incredibly blessed and happy for the last years spent in
Barcelona. It has been a period of a big professional and personal growth for me and I am
deeply grateful to many people who helped me to be where I am now.

First and foremost I owe big gratitude to Toni Acin for letting me do my master thesis
and PhD in his group. You have created a great atmosphere in the group for Quantum In-
formation Theory which made my PhD journey very pleasant and exciting. I am grateful
for mentoring but also giving me freedom to do research I like and enjoy, for sharing your
ideas and thoughts and giving many valuable advices.

No less gratitude I owe to my co-supervisor and office mate Dani Cavalcanti. Thanks
for helping me grow as a reseracher and involving me in our beautiful projects about tele-
portation.

I was very lucky to work with some amazing people in QIT group and also learn a
lot from them. Huge thanks to Matty Hoban, my master thesis supervisor, who intro-
duced me to the field of quantum nonlocality, supervised my first steps as a researcher
and continued to be a wonderful collaborator during my PhD. A warm thanks to Paul, for
his patience and kindness and for teaching me so much about so many different topics.
I owe immense gratitude to Remik, for helping me with my first project during PhD and
continuing working with me, i.e. teaching me how to solve problems and write papers.
Many thanks to Joe for a great project we managed to finish together and for being a true
inspiration as a scientist. Also, I have to thank to Janek, for sharing his excitement about
science and showing me how to patiently and systematically attack difficult problems.
Furthermore, I was happy to work with my fellow young PhD students Alexia, Boris,
Flavio, Flo and Leo. We were learning many things together and without them this thesis
would never be finished. Many thanks to the rest of my collaborators Andrea, Jed and
Jordi. I hope we will continue solving interesting problems.

QIT group is a great PhD environment. I met so many wonderful people during my
master and PhD. A huge thanks to: Alejandro, Alex, Ariel, Arnau, Belen, Bogna, Chris-
tian, Chung-Yun, Dario, Elsa, Eric, Erik, Felix, Gabriel, Gonzalo, Jimmy, Karen, Maciek,

1



Mafalda, Manuel, Markus, Marti, Matteo, Michal, Moha, Patrick, Peter, Senaida, Victo-
ria, Xavier, Zahra.

I would like to thank to Thomas Vidick for letting me spend three months in his group
in Caltech and discussing science with me. It was a complete perspective-changing period
for me.

I owe special gratitude to several people who left a huge mark on my life in Barcelona,
made me feel like at home and influenced my significant personal growth. A paragraph
in this acknowledgments cannot do any justice to all goods I received from Alexia, Boris,
Flavio, Leo, Joe, Sarah and Simona. Special thanks for Antoine and Maria! I hope for a
lifetime of happy encounters with them.

For reading parts of this thesis and giving a valuable feedback I thank Alexia, Boris,
Flavio, Joe, Marijana and Sarah.
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hvala stricu Petru i strini Gojki za i moralnu i materijalnu podršku i pažnju svih ovih
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Abstract

The last two decades have been a very fruitful period for the fundamental research related
to quantum information theory. Today we have a fairly good understanding of how intrin-
sically quantum properties affect various computational and cryptographic tasks. Practi-
cal implementations are advancing as well. Devices performing quantum key distribution
or quantum random number generation are already commercially available. As time goes
more resources are being invested in building a device which would demonstrate and ex-
ploit quantum computational supremacy. In the context of the impending second quantum
revolution it is of crucial importance to build new certification tools, improve the existing
ones and understand their limits. When assessing the non-classicality of a given device it
is essential to estimate which assumptions about the device are not jeopardizing the cer-
tification procedure. Device-independent scenario does not make any assumptions about
the inner functioning of devices, but usually only assumes the correctness of quantum
theory. It gained a lot of attention because it manages to certify the quantum character
of certain devices while giving to potential adversaries all power allowed by the laws of
physics. Device-independent certification of various quantum resources is the main sub-
ject of this thesis.

In the first part of the thesis we focus on self-testing, one of the simplest device-
independent protocols. It aims to recover quantum states solely from the observed mea-
surement correlations. It has a fundamental importance for the device-independent paradigm
because it shows which quantum states can leave a device-independent ’imprint’. Prac-
tically, it bears a significance as a possible first step in more complex protocols such as
blind quantum computing, randomness generation or quantum key distribution. In this
thesis we present several new self-testing results. Firstly, we provide a proof that chained
Bell inequalities can be used to robustly self-test maximally entangled pair of qubits and
an arbitrary number of real measurements. As a side result we also present a protocol for
randomness generation based on the maximal violation of a chained Bell inequality. Sec-
ondly, we provide new self-testing protocols for several classes of multipartite quantum
states: Dicke states, graph states and all states of arbitrary finite dimension admitting the
Schmidt decomposition. Finally, we extend self-testing to the semi-device-independent
scenario and explore its properties.
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In the second part of the thesis we move to the certification of several quantum re-
sources and protocols. While the device-independent scenario offers the utmost security,
it has a few undesirable properties. Firstly, it is very difficult to implement. In some cases,
depending on the scenario, stronger assumptions about the functioning of the devices can
be made. Secondly, the scenario relies on the observation of nonlocal measurement cor-
relations, which makes some classes of entangled states useless for device-independent
protocols. We address the first difficulty by presenting quantification of entanglement
and randomness in quantum networks in the measurement-device-independent scenario,
in which parties are assumed to have characterized preparation devices. In this scenario
all entangled states can be detected. To address the second issue, we merge measurement-
device-independent entanglement detection with self-testing and present the first proto-
col for a completely device-independent detection of all entangled states. The proto-
col involves placing an entangled state to be detected in a quantum network. Finally,
we identify quantum state teleportation as a representative of one-sided measurement-
device-independent protocols, which helps us to propose a new benchmark for certifying
the non-classicality of teleportation. By using this new benchmark we show that all en-
tangled states can lead to a teleportation experiment that cannot be simulated classically.
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Resum

Les dues darreres dècades han significat un perı́ode molt fructı́fer per a la investigació
bàsica en relació a la teoria quàntica de la informació. Avui en dia tenim un grau de com-
prensió raonable sobre l’efecte que les propietats quàntiques tenen de manera intrı́nseca
sobre diverses tasques computacionals i criptogràfiques. Paral·lelament, també es pro-
dueixen avenços en les implementacions pràctiques: Varis dispositius que realitzen dis-
tribució quàntica de claus o generació quàntica de nombres aleatoris són ja una realitat
i estan disponibles comercialment. Mentrestant, més i més recursos s’estan invertint en
construir un dispositiu que pugui provar i explotar l’anomenada superioritat quàntica.
En el context d’aquesta imminent segona revolució quàntica, la importància de construir
noves eines de certificació, millorar les existents i entendre els seus lı́mits és crucial. En
el procés d’avaluar la no-classicalitat d’un dispositiu donat, és essencial poder estimar
quines hipòtesis sobre el dispositiu no comprometen el procés de certificació. L’escenari
independent del dispositiu (device-independent) no fa cap hipòtesi sobre el funcionament
intern dels dispositius, tan sols pren com a punt de partida que la teoria quàntica és cor-
recta. Aquest escenari ha guanyat molta atenció perquè aconsegueix certificar el caràcter
quàntic de certs dispositius, fins i tot en el supòsit que adversaris potencials tenen a la
seva disposició tot el poder que les lleis de la fı́sica permeten. El tema principal d’aquesta
tesi és la certificació de diversos recursos quàntics de manera independent del dispositiu.

En la primera part de la tesi ens centrem en l’autoavaluació (self-testing), un dels pro-
tocols independents del dispositiu més senzills. El seu objectiu és recuperar els estats
quàntics que s’usen, només a partir de les correlacions observades al mesurar. Té una
importància fonamental en el paradigma independent del dispositiu ja que mostra quins
estats quàntics deixen una ’empremta’. A la pràctica, significa un primer pas necessari
per a protocols molt més complexes com ara la computació quàntica a cegues o la gen-
eració quàntica de claus aleatòries. En aquesta tesi presentem varis resultats referents a
l’autoavaluació. Primerament, demostrem que les desigualtats de Bell encadenades po-
den ser usades per auto-avaluar parelles de qubits màximament entrellaçats de manera
robusta, aixı́ com estats de Dicke, estats de grafs i estats de dimensió finita arbitrària que
admetin la descomposició de Schmidt. Finalment, estenem l’autoavaluació a l’escenari
semi-independent del dispositiu i n’explorem les seves propietats.

En la segona part de la tesi anem a la certificació de varis recursos quàntics i proto-
cols. Mentre que l’escenari independent del dispositiu ofereix seguretat en grau màxim,
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té algunes propietats que hom voldria evitar. Primerament, és difı́cil d’implementar: En
alguns casos, depenent de la situació, es poden plantejar hipòtesis més fortes sobre el
funcionament dels dispositius. En segon lloc, l’escenari es basa en l’observació de cor-
relacions no locals, cosa que inutilitza certes classes d’estats entrellaçats per a protocols
independents del dispositiu. Abordem el primer repte presentant una quantificació de
l’entrellaçament i l’aleatorietat en xarxes quàntiques en l’escenari de mesurament in-
dependent del dispositiu, on se suposa que totes les parts tenen els seus aparells de
preparació caracteritzats. En aquest cas, es poden detectar tots els estats entrellaçats.
Quant al segon problema, combinem l’escenari de la mesurament independent del dis-
positiu amb l’autoavaluació i presentem el primer protocol per a una detecció de tots els
estats entrellaçats de manera independent del dispositiu. El protocol implica la col·locació
d’un estat entrellaçat per ser detectat en una xarxa quàntica. Finalment, identifiquem la
teleportació d’estats quàntics com un representant dels protocols unilaterals de mesura-
ment independent del dispositiu, el qual ens ajuda a proposar un nou punt de referència
per certificar la no-classicalitat de la teleportació. Partint d’aquest punt de referència, de-
mostrem que tots els estats entrellaçats indueixen un experiment de teleportació que no
pot ser simulat de manera clàssica.
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Chapter 1

Introduction and motivation

The groundbreaking significance of quantum mechanics and its status as one of the most
successful theories are well established. The first half of the previous century was marked
by the shift of the scientific paradigm based primarily on the mathematical and philo-
sophical foundations of quantum theory but even more on its overwhelming success in
explaining existing and predicting new phenomena. Some of the most successful conse-
quences are the theories of atomic structure, chemical reactions, superconductivity, neu-
tron stars, quantum electrodynamics, the structure of hadrons and the Standard model.
Quantum theory has spanned its validity to all physical aspects of our world, except for
gravity. While being strikingly successful as a fundamental scientific theory it also made
a huge impact on the development of modern-day technologies. Discovery of transistors,
lasers, superconductors, solar cells etc., termed as the first quantum revolution came as a
result of the profound understanding of the structure of matter offered by quantum theory.

Another scientific trademark of the twentieth century are the pioneering works of
Turing [Tur37] and Shannon [Sha48], which laid the foundations of the information the-
ory and computer science. Only together with the emergence of these abstract theories
could the discoveries related to the first quantum revolution lead to the rise of the In-
formation age we live in. However, the contribution of quantum theory to information
processing did not end there. A qualitatively different alliance between quantum and
information theory led to the development of a new interdisciplinary field, quantum infor-
mation theory. The central idea is that information processing protocols can be improved
by harnessing authentically quantum behavior. At the core of the quantum advantages for
information processing lie non-classical correlations stemming from quantum entangle-
ment [HHHH09]. The results obtained in the last few decades in quantum information
processing are heralds of a new age for quantum technologies, sometimes termed as the
second quantum revolution. The main technological advancements related to this second
quantum revolution are supposed to be quantum computers [Pre18] and various quantum
communication systems with the emphasis on the cryptographic applications [BLMS00].
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Such quantum devices can perform tasks which cannot be done, nor simulated efficiently,
by any classical machine.

At the time when we anticipate a wide commercial use of quantum devices the prob-
lem of their certification becomes critically important. How can one ensure that some
quantum device operates according to its specifications if it performs a task which cannot
be simulated with the available technology? If the device produces a sequence of ran-
dom numbers [AM16], how can one be sure that the sequence is genuinely random and
not created by some pseudorandom number generator [Ruk+10]? Similarly, if a quantum
computer is supposed to solve a problem which cannot be efficiently solved even with a
superpowerful classical computer how can one certify the authenticity of the solution and
the device? The importance of reliable certification techniques is furthermore dictated by
the operating scenario of such devices, which must take into account potential adversarial
activities. In view of this, the certification should be ideally performed with the minimal
amount of assumptions on the inner functioning of devices. Such scenario exists and is
called device-independent [Aci+07, CK11], since it drives conclusions solely from cer-
tain data correlations obtained from a process in which all devices are treated as black
boxes. Quantum information protocols in device-independent scenario are formulated
taking into account devices which are subject to arbitrary noise or even malicious adver-
sarial activites. The direct characterisation of devices used in some quantum information
protocol is many times a very complicated process, even more so if the protocol involves
entangled states of many particles. Certification performed in a device-independent man-
ner promises the unprecedented level of reliability, mostly because it bypasses the verifi-
cation of a specific physical implementation of the corresponding protocol.

The main subject of this thesis is the device-independent certification of quantum
resources. In the rest of this introductory section we will present several certification
problems and outline the contributions derived in this thesis.

• Device-independent certification of quantum states - self testing.
The basic constituents of almost every quantum information protocol are a source
of an entangled quantum state and one or more measurement devices. Ensuring
that the source functions according to its specifications in the device-independent
setting is termed self-testing [MY04]. It is one of the crucial steps towards ensur-
ing the security/validity of the protocol. Self-testing can be done on its own before
continuing with the protocol, i.e. it can be a prerequisite for the protocol (as in the
case of delegated quantum computing [RUV13]) or it can be hidden as an integral
part of the protocol (as in the case of device-independent quantum key distribu-
tion or randomness generation [Aci+07]). On its own self-testing can be consid-
ered to be the most fundamental device-independent protocol and as such it drew
a significant attention within the quantum information community in the last years
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[BP15, Wu+14, PVN14, McK14, MYS14, YVBSN14, Kan16, Kan17, CGS17].
The aim is to have practically useful self-testing protocols for a wide range of pure
entangled quantum states.

Our contributions:

? We proved that the family of Bell inequalities named chained Bell inequal-
ities [Pea70], maximally violated by the maximally entangled states and an
arbitrary number of measurements is self-testing the state and measurements
leading to the maximal violation [ŠASA16]. The presented self-testing proto-
col is robust. As a direct consequence, we proved that the maximal violation
of any chained Bell inequality can be used for randomness certification.

? We made another contribution in a, rather unexplored, self-testing of multipar-
tite quantum states [ŠCAA17]. By extending the results from self-testing bi-
partite quantum states, we proved that a large class of multipartite qubit states
can be self-tested. Among them are the multipartite qudit states admitting the
Schmidt decomposition, which is the first self-test of some multipartite qudit
state.

• Semi-device-independent approach to self-testing.
While offering the utmost security of quantum protocols, the device-independent
scenario in some cases may be a surplusage. For example, in some cases one party,
involved in the protocol, is building their own measurement device. In that case
it makes sense to treat the measurement device as characterized and use it to per-
form quantum state tomography. Also, one or more parties involved in a protocol
may have a trusted preparation device or be able to bound dimension of their sys-
tem. Any additional trusted resource characterizes a different kind of semi-device-
independent scenario. Since many times it is quite challenging to perform fully
device-independent protocols, various semi-device-independent approaches gained
a lot of attention and proved to be quite useful for some tasks. In this thesis we
explored how self-testing behaves when full device-independence is dropped.

Our contributions:

? First, we explored the properties of self-testing in the one-sided-device-independent
scenario when one or more parties are able to perform tomography of their
share of the state [ŠH16]. We defined two different approaches to self-testing
in this scenario, assemblage-based and correlation-based. While obtaining
a better tolerance to experimental errors we show that this improvement is
only constant. Unlike some other tasks, the state certification does not benefit
qualitatively from the one-sided-device-independent scenario compared to the
fully device-independent.
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? We defined self-testing in the measurement-device-independent scenario, where
all parties have access to a characterized preparation device and can use quan-
tum states as inputs for their measurement devices [DŠHA18]. This type of
state certification is placed at the transition between full state tomography and
device-independent self-testing. We are able to prove that every pure entan-
gled quantum state can be certified in this way. Also, we define a numerical
approach to measurement-device-independent state certification, based on the
generalization of the Navascues-Pironio-Acı́n hierarchy [NPA07] to the sce-
nario with quantum inputs.

• Certifying quantum state teleportation.
Quantum state teleportation [Ben+93] is one of the linchpins of quantum infor-
mation theory. It is the main building block of more advanced protocols such as
cryptographic tasks [GRTZ02], quantum repeaters [BDCZ98], quantum computing
[GC99, RB01] and many others. For its ubiquitous character in quantum infor-
mation processing, it is of crucial importance to find the best way to certify its
non-classicality and understand its relation to other fundamental concepts such as
entanglement and nonlocality. Usually, the non-classicality of a teleportation pro-
tocol is witnessed by demonstrating an average teleportation fidelity larger than the
one that can be achieved by any classical teleportation protocol.

Our contributions:

? In [CSŠ17] we introduced a new benchmark to certify non-classicality of a
teleportation protocol, taking into account all available data. The certification
can be done by performing a semi-definite programming (SDP) optimization,
whose dual form gives a teleportation witness. Using this benchmark we can
show that every entangled state, including those which cannot reach a better
average teleportation fidelity than separable states can produce teleportation
data which cannot be simulated classically,

? Using the same benchmark we introduce several different quantifiers of quan-
tum teleportation and relate them to the corresponding entanglement quanti-
fiers.

• Certifying entanglement and randomness in quantum networks.
The detection of entanglement in quantum networks consisting of many parties is
one of the important steps towards building quantum communication and computa-
tion networks. In the emergence of such networks, it is beneficial to understand the
simplest ways to detect and quantify entanglement in a network, using any available
resource.
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Our contributions:

? We consider a scenario where the measurement devices used for this certifi-
cation are uncharacterized. In this case, it is well known that by using quan-
tum states as inputs for the measurement devices it is possible to detect any
entangled state (a situation known as measurement device-independent en-
tanglement witnessing [Bus12, BRLG13, RBGL13, CHW13, Hal16]). Here
we go beyond entanglement detection and provide methods to estimate the
amount of entanglement in a quantum network [ŠSC17]. We also consider
the task of randomness certification and show that randomness can be certi-
fied in a variety of cases, including single-partite experiments or setups using
only separable states.

• Device-independence detection of entanglement.
The device-independent paradigm is inherently related to the fact that a Bell in-
equality violation certifies the presence of entanglement. In turn, entanglement
detection is one of the most fundamental device-independent tasks. The solution
to this task in a device-independent way does not come immediately, because not
every entangled state violates a Bell inequality [Wer89]. Different variants of the
standard Bell scenario were suggested, but none of them proved to be convenient
for obtaining nonlocality from every entangled state.

Our contributions:

? We construct the first protocol to certify the entanglement of all entangled
quantum states in a fully device-independent manner [BŠCA18]. Entangle-
ment is certified from a correlation inequality based on the appropriate entan-
glement witness. The proposed scenario differs from the Bell test in adding
auxiliary parties, i.e. placing the state of interest in a quantum network. The
protocol borrows ideas from self-testing and measurement-device-independent
entanglement certification. As a by-product, we present a self-test of the ten-
sor products of Pauli measurements on n copies of the maximally entangled
pairs of qubits [BŠCA18a].

We expect that the work presented in this thesis will be helpful for constructing cer-
tification tools for complex quantum devices and bridge the gap between rich theoretical
insights and emerging practical implementations.
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Chapter 2

Preliminaries

In this chapter, we review some of the basic concepts that we use in the rest of this thesis.
The central concepts of this thesis, those of entanglement and nonlocality, are discussed
in Sections 2.1 and 2.2, respectively. Einstein-Podolsky-Rosen (EPR) steering, a concept
halfway between entanglement and nonlocality, is the subject of Section 2.4. Section 2.3
briefly recapitulates the main ideas behind the device-independent approach to quantum
information theory. Self-testing, one of the most basic device-independent protocols, is
the subject of Section 2.5. The randomness that emerges from nonlocal correlations is
described in Section 2.6. Finally, semidefinite programming, a widely-used technique in
this thesis, is reviewed in Section 2.7.

2.1 Quantum entanglement
Quantum entanglement is one of the main distinctive features of quantum theory. It was
first described in the works of Einstein, Podolsky and Rosen [EPR35] and Schrödinger
[Sch35], who coined the term ’entanglement’. The existence of entangled states is the
consequence of the superposition principle and the structure of the state space of multi-
partite systems. Namely, a pure state of a single particle is a unit-norm vector in a Hilbert
space, while a pure state of two particles is a vector in the tensor product of two Hilbert
spaces H A⊗H B. A pure state of two particles |ψ〉AB is called a product state if it can
be written as the tensor product of states of each particle,

|ψ〉AB = |φ〉A⊗|ξ 〉B .

States that are not product are entangled. One example of entangled states is the so-called
singlet state

|Ψ−〉= 1√
2
(|01〉− |10〉)
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A mixed state is a statistical ensemble of pure states. It is described by a density matrix,
defined in the following way

ρ
AB = ∑

j
v j |ψ j〉〈ψ j| ,

where |ψ j〉 are pure states and v j positive numbers summing up to one. A mixed state is
called separable if it can be written as a convex combination of product states:

ρ
AB = ∑

j
p jρ

A
j ⊗ρ

B
j .

If it is not the case, the mixed state is said to be entangled.

The concept of entanglement straightforwardly generalizes to multipartite systems,
but states of more than two particles exhibit a richer entanglement structure. For example,
a state of three particles ρABC is fully separable if it can be written as

ρ
ABC = ∑

j
p j |ψ j〉〈ψ j|A⊗|φ j〉〈φ j|B⊗|ξ j〉〈ξ j|C . (2.1)

If ρABC cannot be written in this form it is entangled. A state ρABC
a that cannot be written

in the form (2.1) but admits the following decomposition

ρ
ABC
a = ∑

j
p j |ψ j〉〈ψ j|A⊗|φ j〉〈φ j|BC .

is said to be separable across the bipartition A|BC. Analogously, it is possible to define
states which are separable across different bipartitions and denote them by ρABC

b (separa-
ble across the bipartition AC|B) and ρACB

c (separable across bipartition AB|C ). Finally,
a state is said to be biseparable if it can be written as a convex combination of states that
are separable across some bipartition:

ρ
ABC = paρ

ABC
a + pbρ

ACB
b + pcρ

ABC
c , pa + pb + pc = 1.

A state ρABC is said to be genuinely multipartite entangled (GME) if it is not biseparable.

For a long time entangled states were the subject of research strictly related to the
foundations of quantum theory. An inflation of the works related to the theory of quan-
tum entanglement came with the development of quantum information theory. In the last
decades entanglement has been scrutinized no only as a curious aspect of quantum theory,
but also as a pivotal resource for quantum information processing. Quantum cryptogra-
phy [BLMS00], quantum computing [NC00], quantum randomness generation [AM16]
and recently quantum machine learning [Bia+17] all use entanglement as one of their
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primary resources. The most famous entangled states in quantum information theory are
maximally entangled pairs of qubits, or ’Bell states’:

|Φ+〉= 1√
2
(|00〉+ |11〉), |Φ−〉= 1√

2
(|00〉− |11〉),

|Ψ+〉= 1√
2
(|01〉+ |10〉), |Ψ−〉= 1√

2
(|01〉− |10〉).

These states are used in pioneering quantum information protocols such as quan-
tum state teleportation [Ben+93], superdense coding [BW92], quantum key distribution
[Eke91]. Since the four Bell states can be transformed into each other by applying a local
unitary transformation, they all represent the same resource, and the state |Φ+〉 is usually
taken to be the representative. Due to their practical importance, the question of how to
extract Bell pairs from some amount of arbitrary mixed entangled states gained a lot of at-
tention. A protocol that starts from n copies of some entangled state ρ , applies some local
operations and classical communication (LOCC) and ends up with m (m ≤ n) copies of
|Φ+〉 is called distillation of entanglement [BBPS96, Ben+96]. States that are entangled
but useless in a distillation protocol are called bound entangled states [HHH99].

2.1.1 Detection of entanglement
The central problem of entanglement theory is to find simple and efficient entanglement
detection criteria. There is not much hope of finding a universal and efficient criterion,
since determining if an arbitrary state is entangled or not belongs to the class of NP-
hard problems [Gur04]. However, for some instances of states, the problem can be easily
solved. For example, for every pure bipartite state |ψ〉AB ∈ CdA ⊗CdB , there exist two
local bases called ’Schmidt bases’, in which the state has the Schmidt form

|ψ〉AB =
s

∑
j=1

λ j | j〉A | j〉B . (2.2)

The number s ≤ min(dA,dB) is called the Schmidt rank, and it is bigger than one if and
only if |ψ〉AB is entangled.

A necessary condition for a mixed state to be entangled was formulated by Peres
[Per96], and it consists in checking positivity of the partial transpose of a density matrix.
Separable states have positive partial transpose:(

ρ
AB)TA = ∑

i
pi
(
ρ

A
i
)T ⊗ρ

B
i ≥ 0,

because transposition is a positive map. However, positivity of the partial transpose is
not a sufficient condition, except for the states whose product of local dimensions is not
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Figure 2.1: A representation of the sets of separable and all quantum states. The set
of separable states is a convex subset of the set of all quantum states. By virtue of the
Hahn-Banach theorem, for every entangled state ρ there exists an entanglement witness
such that tr(Wρsep)> 0 for every separable state ρsep, but tr(Wρ)< 0.

bigger than six [HHH96]. This condition is usually named PPT criterion and states with
positive partial transpose are called PPT states.

Since the set of separable states is convex, its characterisation can be facilitated by
using the Hahn-Banach separation theorem [Kre89].

Theorem 1. If S and E are disjoint closed convex subsets of a Banach space X, and S is
compact, then there exists a continuous linear functional f on X such that

sup
x∈S

f (x)≤ inf
y∈E

f (y).

As a consequence of this theorem, for every entangled state, there is a linear func-
tional separating it from the set of separable states. By the Riesz representation theorem
[Kre89], the space of linear functional is isomorphic to the set of bounded linear opera-
tors. We can thus formulate the following corollary:

Corollary 1.1. [Ter00] For every entangled state ρ , there exists a Hermitian operator W
such that tr[Wρ]< 0 and tr[Wσ ]> 0 for all separable states σ . The operator W is called
entanglement witness and it witnesses the entanglement of the state ρ .

Equivalently, the observable W is an entanglement witness if it has at least one neg-
ative eigenvalue, but gives positive value when evaluated on any separable state. En-
tanglement witnesses are very important because they can be physically implemented,
henceforth they are the most common way to detect or certify entanglement in an exper-
iment. However, there is no a universal method for constructing entanglement witnesses,
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since Corollary 1.1 only states that there exists an entanglement witness for every entan-
gled state, but says nothing about a way to find its form. A lot of effort has been invested
in constructing entanglement witnesses and there is extensive literature on the topic (see
[GT09] and references therein), but it is beyond the scope of this technical introduction
to go into further details.

In an experiment, entanglement can also be detected by observing non-local measure-
ment correlations. This approach will be detailed in Section 2.2.

2.1.2 Quantification of entanglement
Entangled states can be seen as a resource for various quantum information processing
tasks. The benchmark for success in those tasks is often the best performance of a clas-
sical, i.e. a separable state. Different entangled states behave differently and thus the
problem of entanglement quantification naturally emerges. For that purpose various en-
tanglement measures have been developed. Before discussing in more details those that
are relevant in the later chapters of this thesis, let us recall the necessary properties of a
generic entanglement measure ε:

• it should be equal to zero for all separable states;

• it should be invariant under local unitary state transformations and non-increasing
under local operations and classical communications, i.e. LOCC state transforma-
tions ;

The most famous entanglement measures are concurrence [HW97], entanglement cost
[BDSW96, HHT01], entanglement of distillation [BDSW96], entanglement of formation
[BDSW96], squashed entanglement [CW03] and two that we will describe in more de-
tails, entanglement negativity [VW02] and entanglement robustness [VT99].

The entanglement negativity is derived from the PPT criterion and quantifies how
much a state violates it. Consequently it is equal to zero for all PPT entangled states.
Formally, it is defined as

N (ρ) =
‖ρTB‖1−1

2
This entanglement measure is widely used because it is easy to grasp, easy to compute and
convex. Negativity also puts a bound on distillable entanglement and teleportation capac-
ity [VW02]. A related measure is logarithmic negativity defined as logs ‖ρTB‖1 [Ple05].
Unlike negativity, it is additive, but not convex.

The entanglement robustness is one of the measures with a simple operational mean-
ing. It is defined as the smallest amount of noise one can add to the state before it becomes

21



separable and it is calculated as the solution to the following optimization problem

RΣ(ρ) = maxσ s

s.t.
ρ + sσ

1+ s
σ ∈ Σ.

Robustness is originally defined with Σ being the set of separable states [VT99]. If Σ is
the set of all quantum states it defines the generalized entanglement robustness [Ste03,
HN03]. Random robustness is obtained when σ = 1/(dAdB) (where dA and dB are the
dimensions of the subsystems of the state ρ) [VT99] and no optimization over the space
of states is needed.

2.2 Nonlocal correlations
The concept of entanglement was introduced as a challenge for the completeness of quan-
tum theory. The famous EPR paper [EPR35] presented an entangled state that leads to
measurement results which either violate the Heisenberg uncertainty principle or imply
superluminal transmission of information. To resolve the paradox, Einstein, Podolsky
and Rosen suggested the existence of some kind of hidden variables which would assign
measurement outcomes to quantum mechanical observables and in that way complete the
theory. Three decades after the EPR paper was published, John Stewart Bell examined the
properties of theories admitting local hidden variable models [Bell64]. He started from
an abstract theory satisfying two conditions suggested in the EPR paper:

• reality i.e. the properties of a system exist prior to and independent of a measure-
ment process and they are only revealed by measurements. Instead of reality, some
authors use words ’objectivity’ or ’determinism’.

• locality, i.e. measurements performed on some system cannot instantaneously af-
fect measurements on some other, spatially distant, system, no matter what is the
state of the two systems.

The main result of the paper was the famous Bell’s theorem which showed that there are
bounds on the measurement correlations which can be achieved by any theory satisfying
the two above given properties, i.e. for all theories admitting the existence of local hidden
variables. These bounds are known as Bell inequalities. Importantly, Bell showed that
quantum theory admits violations of Bell inequalities. Concisely Bell’s theorem can be
stated as

Theorem 2. [Bell64] No local hidden variable theory can reproduce the measurement
correlations admissible by quantum theory.
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Bell’s conclusions were confirmed by various experimental corroborations [FC72,
ADR81, TBZG98], particularly by three loophole-free Bell experiments (i.e. free from
uncontrollable experimental deficiencies which could invalidate the conclusiveness of the
experiment) [Hen+15, Giu+15, Sha+15].

The scenario of a Bell experiment, or a Bell test, involves two (or more) spatially
separated parties, usually named Alice and Bob, who perform measurements on their
shared state and provide measurement outcomes. The different measurements that can
be performed are denoted by x ∈ {0, . . . ,nA− 1} for Alice and y ∈ {0, . . . ,nB− 1} for
Bob. Alice’s measurement outcomes are denoted with a ∈ {0, . . . ,mA− 1}, and Bob’s
with b ∈ {0, . . . ,mB− 1}. The final result of a Bell test is the set of probabilities, called
behaviour:

P = {p(a,b|x,y)},
which are used to evaluate the Bell expression

I = ∑
a,b,x,y

ba,b,x,y p(a,b|x,y).

This is then compared with the benchmark given by the Bell inequality I ≤ βLHV . The
benchmark βLHV is called the classical bound of the Bell inequality. For qualifying a Bell
experiment, the following three statements are equivalent [Fine82]:

1. Behaviour P violates some Bell inequality.

2. There is no local hidden variable model reproducing behaviour P.

3. Probabilities p(a,b|x,y) ∈ P cannot be decomposed as the product of local terms

p(a,b|x,y) =
∫

pλ p(a|x,λ )p(b|y,λ )dλ . (2.3)

Due to the inexistence of the decomposition 2.3, behaviours violating some Bell inequal-
ity are called nonlocal.
Quantum violations of Bell inequalities. In principle, it is possible for Alice and Bob to
violate Bell inequalities by performing measurements {Ma|x} and {Mb|y}, respectively,
on their shared entangled state ρAB. The probability to obtain the pair of outcomes (a,b)
when the pair of inputs is (x,y) is given by the Born rule

p(a,b|x,y) = tr[(MA
a|x⊗MB

b|y)ρ
AB].

Let us revise the LHV bound and quantum violation for the simplest bipartite inequality,
the Clauser-Horne-Shimony-Holt (CHSH) inequality, native to the scenario nA = nB =
mA = mB = 2. It is given by the following expression

〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉−〈A1B1〉, (2.4)
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where correlator 〈A jBk〉 is calculated according to

〈A jBk〉= ∑
a,b
(−1)a+b p(a,b| j,k).

Henceforth, every correlator must have some value between −1 and 1. To infer the max-
imal value of the expression (2.4) for LHV theories let us rewrite it as follows:

〈A0(B0 +B1)〉+ 〈A1(B0−B1)〉.

To maximize this expression one can choose 〈A0〉= 〈A1〉= 1, i.e. measuring observables
A0 and A1 always produces the outcome +1. Furthermore, the maximal value for 〈B0 +
B1〉 is 2, but in that case 〈B0−B1〉 = 0, and the other way around. This is exactly the
optimal strategy and thus the CHSH inequality is

〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉−〈A1B1〉 ≤ 2, (2.5)

By utilizing quantum resources Alice and Bob can violate this inequality. If they share
Bell state |Φ+〉 and measure observables

A0 = σZ, A1 = σX,

B0 =
σZ +σX√

2
B1 =

σZ−σX√
2

the correlators have the form

〈A jBk〉= tr[(A j⊗Bk) |Φ+〉〈Φ+|].

The violation that Alice and Bob can achieve in this way is

tr
[
(A0⊗B0 +A0⊗B1 +A1⊗B0−A1⊗B1) |Φ+〉〈Φ+|

]
= 2
√

2,

which is the maximal violation of the CHSH inequality achievable in quantum theory
[Tsi80].

2.2.1 Resources for nonlocality
The nonlocality of a behaviour P stems from non-classicality of both quantum state and
measurements. As we have seen, nonlocal correlations are produced by entangled states.
Apart from this, two or more of the measurements that each party performs have to be
incompatible. In this section we discuss in more details relations between nonlocality on
one side and entanglement and incompatibility on the other.
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Entanglement and nonlocality. Entanglement is a necessary condition for nonlocality,
since separable states cannot produce nonlocal probability distributions. Indeed, a sep-
arable state ρAB = ∑λ pλ ρA

λ
⊗ρB

λ
produces probabilities which are the convex sums of

products of local probabilites:

p(a,b|x,y) = tr[(MA
a|x⊗MB

b|y)ρ
AB]

= ∑
λ

pλ tr[(MA
a|xρ

A
λ
)⊗ (MB

b|yρ
B
λ
)]

= ∑
λ

pλ p(a|x,λ )p(b|y,λ ).

For pure states entanglement is also a sufficient condition for nonlocality [Gis91]. How-
ever, there are mixed entangled states which cannot violate any Bell inequality, i.e. they
are local [Wer89, Bar02]. To prove that an entangled state is local one needs to explicitly
construct an LHV model for the probabilities obtained by applying any possible set of
measurements. This is in principle a very difficult task, and describing methods used to
achieve it goes far beyond the scope of this introductory chapter.

Beyond the bipartite scenario, similarly to multipartite entanglement, there are dif-
ferent ways in which some multipartite behaviour can be nonlocal. The strongest type
of multipartite nonlocality is genuine multipartite nonlocality. In the tripartite scenario,
the conditional probability distributios p(a,b,c|x,y,z) are genuinely multipartite nonlocal
(GMN) if they cannot be written in the following way∫

dλ pλ p(a|x,λ )p(b,c|y,z,λ )+

+
∫

dµ pµ p(b|y,µ)p(a,c|x,z,µ)+

+
∫

dν pν p(c|z,ν)p(a,b|x,y,ν).

Contrarily, probability distributions allowing the above given factorization are called bilo-
cal. Relation between genuine multipartite entanglement and genuine multipartite non-
locality for pure states is yet unresolved, while for mixed states these two concepts are
inequivalent, i.e. there are GME states which are not GMN [ADTA15].

Incompatibility and nonlocality. Another nonclassical resource necessary for quan-
tum nonlocality is measurement incompatibility. This is an purely quantum effect, since
in classical physics all measurements are compatible, i.e. jointly-measurable. For projec-
tive measurements, incompatibility is equivalent to commutativity, but for general non-
projective measurements, defined by positive-operator valued measures (POVMs) these
two concepts are different. Two POVMs {Ma} and {Nb} are compatible if there exists a
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mother-POVM {Ra,b} such that

∑
a,b

Ra,b = 1, Ra,b ≥ 0, ∀a,b

∑
a

Ra,b = Nb, ∑
b

Ra,b = Ma.
(2.6)

To show that measuring compatible observables leads to local behaviours let us first show
the existence of a valid probability distribution p(a0,a1,b0,b1|x0,x1,y0,y1) such that

p(a0,a1,b0,b1|x0,x1,y0,y1)≥ 0, ∀a0,a1,b0,b1,x0,x1,y0,y1;

∑
a0

p(a0,a1,b0,b1|x0,x1,y0,y1) = p(a1,b0,b1|x1,y0,y1), ∀a1,b0,b1,x0,x1,y0,y1;

∑
a1

p(a0,a1,b0,b1|x0,x1,y0,y1) = p(a0,b0,b1|x0,y0,y1), ∀a0,b0,b1,x0,x1,y0,y1;

∑
b0

p(a0,a1,b0,b1|x0,x1,y0,y1) = p(a0,a1,b1|x0,x1,y1), ∀a0,a1,b1,x0,x1,y0,y1;

∑
b1

p(a0,a1,b0,b1|x0,x1,y0,y1) = p(a0,a1,b0|x0,x1,y0), ∀a0,a1,b0,x0,x1,y0,y1.

(2.7)

Probabilities p(a0,a1,b0,b1|x0,x1,y0,y1), satisfying (2.7), give a LHV model recovering
p(a,b|x,y) [Fine82]. To see this, note that p(a0,a1,b0,b1|x0,x1,y0,y1) can be treated
as pλ from (2.3). In this case the hidden variable λ is discrete and characterized by
four indices (λa0,λa1,λb0,λb1) which turns the integral from (2.3) into a sum. To ob-
tain the observed correlation probabilities and marginals we use p(a j|xk,λ ) = δa j,λak

and
p(b′j|y′k,λ ) = δb′j,λb′k

. We get

p(a0,b0|x0,y0) = ∑
a1,b1

(
1 ·1 · p(a0,a1,b0,b1|x0,x1,y0,y1)+1 ·0 · p(a0, ā1,b0,b1|x0,x1,y0,y1)

+0 ·1 · p(ā0,a1,b0,b1|x0,x1,y0,y1)+0 ·0 · p(ā0, ā1,b0,b1|x0,x1,y0,y1)

)
;

and similarly for all the other correlation probabilities and marginals. Now, observe that if
Alice or Bob measure compatible observables, they could measure the mother-observable
instead and thus obtain the probability distribution satisfying Eq. (2.7). Let us assume that
Alice, instead of measuring two compatible observables Ma0|x0 and Ma1|x1 , measures the
mother-observable M̃a0,a1 satisfying conditions equivalent to (2.6): ∑a0 M̃a0,a1 = Ma1|x1

and ∑a1 M̃a0,a1 = Ma0|x0 . This leads to the existence of probabilities p(a0,a1,b|x0,x1,y)
such that

∑
a0

p(a0,a1,b|x0,x1,y) = p(a1,b|x1,y), ∑
a1

p(a0,a1,b|x0,x1,y) = p(a0,b|x0,y), ∀b,y
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Now the set of probabilities p(a0,a1,b|x0,x1,y) for different values of a0,a1,b,y plays
the role of pλ and can be used to construct an LHV model in a similar way as described
in the text above.

A nonlocal behaviour implies that both Alice and Bob used incompatible measure-
ments, henceforth measurement incompatibility is a necessary condition for nonlocality.
However, it is not a sufficient condition for nonlocality, since there exist incompatible
observables which cannot be used for the violation of Bell inequalities [BV17, HQB17].

2.2.2 The set of quantum correlations
A quantum behaviour is the set of conditional probabilities

PQ = {p(a,b|x,y)},

such that there is a quantum state ρAB ∈ B(H A⊗H B) and POVMs {Ma|x} and {Mb|y}
satisfying

p(a,b|x,y) = tr[(Ma|x⊗Mb|y)ρ
AB], ∀a,b,x,y. (2.8)

Since we are not imposing any bound on the dimensions of the Hilbert spaces H A and
H B, we can always purify the mixed state ρAB into a pure state in a space of a larger
dimension and use Naimark extensions of POVMs {Ma|x} and {Mb|y} to express them as
a projective measurements. Thus, we can reduce the problem to finding a pure state |ψ〉
and projective measurements {Πa|x} and {Πb|y} such that

p(a,b|x,y) = 〈ψ|Πa|x⊗Πb|y |ψ〉 , ∀a,b,x,y. (2.9)

By definition, all probabilities p(a,b|x,y) are positive and normalized

∑
a,b

p(a,b|x,y) = 1.

One of the big open questions of quantum foundations is the characterisation of the set
of quantum correlations (or quantum behaviours) Q. By characterising Q we understand
finding a criterion which would suffice to infer if a given behaviour belongs to Q or not.
The solution to this problem could have a significant impact on quantum information
theory. For every quantum information processing task it is of essential importance to
estimate the best possible performance of quantum strategies. The more accurate charac-
terisation of the set of quantum correlations (quantum set in the further text), the better is
our understanding of the advantages and limits of quantum resources in different tasks.

The best available approximation of the quantum set is given by the Navascues, Piro-
nio, Acı́n (NPA) hierarchy [NPA07]. It represents a hierarchy of supraquantum sets,
corresponding to the successive levels of the hierarcchy, each of which provides a tighter
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approximation to the quantum set. In the limit of infinite level the hierarchy converges
to the quantum set. In principle it can converge at some finite level but there is no
general rule telling if such convergence occurs or not. To each level of the hierarchy
corresponds a supraquantum set which can be easily characterized with semidefinite
programming techniques. The main idea of the method is the existence of a map be-
tween quantum behaviours and positive-semidefinite matrices. Let the set of operators
M ≡ {Mi}= {Ma|x⊗1,1⊗Nb|y} satisfy constraints of quantum measurement operators.
The labelled set

O(n) ≡ {Oi}= {Mi}i∪{MiM j}i, j∪·· ·∪
{

n

∏
i=1

Mi

}
, (2.10)

can be used to construct a n-th level moment matrix Γ(n) according to the following rule

Γ
(n)
i, j = 〈ψ|O†

i O j |ψ〉 , (2.11)

where |ψ〉 is a quantum state. Some entries of the moment matrix are the observable
probabilities 〈ψ|Ma|x⊗Nb|y |ψ〉, while the others are unknown and, moreover, unobserv-
able quantities. The existence of a positive semidefinite matrix built according to the rules
(2.11) with certain entries being elements of a behaviour P represents a certificate for that
behaviour. In other words, the existence of a positive semidefinite matrix Γ(n) built from
the elements of a behaviour P, tells that the behaviour belongs to a supraquantum set Qn.
The succession of the supraquantum sets {Qn}n satisfies the relation Qn+1 ⊂Qn, with
limn→∞ Qn = Q. If a certificate does not exist for some n, the behaviour P does not be-
long to the quantum set. NPA hierarchy is commonly used for finding the upper bound to
the maximal quantum violation of some Bell inequality.

Local set. The elements of the behaviours belonging to the local set allow for the form
given in (2.3):

PL ∈L ⇔ p(a,b|x,y) =
∫

dλ pλ p(a|x,λ )p(b|y,λ ), ∀a,b,x,y.

The hidden variable λ is distributed according to the probability distribution pλ , and
p(a|x,λ ) and p(b|y,λ ) are local response functions depending on the given input and
the value of the hidden variable. Every element from the local set can be written in the
form (2.9), impling that L is a subset of the quantum set Q. Since L is closed and
convex and strictly contained in Q, the Hahn-Banach separation theorem (1) applies. For
every quantum behaviour P’ = {p′(a,b|x,y)} not belonging to L there is a hyperplane
separating it from L . This hyperplane represents a Bell inequality violated by P’:

I = b ·PL = ∑
a,x,b,y

ba,x,b,y p(a,b|x,y)≤ βLHV ∀PL ∈L ,

b ·P’> βLHV .
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One such hyperplane in the scenario of two parties measuring two dichotomic observ-
ables each, corresponds to the aforementioned CHSH inequality. The local set is identi-
fied to be the convex hull of a finite number of deterministic local hidden variable models
[BCPSW14]. Thus, the local set L is actually a polytope, usually called the local poly-
tope and its vertices are the deterministic local hidden variable models. Equivalently, the
local polytope can be characterized by a finite number of Bell inequalities, called facets
or tight Bell inequalities.

No-signalling set. The set of no-signalling behaviours N S is the largest set of cor-
relations which can be physically observed, since it is bounded only by the no-signalling
principle. The elements of a behaviour P ∈N S are such that

∑
a

p(a,b|x,y) = ∑
a

p(a,b|x,y′), ∀b,x,y,y′

∑
b

p(a,b|x,y) = ∑
b

p(a,b|x′,y), ∀a,x,x′,y. (2.12)

These constraints rule-out non-physical behaviours in which Alice and Bob can signal
to each other instantaneously by simply choosing different inputs. Every element of the
quantum set satisfies constraints 2.12, implying Q⊂N S . The no-signalling set is also a
polytope. Furthermore, the Hahn-Banach theorem applies for all no-signalling behaviours
outside of the quantum set. Hyperplanes separating such points from the quantum set are
called Tsirelson inequalities [Tsi93]. However, since the quantum set is not a polytope,
one would need an infinite number of Tsirelson inequalities to characterize the quantum
set.

2.2.3 Examples of Bell inequalities
In this section we will define a few important (classes of) Bell inequalities, which will be
relevant in the later stages of this thesis.

Tilted CHSH inequality. The tilted CHSH inequality, introduced in [AMP12], is an-
other important Bell inequality in the scenario where two parties measure two dichotomic
observables each. It differs from the CHSH inequality by taking into account a marginal
term of one of the measured observables. Let us denote by A j and B j ( j = 0,1) the ob-
servables of Alice and Bob, respectively, and denote their outcomes with ±1. The tilted
CHSH inequality reads

Itilt = α〈A0〉+ 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉−〈A1B1〉 ≤ α +2, (2.13)

where 0 ≤ α < 2. The quantum bound for this inequality is βQ =
√

8+2α2 and it is
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quantum 
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no-signaling
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Figure 2.2: A possible configuration of different correlation sets. We see that the local
set can be characterized by stating five facet Bell inequalities. Vertices of the local set are
local deterministic strategies.

achieved by using the following strategy

|ψθ 〉= cosθ |00〉+ sinθ |11〉 , tan2θ =

√
2

α2 −
1
2

A0 = σZ, A1 = σX,

B0 = cos µσZ + sin µσX, B1 = cos µσZ− sin µσX, tan µ = sin2θ .

For α = 0 the tilted CHSH inequality reduces to the standard CHSH inequality.

Chained Bell inequalities. The chained Bell inequalities were introduced in Refs.
[Pea70, BC90] to generalize the CHSH inequality to a larger number of measurements
per party, while keeping the number of outcomes to two. Let us denote by Ai and Bi
(i = 1, ...,n) the observables of Alice and Bob, respectively, and assume that they all have
outcomes ±1. Then, the chained Bell inequality for n inputs reads

I n
ch =

n

∑
i=1

(〈AiBi〉+ 〈Ai+1Bi〉)≤ 2n−2 (2.14)

where we denote An+1 ≡ −A1. Notice that for n = 2 the above formula reproduces the
CHSH Bell inequality. It has been shown in [Weh06] that the maximal quantum violation
of a chained Bell inequality (2.14) is

βQ = 2ncos
π

2n
,
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Β0
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Figure 2.3: The optimal measurements for the maximal violation of the tilted CHSH
inequality depicted on the XZ plane of the Bloch sphere with. Alice’s measurements are
Pauli’s σX and σZ, while Bob’s measurements are linear combinations of σX and σZ,
symmetric around σX.

and it is realized with the following strategy

|Φ+〉= 1√
2
(|00〉+ |11〉),

Ai = siσX + ciσZ, Bi = s′iσX + c′iσZ.

(2.15)

where si = sinφi,ci = cosφi,s′i = sinφ ′i ,ci = cosφ ′i , and φi = [(i−1)π]/n and φ ′i = [(2i−
1)π]/2n.

Figure 2.4: The optimal measurements for the maximal violation of the chained Bell
inequality with n measurement inputs. The measurements are denoted with Ai and Bi and
they are depicted on the XZ plane of the Bloch sphere with i−= 1, . . . ,n. The case with
an even number of measurements is on the left, and the odd case is on the right.

Mermin inequality. The Bell inequality for three parties, related to the Greenberger-
Horne-Zeilinger (GHZ) paradox [GHZ89, GHSZ90], is the Mermin inequality [Mer90].
The general form of the inequality is defined for any number of parties, denoted by j =
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{1, · · · ,n}. Each party can measure one of two dichotomic observables, denoted by A j
and A′j. The Mermin inequality reads:

I n
Mer =

1
2i

(
⊗n

j=1(A j + iA′j)−⊗n
j=1(A j− iA′j)

)
≤
{

2n/2, for even n;
2(n−1)/2, for odd n.

(2.16)

The maximum quantum violation is 2n−1 and it is achieved with the strategy

|Φ+〉= 1√
2
(|000〉+ i |111〉),

A j = σ
j

X A′j = σ
j

Y.

(2.17)

2.2.4 Sum-of-squares (SOS) decompositions
To obtain a quantum violation of a bipartite Bell inequality two parties measure sets of
quantum observables, denoted by {Ai} and {B j} on a shared state ρ . In that case the Bell
expression can be written in the following form

I = ∑
i, j

b̃i, j tr
[
Ai⊗B jρ

]
This expression can be equivalently written in terms of the Bell operator B:

I = 〈B〉= tr[Bρ].

The Bell operator B can be expressed in terms of Alice’s and Bob’s measurement observ-
ables as ∑i, j b̃i jAi⊗B j. If βQ is the maximal quantum violation, the shifted Bell operator
is defined as

βQ1−B.

Since, by the very construction, this operator is positive-semidefinite, there exists a finite
number of operators Pi (not necessarily positive) which are functions of the measurements
Ai and Bi such that

Bs = βQ1−B = ∑
i

P†
i Pi. (2.18)

This decomposition is called a sum-of-squares (SOS) decomposition of the shifted Bell
operator. Furthermore, an SOS decomposition in which operators Pi contain products of at
most n measurement operators is named SOS decomposition of n-th degree. Numerically,
it is possible to obtain SOS decompositions of various degrees via the Navascues-Pironio-
Acin (NPA) hierarchy [NPA07]. In fact, the degree of the SOS decomposition is related
to the level of the NPA hierarchy used. The dual of the semi-definite program defining
the n-th level of the NPA hierarchy yields an SOS decomposition of n-th degree.

What is important for further considerations is that if |ψ〉 maximally violates some
Bell inequality, then (βQ1−B) |ψ〉 = 0, which implies that Pi |ψ〉 = 0 for every i. In
other words, |ψ〉 belongs to the intersection of kernels of the operators Pi. This imposes
a plethora of conditions on the state and measurements maximally violating the Bell in-
equality.
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2.3 Device-independence
As we saw in the previous section quantum entanglement is a necessary condition for
Bell nonlocality. Consequently, the violation of a Bell inequality certifies the presence of
entanglement in the system. Entanglement can also be verified directly, either by learning
the state via tomographic methods or using an entanglement witness. The former method
is more desirable, mostly because it requires less resources. Namely, for applying both
state tomography and entanglement witness one needs a characterized measurement de-
vice, while Bell inequality violation can be observed with uncharacterized state source
and measurement devices. All conclusions are drawn from the probability distribution
{p(a,b|x,y)}, where the nature of inputs x,y and outputs a,b does not need to be spec-
ified. Thus, violation of a Bell inequality can be considered to be a device-independent
entanglement witness. For any purpose the experimental devices can be treated as black-
boxes. Such a scenario is not just a peculiar aspect of the foundations of quantum theory
but an up-and-coming background for quantum information protocols.

Let us focus on quantum key distribution, one of the emblematic quantum informa-
tion protocols. The highlight of quantum key distribution (QKD) is its utmost security. In
other words, the security of QKD relies not on some complexity conjecture, but solely on
the laws of physics. However, this security originally depended on the reliable physical
implementation, which represented a weak spot exposed to eavesdroppers. The recovery
of the unconditional security comes in virtue of the, aforementioned, device-independent
paradigm. Device-independent quantum key distribution (DIQKD), establishes security
directly from the probability distribution {p(a,b|x,y)}, assuming only validity of quan-
tum mechanics, but dropping all assumptions about the physical operation of the devices.
The main forebears of DIQKD are the early cryptographic result of Ekert [Eke91], the
subsequent result of Barrett, Hardy and Kent [BHK05] and Mayers and Yao [MY04] pi-
oneering work on self-testing. The first secure device-independent QKD protocol came
out in 2007 [Aci+07], and it was the first time the term ’device-independent’ was used.

The last ten years were fruitful in terms of device-independent quantum information
processing. Let us itemize some of the main tasks, which can be performed in a device-
independent manner

• witnessing the presence of entanglement;

• witnessing entangling measurement [Rab+11];

• quantum key distribution [Aci+07, VV14];

• quantum state certification - self-testing [MY04];

• randomness certification [AM16, Pir+10];

• testing the dimension of a Hilbert space [Bru+08].

33



2.4 Einstein-Podolsky-Rosen (EPR) steering
Another concept introduced in the early years of quantum theory, for a long time forgotten
and revived with insurgence of quantum information theory is EPR-steering (or simply
steering). It was described by Schrödinger in 1935, as a change of the quantum state of
some particle induced by applying a local measurement on a spatially distant particle. In
order for this to happen two particles must be entangled. In his work Schödinger was
trying to formalize the idea already present in the seminal EPR paper. After entanglement
and nonlocality, steering is the third type of quantum correlations we are discussing in
this thesis and all three in some way originate from the famous EPR paper. Entangle-
ment motivated the paradox, steering extended it, while nonlocality came as the answer
to the paradox. Before passing to physical and operational differences and similarities
between these three types of quantum correlations let us recall the revival of interest in
steering, now understood as an important resource in quantum information theory. In
2007 Wiseman, Jones and Doherty reintroduced steering as a type of non-local correla-
tions, incompatible with local hidden variable models [WJD07]. Since then steering has
been scrutinized as an entanglement detection method, a resource for different quantum
information protocols but also as an easy-to-handle tool for understanding other impor-
tant fundamental concepts such as measurement incompatibility and Bell nonlocality.

The most basic EPR-steering scenario involves two parties, Alice and Bob, sharing
some quantum state ρAB ∈ B(H A⊗H B). Contrary to the Bell nonlocality scenario,
the dimension of H B is fixed and known. Alice performs a measurement denoted by
x ∈ 0, . . .m−1, by applying POVM Ma|x on her share of the state. The measurement
outcome is denoted by a ∈ {0, . . .o−1}. Following her measurement Bob’s reduced state
is

σa|x = trA[(MA
a|x⊗1B)ρAB].

Note that this state is subnormalized. The normalized state is obtained by adding a multi-
plication factor 1/p(a|x), where p(a|x) = tr[(MA

a|x⊗1B)ρAB] is a probability for Alice to
obtain the outcome a when performing a measurement denoted by x. The set of subnor-
malized states {σa|x}a,x is called an assemblage. In accordance with the completeness of
a POVMs ∑a Ma|x = 1 the elements of an assemblage satisfy the following relation

∑
a

σa|x = trA[(∑
a

MA
a|x⊗1B)ρAB]

= trA[ρ
AB] = ρ

B, ∀x.

Bob has access to a characterized measurement device and can learn all the elements of
the assemblage. Steering represents a type of nonlocal correlations between Alice’s mea-
surement outcomes and the states prepared for Bob, i.e. elements of the corresponding
assemblage. Recall that entanglement represents correlations between states of Alice and
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Bob, while Bell nonlocality embodies the correlations between their measurement out-
comes. In this sense, EPR-steering can be placed on a transition line between entangle-
ment and nonlocality. Similarly, when considering entanglement of the state one knows
dimensions of the local Hilbert spaces and the state is completely characterized, while on
the other side of the spectra in the nonlocality scenario we make no assumptions about
the dimensions of the local Hilbert spaces and do not characterize measurements either.
Steering is again in the ”transition region”: one party has characterized measurement de-
vices and a fixed Hilbert space dimension, while the other one functions in a black-box
scenario. As nonlocality gave rise to the device-independent scenario, steering is native
to the so-called one-sided device-independent scenario.

When are the correlations between Alice’s measurement outcomes and the states pre-
pared for Bob incompatible with classical predictions? Recall that an LHV model for
nonlocality can be understood as a classical source sending classical messages, encoding
the input-output relation, to both Alice (p(a|x,λ )) and Bob (p(b|y,λ )). Analogously, if
the assemblage {σa|x} is compatible with a source sending classical messages, encoding
output-input relations to Alice (p(a|x,λ )) and quantum states to Bob (ρλ ) we say that
there is a local hidden state (LHS) model explaining it. An assemblage {σa|x} admits an
LHS model if:

σa|x =
∫

dλ µλ p(a|x,λ )ρλ , ∀a,x (2.19)∫
dλ µλ = 1

If the assemblage {σa|x} does not allow for the decomposition (2.19) it demonstrates
steering. If Alice and Bob share a separable state ρAB, and Alice applies any POVM, the
resulting assemblage will always have a decomposition (2.19). Note also that Alice and
Bob are not symmetric in steering. We defined the problem here in the scenario where
Alice is the untrusted and Bob the trusted party. Nothing forbids us to define the scenario
with reversed roles. It has been proven that there are quantum states able to result in un-
steerable assemblages when Alice is untrusted, but always leading to LHS assemblages
when Bob is untrusted. This situation is known as one-way EPR-steering [BVQB14].

As there exist local entangled states, so do exist entangled states which can never
demonstrate steering. These statea are called unsteerable. There are also states which
can demonstrate steering, but cannot demonstrate nonlocality. Henceforth, entanglement,
steering and nonlocality are all intrinsically different types of correlations [Qui+15].

There are two ways to detect steering: by using SDP optimizaiton and by violation of
steering inequalities. For the end of this section we briefly discuss both methods.

• SDP check. Proving that an assemblage does not allow for a decomposition of the
form (2.19) is in principle a very difficult task, because the hidden variable λ can
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have an infinite number of values. However, it can be proven that for a finite number
of Alice’s inputs and outputs, p(a|x,λ ) can be written as a convex combination of
all different deterministic strategies

p(a|x,λ ) =
d

∑
λ ′=1

p(λ ′|λ )D(a|x,λ ′), (2.20)

where d = om. D(a|x,λ ′) are strategies assigning a deterministic outcome to every
measurement input. With this observation, the integral from (2.19) turns into a sum:

σa|x =
d

∑
λ ′=1

σ̃λ ′D(a|x,λ ′), ∀a,x (2.21)

where σ̃λ ′ =
∫

dλ µλ p(λ ′|λ )ρλ . Now the problem of finding a decomposition of
the form (2.21) can be cast as a SDP search:

given {σa|x},{D(a|x,λ )}
find {σ̃λ}

s.t. σa|x =
d

∑
λ=1

σ̃λ D(a|x,λ ), ∀a,x

σλ ≥ 0, ∀λ .

(2.22)

If {σ̃λ}, satisfying above given constraints exists than the assemblage {σa|x} is
steerable. SDP (2.22) can be readily solved with some of the available SDP solvers.

• Steering inequalities. An analogue of Bell inequalities in the steering scenario are
steering inequalities [CJWR09]. They can be trivially obtained as a reduction of
Bell inequalities. For example, let us consider the situation when Alice can measure
two dichotomic observables, denoted as A0 and A1. A natural reduction of CHSH
inequality gives

〈A0⊗
σZ +σX√

2
〉+〈A1⊗

σZ +σX√
2
〉+ 〈A0⊗

σZ−σX√
2
〉−〈A1⊗

σZ−σX√
2
〉 ≤ 2

〈A0⊗σZ〉+ 〈A1⊗σX〉 ≤
√

2
(2.23)

The maximal violation is achieved when Alice and Bob share the maximally en-
tangled pair of qubits and when Alice measures A0 = σZ and A1 = σX. Note that
the violation of a steering inequality implies that Bob’s assemblage admits for an
LHS model, even without knowing the assemblage. Interestingly, the optimal steer-
ing inequalities for a given assemblage {σa|x} which demonstrates steering can be
obtained as a result of the dual formulation of SDP (2.22).
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2.5 Self-testing
Self-testing is one of the simplest device-independent protocols. Introduced by Mayers
and Yao [MY04], the standard self-testing scenario consists of a classical user who has
access to several black boxes, which display some non-local correlations. The user re-
ceived these boxes from a provider, who claims that to produce the observed correlations
the boxes perform some specific measurements on a given quantum state. The goal of
the classical user is to make sure that the boxes work properly, i.e. that they contain the
claimed state and perform the claimed measurements. This is especially relevant if the
user does not trust the provider or does not want to rely on the provider’s ability to pre-
pare the devices. Self-testing is the procedure that allows for this kind of certification.
The self-tested states and measurements can later be used to run a given quantum infor-
mation protocol, as proposed in [MY04] for secure quantum key distribution. For many
protocols, however, passing through self-testing techniques is not necessary and in fact
it is simpler and more efficient to run the protocol directly from the observed correla-
tions, as for example in standard device independent quantum key distribution protocols
[Aci+07]. Yet, self-testing protocols constitute an important device-independent primi-
tive as they certify the entire description of the quantum setup only from the observed
statistics.

As mentioned, the concept of self-testing was introduced by Mayers and Yao in
[MY04], where the procedure to self-test a maximally entangled pair of qubits is de-
scribed. This protocol was made robust in subsequent works, see [MYS14, Kan16]. In
the following years new self-testing protocols for more complicated states such as graph
states were described [McK14], as well as protocols for self-testing more complicated
operations, such as entire quantum circuits [MMMO06]. A general numerical method for
self-testing, known as the SWAP method, was introduced in [YVBSN14], providing ex-
ceptionally good robustness bounds. This numerical method can also be used to self-test
three-qubit states such as GHZ states [PVN14] and W states [Wu+14]. The best analytical
method for calculating robustness bound is presented in [Kan16].

Despite its importance, we lack general techniques to construct and prove self-testing
protocols. Most of the existing examples are built from the maximal violation of a Bell
inequality. Based on geometrical considerations, see for instance [FFW11, DPA13], one
expects that generically there is a unique way, state and measurements, of producing the
extremal correlations attaining the maximal quantum violation of a generic Bell inequal-
ity. This is not always the case, but whenever it is, we say that the corresponding Bell
inequality is useful for self-testing. Following this approach, it is possible to prove that the
state and measurements maximally violating the Clauser-Horne-Shimony-Holt (CHSH)
inequality are unique, and the corresponding state is a maximally entangled two-qubit
state. More recently, a self-testing protocol for any bipartite entangled state has been
derived in [CGS17] extending the self-testing of all pure bipartite entangled two-qubit
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states [BP15]. From a general perspective, it is an interesting question to understand
which Bell inequalities are useful for self-testing and what are the states and measure-
ments certified by them.

2.5.1 Self-testing terminology
In this section we define the settings and introduce self-testing terminology. We con-
sider the standard Bell scenario in which two parties share a quantum state |ψ ′〉 on which
they can perform n measurements, described by the two-outcome operators A′j,B

′
j , where

j = 1, ...,n. The shared state and measurements are not trusted and are modelled as black
boxes: each of them gets some classical input, which labels the choice of measurement,
and produces a classical output, the measurement result. As the dimension is arbitrary,
one can restrict the analysis to pure states and projective measurements without any loss of
generality. The state |ψ ′〉 lives in a joint Hilbert space H A′⊗H B′ of an unknown dimen-
sion. Operators A′j(B

′
j) act on the part of the state living in H ′A(H B′) , so that operators

of different parties commute: [A′j,B
′
k] = 0. Also, M±A′j

= (1±A′j)/2 and M±B′j
= (1±B′j)/2

can be considered to be projective measurements. In this scenario the parties calculate
the joint outcome probabilities that can be described as p(a,b| j,k) = 〈ψ ′|Ma

A′j
⊗Mb

B′k
|ψ〉.

The parties can also check whether the probability distribution is non-local, i.e. whether
some Bell inequality is violated.

Usually there is a specification of the black boxes, in self-testing terminology named
as the reference experiment, and it consists of the state |ψ〉 ∈H A⊗H B and measure-
ments A j,B j in some given Hilbert spaces H A and H B of finite dimension. On the
other hand, the term physical experiment is used for the actual state and measurements
{|ψ ′〉 ,A′j,B′j}. The aim of self-testing is to compare the reference and the physical ex-
periment and certify that they are physically equivalent. This means that the physical
experiment is the same as the reference experiment up to local unitaries and additional
non-relevant degrees of freedom, which are unavoidable, that is:

|ψ ′〉=UAA1⊗UBB1 |ψ〉AB |junk〉A1B1

A′j⊗B′k |ψ ′〉=UAA1⊗UBB1(A
′
j⊗B′k |ψ〉AB) |junk〉A1B1

where |junk〉A1B1
describe the local states of the possible additional degrees of freedom

of the physical experiment and UAA1 and UBB1 are arbitrary local unitaries acting on
systems AA1 and BB1. We introduce the product isometry Φ=ΦA⊗ΦB : H A′⊗H B′→
H A⊗H B⊗H A1⊗H B1 , a map that preserves the inner product, but does not have to
preserve dimension. Thus we say that a self-testing protocol is successful if there exists a
local isometry relating the physical and reference experiment:

Φ(|ψ ′〉) = |ψ〉 |junk〉
Φ(A′j⊗B′k |ψ ′〉) = (A j⊗Bk |ψ〉) |junk〉 (2.24)
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In self-testing terminology the relation between the physical and the reference experiment
described by (2.24) is called equivalence. Trivially, a necessary condition for equivalence
is that the full set of correlations obtained from the black boxes is equal to the set of
correlations that one would obtain after applying the reference measurements on the ref-
erence state. A weaker necessary condition is to verify that the two sets of correlations
lead to the same maximal quantum violation of a given Bell inequality. While in gen-
eral checking all the correlations provides more information, there are some situations
where observing just the maximum quantum value of a Bell inequality has been proven to
be sufficient to certify the equivalence between the physical and the reference experiment.

The notion of equivalence, given above, captures the transformations which are phys-
ical and non-detrimental for the use of the underlying state in device-independent pro-
tocols, such as embedding the state in a larger Hilbert space, local changes of bases or
appending ancillary degrees of freedom. However, it does not encompass complex con-
jugation of the state and measurements, a transformation which preserves the observed
probabilities, but is not a physical transformation. In other words, the observed proba-
bility distributions can be obtained by an alternative realization not related with the ideal
measurements by a local isometry. To remedy this, one can enlarge the set of transfor-
mations beyond local isometries in order to include complex conjugated measurements
and states. In some parts of this thesis we use this enlarged set of transformations (local
isometries + complex conjugation) as acceptable for self-testing. One of the open ques-
tions is if there are some more tranformations, not captured by local isometries, which
should be included in the definition of self-testing.

2.5.2 Example: Self-testing via CHSH inequality
Self-testing of the maximally entangled pair of qubits via the maximal violation of CHSH
inequality is probably the simplest and the most emblematic self-testing protocol. The
reference experiment, i.e. the strategy which maximally violates the CHSH inequality is

|Φ+〉= 1√
2
(|00〉+ |11〉),

A0 = σX, A1 = σZ,

B0 =
σX +σZ√

2
, B1 =

σX−σZ√
2

.

Let is name this strategy the CHSH reference experiment. The CHSH operator is BCHSH =
A0B0 +A0B1 +A1B0−A1B1 and the maximal violation achievable by the reference ex-
periment is 2

√
2. The SOS decomposition of the shifted CHSH operator is

2
√

21−BCHSH =
1√
2

[(
A0−

B0 +B1√
2

)2

+

(
A1−

B0−B1√
2

)2
]

(2.25)
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The above given operator vanishes on the state |ψ ′〉maximally violating CHSH inequality
implying

A0 |ψ ′〉=
B0 +B1√

2
|ψ ′〉 ,

A1 |ψ ′〉=
B0−B1√

2
|ψ ′〉

(2.26)

These two relations in turn imply that operators A0 and A1 anticommute on the support of
state |ψ ′〉

{A0,A1}|ψ ′〉= (A0A1 +A1A0) |ψ ′〉

= A0
B0−B1√

2
|ψ ′〉+A1

B0 +B1√
2
|ψ ′〉

=
B0−B1√

2
B0 +B1√

2
|ψ ′〉+ B0 +B1√

2
B0−B1√

2
|ψ ′〉

=
B0B1−B1B0

2
|ψ ′〉+ −B0B1 +B1B0

2
|ψ ′〉

= 0.

(2.27)

The explicitly constructed isometry is the SWAP gate [MYS14]. The operators used in
the isometry are 1

XA = A1, ZA = A0,

XB =
B0−B1√

2
, ZB =

B0 +B1√
2

.

The state of the system after applying the SWAP gate is

Φ(|ψ ′〉) = |00〉 1+ZA

2
1+ZB

2
|ψ ′〉

+ |01〉 1+ZA

2
XB

1−ZB

2
|ψ ′〉

+ |10〉XA
1−ZA

2
1+ZB

2
|ψ ′〉

+ |11〉XA
1−ZA

2
XB

1−ZB

2
|ψ ′〉

(2.28)

From eqs. (2.26) and (2.27) it follows that ZA |ψ ′〉=ZB |ψ ′〉, XA |ψ ′〉=XB |ψ ′〉, {XA,ZA}|ψ ′〉=
0 and {XB,ZB}|ψ ′〉 = 0. Henceforth, 1+ZA

2 and 1−ZB
2 are orthogonal projectors and the

1Actually, regularized versions of XB and ZB are used in isometry, but we will describe in more details
the regularization process in Chapter 3.
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second and the third line of (2.28) vanish. Similarly the first and the fourth line simplify
as follows

|00〉 1+ZA

2
1+ZB

2
|ψ ′〉= |00〉 1+ZA

2
|ψ ′〉

|11〉XA
1−ZA

2
XB

1−ZB

2
|ψ ′〉= |11〉 1+ZA

2
XA

1+ZB

2
XB |ψ ′〉

= |11〉 1+ZA

2
|ψ ′〉

Thus,

Φ(|ψ ′〉) = 1√
2
(|00〉+ |11〉)⊗|junk〉 (2.29)

where |junk〉= 1+ZA√
2
|ψ ′〉, which is exactly the equivalence self-testing statement. Simi-

larly, one can show that the SWAP gate maps physical measurement to the reference ones,
as follows

Φ(A0 |ψ ′〉) =
[

σX⊗1
|00〉+ |11〉√

2

]
⊗|junk〉 ,

Φ(A1 |ψ ′〉) =
[

σZ⊗1
|00〉+ |11〉√

2

]
⊗|junk〉 ,

Φ(B0 |ψ ′〉) =
[
1⊗ σX +σZ√

2
|00〉+ |11〉√

2
)

]
⊗|junk〉 ,

Φ(B1 |ψ ′〉) =
[
1⊗ σX−σZ√

2
|00〉+ |11〉√

2

]
⊗|junk〉 ,

which completes the self-testing proof of the CHSH reference experiment.

2.6 Randomness from nonlocal correlations
The existence of intrinsic randomness is one of the big and debatable questions in modern
science, technology and philosophy. Fundamentally, the notion of randomness is related
to the important philosophical problems of determinism and free will. Practically, ran-
domness is a resource for simulations, statistical sampling, cryptography, gambling and
many others. It is one of the trademarks of quantum theory, in which outcomes of generic
measurements can be predicted only probabilistically. Precisely this aspect motivated the
EPR paradox, and subsequently Bell’s theorem, which in turn brought a new light to the
intrinsic randomness in quantum world. But before we explain the relation between Bell
nonlocality and randomness let us explain what is meant by ”intrinsic”, or ”good” ran-
domness.
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Statement 1:
We say that N bits are random if they are unpredictable.

However, unpredictability depends on the context, since a sequence of numbers can
be unpredictable for an observer, but perfectly predictable for another one, who possesses
more information. A trivial example is dice throwing. The outcome is actually deter-
mined by Newton’s laws and perfectly predictable with sufficient information. Thus, the
statement about good randomness has to be modified.

Statement 2:
We say that N bits are random if there is no physical observer who can predict them.

Randomness defined in this way is also called private, since the user who generates it
in privacy is sure that nobody knows the generated sequence. The next arising problem is
the certification of randomness. To certify that a sequence of N bits is random means to
prove that it is

• distributed according to the uniform distribution (i.e. both outcomes happen with
the same probability);

• uncorrelated with the rest of the universe.

A quantum user, say Alice, can generate N random bits by measuring in {|0〉 , |1〉} basis
the following state

ρ
A =

(
1
2
|0〉〈0|+ 1

2
|1〉〈1|

)⊗N

. (2.30)

She can easily certify that the outcomes are distributed uniformly. However, Alice can
have a reduced state identical to (2.30) but still be perfectly correlated with an eavesdrop-
per, named Eve, if they share N maximally entangled pairs

|ψ〉AE = |Φ+〉⊗N
. (2.31)

A way for Alice to refute the possibility that Eve holds a system perfectly correlated with
her is to prove that her system is maximally entangled with another system she has in pos-
session. Due to the monogamy of entanglement, N pairs of maximally entangled qubits
are uncorrelated with the rest of the universe. Since Alice obtains her bits one by one, we
will consider a situation when N = 1. The rest of the bits are obtained by repeating the
same protocol. Since Alice does not want to put any trust on the providers of her devices,
she will operate in the device-independent scenario. Certifying that two of her boxes con-
tain the maximally entangled pair of qubits can come through nonlocality. We have seen
in Section 2.5 that the maximal violation of the CHSH inequality fixes the shared state and
measurements to be equivalent to the EPR reference experiment. In other words, if Alice
observes that her boxes achieve the Tsirelson bound in the CHSH scenario, she possesses
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a maximally entangled pair of qubits. A projective measurement on one of her qubits
will produce a sequence of random numbers. The first protocol for device-independent
randomness generation (DIRG) is given in [Pir+10], where it is shown how to quantify
randomness. It provides a quantitative relation between the degree of violation of CHSH
inequality and the amount of generated randomness.

The main task in a device independent randomness generation protocol is to estimate
the ability of Eve to predict the outcomes of Alice’s measurement, which is quantified by
a quantity called guessing probability. Before defining the quantity, let us set the scenario.
In a single-user protocol Alice possesses two boxes, A and B, which do not communicate.
The state contained in the boxes can be correlated with Eve’s system, and the joint state is
denoted as ρABE ∈ B(H A⊗H B⊗H E). Analogously to the Bell test, Alice probes her
boxes with classical inputs x and y, and obtains outcomes a and b, which are interpreted as
the results of the measurements performed on a quantum state. By repeating the process,
she evaluates the joint probabilities p(a,b|x,y) and constructs a behaviour vector P. The
joint probabilities are obtained by the Born rule

p(a,b|x,y) = tr
[
(MA

a|x⊗MB
b|y)ρ

AB
]
, (2.32)

where ρAB = trEρABE.
The aim is to associate the guessing probability arising from the worst case quantum
strategy compatible with P. Let us focus on local randomness associated to Alice’s input
x∗. Upon Alice’s measurement x∗ the correlation between her output and Eve’s state is
captured by the quantum-classical state

∑
a

p(a|x∗)|a〉〈a|⊗ρ
E
a,x∗,

where
ρ

E
a,x∗ = trAB[(MA

a|x∗⊗1BE)ρABE]

is the corresponding reduced state of Eve conditioned on Alice’s outcome a. The guessing
probability [CK11] is defined as the average probability that Eve correctly guesses Alice’s
output a. To guess the output Eve performs a POVM {Ma|z} on her system. She guessed
correctly if the outcome of her measurement is a when her system is in reduced state ρE

a′,x∗
which happens with probability

p(a|z,a′,x∗) = tr
[
Ma|zρ

E
a,x∗
]
. (2.33)

The guessing probability is obtained by averaging (2.33) with respect to Alice’s probabil-
ity distribution p(a|x∗) and optimizing over all possible POVMs Eve can perform and all
quantum strategies compatible with the observed behaviour P

G(P) = max
Ma|z,strat.∑a

p(a|x∗)p(a|z,a′,x∗). (2.34)

There are several works dealing with the best ways to optimize the guessing probability,
most notably [NSPS13, BSS14].
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2.7 Semidefinite programming
A very common task in quantum information theory is to optimize some variable de-
pending on a quantum state or a quantum behaviour. Examples of such variables are the
maximal violation of a Bell inequality or a guessing probability. Since the sets over which
the variable is optimized are often convex, such problems are usually solved by means of
convex optimization methods. A particularly useful convex optimization tool in quantum
information theory is semidefinite programming (SDP) [BV04]. Its aim is to optimize the
value of an objective function over the intersection of the cone of positive semidefinite
matrices and an affine space depending on the given constraints. Before presenting more
details about semidefinite programming, let us recall a few definitions.

Matrix M ∈Mn is positive semidefinite if xT Mx ≥ 0 for all vectors x ∈ Rn. The fol-
lowing statements are equivalent:

• The matrix M is positive semidefinite.

• All eigenvalues of M are non-negative.

• All leading principal minors of M are non-negative.

• There exists N such that M = NT N.

A convex cone C is a subset of a vector space X , closed under linear combinations
with positive coefficients. The dual cone C∗ of a cone C is a subset of the dual vector
space X∗ defined by

C∗ = {y ∈ X∗|〈y,x〉 ≥ 0,∀x ∈C}.
We can now continue with the description of SDP optimizations. The simplest SDP

optimization problem has the following primal formulation

maxX tr[AX ];
s.t. f (X) = B;

X ≥ 0,
(2.35)

where A and B are Hermitian matrices, and f a hermicity-preserving linear map. Thus,
the aim is to maximize the value of the primal objective function tr[AX ] over the set of
positive semidefinite operators satisfying linear matrix equality (LME) f (X) = B. All
positive semidefinite operators X satisfying LME are named primal feasible points. If the
set of primal feasible points is non-empty the SDP is feasible, otherwise it is infeasible.
The maximal value of the primal objective function is named the primal optimal value.
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cone C

constraint
f(X)= B

convex set

Figure 2.5: Representation of the cone C of positive semidefinite matrices. For a feasible
SDP optimization problem the linear constraint f (X) = B defines a plane which inter-
sects the cone C, defining a convex set of all positive semidefinite matrices satisfying the
constraint. The objective function is maximized over this convex set.

Every SDP can be written in its dual form. In order to find the dual form of the SDP
given in (2.35) let us recall its associated Lagrangian

L = tr[AX ]+ tr[Y (B− f (X))]+ tr[ZX ]

= tr[(A− f †(Y )+Z)X ]+ tr[BY ],

where Y and Z are Hermitian Lagrange multipliers corresponding to the two constraints
of the primal problem. f † is the conjugate map to f , defined by tr[ f (X)Y ] = tr[X f †(Y )]
for all Hermitian X and Y . Note that L≥ tr[AX ] whenever Z ≥ 0, i.e. Lagrangian puts an
upper bound on the primal optimal value. The Lagrangian has the smallest value when
Z = f †(Y )−A. Henceforth, by imposing this condition and minimizing the remain of the
Lagrangian over Lagrange multipliers we can obtain the lowest upper bound to the primal
optimal value. This is exactly the dual formulation of the SDP

minY,Z tr[Y B];

s.t. Z +A = f †(Y );
Z ≥ 0.

(2.36)

Z and Y are named dual variables, tr[Y B] is the dual objective function, whose minimum
is the dual optimal value. Operators satisfying Z +A = f †(Y ) are named dual feasible.
Note that dual variable Z, also named a slack variable, can be eliminated from the dual,
turning the remaining constraint into f †(Y )−A ≥ 0. Thus, the dual can be simplified to
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the following form

minY,Z tr[Y B];

s.t. f †(Y )−A≥ 0.
(2.37)

Denote by X∗ and Y ∗ the primal and dual feasible point achieving the optimal primal
value and optimal dual value, respectively. These points satisfy the following chain of
relations

tr [AX∗]≤ tr
[

f †(Y ∗)X∗
]
= tr [Y ∗ f (X∗)] = tr [Y ∗B] .

As noted earlier, these relations show that the primal optimal value is smaller than or equal
to the dual optimal value, a concept known as the weak duality. The case of equality is
known as the strong duality, and in that case the primal and dual SDP problems give the
same value.
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Part I

Device-independent certification
of quantum states
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Chapter 3

Self-testing protocols based on
the chained Bell inequalities

In the previous chapter we introduced the idea of self-testing, outlined its importance for
device-independent quantum information processing and explained relevant terminology.
In this chapter we investigate self-testing properties of the chained Bell inequalities, de-
fined in (2.14). More precisely, we show that by using the chained Bell inequalities one
can self-test the maximally entangled state |Φ+〉 and certify the measurements given in
(2.15). In this way we generalize the results previously obtained for the CHSH Bell in-
equality in Refs. [Tsi93, MYS14, MS12]. A significant aspect of our result is self-testing
of measurements. While CHSH inequality one allows to self-test two anticommuting
measurement observables, in the limit of a large n the chained Bell inequality allows one
to self-test the entire plane of the Bloch sphere spanned by the Pauli matrices σX and
σZ. Additionally, our results imply that the maximal quantum violation of the chained
Bell inequalities is unique in the sense that there exists only one probability distribution
maximally violating each of them. This makes chained Bell inequalities useful for ran-
domness certification (see [DPA13]). In the context of nonlocal games this result confirms
that measuring (2.15) on a maximally entangled state state |Φ+〉 is the only way (up to
local isometries) to win the odd cycle game with maximal probability; it is known that the
probability to win the odd-cycle game in the quantum regime is cos2(π/4n) [CHTW04].

Before stating the technical results, let us set the scenario for the self-testing protocol.
As in the standard Bell scenario, there are two parties, Alice and Bob, each in posses-
sion of a black box. The boxes contain shares of a quantum state |ψ ′〉. Alice can apply
one of n dichotomic measurements, corresponding to the measurement observable Ai.
Similarly, Bob’s measurement observables are denoted with Bi. In a way described in
Section 2.2 Alice and Bob can gather data and calculate conditional probability distribu-
tions p(a,b|x,y) and the corresponding correlators 〈AiB j〉. Recall that the chained Bell

48



operator and the chained Bell inequality have the following form

Bn
ch =

n

∑
i=1

(AiBi +Ai+1Bi)

I n
ch = 〈Bn

ch〉 ≤ 2n−2.

The chapter is organized as follows. Section 3.1 introduces different SOS decom-
positions of the shifted chained Bell operators, which are used to prove the self-testing
protocol described in Section 3.2. The consequences of noise and imperfect experimen-
tal measurements to the self-testing protocol are discussed in Section 3.3. Generation of
randomness from the maximal violation of the chained Bell inequalities is the subject of
Section 3.4. Finally, Section 3.5 concludes the chapter with the outlook and discussion
about anticipated further work.

3.1 The SOS decompositions
The concept of SOS decompositions of a shifted Bell operators and their significance
is outlined in Subsection 2.2.4. Two SOS decompositions of the shifted Bell operator
associated to the chained Bell inequality are the main building block of our self-testing
proof. We start from the first degree SOS decomposition.

Lemma 2.1. Let {|ψ ′〉 ,A′i,B′i} be the state and the measurements maximally violating
the chained Bell inequality. Then, the corresponding shifted Bell operators admit the
following SOS of first degree:

β
n
Q1−Bn

ch = cos
π

2n

[
n

∑
i=1

(
1−A′i⊗

B i+B′i−1

2cos(π/2n)

)2

+
1
n

n

∑
j=1

n−2

∑
i=1

(
αiB′j +βiB′i+ j + γiB′i+ j+1

)2

]
, (3.1)

where we assume that B′n+ j =−B′j and B′n =−B′0. The coefficients αi, βi, and γi are given
by

αi =
sin(π/n)

2cos(π/2n)

√
1

sin(πi/n)sin [π(i+1)/n]
, (3.2)

βi =
−1

2cos(π/2n)

√
sin [π(i+1)/n]

sin(πi/n)
, (3.3)

and

γi =
1

2cos(π/2n)

√
sin(πi/n)

sin [π(i+1)/n]
=− 1

4βi cos2(π/2n)
(3.4)

with i = 1, . . . ,n−2.
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Before we prove this Lemma, note that the above SOS decomposition remains valid
if in its second line we omit the sum over j and fix j to be any number from {1, . . . ,n}.
Also, the transformations A′i→B′i and B′i→A′i+1 in the first parenthesis, and B′i→A′i in the
second one lead to the whole new family of 2n SOS decompositions. Let us also mention
that that the above SOS decomposition is a particular case of an SOS decomposition
for a more general Bell inequality which is presented in Ref. [Sal+17] together with an
analytical method used to derive it.

Proof. The first sum of the right hand side of eq. (3.1) contains all the terms forming the
shifted Bell operator β n

Q1−Bn
ch, but also some additional terms of the form BkBk+1. The

second sum serves exactly to cancel out these additional terms from the first sum. The
bottleneck of the SOS decomposition reduces to proving that the coefficient multiplying
the identity operator 1 is exactly 2ncos(π/2n). This coefficient reads

T = cos
π

2n

[
n+

n
2cos2(π/2n)

+Tα +Tβ +Tγ

]
, (3.5)

where

Tω =
n−2

∑
i=1

ω
2
i (3.6)

with ω = α,β ,γ . The coefficients αi, βi and γi are defined in Eqs. (3.2), (3.3) and (3.4).
In what follows we will evaluate each term Tω separately. Let us start from Tα . Based on
Eq. (3.2) we can write

Tα = 1
4cos2(π/2n) ∑

n−2
i=1

[
sin2(π/n)

sin(iπ/n)sin[(i+1)π/n]

]
= sin(π/n)

4cos2(π/2n) ∑
n−2
i=1

[
cos(iπ/n)
sin(iπ/n) −

cos[(i+1)π/n]
sin[(i+1)π/n]

]
= sin(π/n)

4cos2(π/2n) ∑
n−2
i=1

{
cot
( iπ

n

)
− cot

[
(i+1)π

n

]}
. (3.7)

Note that the following identity

n−1

∑
i=1

cot
(

πi
n

)
= 0 (3.8)

implies

n−2

∑
i=1

cot(
iπ
n
) = cot(

π

n
),

n−2

∑
i=1

cot(
(i+1)π

n
) =−cot(

π

n
), (3.9)

By plugging in Eq. (3.9) into Eq. (3.7) one can show that

Tα =
cos(π/n)

2cos2(π/2n)
. (3.10)
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Let us, now, evaluate Tβ . Following Eq. (3.3), Tβ takes the following form

Tβ =
1

4cos2(π/2n)

[
n−2

∑
i=1

sin[(i+1)π/n]
sin(iπ/n)

]
. (3.11)

After utilizing the elementary trigonometric property sin(x+ y) = sinxcosy+ cosxsiny,
Eq. (3.11) reduces to

Tβ =
1

4cos2(π/2n)

[
(n−2)cos(

π

n
)+ sin(

π

n
)

n−2

∑
i=1

cot(
iπ
n
)

]
. (3.12)

Finally, by aid of Eq. (3.9), this gives

Tβ =
(n−1)cos(π/n)

4cos2(π/2n)
. (3.13)

Let us finally compute Tγ . From Eq. (3.4) it can be written explicitly as

Tγ =
1

4cos2(π/2n)

[
n−2

∑
i=1

sin(iπ/n)
sin[(i+1)π/n]

]
. (3.14)

If we write sin(iπ/n) = sin[(i+ 1− 1)π/n] and use again the above given trigonometric
identity, one finds

Tγ =
1

4cos2(π/2n)

{
(n−2)cos(

π

n
)− sin(

π

n
)

n−2

∑
i=1

cot
[
(i+1)π

n

]}
, (3.15)

which, following Eq. (3.9), reduces to

Tγ =
(n−1)cos(π/n)

4cos2(π/2n)
. (3.16)

At the end, if we plug-in Eqs. (3.10), (3.13) and (3.16) into Eq. (3.5) and exploit some
elementary properties of the trigonometric functions, we can see that T = 2ncos(π/2n),
which completes the proof.

While useful for gaining knowledge about |ψ ′〉 and operators {A′i,B′i}, the SOS de-
composition (3.1) does not provide enough informations for self-testing. To remedy this,
we have to introduce a 2nd degree SOS decomposition.

Lemma 2.2. Let {|ψ ′〉 ,A′i,B′i} be the state and the measurements maximally violating
the chained Bell inequality. Then, the corresponding shifted Bell operator admits the
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following second-order SOS:

β
n
Q1−Bn

ch =
1

8ncos π

2n

{
2(β n

Q1−Bn
ch)

2 +
n

∑
i, j=1

j 6=i,i−1

[
A′i⊗ (B′i +B′i−1)− (A′j +A′j+1)⊗B′j

]2
+

n

∑
i=1

[(
A′i⊗B′i−A′i+1⊗B′i+1

)2
+
(
A′i⊗B′i−1−A′i+1⊗B′i

)2
]}

+
1
2

cos
(

π

2n

)n−2

∑
i=1

[(
αiB′1 +βiB′i+1 + γiB′i+2

)2
+
(
αiA′1 +βiA′i+1 + γiA′i+2

)2
]
,

(3.17)

where we again used the notation A′n+1 =−A′1 and A′0 =−A′n and the same for B′-s, and
the αi, βi and γi are given in Eqs. (3.2), (3.3) and (3.4).

We can construct another SOS decomposition from the above one by applying the
following transformations to it: A′i→ B′i in all terms, B′i→ A′i+1 in the curly brackets and
B′i→ A′i in the remaining terms.

Proof. To confirm validity of (3.17) we follow similar argumentation as in the proof of
Lemma 2.1. The first parenthesis on the right hand side of (3.17) introduces terms that
up to some multiplicative factors belong to the following set { 1,A′iB′i, A′iB

′
i−1,A

′
iA
′
i+1,

B′iB
′
i+1,A

′
iA
′
jB
′
kB′l}. The terms A′iA

′
jB
′
kB′l are directly cancelled out by the same terms

stemming from the second and the third parenthesis. Then, the terms A′iA
′
i+1 and B′iB

′
i+1

enter with the coefficient 2/[8ncos(π/2n)] and together with the same terms resulting
from the second parenthesis and entering with the coefficient (n−2)/[8ncos(π/2n)] they
are cancelled out by those resulting from the third line of (3.17). The terms A′iB

′
i and

A′iB
′
i−1 give rise to the shifted Bell operator, and, finally, the identity operator 1 is multi-

plied by the following expression

1
8ncos(π/2n)

{[
8n2 cos2(

π

2n
)+4n

]
+4n(n−2)+4n

}
+

ncos(π/n)
2cos2(π/2n)

(3.18)

which after some movements simplifies to 2ncos(π/2n). This is exactly the multiplicative
factor of identity operator in the shifted Bell operator.

3.2 Exact case self-testing
In this Section we consider the situation when a chained Bell inequality is maximally
violated and prove that it has a strong self-testing consequences. The starting point is the
swap-gate introduced in Ref. [McKM11] and presented on Fig. 3.1. In what follows we
will demonstrate that with adequately chosen operators X ′A, Z′B, X ′B and Z′B it defines a
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|+〉A
′

|+〉B
′

|ψ′〉AB

Z̃ ′
A

Z̃ ′
B

H

H

X̃ ′
A

X̃ ′
B

|junk〉 |Φ+〉

Figure 3.1: The swap-gate used for self-testing. In it, |ψ ′〉AB stands for the state maxi-
mally violating the given Bell inequality, while |+〉A′ and |+〉B′ are ancillary qubit states
controlling the gates X̃A,Z̃A,X̃B and Z̃B. Then, H is the standard one-qubit Hadamard gate
defined in the text. X̃A,Z̃A,X̃B and Z̃B are regularized, if necessary, versions of X ′A,Z′A,X ′B
and Z′B respectively. At the output of the circuit the ancillary qubits are in the desired state
|Φ+〉.

unitary operation satisfying Eq. (2.24), necessary for self-testing. For this purpose, let us
choose

X ′A =


A′n/2+1, n even

A′(n+1)/2 +A′(n+3)/2

2cos(π/2n)
, n odd

, Z′A = A1 (3.19)

and

X ′B =


B′n/2 +B′n/2+1

2cos(π/2n)
, n even

B(n+1)/2, n odd

, Z′B =
B′1−B′n

2cos(π/2n)
. (3.20)

Since all observables A′i and B′i are Hermitian with eigenvalues ±1, Z′A and X ′A for even
n and X ′B for odd n are unitary. Yet, the operators X ′A for odd n, X ′B for even n and Z′B
may not be unitary, making the swap-gate possibly non-unitary. This problem is solved
by utilizing the polar decomposition which says that any operator M can be written as
M = U |M| = |M|V where U and V are some unitary operators and |M| =

√
M†M. If X ′B

and Z′B are of full rank let us define X̃B = X ′B/|X ′B| and Z̃B = Z′B/|Z′B|, while if any of them
is rank deficient, say Z′B, we replace its zero eigenvalues by one and then use the above
construction. To sum up, we define Z̃B = (Z′B+P)/|Z′B+P|where P denotes the projector
onto the kernel of Z′B.

Now, note that the SOS decompositions (3.1) and (3.17) imply that for any i = 1, . . . ,n
the identities

A′i⊗
B′i +B′i−1

2cos(π/2n)
|ψ ′〉= |ψ ′〉 , A′i +A′i+1

2cos(π/2n)
⊗Bi |ψ ′〉= |ψ ′〉 (3.21)
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are satisfied, which further entail that

X ′A |ψ ′〉= X ′B |ψ ′〉 , Z′A |ψ ′〉= Z′B |ψ ′〉 . (3.22)

Furthermore, one can prove the anticommutation of operators X ′A and Z′A on the support
of |ψ ′〉

{X ′A,Z′A}|ψ ′〉= 0. (3.23)

To demonstrate this relation we need to prove several auxiliary lemmas. Before we pro-
ceed let us note that in some of the following expressions operators might be indexed
by any integer (not just from the set {1, . . . ,n}), and in those cases we use the notation
Cn+i = −Ci and C−i = −Cn−i. The intuition for this notation can be found on Bloch
sphere representation of the measurements (see Fig. 2.4), where we can see that if one
would draw the next measurement after Cn, and denote it as Cn+1 it would be parallel to
−C1, and similarly for any Cn+i. Let us continue by proving the following lemma.

Lemma 2.3. Let {|ψ ′〉 ,A′i,B′i} be the pure state and the measurements realizing the max-
imal quantum violation of the chained Bell inequalities. Then, the following identities are
true:

A′i |ψ ′〉=
B′i +B′i−1

2cos(π/2n)
|ψ ′〉 ≡ B′i−1,i |ψ ′〉 (3.24)

for i = 1, . . . ,n,
(αiC j +βiCi+ j + γiCi+ j+1) |ψ ′〉= 0 (3.25)

for i = 1, . . . ,n−2, j = 1, . . . ,n and C = A′,B′, and

(A′iB
′
i−A′i+1B′i+1) |ψ ′〉= 0 (3.26)

(A′iB
′
i−1−A′i+1B′i) |ψ ′〉= 0 (3.27)

for i = 1, . . . ,n.

Proof. From the fact that |ψ ′〉 and A′i and B′i violate the chained Bell inequality maximally
it follows that 〈ψ ′|(β n

Q1−Bn
ch) |ψ ′〉= 0. Now, the first SOS decomposition (3.1) for the

operator β n
Q1−Bn

ch implies Eqs. (3.24) and (3.25), while the second one implies Eqs.
(3.26) and (3.27)

This Lemma together with the following one is enough to prove the anticommutation
relation (3.23).

Lemma 2.4. Let {|ψ ′〉 ,A′i,B′i} be the pure state and the measurements realizing the max-
imal quantum violation of the chained Bell inequalities. Then, the following relations are
true:

{A′1,A′n2+1}|ψ ′〉= 0 (3.28)

for even n, and
{A′1,A′n+1

2
+A′n+3

2
}|ψ ′〉= 0 (3.29)

for odd n.
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Proof. We prove the even and odd n case separately.
Even number of measurements. Let us begin by noting that by setting j = k− i with

k = 1, . . . ,n in (3.25), one obtains

(αiCk−i +βiCk + γiCk+1) |ψ ′〉= 0. (3.30)

Alternatively, by shifting i→ n− i−1 and fixing j = k+ i+1, we get

(αn−i−1Ck+i+1 +βn−i−1Ck+n + γn−i−1Ck+n+1) |ψ ′〉= 0, (3.31)

which, by noting that Ck+n =−Ck for any k = 1, . . . ,n−1, αn−i−1 = αi and βn−i−1 =−γi
for any i = 1, . . . ,n−2, can further be simplified to

(αiCk+i+1 + γiCk +βiCk+1) |ψ ′〉= 0. (3.32)

After summing Eqs. (3.30) and (3.32) and performing some straightforward manipula-
tions we finally obtain

(Ck−i +Ck+i+1) |ψ ′〉= ξiCk,k+1 |ψ ′〉 , (3.33)

where we denoted ξi = 2cos[(2i+1)π/2n] and Ck,k+1 = (Ck +Ck+1)/[2cos(π/2n)]. Fi-
nally, setting k = 0 in Eq. (3.32) and k = n in Eq. (3.30) and subtracting the resulting
equations one from another we obtain

(Ci+1−Cn−i) |ψ ′〉= ξiC1,−n |ψ ′〉 , (3.34)

where we have denoted C1,−n = (C1−Cn)/[2cos(π/2n)].
Having all these auxiliary identities at hand, we are now in position to prove Eq.

(3.28). To this end, we first rewrite its left-hand side as

(A′1A′n
2+1 +A′n

2+1A′1) |ψ ′〉 =
(

A′1B′n
2 ,

n
2+1 +A′n

2+1B′1,−n

)
|ψ ′〉

=
1

ξ n
2−1

[
A′1(B

′
1 +B′n)+A′n

2+1(B
′
n
2
−B′n

2+1)
]
|ψ ′〉 ,

(3.35)

where the first equality was obtained with the aid of the identity (3.24) for i = n/2+ 1,
while the second one follows from Eqs. (3.33) and (3.34). Then, the formulas (3.26) and
(3.27) imply that

(A′1B′1−A′j+1B′j+1) |ψ ′〉=
j

∑
i=1

(A′iB
′
i−A′i+1B′i+1) |ψ ′〉= 0 (3.36)

and

(A′1B′n +A′j+1B′j) |ψ ′〉=
j

∑
i=1

(A′iB
′
i−1−A′i+1B′i) |ψ ′〉= 0 (3.37)
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hold for any j = 1, . . . ,n. After setting j = n/2 in the latter identities and inserting them
into Eq. (3.35) we eventually obtain (3.28).

Odd number of measurements. Before passing to the anticommutation relation
(3.29), we need some auxiliary relations for the measurements A′i and B′i. In order to
derive the first one, we shift k→ k−1 in Eq. (3.32) and add the resulting equation to Eq.
(3.30), obtaining

(Ck+i +Ck−i) |ψ ′〉=−2
βi

αi
Ck−

γi

αi
(Ck−1 +Ck+1) |ψ ′〉 . (3.38)

Then, setting i = 1 and shifting j→ j−1 in Eq. (3.25) we arrive at

(C j+1 +C j−1) |ψ ′〉= 2cos
(

π

n

)
C j |ψ ′〉 , (3.39)

which after being plugged into Eq. (3.38) gives rise to the following identity

(Ck+i +Ck−i) |ψ ′〉= ζiCk |ψ ′〉 , (3.40)

where ζi = 2cos(iπ/n).
Then, by setting j = (n− 1)/2 in Eqs. (3.36) and (3.37) and adding the resulting

equations we obtain

A′1(B
′
1 +B′n) |ψ ′〉= A′n+1

2
(B′n+1

2
−B′n−1

2
) |ψ ′〉 , (3.41)

which can be further simplified by using Eq. (3.40) with i = (n−1)/2 and k = n, giving

A′1(B
′
1 +B′n) |ψ ′〉= ζ n−1

2
A′n+1

2
B′n |ψ ′〉 . (3.42)

Analogously, by setting j = (n+ 1)/2 in Eqs. (3.36) and (3.37) and adding them, one
obtains

A′1(B
′
1 +B′n) |ψ ′〉= A′n+3

2
(B′n+3

2
−B′n+1

2
) |ψ ′〉 , (3.43)

which, after application of Eq. (3.40) with i = (n−1)/2 and k = n+1, further simplifies
to

A′1(B
′
1 +B′n) |ψ ′〉=−ζ n−1

2
A′n+3

2
B′1 |ψ ′〉 . (3.44)

Now, we can rewrite the left-hand side of the anticommutation relation Eq. (3.29) as{
A′1,A

′
n+1

2
+A′n+3

2

}
|ψ ′〉=

=
1

2cos π

2n

[
A′1(B

′
n−1

2
+2B′n+1

2
+B′n+3

2
)+(A′n+1

2
+A n+3

′ 2)(B
′
1−B′n)

]
|ψ ′〉

=
1

2cos π

2n

[
A′1

(
B′n−1

2
+B′n+3

2
+2

B′1 +B′n
ζ(n−1)/2

)
+(A′n+1

2
+A′n+3

2
)(B′1−B′n)

]
|ψ ′〉 ,

56



where the first equality stems from Eq. (3.24) and to obtain the second one we have
utilized Eq. (3.40) with i = (n− 1)/2 and k = (n+ 1)/2. Then, expressions (3.42) and
(3.44) lead us to{

A′1,A
′
n+1

2
+A′n+3

2

}
|ψ ′〉= 1

2cos(π/2n)
(A′1B′n−1

2
+A′1B′n+3

2
+A′n+1

2
B′1−A′n+3

2
B′n) |ψ ′〉 .

(3.45)
Exploiting once more Eq. (3.40) one obtains the following equalities

A′1 |ψ ′〉=
1

ζ n−1
2

(A′n+1
2
−A′n+3

2
) |ψ ′〉 , B′1 |ψ ′〉=

1
ζ n−1

2

(B′n+1
2
−B′n+3

2
) |ψ ′〉 ,

and
B′n |ψ ′〉=

1
ζ n−1

2

(B′n+1
2
−B′n−1

2
) |ψ ′〉

whose application to Eq. (??) allows one to rewrite it as{
A′1,A

′
n+1

2
+A′n+3

2

}
|ψ ′〉=

=
1

2ζ n−1
2

cos π

2n

(
A′n+1

2
B′n−1

2
−A′n+3

2
B′n+1

2
+A′n+1

2
B′n+1

2
−A′n+3

2
B′n+3

2

)
|ψ ′〉 .

To complete the proof it suffices to make use of the equalities (3.26) and (3.27) with
j = (n+1)/2.

Finally, although the tilded operators are in general different than X ′B and Z′B, it turns
out that they act in the same way when applied to |ψ ′〉, that is,

X̃B |ψ ′〉= X ′B |ψ ′〉 , Z̃B |ψ ′〉= Z′B |ψ ′〉 . (3.46)

To prove these relations, let ‖ · ‖ stand for the vector norm defined as ‖|ψ〉‖=
√
〈ψ|ψ〉.

Then, the following reasoning applies (based on the metod from Ref. [BP15])

‖(X̃B−X ′B) |ψ ′〉‖ = ‖(1− X̃†
BX ′B) |ψ ′〉‖= ‖(1−|X ′B|) |ψ ′〉‖

= ‖(1−|X ′AX ′B|) |ψ ′〉‖ ≤ ‖(1−X ′AX ′B) |ψ ′〉‖= 0, (3.47)

where the first and the second equalities stem from the fact that X̃B is unitary and its
definition, respectively. The third equality is a consequence of the fact X ′A is unitary
which implies that |X ′AX ′B|= |X ′B|, and, finally, the inequality and the last equality follow
from the operator inequality M ≤ |M| and Eq. (3.22).

The following lemma is necessary for self-testing of all the measurements used to
obtain the maximal violation of any of the chained Bell inequalities.
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Lemma 2.5. Let {|ψ ′〉 ,A′i,B′i} realize the maximal quantum violation of the chained Bell
inequality. Then, for even n:

A′i |ψ ′〉 =
(

siA′n
2+1 + ciA′1

)
|ψ ′〉 , (3.48)

B′i |ψ ′〉 =
(

s′iB
′
n
2 ,

n
2+1 + c′iB

′
1,−n

)
|ψ ′〉 , (3.49)

while for odd n:

A′i |ψ ′〉 =
{

siA′n+1
2 , n+3

2
+ ciA′1

}
|ψ ′〉 , (3.50)

B′i |ψ ′〉 =
{

s′iB
′
n+1

2
+ c′iB

′
1,−n

}
|ψ ′〉 , (3.51)

are valid for any i = 1, . . . ,n. Symbols si, ci, s′i and c′i are defined in Eq. (2.15).

Proof. Let us begin with the even n case. By setting k = 1+n/2 and shifting i→ 1− i+
n/2 in Eq. (3.40) one obtains

(Ci−C2−i) |ψ ′〉= ζ n
2+1−iCn

2+1 |ψ ′〉 . (3.52)

for i = 1, . . . ,n/2, where we have additionally exploited the fact that Cn+i = −Ci and
C−i =−Cn−i for any i. To prove Eq. (3.52) for i = n/2+1, . . . ,n/2 one has to use (3.30)
but coefficients αi, βi and γi are not defined for i< 0. However, once Eq. (3.52) is derived
for i < n/2+ 1, it is easy to note that the cases when i > n/2+ 1 are already contained
in the proof. This is due to the fact that any expression obtained when i > n/2+1, is the
same as the expression proved for n+2− i< n/2+1.
On the other hand, fixing k = 1 and shifting i→ i− 1 in Eq. (3.40), one can deduce the
following equality

(Ci +C2−i) |ψ ′〉= ζi−1C1 |ψ ′〉 . (3.53)

with i = 2, . . .n. For i = 1 the equation is trivial. Adding Eqs. (3.52) and (3.53) and
recalling that ζi = 2cos(iπ/n) one obtains Eq. (3.48).

In order to prove the second identity (3.49), we fix k = n/2 and shift i→ n/2− i in
Eq. (3.33) which leads us to

(Ci +Cn−i+1) |ψ ′〉= ξ n
2−iCn

2 ,
n
2+1 |ψ ′〉 . (3.54)

This equation is satisfied for all i = 1, . . . ,n, but it could formally be derived only when
i < n/2. The cases i = n/2,n/2+ 1 are trivially satisfied. Similarly to the discussion
following Eq. (3.52) it is easy to check that for every i > n/2+1 Eq. (3.54) is the same
as for the case n+1− i< n/2, which has been formally proven.

Now we note that by shifting i→ i−1 in Eq. (3.34), one obtains the following equa-
tion

(Ci−Cn−i+1) |ψ ′〉= ξi−1C1,−n |ψ ′〉 , (3.55)
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which when combined with Eq. (3.54) directly implies Eq. (3.49), completing the proof.
Now we move to the odd n case. First in Eq. (3.33) we fix k = (n+ 1)/2 and shift

i→ (n+1)/2− i to get

(Ci +Cn+2−i) |ψ ′〉= ξ n+1
2 −iCn+1

2 , n+3
2
|ψ ′〉 . (3.56)

This equation is consistent for all i = 1, . . . ,n, with the clarification exactly the same as in
the discussion following Eq. (3.54). Next step is to plug k = 1 and i→ i−1 in Eq. (3.40)
which together with C2−i =−Cn+2−i gives

(Ci−Cn+2−i) |ψ ′〉= ζi−1C1 |ψ ′〉 (3.57)

By adding Eqs. (3.56) and (3.57) and using some elementary trigonometric identities we
obtain 3.50. We proceed by fixing k = (n+ 1)/2 and shifting i→ (n+ 1)/2− i in Eq.
(3.40) to obtain

(Ci +Cn+1−i) |ψ ′〉= ζ n+1
2 −iCn+1

2
|ψ ′〉 , (3.58)

satisfied for all i = 1, . . . ,n in the same way as Eq. (3.52). To get Eq. (3.51) and complete
the proof to Eq. (3.58) we add

(Ci−Cn+1−i) |ψ ′〉= ξi−1C1,−n |ψ ′〉 (3.59)

which is obtained by shifting i→ i−1 in Eq. (3.34)

We are now ready to state and prove our first main result.

Theorem 3. Let {|ψ ′〉 ,A′i,B′i} be the state and the measurements maximally violating the
chained Bell inequality (2.14). Then the unitary operation Φ defined above is such that
for any pair i, j = 1, . . . ,n

Φ(A′iB
′
j |ψ ′〉 |00〉) = |junk〉AiB j |Φ+〉 , (3.60)

Φ(A′i |ψ ′〉 |00〉) = |junk〉Ai |Φ+〉 , Φ(B′j |ψ ′〉 |00〉) = |junk〉B j |Φ+〉 , (3.61)
Φ(|ψ ′〉 |00〉) = |junk〉 |Φ+〉 , (3.62)

where |junk〉 is some irrelevant quantum state, |Φ+〉 is the two-qubit maximally entangled
state, and Ai and Bi are given by Eq. (2.15).

Proof. Let us first consider Eq. (3.60). Owing to the linearity of Φ in both Alice’s and
Bob’s measurements and the fact that for even n (see Lemma 2.5):

A′i |ψ ′〉=
(
siX ′A + ciZ′A

)
|ψ ′〉 , B′i |ψ ′〉=

(
s′iX
′
B + c′iZ

′
B
)
|ψ ′〉 , (3.63)

the left-hand side of Eq. (3.60) can be rewritten as

Φ(A′iB
′
j |ψ ′〉 |00〉) = sis′iΦ(X ′AX ′B |ψ ′〉 |00〉)+ sic′iΦ(X ′AZ′B |ψ ′〉 |00〉)

+cis′iΦ(Z′AX ′B |ψ ′〉 |00〉)+ cic′iΦ(Z′AZ′B |ψ ′〉 |00〉). (3.64)
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Then, it follows from Eqs. (3.22) and (3.23) that X ′AX ′B |ψ ′〉 = Z′AZ′B |ψ ′〉 = |ψ ′〉 and
X ′AZ′B |ψ ′〉 = −Z′AX ′B |ψ ′〉, and therefore we only need to check how the map Φ applies
to |ψ ′〉 and X ′AZ′B |ψ ′〉. In the first case, one has

Φ(|ψ ′〉 |00〉) =1
4
[
(1+Z′A)(1+ Z̃B) |ψ ′〉 |00〉+X ′A(1−Z′A)(1+ Z̃B) |ψ ′〉 |10〉

+ X̃B(1+Z′A)(1− Z̃B) |ψ ′〉 |01〉+X ′AX̃B(1−Z′A)(1− Z̃B) |ψ ′〉 |11〉
]
.

(3.65)

Exploiting Eqs. (3.22) and (3.46) to convert Z̃B to Z′B and then Z′B to Z′A, and the fact that
Z′A has eigenvalues±1, meaning that (1+Z′A) and (1−Z′A) are projectors onto orthogonal
subspaces, one finds that the terms in Eq. (3.65) containing the ancillary vectors |01〉 and
|10〉 simply vanish, and the whole expression simplifies to

Φ(|ψ ′〉 |00〉) = 1
4
[
(1+Z′A)

2 |ψ ′〉 |00〉+X ′AX̃B(1−Z′A)
2 |ψ ′〉 |11〉

]
. (3.66)

Using then the fact that (1±Z′A)
2 = 2(1±Z′A), the anticommutation relation (3.23) and

the identities (3.22) and (3.46), we finally obtain

Φ(|ψ ′〉 |00〉) = |junk〉 |Φ+〉 (3.67)

with |junk〉= (1/2
√

2)(1+Z′A)
2 |ψ ′〉, which is exactly Eq. (3.62).

In the second case, i.e., that of Φ(X ′AZ′B |ψ ′〉 |00〉), one has

Φ(X ′AZ′B |ψ ′〉 |00〉) =1
4
[
(1+Z′A)(1+ Z̃B)X ′AZ′B |ψ ′〉 |00〉+X ′A(1−Z′A)(1+ Z̃B)X ′AZ′B |ψ ′〉 |10〉

+ X̃B(1+Z′A)(1− Z̃B)X ′AZ′B |ψ ′〉 |01〉
+X ′AX̃B(1−Z′A)(1− Z̃B)X ′AZ′B |ψ ′〉 |11〉

]
. (3.68)

Exploiting the properties (3.22) and (3.46), the anticommutation relation (3.23), and the
fact that (1+Z′A)(1−Z′A) = 0, one can prove that the terms in Eq. (3.68) containing kets
|00〉 and |11〉 are zero and the whole expression reduces to

Φ(X ′AZ′B |ψ ′〉 |00〉) =
1
4

[
(1+Z′A)

2 |ψ ′〉 |10〉+X ′AZ′AX̃B(1−Z′A)
2 |ψ ′〉 |01〉

]
.(3.69)

By applying then Eq. (3.22) and the anticommutation relation (3.23) in the second term
of Eq. (3.69), one can rewrite it as

Φ(X ′AZ′B |ψ ′〉 |00〉) = |junk〉XAZB |Φ+〉 . (3.70)

After plugging Eqs. (3.67) and (3.70) into Eq. (3.64) and using the fact that the Pauli
matrices X and Z anticommute and satisfy XAXB |Φ+〉= ZAZB |Φ+〉= |Φ+〉, we arrive at

Φ(A′iB
′
j |ψ ′〉 |00〉) = sis′i |junk〉XAXB |Φ+〉+ sic′i |junk〉XAZB |Φ+〉

+cis′i |junk〉ZAXB |Φ+〉+ cic′i |junk〉ZAZB |Φ+〉 , (3.71)
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which by virtue of the formulas (2.15) is exactly Eq. (3.60).
Let us now prove Eqs. (3.61). From the the linearity of Φ and Eq. (3.63), we get

Φ(A′i |ψ ′〉 |00〉) = siΦ(X ′A |ψ ′〉 |00〉)+ ciΦ(Z′A |ψ ′〉 |00〉).

Following the same steps as above, one can prove the following relations

Φ(X ′A |ψ ′〉 |00〉) = |junk〉XA |Φ+〉 , Φ(Z′A |ψ ′〉 |00〉) = |junk〉ZA |Φ+〉 ,

which when plugged into Eq. (3.72) leads, in virtue of Eq. (3.63), to the first part of Eq.
(3.61).The second part of the same equation can be proven in exactly the same way.

Let us notice that in order to prove the uniqueness of correlations maximally violating
the chained Bell inequality one needs only the conditions (3.61) and (3.62); the conditions
(3.60) are superfluous. This is because

〈ψ ′|A′i⊗B′j|ψ ′〉 = (〈00|〈ψ ′|A′i)Φ†
Φ(B′j |ψ ′〉 |00〉)

= 〈Φ+|Ai⊗B j|Φ+〉,

where the first equality follows from the fact that Φ is unitary and and second from Eqs.
(3.61) and (3.62).

3.3 Robustness
For practical purposes, it is important to estimate the robustness of self-testing procedures,
as in any realistic situation it is impossible due to experimental imperfections to actually
reach the maximal violation of any Bell inequality. One expects, however, self-testing
procedures to tolerate some deviations from the ideal case, that is, if the violation of the
given Bell inequality is close to its maximum quantum value, the state producing the
violation must be close to the state maximally violating this Bell inequality. In [YN13] it
has been proven that SOS decompositions allow to reach good robustness of all analytical
self-test protocols.

Here we study how robust is the above self-testing procedure based on the chained
Bell inequality. Assuming that the physical state |ψ ′〉 and the physical measurements A′i
and B′i violate the chained Bell inequality by β n

Q− ε with some sufficiently small ε > 0,
we estimate the distance between |ψ ′〉 and the reference state, and how this distance is
affected when physical measurements are applied to it.

Let us begin by noticing that now 〈ψ ′|(β n
Q1−Bn

ch)|ψ ′〉 = ε , and therefore the exact
relations (3.76), (3.77) and (3.92) do not hold anymore. We then need to derive their
approximate versions. First, let us state and prove the following Lemma, stemming from
the first SOS decomposition.
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Lemma 3.1. Let |ψ ′〉 and {A′i,B′i} be the state and the measurements violating the chained
Bell inequality by β n

Q− ε . Then, the following relations are satisfied:

‖(A′i−B′i−1,i) |ψ ′〉‖ ≤
√

ε

cos(π/2n)
≡√ε1 (3.72)

for i = 1, . . . ,n,
‖(αiB′j +βiB′i+ j + γiB′i+ j+1) |ψ ′〉‖ ≤

√
ε1 (3.73)

for i = 1, . . . ,n−2 and j = 1, . . . ,n, and

‖(A′i⊗B′i−A′i+1⊗B′i+1) |ψ ′〉‖ ≤
√

8ncos
π

2n
ε ≡√nε2, (3.74)

‖(A′i⊗B′i−1−A′i+1⊗B′i) |ψ ′〉‖ ≤
√

nε2 (3.75)

for i = 1, . . . ,n.

Proof. All equations follow directly from SOS decompositions. When a chained Bell in-
equality is violated by 2ncos[π/2n]− ε , from the definition of SOS decomposition it fol-
lows that ∑i 〈ψ ′|P2

i |ψ ′〉= ε and consequently ||Pi |ψ ′〉 || ≤
√

ε for all i. The expressions
given by equations (3.72) and (3.73) are identified in the first degree SOS decomposition
(3.1) (note the explanation after the equation), while the expressions bounded in equations
(3.74) and (3.75) are the part of the second degree SOS decomposition (3.17).

Taking into account definitions of operators X ′A,X
′
B,Z
′
A and Z′B given in Eqs. 3.19 and

3.20, Lemma 3.1 implies:

‖(X ′A−X ′B) |ψ ′〉‖ ≤
√

ε1(n), ‖(Z′A−Z′B) |ψ ′〉‖ ≤
√

ε1(n), (3.76)

where ε1 = ε/cos(π/2n). Clearly, for any n, ε1(n) ≤
√

2 and ε1(n)→ 0 for ε → 0.
Moreover, following the same reasoning as in (3.47), one proves that

‖(X̃ ′B−X ′B) |ψ ′〉‖ ≤
√

ε1(n), ‖(Z̃′B−Z′B) |ψ ′〉‖ ≤
√

ε1(n). (3.77)

Finally, both SOS decompositions (3.1) and (3.17) imply the following approximate anti-
commutation relations given in the following Lemma:

Lemma 3.2. Let {|ψ ′〉 ,A′i,B′i} be the state and the measurements violating the chained
Bell inequality by β n

Q−ε . Then, the following approximate anticommutation relations are
true

‖{A′1,A′n2+1}|ψ ′〉‖ ≤
√

2ε1 +
1

ξn/2−1

(
4
√

ε1

αn/2−1
+n
√

2ε2

)
= ωev (3.78)
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for even n, and

‖{A′1,A′n+1
2
+A′n+3

2
}|ψ ′〉‖ ≤ 2

√
ε1n

( √
2

ζ(n−1)/2
+
√

n−1

)
+
√

ε1(1+
√

2)

+
3
√

ε1

cos π

2nα(n−1)/2ζ(n−1)/2

(
2+

γ(n−1)/2

α1

)
= ωodd

(3.79)

for odd n. For any fixed n the right-hand sides of both inequalities vanish if ε → 0 and
for sufficiently large n both functions scale quadratically with n.

Proof. The proof goes along the same lines as that of Lemma 2.4, however, at each step
we need to take into account the error stemming from the fact that now the Bell inequality
is not violated maximally. We prove the cases of even and odd n separately.

Even number of measurements. We first need to prove the approximate versions of
the identities (3.33) and (3.34). By substituting j = k− i in (3.73) we obtain

‖(αiCk−i +βiCk + γiCk+1) |ψ ′〉‖ ≤
√

ε1 (3.80)

Then, by shifting i→ n− i−1 and setting j = k+ i+1 in (3.73), we have

‖(αiCk+i+1 + γiCk +βiCk+1) |ψ ′〉‖ ≤
√

ε1. (3.81)

Both inequalities imply

‖(Ck−i +Ck+i+1−ξiCk,k+1) |ψ ′〉‖ ≤
2
√

ε1

αi
(3.82)

for any k = 1, . . . ,n and i = 1, . . . ,n− 2. The case when i = n− 1 or i = n are trivial
because they represent the definition of Ck,k+1. Then, by using Eq. (3.80) with k = n and
Eq. (3.81) with k = 0, one can prove the following inequality

‖(Ci+1−Cn−i−ξiC1,−n) |ψ ′〉‖ ≤
2
√

ε1

αi
(3.83)

with i = 1, . . . ,n−2. Now, one has

‖{A′1,A′n2+1}|ψ ′〉‖ = ‖(A′1A′n
2+1 +A′n

2+1A′1) |ψ ′〉‖
≤ ‖(A′1B′n

2 ,
n
2+1 +A′n

2+1B′1,−n) |ψ ′〉‖+
√

2ε1,

which with the aid of Eq. (3.82) with k = n/2 and i = n/2− 1 and Eq. (3.83) with
i = n/2−1, can be further upper bounded as∥∥∥{A′1,A′n2+1}|ψ ′〉

∥∥∥ ≤ 1
ξn/2−1

∥∥∥[A′1(B′1 +B′n)+A′n
2+1(B

′
n
2
−B′n

2+1)
]
|ψ ′〉

∥∥∥+ 1
ξn/2−1

4
√

ε1

αn/2−1

≤ 1
ξn/2−1

[∥∥∥(A′1B′1−A′n
2+1B′n

2+1) |ψ ′〉
∥∥∥+∥∥∥(A′1B′n +A′n

2+1B′n
2
) |ψ ′〉

∥∥∥]
+

1
ξn/2−1

4
√

ε1

αn/2−1
. (3.84)

63



To upper bound the above two terms, we will use approximate versions of Eqs. (3.36)
and (3.37). First, it follows from the SOS decomposition that for any j = 1, . . . ,n:

j

∑
i=1

∥∥(A′iB′i−A′i+1B′i+1) |ψ ′〉
∥∥2 ≤ nε2, (3.85)

which by virtue of the triangle inequality for the norm and concavity of the square root
implies

∥∥(A′1B′1−A′j+1B′j+1) |ψ ′〉
∥∥ =

∥∥∥∥∥ j

∑
i=1

(A′iB
′
i−A′i+1B′i+1) |ψ ′〉

∥∥∥∥∥
≤

j

∑
i=1

∥∥(A′iB′i−A′i+1B′i+1) |ψ ′〉
∥∥

≤
√

j

(
j

∑
i=1

∥∥(A′iB′i−A′i+1B′i+1) |ψ ′〉
∥∥2

) 1
2

≤
√

jnε2. (3.86)

Analogously, the SOS decomposition (3.17) implies that

j

∑
i=1

∥∥(A′iB′i−1−A′i+1B′i) |ψ ′〉
∥∥2 ≤√nε2, (3.87)

from which, by using similar arguments as above, one infers that

∥∥(A′1B′n +A′j+1B′j) |ψ ′〉
∥∥= j

∑
i=1

∥∥(A′iB′i−1−A′i+1B′i) |ψ ′〉
∥∥≤√ jnε2. (3.88)

Substituting j = n/2 and applying both inequalities (3.86) and (3.88) to (3.84) one finally
obtains (3.78).

Odd number of measurements. We first prove the following inequality

‖(Ck−i +Ck+i−ζiCk) |ψ ′〉‖ ≤
(

2+
γi

α1

)√
ε1

αi
(3.89)

for any i = 1, . . . ,n−2. Then, from inequalities (3.86) and (3.88) with j = (n−1)/2, and
inequality (3.89) for i = (n−1)/2 and k = n, one obtains∥∥∥[A′1(B′1 +B′n)−ζ n−1

2
A′n+1

2
B′n
]
|ψ ′〉

∥∥∥ ≤ √
2n(n−1)ε2 + ε

′,

where we denoted

ε
′ =

√
ε1

α(n−1)/2

(
2+

γ(n−1)/2

α1

)
.
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Analogously, from inequalities (3.86) and (3.88) with j = (n+1)/2 and inequality (3.89)
for i = (n−1)/2 and k = n+1, one obtains∥∥∥[A′1(B′1 +B′n)+ζ n−1

2
A′n+3

2
B′n
]
|ψ ′〉

∥∥∥ ≤ √
2n(n−1)ε2 + ε

′. (3.90)

We can then upper bound∥∥∥{A′1,A′n+1
2
+A′n+3

2
}|ψ ′〉

∥∥∥ ≤ 1
2cos( π

2n)

∥∥∥[A′1(B′n−1
2
+2B′n+1

2
+B′n+3

2
)

+(A′n+1
2
+A′n+3

2
)(B′1−B′n)] |ψ ′〉

∥∥∥+√ε1(1+
√

2)

≤ 1
2cos( π

2n)

∥∥∥∥∥
[

A′1

(
B′n−1

2
+B′n+3

2
+2

B′1 +B′n
ζ(n−1)/2

)
+(A′n+1

2
+A′n+3

2
)(B′1−B′n)

]
|ψ ′〉

∥∥∥∥∥
+
√

ε1(1+
√

2)+
ε ′

2cos(π/2n)ζ(n−1)/2

≤ 1
2cos( π

2n)

∥∥∥(A′1B′n−1
2
+A′1B′n+3

2
+A′n+1

2
B′1−A′n+3

2
B′n
)
|ψ ′〉

∥∥∥
+
√

ε1(1+
√

2)+
3ε ′

2cos(π/2n)ζ(n−1)/2
+2
√

ε1n(n−1). (3.91)

In the first inequality we used (3.72) twice in parallel (to exchange A′n+2 and A′n+3 with
corresponding B′s) and once more separately (to exchange A′1 with B′1,−n). To get the sec-
ond inequality we used (3.89) and for the final inequality we used twice (3.90). Inequality
(3.89) for k = 1 and i = (n−1)/2 gives∥∥∥[A′n+1

2
−A′n+3

2
−ζ n−1

2
A′1] |ψ ′〉

∥∥∥≤ ε
′,∥∥∥[B′n+1

2
−B′n+3

2
−ζ n−1

2
B′1] |ψ ′〉

∥∥∥≤ ε
′

with C = A,B, while for k = n and i = (n−1)/2∥∥∥[B′n+1
2
−B′n−1

2
−ζ n−1

2
B′n] |ψ ′〉

∥∥∥≤ ε
′,

These three inequalities when applied to (3.91) give∥∥∥{A′1,A′n+1
2
+A′n+3

2
}|ψ ′〉

∥∥∥ ≤ 1
2cos( π

2n)ζ n−1
2

∥∥∥(A′n+1
2

B′n−1
2
−A′n+3

2
B′n+1

2

+A′n+1
2

B′n+1
2
−A′n+3

2
B′n+3

2

)
|ψ ′〉

∥∥∥
+
√

ε1(1+
√

2)+
3ε ′

cos π

2nζ(n−1)/2
+2
√

ε1n(n−1).
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To upper bound the norm appearing on the right-hand side and complete the proof we use
inequalities (3.74) and (3.75) with i = (n+1)/2 which leads us to∥∥∥{A′1,A′n+1

2
+A′n+3

2
}|ψ ′〉

∥∥∥ ≤ 2
√

ε1n

( √
2

ζ(n−1)/2
+
√

n−1

)
+
√

ε1(1+
√

2)

+
3
√

ε1

cos π

2nα(n−1)/2ζ(n−1)/2

(
2+

γ(n−1)/2

α1

)
.

To complete the proof let us notice that both ωev and ωodd , defined in Eqs. (3.78) and
(3.79) respectively, vanish when ε → 0. Furthermore, the term dominating the scaling
of ωev with n for large n is 4ε1/(ξn/2−1αn/2−1) = 2

√
ε/(sin2(π/2n)). It follows that for

sufficiently large n the function 1/sin2(π/2n) behaves like (4/π2)n2+1/3+O(1/n2) and
therefore we can conclude that ωev scales quadratically with n when n is large enough,
and for small ε it behaves as

√
ε . After analogous analysis one finds that ωodd exhibits

the same behaviour for small ε and sufficiently large n.

Having the results of Lemma 3.2 we can infer that for the operators used in the isom-
etry the following robust anticommutation inequality holds (in case of even n)

‖{X ′A,Z′A}|ψ ′〉‖ ≤
√

2ε1(n)+
1

ξn/2−1

(
4
√

ε1(n)
αn/2−1

+n
√

2ε2(n)

)
= ωev(n), (3.92)

where ξi = 2cos(2i+ 1)π/2n, αi is defined in Lemma 2.1, and ε1 and ε2 are given in
Lemma 3.2. Analogous statement holds when n is odd. In what follows we drop the
dependence of ε1 and ε2 on n.

Before stating the main theorem about the robustness of our self-test we have to state
and prove two more lemmas. The first one Lemma 3.3 will be useful for the robustness of
measurements self-testing. The second one, Lemma 3.4, takes into account the missnor-
malization of the |junk〉 following from the non-maximal violation of the corresponding
chained Bell inequality.

Lemma 3.3. Let {|ψ ′〉 ,A′i,B′i} be a state and measurements violating the chained Bell
inequalities by β n

Q− ε . Then, for an even number of measurements:∥∥∥(A′i− siA′n
2+1− ciA′1

)
|ψ ′〉

∥∥∥≤ gev(ε,n),∥∥∥(B′i− s′iB
′
n
2 ,

n
2+1− c′iB

′
1,−n

)
|ψ ′〉

∥∥∥≤ hev(ε,n),

while for an odd number of measurements:∥∥∥(A′i− siA′n+1
2 , n+3

2
− ciA′1

)
|ψ ′〉

∥∥∥≤ godd(ε,n),∥∥∥(B′i− s′iB
′
n+1

2
− c′iB

′
1,−n

)
|ψ ′〉

∥∥∥≤ hodd(ε,n).

The functions gev, hev, godd and hodd vanish for ε → 0 and scale linearly with n.
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Proof. We will follow the proof of Lemma 2.5. We can write∥∥∥(A′i− siA′n
2+1− ciA′1

)
|ψ ′〉

∥∥∥
= 1

2

∥∥∥(A′i−A′2−i−ζ n
2+1−iA′n

2+1 +A′i +A′2−i−ζi−1A′1
)
|ψ ′〉

∥∥∥
≤ 1

2

∥∥∥(A′i−A′2−i−ζ n
2+1−iA′n

2+1

)
|ψ ′〉

∥∥∥ + 1
2

∥∥(A′i +A′2−i−ζi−1A′1
)
|ψ ′〉

∥∥
≤
(

1+
γ| n2+1−i|

2α1

) √
ε1

α| n2+1−i|
+
(

1+ γi−1
2α1

) √
ε1

αi−1
= gev (3.93)

The equality corresponds to the pair of Eqs. (3.52) and (3.53), while the first inequality
is the triangle inequality followed by the bounds from Eq. (3.89). The absolute value
appearing in γ| n2+1−i| and α| n2+1−i| is justified in the discussion after Eq. (3.52). Note
that this bound cannot be applied to the cases when i = 1,n/2+ 1,n because for these
cases coefficients αi and γi are not defined. The cases i = 1,n/2+1 are trivial statements
and gev = 0, while for the case i = n the norm

∥∥(A′i +A′2−i−ζi−1A′1
)
|ψ ′〉

∥∥≤√ε1/α1 is
obtained by fixing j = n and i = 1 in (3.73), so gev = (1+γ| n2+1−i|/2α1)(

√
ε1/α| n2+1−i|)+√

ε1/α1/2. Similarly it can be shown that:∥∥∥(B′i− s′iB
′
n
2 ,

n
2+1− c′iB

′
1,−n

)
|ψ ′〉

∥∥∥
= 1

2

∥∥∥(B′i−B′1−i−ξ n
2−iB′n

2 ,
n
2+1 +B′i +B′1−i−ξi−1B′1,−n

)
|ψ ′〉

∥∥∥
≤ 1

2

∥∥∥(B′i−B′1−i−ξ n
2−iB′n

2 ,
n
2+1

)
|ψ ′〉

∥∥∥ + 1
2

∥∥∥(B′i +B′1−i−ξi−1B′1,−n

)
|ψ ′〉

∥∥∥
≤√ε1

(
1

αi−1
+ 1

α̃ n
2−i

)
= hev, (3.94)

where in the last inequality we used already established bounds given in Eqs. (3.82) and
(3.83) and we introduced notation α̃n/2−i which is equal to αn/2−i when n/2 > i, and to
αi−1−n/2 otherwise (for the clarification see the text following Eq. (3.54)). Similarly to
the previous case the bound is properly defined unless i ∈ {1,n,n/2,n/2+ 1}. For the
cases i = 1,n the norm ‖(B′i +B′1−i− ξi−1B′1,−n) |ψ ′〉‖ is trivial, thus equal to 0, so we
have hev =

√
ε1/α̃n/2−i. Analogously, when i = n/2,n/2+ 1, the norm ‖(B′i−B′1−i−

ξ n
2−iB′n

2 ,
n
2+1) |ψ ′〉‖ is equal to 0, causing hev to be equal to

√
ε1/αi−1. By repeating ana-

logue procedure it is easy to obtain bounds for the case when the number of inputs is
odd:

godd =
√

ε1

(
1

α̃ n+1
2 −i

+
(

1+ γi−1
2α1

)
1

αi−1

)
,

hodd =
√

ε1

(
1

αi−1
+

(
1+

γ| n+1
2 −i|

2α1

)
1

α| n+1
2 −i|

)
.

Similarly to the case when the number of inputs is even for i = 1,n the expression
for godd is estimated to be

√
ε1/α̃ n+1

2 −i and for i = (n + 1)/2,(n + 3)/2 it reduces to
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[
√

ε1/αi−1] (1+ γi−1/(2α1)). Also, for i = (n+ 1)/2 we have hodd =
√

ε1/αi−1,and for
i = 1,n we estimate hodd = [

√
ε1/α| n+1

2 −i|](1+ γ| n+1
2 −i|/(2α1)).

In the worst case functions gev,hev,godd and hodd behave as sin−1(π/n) when n is suffi-
ciently large. Linear scaling with respect to n of the aforementioned functions when n is
sufficiently large can be confirmed by considering the behaviour of function sin−1(π/n)
when n is large enough.

Lemma 3.4. Let |junk〉 be the state of the additional degrees of freedom from Theorem 3
and |junk′〉 state defined in Eq. (3.106). Then,

‖|junk〉− |junk′〉‖ ≤
(

1
2
+
√

2
)√

ε1 +
ω ′

4
, (3.95)

where ω ′ ≡ ωev for even n and ω ′ ≡ ωodd for odd n.

Proof. Let us notice that ‖|junk〉−|junk′〉‖= ‖|junk′〉‖−1 and then by using the explicit
form of |junk′〉 and the inequalities (3.76) and (3.77), we can write

‖|junk′〉‖ ≤ 1
2
√

2

(
‖(1+Z′A)(1+Z′B) |ψ ′〉‖+2

√
ε1
)

≤ 1
2
√

2

[
‖(1+Z′A)

2 |ψ ′〉‖+4
√

ε1
]

=
1√
2
‖(1+Z′A) |ψ ′〉‖+

√
2ε1 (3.96)

Now we want to estimate | 〈ψ ′|Z′A |ψ ′〉 |. For this we will follow a similar estimation
presented in [MYS14]. Note that due to the unitarity of Z′A, and Eqs. (3.76) and (3.92) we
can write ‖ (Z′AX ′B+X ′AZ′A) |ψ ′〉‖ = ‖ (Z′AX ′B−Z′AX ′A+Z′AX ′A+X ′AZ′A) |ψ ′〉‖ ≤

√
ε1+ω ′.

The norm will not change if we multiply the expression in brackets by some unitary
operator. This means that | 〈ψ ′|Z′A |ψ ′〉+ 〈ψ ′|X ′BX ′AZ′A |ψ ′〉 | ≤

√
ε1 +ω ′. We can put the

same bound for the complex conjugated expression

| 〈ψ ′|Z′A |ψ ′〉+ 〈ψ ′|X ′BZ′AX ′A |ψ ′〉 | ≤
√

ε1 +ω
′. (3.97)

On the other hand, using unitarity of Z′A and result (3.76) we can write

| 〈ψ ′|Z′A |ψ ′〉−〈ψ ′|X ′BZ′AX ′A |ψ ′〉 | ≤
√

ε1. (3.98)

Finally if we sum Eqs. (3.97) and (3.98) we get

| 〈ψ ′|Z′A |ψ ′〉 | ≤
√

ε1 +ω
′/2 (3.99)

If we plug this result in (3.96) we will get

‖ |junk′〉‖ ≤
√
〈ψ ′|(1+Z′A) |ψ ′〉+

√
2ε1

≤
√

1+
√

ε1 +ω ′/2+
√

2ε1

≤ 1+(1
2 +
√

2)
√

ε1 +
ω ′
4 (3.100)
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This estimation concludes the proof, since it is easy to check that the Eq. (3.95) is satis-
fied.

Equipped with these tools we can state and prove the second main result of this chap-
ter.

Theorem 4. Let {|ψ ′〉 ,A′i,B′i} be a state and measurements giving violation of the chained
Bell inequality β n

Q− ε . Then,

‖Φ(A′iB
′
j |ψ ′〉 |00〉)−|junk〉AiB j |Φ+〉‖ ≤ fi j(ε,n), (3.101)

‖Φ(A′i |ψ ′〉 |00〉)−|junk〉Ai |Φ+〉‖ ≤ fAi(ε,n), (3.102)
‖Φ(B′j |ψ ′〉 |00〉)−|junk〉B j |Φ+〉‖ ≤ fB j(ε,n), (3.103)

‖Φ(|ψ ′〉 |00〉)−|junk〉 |Φ+〉‖ ≤ f (ε,n), (3.104)

where i, j = 1, . . . ,n, Φ is the unitary transformation defined above, |junk〉= (1/N)(1+
Z′A)(1+ Z̃′B) |ψ ′〉 with N denoting the length of |junk〉. The functions f (ε,n), fB j(ε,n),
fAi(ε,n) and fi j(ε,n) vanish as ε → 0 and for sufficiently large n scale with n as n2.

Proof. As the norm N of |junk〉 cannot be computed exactly, it turns out that to prove this
theorem it is more convenient to first estimate the following distance

‖Φ(A′iB
′
j |ψ ′〉 |00〉)−|junk′〉AiB j |Φ+〉‖ (3.105)

with
|junk′〉= 1

2
√

2
(1+Z′A)(1+ Z̃′B) |ψ ′〉 . (3.106)

and then show that the error we have by doing so is small for sufficiently small ε .
From now on we will mainly follow the steps of the proof of Theorem 3 replacing the

identities by the corresponding inequalities. First, let us notice that for any i = 1, . . . ,n:

‖[A′i− (siX ′A + ciZ′A)] |ψ ′〉‖ ≤ gev, ‖[B′i− (s′iX
′
B + c′iZ

′
B)] |ψ ′〉‖ ≤ hev. (3.107)

where gev and hev are given in Lemma 3.3. Denoting by Ai and Bi the operators appearing
in the parentheses in (3.107), we can write

‖Φ(A′iB
′
j |ψ ′〉 |00〉)−|junk′〉AiB j |Φ+〉‖ ≤ (3.108)

≤ ‖Φ(A′iB
′
j |ψ ′〉 |00〉)−Φ(AiB j |ψ ′〉 |00〉)‖+‖Φ(AiB j |ψ ′〉 |00〉)−|junk′〉AiB j |Φ+〉‖,

and, by further exploitation of the fact that Φ is unitary, the first norm can be upper
bounded as

‖Φ(A′iB
′
j |ψ ′〉 |00〉)−Φ(AiB j |ψ ′〉 |00〉)‖ ≤ ‖(A′iB′j−AiB j) |ψ ′〉‖

≤ ‖(A′i−Ai) |ψ ′〉‖+‖(B′j−B j) |ψ ′〉‖
≤ gev +hev, (3.109)
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where to obtain the second inequality we have used the standard trick of adding and
subtracting the term A′iB j |ψ ′〉, the triangle inequality for the norm, and the fact that Ai is
unitary and that the spectral radius of B j is not larger than one. The third inequality in
(3.109) stems directly from (3.107). In the cases when A′i or B′j are equal to the identity
operator 1, the above bound is replaced by hev and gev, respectively, while in the case
A′i = B′j = 1, this distance is simply zero.

Let us then concentrate on the second norm on the right-hand side of (3.108). Ex-
ploiting the explicit forms of the operators Ai and Bi and the measurements Ai and Bi, one
has

‖Φ(AiB j |ψ ′〉 |00〉)−|junk′〉AiB j |Φ+〉‖ ≤ ‖Φ(X ′AX ′B |ψ ′〉 |00〉)−|junk′〉XAXB |Φ+〉‖
+‖Φ(X ′AZ′B |ψ ′〉 |00〉)−|junk′〉XAZB |Φ+〉‖
+‖Φ(Z′AX ′B |ψ ′〉 |00〉)−|junk′〉ZAXB |Φ+〉‖
+‖Φ(Z′AZ′B |ψ ′〉 |00〉)−|junk′〉ZAZB |Φ+〉‖.

(3.110)

Let us consider the first and the last norm on the right-hand side of this inequality. With
the aid of inequalities (3.76) and the fact that XAXB |Φ+〉 = ZAZB |Φ+〉 = |Φ+〉 both can
be upper bounded by

√
ε1 +‖Φ(|ψ ′〉 |00〉)−|junk′〉 |Φ+〉‖. Then, from the definition of

the unitary operation Φ and the state |junk′〉 it follows that the latter norm can be upper
bounded as

‖Φ(|ψ ′〉 |00〉)−|junk′〉 |Φ+〉‖ ≤1
4

(
‖XA(1−ZA)(1+ Z̃B) |ψ ′〉‖+‖X̃B(1+ZA)(1− Z̃B) |ψ ′〉‖

+ ‖XAX̃B(1−ZA)(1− Z̃B) |ψ ′〉− |junk′〉‖
)
.

(3.111)

To upper bound the first two norms in (3.111) we first exploit inequalities (3.76) and
(3.77) which allow us to “convert” Z̃B to ZB and then ZB to ZA introducing an error of
8
√

ε1, and then we use the fact that (1+Z′A)(1−Z′A) = 0. To upper bound the last norm
in (3.111) we first use the anticommutation relation (3.92) which leads us to

‖XAX̃B(1−ZA)(1−Z̃B) |ψ ′〉−|junk′〉‖≤ 2ωev(n)+2‖XAX̃B(1−Z̃B) |ψ ′〉−(1+Z̃B) |ψ ′〉‖.

One then uses again inequalities (3.76) and (3.77) in order to “convert” Z̃B to ZB and then
ZB to ZA. This gives

‖XAX̃B(1−ZA)(1− Z̃B) |ψ ′〉− |junk′〉‖ ≤ 2ωev(n)+8
√

ε1

+2‖XAX̃B(1−ZA) |ψ ′〉− (1+ZA) |ψ ′〉‖.

After applying (3.92) and then (3.76) and (3.77), one finally arrives at

‖XAX̃B(1−ZA)(1− Z̃B) |ψ ′〉− |junk′〉‖ ≤ 4ωev(n)+16
√

ε1.
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Taking all this into account, we have that

‖Φ(|ψ ′〉 |00〉)−|junk′〉 |Φ+〉‖ ≤ 6
√

ε1 +ωev(n). (3.112)

Let us now pass to the second norm in (3.110) and notice that by using inequality
(3.76) and the fact that ZB |Φ+〉= ZA |Φ+〉, it can be upper bounded in the following way

‖Φ(X ′AZ′B |ψ ′〉 |00〉)−|junk′〉XAZB |Φ+〉‖ ≤ √ε1 +
1
4

(
‖(1+Z′A)(1+ Z̃B)X ′AZ′A |ψ ′〉‖

+‖X ′AX̃B(1+Z′A)(1+ Z̃B)X ′AZ′A |ψ ′〉‖
)

+‖X ′A(1−Z′A)(1+ Z̃B)X ′AZ′A |ψ ′〉− |junk′〉‖
+‖X̃B(1+Z′A)(1− Z̃B)X ′AZ′A |ψ ′〉+ |junk′〉‖

)
.

(3.113)

Let us consider the first two norms appearing on the right-hand side of (3.113). Exploiting
the anticommutation relation (3.92) and then inequalities (3.76) and (3.77) to convert Z̃B
to ZA, we can bound each of these norms by 4

√
ε1 + 2ωev(n). Using then the inequality

(3.92), the third term is not larger than 2ωev(n). To bound the fourth term in (3.113), let
us use the fact that ‖1+Z′A‖ ≤ 2 to write

‖X̃B(1+Z′A)(1− Z̃B)X ′AZ′A |ψ ′〉− |junk′〉‖ ≤ 2‖X̃B(1− Z̃B)X ′AZ′A |ψ ′〉− (1+ Z̃B) |ψ ′〉‖.

Subsequent usage of inequalities (3.76) and (3.77) to Z̃B and X̃B gives

‖X̃B(1+Z′A)(1− Z̃B)X ′AZ′A |ψ ′〉− |junk′〉‖ ≤
≤ 16
√

ε1 +2‖X ′AZ′A(1−Z′A)X
′
A |ψ ′〉− (1+Z′A) |ψ ′〉‖,

which after double application of (3.92) yields

‖X̃B(1+Z′A)(1− Z̃B)X ′AZ′A |ψ ′〉− |junk′〉‖ ≤ 16
√

ε1 +2ωev(n).

This together with previous estimations finally implies that

‖Φ(X ′AZ′A |ψ ′〉 |00〉)−|junk′〉XAZB |Φ+〉‖ ≤ 7
√

ε1 +2ωev(n).

In a fully analogous way one can estimate the third term on the right-hand side of (3.110)

‖Φ(Z′AX ′B |ψ ′〉 |00〉)−|junk′〉ZAXB |Φ+〉‖ ≤ 7
√

ε1 +2ωev(n).

By plugging all these terms into (3.110) and then the resulting inequality together with
(3.109) into (3.108), one obtains

‖Φ(A′iB
′
j |ψ ′〉 |00〉)−|junk′〉AiB j |Φ+〉‖ ≤ 28

√
ε1 +6ωev(n)+gev +hev. (3.114)
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The terms from (3.102) can be treated in almost exactly the same way, giving

‖Φ(A′i |ψ ′〉 |00〉)−|junk′〉Ai |Φ+〉‖ ≤ 12
√

ε1 +3ωev(n)+gev, (3.115)

while the estimation of the corresponding expression from (3.102) follows from the ap-
plication of inequality (3.76) to (3.115), meaning that an additional error of

√
ε1 has to be

taken into account, which gives

‖Φ(B′j |ψ ′〉 |00〉)−|junk′〉B j |Φ+〉‖ ≤ 13
√

ε1 +3ωev(n)+hev. (3.116)

Finally, the case of A′i = B′j = 1 has already been derived in (3.112).
The distance between the normalized state |junk〉 and the unnormalized one |junk′〉 is

estimated in Lemma 3.4 to be

‖|junk〉− |junk′〉‖ ≤
(

1
2
+
√

2
)√

ε1 +ω
′, (3.117)

where ω ′ is equal to ωev for an even number of inputs.
In order to obtain inequalities (3.101) and complete the proof we use the triangle

inequality for the vector norm to write

‖Φ(A′iB
′
j |ψ ′〉 |00〉)−|junk〉AiB j |Φ+〉‖ ≤ ‖Φ(A′iB

′
j |ψ ′〉 |00〉)−|junk′〉AiB j |Φ+〉‖

+‖|junk〉− |junk′〉‖, (3.118)

and then apply the previously determined inequalities (3.112), (3.114), (3.115), (3.116)
and (3.117). All terms contributing to the functions f (ε,n), fB j(ε,n), fAi(ε,n) and
fi j(ε,n) scale at most as O(n2√ε).

3.4 Randomness certification with the chained Bell in-
equalities

It has been shown in Ref. [DPA13] that by exploiting the symmetry properties of the
chained Bell inequality, one can certify two bits of randomness when the maximum quan-
tum violation of this inequalities are obtained, provided this maximal quantum violation
is unique. However, a proof of the latter fact has not been known so far. Here, we com-
plete the result of Ref. [DPA13].

Let us now provide an alternative way of certifying two bits of perfect randomness
with the aid of the chained Bell inequality. For this purpose, we consider the following
modification of the chained Bell inequality

Ĩn
ch := I n

ch + 〈A′1B′n+1〉 ≤ 2n−1 (3.119)
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in which Alice, as before, can measure one of n observables A′i while Bob has n+ 1 ob-
servables B′i at his disposal, where n is assumed to be even. It is not difficult to see that
the maximal quantum violation of this inequality amounts to β̃ n

Q = β n
Q +1.

Let us now assume that |ψ ′〉 and A′i and B′i are the state and the measurements maxi-
mally violating (3.119). Denoting then by B̃n

ch =Bn
ch+A′1⊗B′n+1 the corresponding Bell

operator, one has 〈ψ ′|(β̃ n
Q1− B̃n

ch)|ψ ′〉 = 0, which, owing to the fact that |ψ ′〉 also vio-
lates maximally the chained Bell inequality and that β n

Q is its maximal quantum violation,
simplifies to 0 = 〈ψ ′|(1−A′1⊗B′n+1)|ψ ′〉 = (1/2)〈ψ ′|(1−A′1⊗B′n+1)

2|ψ ′〉, where the
second equality is a consequence of the fact that A′1 and B′n+1 are unitary and hermitian.
This implies that

A′1 |ψ〉= B′n+1 |ψ〉 . (3.120)

This property implies in particular that 〈B′n+1〉 = 〈A′1〉, which, taking into account the
fact that for the maximal quantum violation of the chained Bell inequality 〈A′i〉 = 0 for
any i = 1, . . . ,n, implies 〈B′n+1〉 = 0. In a quite analogous way we can now prove that
the expectation value 〈A′n/2+1B′n+1〉 = 〈ψ ′|A′n/2+1⊗B′n+1|ψ ′〉 vanishes. Exploiting Eq.
(3.120), we can rewrite it as 〈ψ ′|A′n/2+1⊗B′n+1|ψ ′〉= 〈ψ ′|A′n/2+1A′1|ψ ′〉. Then, due to the
fact that the expectation value 〈ψ ′|A′n/2+1⊗B′n+1|ψ ′〉 is real and both operators A′n/2+1
and B′n+1 are hermitian, which means that 〈ψ ′|A′n/2+1A′1|ψ ′〉 = 〈ψ ′|A′1A′n/2+1|ψ ′〉, this
can be further rewritten as

〈A′n/2+1B′n+1〉=
1
2
〈ψ ′|{A′1,A′n2+1}|ψ ′〉. (3.121)

We have already proven that if |ψ ′〉 and A′i and B′i violate maximally the chained Bell in-
equality, then {A′1,A′n/2+1}|ψ ′〉= 0 which implies that 〈A′n/2+1B′n+1〉= 0, which together
with 〈A′1〉= 〈B′n+1〉= 0 mean finally that

p(a,b|A′n
2+1,B

′
n+1) =

1
4

(3.122)

with a,b = 0,1. All this proves that any probability distribution p(a,b|A′i,B′j) with i =
1, . . . ,n and j = 1, . . . ,n+ 1 maximally violating the modified chained Bell inequality
(3.119) is such that all outcomes of the pair of measurements A′n/2+1,B

′
n+1 are equiprob-

able (3.122) and thus perfectly random, meaning that (3.119) certifies two bits of perfect
randomness.

The intuition behind the above approach is very simple. At the maximal quantum
violation of (3.119) the measurement B′n+1 must be “parallel” to A′1 [cf. Eq. (3.120)].
Therefore it is “orthogonal” to A′n/2+1 as the latter is orthogonal to A′1, meaning that
〈A′n/2+1B′n+1〉 = 0 which is basically what we need. It is worth noticing that in the
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even n case all pairs A′1+i,A
′
n/2+i with i = 1, . . . ,n/2− 1 of Alice’s observables are or-

thogonal, and therefore our argument can be extended to any pair A′n/2+i,B
′
n+1, that is,

〈A′n/2+i,B
′
n+1〉 = 0 provided the Bell inequality I n

ch + 〈A′n/2+iB
′
n+1〉 ≤ 2n− 1 is maxi-

mally violated. Unfortunately, this approach does not work in the odd n case as no pair of
observables at Alice’s or Bob’s sides are orthogonal.

3.5 Discussion
In this chapter we developed a scheme for self-testing the maximally entangled state of
two qubits using the chained Bell inequalities. Since our results hold for any number
of inputs, this allows one to self-test measurements on the whole XZ plane of the Bloch
sphere. Some of the previous self-testing techniques found an application for blind quan-
tum computation protocols (See [RUV13]). The fact that chained Bell inequalities involve
and certify a quite large large class of measurements makes this self-testing protocol a
good candidate for some future application in blind quantum computation processes. Be-
yond their interest as a protocol in quantum information processing, our results also have
fundamental implications, since they prove the uniqueness of the maximal violation of
the chained Bell inequalities. In Ref. [DPA13], this property was assumed to be true to
argue maximal randomness certification in Bell tests: with our proof, their results are now
confirmed. Contrary to the expectations, when increasing the number of measurements,
the robustness of our protocol diminishes. An interesting open question is to see whether
it is possible to improve this scaling. Another open question concerns chained Bell in-
equalities with more outcomes: can they also be useful for self-testing? If so, one could
also make use of these results for certifying random dits in systems of dimension larger
than two.
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Chapter 4

Self-testing multipartite
quantum states

Most of the currently known self-testing protocols are tailored to bipartite states, leaving
the multipartite scenario rather unexplored. In this chapter, we extend the class of multi-
partite states that can be self-tested, by investigating a simple approach that exploits the
well-understood self-testing of two-qubit states. This is done by combining projections
to two-qubit spaces and then exploiting maximal violation of tilted CHSH inequalities.
Using this potentially unifying approach, we show self-testing of all Dicke states (Section
4.4) and partially entangled GHZ states with only two measurements per party. We also
show that our method efficiently applies also to self-testing of graph states (Section 4.5),
previously known only through stabilizer state methods, with a slight improvement in the
number of measurement settings per party. Finally we provide the first self-testing result
for a class of multipartite qudit states, by showing that all multipartite qudit states which
possess a Schmidt decomposition can be self-tested, with at most four measurements per
party (Section 4.2).

4.1 Preliminaries
Before passing to the concrete results let us fix the notation and recall some relevant pre-
vious results. Consider N non-communicating parties sharing some N-partite state |ψ ′〉.
On its share of this state, a party i can perform one of several projective measurements
{M′ai

xi,i}ai , labelled by xi ∈Xi, with possible outcomes ai ∈Ai. Here Xi and Ai stand for
finite alphabets of possible questions and answers for party i. The experiment is character-
ized by a collection of conditional probabilities {p(a1, . . . ,aN |x1, . . . ,xN) : ai ∈Ai}xi∈Xi ,
where

p(a1, . . . ,aN |x1, . . . ,xN) = 〈ψ ′|M′a1
x1,1⊗ . . .⊗M′aN

xN ,N |ψ
′〉 (4.1)
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is the probability of obtaining outputs a1, . . . ,aN upon performing the measurements
x1, . . . ,xN

1. We refer to this as a correlation. It is sometimes convenient to describe
correlations with the aid of standard correlators, where instead of measurement operators
Mai

xi one uses Hermitian observables with eigenvalues ±1. Now, analogously to bipartite
self-testing (2.5) we can define multipartite self-testing in the following way.

Definition 4.1. We say that a correlation {p(a1, . . . ,aN |x1, . . . ,xN) : ai ∈ Ai}xi∈Xi self-
tests the state |ψ〉 and measurements {Mai

xi,i}ai , i = 1, . . . ,N, if for any state and measure-
ments |ψ ′〉 and {M′ai

xi,i}ai , i = 1, . . . ,N, reproducing the correlation, there exists a local
isometry Φ = Φ1⊗ . . .⊗ΦN such that

Φ(M′a1
x1,1⊗ . . .⊗M′aN

xN ,N |ψ
′〉) = |junk〉⊗ (Ma1

x1,1⊗ . . .⊗MaN
xN ,N |ψ〉). (4.2)

where |junk〉 is some auxiliary state representing unimportant degrees of freedom.

In the bipartite scenario (as we saw in Subsection 2.5.2) existence of an isometry
obeying (4.2) can be proven solely from the maximal violation of some Bell inequality.
Moreover, all two-qubit pure entangled states can be self-tested with a one-parameter
class of tilted CHSH Bell inequalities [BP15] given by

α〈A0〉+ 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉−〈A1B1〉 ≤ 2+α, (4.3)

where α ≥ 0 and Ai and Bi are observables with outcomes ±1 measured by the par-
ties. Note that for α = 0, Eq. (4.3) reproduces the well-known CHSH Bell inequality
[CHSH69]. For further purposes let us briefly recall this result. Here σZ and σX are the
standard Pauli matrices.

Lemma 4.1 ([BP15]). Suppose a bipartite state |ψ ′〉 and dichotomic observables Ai and
Bi achieve the maximal quantum violation of the tilted CHSH inequality (4.3)

√
8+2α2,

for some α . Let θ ,µ ∈ (0,π/2) be such that sin2θ =
√

(4−α2)/(4+α2) and µ =
arctansin2θ . Let ZA = A0, XA = A1. Let Z∗B and X∗B be respectively (B0+B1)/2cos µ and
(B0−B1)/2sin µ , but with all zero eigenvalues replaced by one, and define ZB = Z∗B|Z∗B|−1

and XB = X∗B|X∗B|−1. Then, we have

ZA |ψ ′〉= ZB |ψ ′〉 , (4.4)
cosθXA(1−ZA) |ψ ′〉= sinθXB(1+ZA) |ψ ′〉 , (4.5)
{XA,ZA}|ψ ′〉= 0, {XB,ZB}|ψ ′〉= 0 (4.6)

Moreover, there exists a local isometry Φ such that Φ(Ai ⊗ B j |ψ ′〉) = |junk〉 ⊗ (Ãi ⊗
B̃ j) |ψθ 〉, where |ψθ 〉= cosθ |00〉+sinθ |11〉, and Ã0 =σZ, Ã1 =σX, and B̃0/1 = cos µσZ±
sin µσX.

As in the previous Chapter a typical construction of the isometry Φ is the one encoding
the SWAP gate, as illustrated in Fig. 4.1.

1We take the parties’ measurements to be projective, invoking Naimark’s dilation theorem. We take
the joint state to be pure for ease of exposition, but we emphasize that all of our proofs hold analogously
starting from a joint mixed state.
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|+〉A
′

|+〉B
′

|ψ′〉AB
ZA

ZB

H

H

XA

XB

|junk〉 |ψθ〉

Figure 4.1: Example of a circuit that takes as input a state |ψ ′〉 satisfying (4.4)-(4.5), adds
two ancillas, each in |+〉, and outputs the state |ψθ 〉 in tensor product with an auxiliary
state |junk〉. Here H is the usual Hadamard gate.

Our aim in this chapter is to exploit the above result to develop methods for self-
testing multipartite entangled quantum states. Given an N-partite entangled state |ψ ′〉,
the idea is that N− 2 chosen parties perform local measurements on their shares of |ψ ′〉
and the remaining two parties check whether the projected state they share violates max-
imally (4.3) for the appropriate α (we can think of this as a sub-test). This procedure is
repeated for various subsets of N−2 parties until the correlations imposed are sufficient
to characterize the state |ψ〉. This approach is inspired by Ref. [Wu+14], which shows
that any state in the class (|100〉+ |101〉+α |001〉)/

√
2+α2, containing the three-qubit

W state, can be self-tested in this way. We will show that this approach can be generalized
in order to self-test new (and old) classes of multipartite states. The main challenge is to
show that all the sub-tests of different pairs of parties are compatible. To be more precise,
for a generic state there will always be a party which will be involved in several different
sub-tests and, in principle, will be required to use different measurements to pass the dif-
ferent tests. Consequently, isometries (Fig. 4.1) corresponding to different sub-tests are in
principle constructed from different observables. However, a single isometry is required
in order to self-test the global state. Overcoming the problem of building a single isome-
try from several different ones is the key step to achieve a valid self-test for multipartite
states. For states that exhibit certain symmetries, this can be done efficiently with few
measurements. We leave for future work the exploration for states that do not have any
particular symmetry.

In the N-partite scenario, parties will be denoted by numbers from 1 to N and mea-
surement observables by capital letters with a superscript denoting the party. For a two-
outcome observable W , we denote by W (±) = (1±W )/2 the projectors onto the ±1
eigenspaces. We use the notation bac to denote the biggest integer n such that n ≤ a,
while dae is the smallest n such that n≥ a.
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4.2 All multipartite entangled qudit Schmidt states
While in the bipartite setting all states admit a Schmidt decomposition (2.2), in the general
multipartite setting this is not the case. We refer to those multipartite states that admit a
Schmidt decomposition as Schmidt states. These, up to a local unitary, can be written in
the form

|ψs〉=
d−1

∑
j=0

c j | j〉⊗N (4.7)

where 0< c j < 1 for all i and ∑
d−1
j=0 c2

j = 1.
The proof that all multipartite entangled Schmidt states can be self-tested exploits the

ideas from Refs. [YN13] and [CGS17]. The main building block of the proof is our novel
self-testing result for partially entangled GHZ states. Thus, we proceed by first proving a
self-testing theorem for multipartite partially entangled qubit GHZ states.

4.2.1 Multipartite partially entangled GHZ states
Multipartite qubit Schmidt states, also known as partially entangled GHZ states, are of
the form

|GHZN(θ)〉= cosθ |0〉⊗N + sinθ |1〉⊗N (4.8)

where θ ∈ (0,π/4] and |GHZN(π/4)〉= |GHZN〉 is the standard N-qubit GHZ state. The
form of this state is such that if any subset of N−2 parties performs a σX measurement,
the collapsed state shared by the remaining two parties is cosθ |00〉± sinθ |11〉, depend-
ing on the parity of the measurement outcomes. As already mentioned, these states can
be self-tested with the aid of inequality (4.3), which is the main ingredient of our self-test
of |GHZN(θ)〉.

Theorem 5. Let |ψ ′〉 be an N-partite state, and let A0,i,A1,i be a pair of binary observ-
ables for the i-th party, for i = 1, . . . ,N. Suppose the following correlations are satisfied:

〈ψ ′|A(+)
0,i |ψ ′〉= 〈ψ ′|A

(+)
0,i A(+)

0, j |ψ ′〉= cos2
θ , ∀i, j ∈ {1, . . . ,N−1} (4.9)

〈ψ ′|
N−2

∏
i=1

A(ai)
1,i |ψ ′〉=

1
2N−2 , ∀a ∈ {+,−}N−2 (4.10)

〈ψ ′|
N−2

∏
i=1

A(ai)
1,i (αA0,N−1 +A0,N−1A0,N +A0,N−1A1,N +(−1)h(a)A1,N−1A0,N (4.11)

− (−1)h(a)A1,N−2A1,N−1) |ψ ′〉=
√

8+2α2

2N−2 , ∀a ∈ {+,−}N−2

(4.12)
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where h(a) denotes the parity of the number of “−” in a, and α = 2cos2θ/
√

1+ sin2 2θ .
Let µ be such that tan µ = sin2θ . Define Zi = A0,i and Xi = A1,i, for i = 1, . . . ,N− 1.
Then, let Z′N = (A0,N +A1,N)/2cos µ , and let Z∗N be Z′N with zero eigenvalues replaced by
1. Define ZN = Z∗N |Z∗N |−1. Define XN similarly starting from X ′N = (A0,N−A1,N)/2sin µ .
Then,

Z1 |ψ ′〉= · · ·= ZN |ψ ′〉 , (4.13)
X1 · · ·XN(I−Z1) |ψ ′〉= tanθ(I +Z1) |ψ ′〉 . (4.14)

Before providing the formal proof let us give an intuitive understanding of the corre-
lations given above. The first equation (4.9) defines the existence of one measurement
observable, whose marginal carries the information of angle θ . The straightforward con-
sequence of it is Eq. (4.13), which is analogue to Eq. (4.4). On the other hand, eq. (4.10)
involves a different measurement observable with zero marginal, while Eq. (4.11) shows
that when the first N− 2 parties perform this zero marginal measurement the remaining
two parties maximally violate the corresponding tilted CHSH inequality, i.e. the reduced
state is self-tested to be the partially entangled pair of qubits. Eq. (4.14) is analogue to
Eq. (4.5).

Figure 4.2: Two steps in the self-test of five-partite partially entangled GHZ-state. The
crossed qubits are measured in a suitable basis so that the two remaining qubits are pro-
jected to one of the partially entangled pairs of qubits cosθ |00〉± sinθ |11〉. The corre-
sponding pair can be self-tested by using the tilted CHSH inequality. In the second step
the procedure is repeated for different qubits being measured, thus preparing a different
pair of qubits in a state that can be self-tested.

Proof. For ease of exposition, we prove the Theorem in the case N = 4, with the extension
to general N being immediate.

Let A0,A1,B0,B1,C0,C1,D0,D1, be the pairs of observables for the four parties. For an
observable D, let Pa

D = [1+(−1)aD]/2, and for brevity let cθ and sθ denote respectively
cosθ and sinθ . For clarity, we recall the correlations from Theorem 5, for the case N = 4:
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〈ψ ′|P0
A0
|ψ ′〉= 〈ψ ′|P0

B0
|ψ ′〉= 〈ψ ′|P0

C0
|ψ ′〉= 〈ψ ′|P0

A0
P0

C0
|ψ ′〉= 〈ψ ′|P0

B0
P0

C0
|ψ ′〉= c2

θ ,

(4.15a)

〈ψ ′|Pa
A1

Pb
B1
|ψ ′〉= 1

4
, (4.15b)

〈ψ ′|Pa
A1

Pb
B1

(
αC0 +C0D0 +C0D1 +(−1)a+b(C1D0−C1D1)

)
|ψ ′〉=

√
8+2α2

4
,

(4.15c)

where tan2θ =
√

2
α2 − 1

2 . The last two equations have to hold for all a,b ∈ {0,1}. Eqs.
(4.15a) imply, by Cauchy-Schwartz inequality, that

P0
A0
|ψ ′〉= P0

B0
|ψ ′〉= P0

C0
|ψ ′〉 (4.16)

and consequently
P1

A0
|ψ ′〉= P1

B0
|ψ ′〉= P1

C0
|ψ ′〉 . (4.17)

Notice that Eq. (4.15b) implies ‖Pa
A1

Pb
B1
|ψ ′〉‖ = 1/2, for a,b ∈ {0,1}, and that the

equations in (4.15c) describe maximal violations of tilted CHSH inequalities by the nor-
malized state 2Pa

A1
Pb

B1
|ψ ′〉, for a,b ∈ {0,1} (the ones for a⊕ b = 1 are tilted CHSH in-

equalities upon relabelling D1→−D1).
Let µ be such that tan µ = s2θ . Define XA := A1,XB := B1 and XC := C1. Then,

let Z′D = (D0 +D1)/2cos µ , and let Z∗D be Z′D where we have replaced the zero eigen-
values with 1. Define ZD = Z∗D|Z∗D|−1. Define XD similarly starting from X ′D = (D0−
D1)/2cos µ . Let Pa

ZD
= [1+(−1)aZD]/2. The maximal violations of tilted CHSH from

(4.15c) imply, thanks to Lemma 4.1, that

Pa
C0

= Pa
ZD
, for a ∈ {0,1}, (4.18)

sθ Pa
A1

Pb
B1

XCXDP0
C0
|ψ ′〉= (−1)a+bcθ Pa

A1
Pb

B1
P1

C0
|ψ ′〉 , for a,b ∈ {0,1}. (4.19)

If we introduce notation XA = A1,XB = B1 and XC =C1, then

XAXBXCXDP1
A0
|ψ ′〉 = (P0

A1
−P1

A1
)(P0

B1
−P1

B1
)XCXDP1

C0
|ψ ′〉

= P0
A1

P0
B1

XCXDP1
C0
|ψ ′〉−P0

A1
P1

B1
XCXDP1

C0
|ψ ′〉−P1

A1
P0

B1
XCXDP1

C0
|ψ ′〉

+P1
A1

P1
B1

XCXDP1
C0
|ψ ′〉 (4.20)

=
sθ

cθ

P0
A1

P0
B1

P0
A0
|ψ ′〉+ sθ

cθ

P0
A1

P1
B1

P0
A0
|ψ ′〉+ sθ

cθ

P0
A1

P1
B1

P0
A0
|ψ ′〉

+
sθ

cθ

P1
A1

P1
B1

P0
A0
|ψ ′〉

=
sθ

cθ

P0
A0
|ψ ′〉 , (4.21)
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where we used equation (4.19) to obtain the third line, and ∑a,b∈{0,1}Pa
A1

Pb
B1

= 1 to obtain
the last. Conditions (4.13) and (4.14) of Theorem 5 follow immediately from the above.

As a Corollary, note that the correlations from Theorem 5 self-test the state |GHZN(θ)〉.

Corollary 5.1. Let |ψ ′〉 be an N-partite state, and let A0,i,A1,i be a pair of binary observ-
ables for the ith party, for i = 1, . . . ,N. Suppose they satisfy the correlations of Theorem
5. Then, there exists a local isometry Φ such that

Φ(|ψ ′〉) = |junk〉 |GHZN(θ)〉 (4.22)

Proof: This follows as a special case (d = 2) of Lemma 5.1 stated below, upon defining
P(k)

i = [1+(−1)kZi]/2, for k ∈ {0,1}.
As one can expect, the ideal measurements achieving these correlations are: A0,i =σZ,

A1,i = σX, for i = 1, . . . ,N−1, and A0,N = cosθσZ + sinθσX, A1,N = cosθσZ− sinθσX.
We refer to the correlations achieved by these ideal measurements as the ideal correla-
tions for multipartite entangled GHZ states.

4.2.2 All multipartite entangled qudit Schmidt states
The generalisation of Theorem 5 to all multipartite qudit Schmidt states is then an adap-
tation of the proof from Ref. [CGS17] to the multipartite case, with the difference that
it uses as a building block the |GHZN(θ)〉 self-test that we just developed, instead of the
tilted CHSH inequality.

We begin by stating a straightforward generalisation to the multipartite setting of the
criterion from [YN13] which gives sufficient conditions for self-testing a Schmidt state.
Then, our proof that all multipartite entangled qudit Schmidt states can be self-tested goes
through showing the existence of operators satisfying the conditions of such criterion.

Lemma 5.1 (Generalisation of criterion from [YN13]). Let |ψ ′〉 be a N-partite quantum
state. Suppose there exist sets of unitaries {X (k)

l }d−1
k=0 , where the subscript l ∈ {1, . . . ,N}

indicates that the operator acts on the system of the l-th party, and sets of projections
{P(k)

l }d−1
k=0 , that are complete and orthogonal for l = 1, . . . ,N−1 but not necessarily such

for l = N, and they satisfy:

P(k)
1 |ψ ′〉= . . .= P(k)

N |ψ ′〉 , (4.23)

X (k)
1 . . .X (k)

N P(k)
1 |ψ ′〉=

ck

c0
P(0)

1 |ψ ′〉 (4.24)

for all k = 1, . . . ,N. Then, there exists a local isometry Φ such that Φ(|ψ ′〉) = |junk〉⊗
|ψs〉.
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We explicitly construct a local isometry Φ such that Φ(|ψ ′〉) = |junk〉⊗ |ψs〉 for any
Schmidt state |ψs〉=∑

d−1
j=0 c j | j〉⊗N , where 0< c j < 1 for all j and ∑

d−1
j=0 c2

j = 1, and |junk〉
is some auxiliary state.

Proof. Recall that {P(k)
l }d−1

k=0 are complete sets of orthogonal projections for l = 1, . . . ,N−
1 by hypothesis. Then, notice that for i 6= j we have, using condition (4.23), P(i)

N P( j)
N |ψ ′〉=

P(i)
N P( j)

1 |ψ〉= P( j)
1 P(i)

1 |ψ〉= 0, i.e., the P(k)
N are “orthogonal when acting on |ψ〉”.

Let A be the unital algebra generated by {P(k)
1 }. Let H ′ = A |ψ ′〉, where A |ψ ′〉=

{Q |ψ〉 : Q ∈ A }. Let P̃(k)
N = P(k)

N |H ′ be the restriction of P(k)
N to H ′. Then, {P̃(k)

N }d−1
k=0

is a set of orthogonal projections. This is because, thanks to (4.23), one can always move
the relevant operators to be in front of |ψ〉, as in the simple example

P̃(i)
N P̃( j)

N (P(k)
1 |ψ ′〉

′
) = P(k)

1 P̃(i)
N P̃( j)

N |ψ ′〉= 0. (4.25)

Thus, the set {P̃(k)
B , I−P′B}, where P′B is the sum of all other projections, is a complete set

of orthogonal projections.
Now, define Zl := ∑

d−1
k=0 ωkP(k)

l , for l = 1, . . . ,N − 1, and ZN := ∑
d−1
k=0 ωkP̃(k)

N +1−
∑

d−1
k=0 P̃(k)

N . In particular, the Zl are all unitary. Notice, moreover, that
(
1−∑k P̃(k)

N
)
|ψ ′〉=

0, by using (4.23) and the fact that the {P(k)
l } are complete.

Define the local isometry

Φ :=
N⊗

l=1

Rll′F̄l′Sll′Fl′Appl, (4.26)

where Appl : Hl →Hl⊗Hl′ is the isometry that simply appends |0〉′l , F is the quantum
Fourier transform, F̄ is the inverse quantum Fourier transform, Rll′ is defined so that
|φ〉l |k〉l′ 7→ X (k)

l |φ〉l |k〉l′ ∀|φ〉, and Sll′ is defined so that |φ〉l |k〉l′ 7→ Zk
l |φ〉l |k〉l′ ∀|φ〉.

We compute the action of Φ on |ψ ′〉. For ease of notation with drop the tildes from the
P̃(k)

N , while still referring to the new orthogonal projections.

|ψ ′〉⊗ |0〉⊗N
⊗

l Fl′−→ 1
dN/2 ∑

k1,...,kN

|ψ ′〉
⊗

l

|kl〉l′

⊗
l Sll′−→ 1

dN/2 ∑
k1,...,kN

N−1

∏
i=1

(
∑
ji

ω
jiP( ji)

i

)ki
(∑

jN

ω
jN P( jN)

N +1−∑
k

P( jN)
N

)kN

|ψ ′〉
⊗

l

|kl〉l′

=
1

dN/2 ∑
k1,...,kN

∑
j1,..., jN

N

∏
i=1

ω
jikiP( ji)

i |ψ ′〉
⊗

l

|kl〉l′

=
1

dN/2 ∑
k1,...,kN

∑
j1,..., jN

N

∏
i=1

ω
jikiP( ji)

1 |ψ ′〉
⊗

l

|kl〉l′
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=
1

dN/2 ∑
k1,...,kN

∑
j

ω
j(∑i ki)P( j)

1 |ψ ′〉
⊗

l

|kl〉l′
⊗

l F̄l′−→ 1
dN ∑

k1,...,kN

∑
j

∑
m1,...,mN

ω
j(∑i ki)∏

r
ω
−mrkrP( j)

1 |ψ ′〉
⊗

l

|ml〉l′

=
1

dN ∑
k1,...,kN

∑
j

∑
m1,...,mN

∏
i

ω
ki( j−mi)P( j)

1 |ψ ′〉
⊗

l

|ml〉l′

=∑
j

P( j)
1 |ψ ′〉⊗ | j〉⊗N (4.27)

⊗
l Rll′−→ ∑

j

(
∏

i
X ( j)

i

)
P( j)

1 |ψ ′〉⊗ | j〉⊗N

=∑
j

c j

c0
P(0)

1 |ψ ′〉⊗ | j〉⊗N (4.28)

=
1
c0

P(0)
1 |ψ ′〉⊗∑

j
c j | j〉⊗N

= |junk〉⊗ |ψs〉 ,

where to get (4.28) we used condition (4.23). It is an easy check to see that the whole
proof above can be repeated by starting from a mixed joint state, yielding a corresponding
version of the Lemma that holds for a general mixed state.

We now describe the self-testing correlations for |ψs〉 = ∑
d−1
j=0 c j | j〉⊗n. Their struc-

ture is inspired by the self-testing correlations from [CGS17] for the bipartite case, and
they consist of three d-outcome measurements for all but the last party, which has four.
We desribe them by first presenting the ideal measurements that achieve them, as we
believe this aids understading. Subsequently, we extract their essential properties that
guarantee self-testing. For a single-qubit observable A, denote by [A]m the observable de-
fined with respect to the basis {|2m mod d〉 , |(2m+1) mod d〉}. For example, [σZ]m =
|2m〉〈2m|− |2m+1〉〈2m+1|. Similarly, we denote by [A]′m the observable defined with
respect to the basis {|(2m+1) mod d〉 , |(2m+2) mod d〉}. We use the notation

⊕
Ai

to denote the direct sum of observables Ai.
Let Xi denote the question set of the i-th party, and let Xi = {0,1,2} for i= 1, . . . ,N−

1, and XN = {0,1,2,3}. Let xi ∈Xi denote a question to the i-th party. The answer sets
are Ai = {0,1, . . . ,d−1}, for i = 1, . . . ,N.

Definition 5.1 (Ideal measurements for multipartite entangled Schmidt states). The N
parties make the following measurements on the joint state |ψs〉= ∑

d−1
j=0 c j | j〉⊗n.

For i = 1, . . . ,N−1:

• For question xi = 0, the i-th party measures in the basis {|0〉 , |1〉 , · · · , |d−1〉},
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• For xi = 1 and xi = 2: for d even, in the eigenbases of observables
⊕ d

2−1
m=0[σX]m

and
⊕ d

2−1
m=0[σX]

′
m respectively, with the natural assignments of d measurement out-

comes; for d odd, in the eigenbases of observables
⊕ d−1

2 −1
m=0 [σX]m⊕|d−1〉〈d−1|

and |0〉〈0|⊕⊕ d−1
2 −1

m=0 [σX]
′
m respectively.

For i = N:

• For xN = 0 and xN = 1, the party N measures in the eigenbases of
⊕ d

2−1
m=0[cos(µm)σZ+

sin(µm)σX]m and
⊕ d

2−1
m=0[cos(µm)σZ− sin(µm)σX]m respectively, with the natural

assignments of d measurement outcomes, where µm = arctan[sin(2θm)] and θm =

arctan(c2m+1/c2m); for d odd, he measures in the eigenbases of
⊕ d−1

2 −1
m=0 [cos(µm)σZ+

sin(µm)σX]m⊕|d−1〉〈d−1| and
⊕ d−1

2 −1
m=0 [cos(µm)σZ−sin(µm)σX]m⊕|d−1〉〈d−1|

respectively.

• For xN = 2 and xN = 3: for d even, the N-th party measures in the eigenbases of⊕ d
2−1
m=0[cos(µ ′m)σZ + sin(µ ′m)σX]

′
m and

⊕ d
2−1
m=0[cos(µ ′m)σZ− sin(µ ′m)σX]

′
m respec-

tively, where µ ′m = arctan[sin(2θ ′m)] and θ ′m = arctan(c2m+2/c2m+1); for d odd,

in the eigenbases of |0〉〈0| ⊕⊕ d−1
2 −1

m=0 [cos(µ ′m)σZ + sin(µ ′m)σX]
′
m and |0〉〈0| ⊕⊕ d−1

2 −1
m=0 [cos(µ ′m)σZ− sin(µ ′m)σX]

′
m, respectively.

We refer to the correlation specified by the ideal measurements above as the ideal
correlation for multipartite entangled Schmidt states.

Next, we will highlight a set of properties of the ideal correlation that are enough to
characterize it, in the sense that any quantum correlation that satisfies these properties
has to be the ideal one. This also aids understanding of the self-testing proof (Proof of
Theorem 6). In what follows, we will employ the language of correlation tables, which
gives a convenient way to describe correlations. In general, let Xi be the question sets and
Ai the answer sets. A correlation specifies, for each possible question x∈X1×·· ·×XN ,
a table Tx with entries Tx(a) = p(a|x) for a ∈A1×·· ·×AN . For example, we denote the
correlation tables for the ideal correlations for multipartite entangled GHZ states from

Theorem 5 as T
ghzN(θm)

x , where x ∈ {0,1}N denotes the question.

Definition 5.2 (Self-testing properties of the ideal correlations for multipartite entangled
Schmidt states). Recall that Xi = {0,1,2} for i = 1, . . . ,N − 1, and XN = {0,1,2,3}.
Ai = {0,1, . . . ,d−1}, for i = 1, . . . ,N.

The self-testing properties of the ideal correlations are:

• For questions x∈{0,1}N , we require Tx to be block-diagonal with 2N blocks Cx,m :=

(c2
2m + c2

2m+1) ·T
ghzN(θm)

x corresponding to outcomes in {2m,2m+1}N , where the
multiplication by the weight is intended entry-wise, and θm := arctan

(c2m+1
c2m

)
.
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Figure 4.3: A sketch of the self-testing protocol of the tripartite ququart Schmidt state
λ0 |000〉+λ1 |111〉+λ2 |222〉+λ3 |333〉. The balls represent different degrees of freedom
and solid lines denote which degrees of freedom are entangled. The left part corresponds
to the situation when Alice, Bob and Charlie get inputs 0 or 1. The ideal measurements
can be used to self-test subnormalized states λ0 |00〉+λ1 |11〉 and λ2 |22〉+λ3 |33〉. The
right part corresponds to the situation when Alice and Bob get inputs 0 and 2 and Charlie
gets inputs 2 and 3. The ideal measurements can be used to self-test subnormalized states
λ0 |00〉+λ3 |33〉 and λ2 |11〉+λ3 |22〉. These two sub-tests, when merged, are enough to
self-test the full state.

• For questions with xi ∈ {0,2}, for i = 1, . . . ,N− 1 and xN ∈ {2,3} we require Tx
to be block-diagonal with the 2×N blocks ”shifted down” by one measurement out-

come. These should be Dx,m := (c2
2m+1 + c2

2m+2) ·T
ghzN(θ

′
m)

f (x1),..., f (xN−1),g(xN)
correspond-

ing to measurement outcomes in {2m+1,2m+2}N , where θ ′m := arctan
(c2m+2

c2m+1

)
and

f (0) = 0, f (2) = 1, g(2) = 0, g(3) = 1.

We are now ready to state the main theorem of this section.

Theorem 6. Suppose N parties exhibit the ideal correlations for multipartite entangled
Schmidt states from Definition 5.1 by making local measurements on a joint state |ψ ′〉.
Then there exists a local isometry Φ such that Φ(|ψ ′〉) = |junk〉⊗ |ψs〉.

Proof. We work in the tripartite case, as the general n-partite case follows analogously.
The measurements of Alice, Bob and Charlie can be assumed to be projective, since we
make no assumption on the dimension of the system. For ease of notation, the proof
assumes that the joint state is pure, but one easily realizes that the proof goes through in
the same way by rephrasing everything in terms of density matrices (see Ref. [CGS17]
for a slightly more detailed discussion).

Let Pa
Ax

be the projection on Alice side corresponding obtaining outcome a on ques-
tion x. Analogously, define Pb

By
and Pc

Cz
on Bob and Charlie’s side, respectively. The

proof structure follows closely that of [CGS17], and goes through explicitly constructing
projectors and unitary operators satisfying the sufficient conditions of Lemma 5.1.
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Define Âx,m = P2m
Ax
−P2m+1

Ax
, B̂y,m = P2m

By
−P2m+1

By
and Ĉz,m = P2m

Cz
−P2m+1

Cz
, for x,y,z ∈

{0,1}. Let 1m
Ax

= P2m
Ax

+P2m+1
Ax

and similarly define 1m
By

and 1m
Cz

for x,y,z ∈ {0,1}. Now,

‖P2m
A0
‖ =

√
〈ψ ′|P2m

A0
|ψ ′〉

=

√√√√〈ψ ′|P2m
A0

d−1

∑
i=0

Pi
B0

d−1

∑
j=0

P j
C0
|ψ ′〉

= c2m, (4.29)

and ‖P2m+1
A0

‖ = c2m+1. Similarly, we derive ‖1m
Ax
|ψ ′〉‖ = ‖1m

By
|ψ ′〉‖ = ‖1m

Cz
|ψ ′〉‖ =

(c2
2m + c2

2m+1)
1/2 for any m and x,y,z ∈ {0,1}. Notice then that

〈ψ ′|1m
Ax
1

m
By
|ψ ′〉 = 〈ψ ′|1m

Ax
1

m
By

d−1

∑
i=0

Pi
C0
|ψ ′〉

= 〈ψ ′|1m
Ax
1

m
By
1

m
C0
|ψ ′〉

= c2
2m + c2

2m+1, (4.30)

where the second last equality is from the block-diagonal structure of the correlations.
Since ‖1m

Ax
|ψ ′〉‖= ‖1m

By
|ψ ′〉‖= (c2

2m+c2
2m+1)

1/2, then Cauchy-Schwartz inequality im-
plies 1m

Ax
|ψ ′〉= 1

m
By
|ψ ′〉. So, we have

1
m
Ax
|ψ ′〉= 1

m
By
|ψ ′〉= 1

m
Cz
|ψ ′〉 (4.31)

for all x,y,z∈{0,1}. The correlations are, by design, such that Â0,m, Â1,m, B̂0,m, B̂1,m,Ĉ0,m,

Ĉ1,m, the associated projections P j
Ai
,P j

Bi
,P j

Ci
, j ∈ {2m,2m + 1} and |ψ ′〉 reproduce the

correlations (c2
2m + c2

2m+1) ·C
ghz3,2,θm
x,y,z . In order to apply Theorem 5, we need to define

the normalized state |ψ ′m〉 := (1m
A0
|ψ ′〉)/(c2

2m + c2
2m+1)

1/2 and the “unitarized” versions
of the operators above, namely D̂i,m := 1−1Di

m + D̂i,m, for D ∈ {A,B,C}. It is easy to
check that then Âi,m, B̂i,m and Ĉi,m satisfy the conditions of Theorem 5 (for N = 3) on state
|ψ ′m〉. Thus, we have

ZA,m |ψ ′m〉= ZB,m |ψ ′m〉= ZC,m |ψ ′m〉 , (4.32)

XA,mXB,mXC,m(1−ZA,m) |ψ ′m〉= tan(θm)(1+ZA,m) |ψ ′m〉 . (4.33)

Define the subspace Cm = range(1C0
m )+ range(1C1

m ), and the projection 1Cm onto subspace
Cm. Then, notice from the way ZC,m is defined, that it can be written as ZC,m = 1−1Cm +

Z̃C,m, where Z̃C,m is some operator living entirely on subspace Cm. This implies that
ZC,m |ψ ′m〉= Z̃C,m |ψ ′m〉= Z̃C,m |ψ ′〉, where we have used Eq. (4.31) and the fact that

1
C0
m |ψ ′〉= 1

C1
m |ψ ′〉 =⇒ 1Cm |ψ ′〉= 1

Ci
m |ψ ′〉 . (4.34)
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Hence, from Eq. (4.32) it is not difficult to deduce that Â0,m |ψ ′〉= B̂0,m |ψ ′〉= Z̃C,m |ψ ′〉.

Constructing the projections of Lemma 5.1. Define projections P(2m)
A :=(1A0

m +Â0,m)/2=
P2m

A0
, P(2m+1)

A := (1A0
m − Â0,m)/2 = P2m+1

A0
, P(2m)

B := (1B0
m + B̂0,m)/2 = P2m

B0
, P(2m+1)

B :=

(1B0
m − B̂0,m)/2 = P2m+1

B0
, P(2m)

C := (1Cm + Z̃C,m)/2 and P(2m+1)
C := (1Cm− Z̃C,m)/2.

Note that P(2m)
C ,P(2m+1)

C are indeed projections, since Z̃C,m has all ±1 eigenvalues
corresponding to subspace Cm, and is zero outside. We also have, for all m and k =
2m,2m+1,

P(k)
B |ψ〉= P(k)

A |ψ ′〉=
1
2
[1A0

m +(−1)kÂ0,m] |ψ ′〉=
1
2
[1B0

m +(−1)kÂ0,m] |ψ ′〉

=
1
2
[1Bm +(−1)kZ̃B,m] |ψ ′〉= P(k)

C |ψ ′〉 .
(4.35)

Further, notice that

[1+(−1)kZA,m] |ψ ′m〉= [1A0
m +(−1)kÂ0,m] |ψ ′m〉= [1A0

m +(−1)kÂ0,m] |ψ ′〉= P(k)
A |ψ ′〉 .

Substituting this into (4.33), gives

XA,mXB,mXC,mP(2m+1)
A |ψ ′〉= tan(θm)P

(2m)
A |ψ ′〉= c2m+1

c2m
P(2m)

A |ψ ′〉 . (4.36)

Now, for the ”shifted” blocks, we can similarly define Â′x,m, B̂′x,m and Ĉ′x,m as Âx,m =

P2m+1
Ax

−P2m+2
Ax

and similar. Then, analogously, we deduce the existence of hermitian and
unitary operators Y ′A,m, Y ′B,m and Y ′C,m such that

YA,mYB,mYC,mP(2m+2)
A |ψ ′〉= c2m+2

c2m+1
P(2m+1)

A |ψ ′〉 . (4.37)

Constructing the unitary operators of Lemma 5.1. We will now directly construct uni-
tary operators satisfying conditions (4.23,4.24) of Lemma 5.1. Define X (k)

A/B/C as follows:

X (k)
A =


1, if k = 0,
XA,0YA,0XA,1YA,1 . . .XA,m−1YA,m−1XA,m, if k = 2m+1,
XA,0YA,0XA,1YA,1 . . .XA,m−1YA,m−1, if k = 2m,

(4.38)

and analogously for X (k)
B and X (k)

C . Note that X (k)
A and X (k)

B are unitary since they are
product of unitaries. Finally, we are left to check that

X (k)
A X (k)

B X (k)
C P(k)

A |ψ ′〉=
ck

c0
P(0)

A |ψ ′〉 . (4.39)
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The case k = 0 holds trivially. For k = 2m+1, For k = 2m+1,

X (k)
A X (k)

B X (k)
C P(k)

A |ψ ′〉
= XA,0YA,0XB,0YB,0XC,0YC,0 . . .XA,m−1YA,m−1XB,m−1YB,m−1XC,m−1YC,m−1

×XA,mXB,mXC,mP(2m+1)
A |ψ ′〉

(4.36)
=

c2m+1

c2m
XA,0YA,0XB,0YB,0XC,0YC,0 . . .XA,m−1YA,m−1XB,m−1YB,m−1XC,m−1YC,m−1P(2m)

A |ψ ′〉
(4.37)
=

c2m+1

c2m
· c2m

c2m−1
XA,0YA,0XB,0YB,0XC,0YC,0 . . .XA,m−2YA,m−2XB,m−2YB,m−2

×XC,m−2YC,m−2P(2m−1)
A |ψ ′〉

= . . .

=
c2m+1

��c2m
· ��c2m

����c2m−1
. . .�

�c2

��c1
·��c1

c0
P(0)

A |ψ ′〉

=
c2m+1

c0
P(0)

A |ψ ′〉 (4.40)

which is indeed (4.39) as 2m+ 1 = k. The case k = 2m is similar. This concludes the
proof of Theorem 6.

4.3 Self-testing W -state
In this section we provide a detailed proof of self-testing of the |WN〉 state

|WN〉=
1√
N
(|0 . . .01〉+ |0 . . .010〉+ . . .+ |10 . . .0〉). (4.41)

For the sake of proof simplicity we show how to self-test the following unitarily equivalent
state

|xWN〉=
1√
N
(|0 . . .0〉+ |0 . . .011〉+ . . .+ |10 . . .01〉). (4.42)

which is obtained from |WN〉 by applying σX to the last qubit of |WN〉. This is because
|xWN〉 can be written as

|xWN〉=
1√
N

[
|0〉⊗N−2 (|00〉+ |11〉)i,N + |resti〉

]
, (4.43)

where (|00〉+ |11〉)i,N stands for the two-qubit maximally entangled state distributed be-
tween the parties i and N with i = 1, . . . ,N−1, and the vectors |resti〉 contain the remain-
ing kets. This decomposition explains the conditions we impose below.

Let us now prove the following theorem.
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Theorem 7. Assume that for a given state |ψ ′〉 and measurements Zi,Xi for parties i =
1, . . . ,N−1 and DN and EN for the last party, the following conditions are satisfied〈

N−1⊗
l=1
l 6=i

Z(+)
l

〉
=

2
N
,

〈
N−1⊗
l=1
l 6=i

Z(+)
l ⊗B

(+)
i,N

〉
=

4
√

2
N

, (4.44)

with i = 1, . . . ,N−1, where, B
(+)
i,N is the Bell operator between the parties i and N corre-

sponding to the CHSH Bell inequality

B
(+)
i,N = Zi⊗DN +Zi⊗EN +Xi⊗DN−Xi⊗EN . (4.45)

Moreover, we assume that

〈Z(−)
i 〉=

1
N
,

〈
N−1⊗
l=1
l 6=i

Z(+)
i ⊗Z(−)

i

〉
=

1
N

(4.46)

with i = 1, . . . ,N−1. Then, for the isometry ΦN one has

ΦN

(
|ψ ′〉 |0〉⊗N

)
= |junk〉 |xWN〉 . (4.47)

Before giving the detailed proof, let us present here the main idea. The proof makes
use of the fact that |xWN〉 can be written as [|0〉⊗N−2 (|00〉+ |11〉)i,N + |resti〉]/

√
N, where

(|00〉+ |11〉)i,N is the maximally entangled state between the parties i and N, and the state
|resti〉 collects all the remaining kets. We thus impose in Eq. (??) that if (N− 2)-partite
subset of the first N−1 parties obtains +1 when measuring Zi on |ψ ′〉, the state held by
the parties i and N violates maximally the CHSH Bell inequality. Conditions in (??) are
needed to characterize |resti〉, which completes the proof.

Proof. Denoting ZN = (DN +EN)/
√

2 and XN = (DN−EN)/
√

2, the action of the isom-
etry can be explicitly written as

ΦN

(
|ψ ′〉 |0〉⊗N

)
= ∑

τ∈{0,1}N

Xτ1
1 . . .XτN

N Z(τ1)
1 . . .Z(τN)

N |ψ ′〉 |τ1 . . .τN〉 , (4.48)

where τ = (τ1, . . . ,τN) with each τi ∈ {0,1} and Z(τi)
i = [1+(−1)τiZi]/2.

It should be noticed that in general the operators ZN and DN might not be unitary, and
one should consider X̃N and Z̃N , which by constructions are unitary. However, following
the regularization procedure, explained in Chapter 3, their action on |ψ ′〉 is the same as
the action of XN and ZN , thus, for simplicity, we use these operators.

The first bunch of conditions (4.44) implies that the norm of

|ψi〉= Z(+)
1 . . .Z(+)

i−1Z(+)
i+1 . . .Z

(+)
N−1 |ψ ′〉 (4.49)
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is
√

2/N, which together with the second set of conditions in Eq. (4.44) implies that
the normalized states |ψ̃i〉 =

√
N/2 |ψi〉 violate maximally the CHSH Bell inequality

between the parties i and N for i = 1, . . . ,N−1. This, by virtue of Lemma 4.1, yields the
following identities

(Zi−ZN) |ψ̃i〉= 0 (4.50)
[Xi(I +ZN)−XN(I−Zi)] |ψ̃i〉= 0 (4.51)
{Zi,Xi}|ψ̃i〉= 0. (4.52)

They immediately imply that all terms in Eq. (4.48) for which one element of τ equals
one and the rest equal zero vanish. To see it explicitly, let τi = 1 and τ j = 0 for j 6= i.
Then, for this τ , |ψτ〉 = XiZ

(−)
i Z(+)

N |ψi〉. Applying (4.50) to the latter and exploiting the
fact that Z(−)

i Z(+)
i = 0, one finally finds that |ψτ〉= 0.

Let us now consider those components of Eq. (4.48) for which τ obeys τi = τN = 1
with i = 1, . . . ,N− 1 and τ j = 0 with j 6= i,N. Then, the following chain of equalities
holds

Z(+)
1 . . .Z(+)

i−1XiZ
(−)
i Z(+)

i+1 . . .Z
(+)
N−1XNZ(−)

N |ψ ′〉 = XiZ
(−)
i XNZ(−)

N |ψi〉
= XiZ

(−)
i XNZ(−)

i |ψi〉
= XiZ

(−)
i XiZ

(+)
N |ψi〉

= Z(+)
i Z(+)

N |ψi〉
= Z(+)

1 . . .Z(+)
N |ψ ′〉 , (4.53)

where the second equality stems from Eq. (4.50), the third from Eq. (4.51), and, finally,
the fourth equality is a consequence of the anticommutation relation (4.52) and the fact
that X2

i = 1.
With all this in mind it is possible to group the terms in Eq. (4.48) in the following

way
ΦN(|ψ ′〉 |0〉⊗N) = |junk〉 |xWN〉+ |Ω〉 , (4.54)

where |junk〉=
√

N Z(+)
1 . . .Z(+)

N |ψ〉 and |Ω〉 contains all those terms for which τ contains
more than two ones or exactly two ones but τN = 0.

Now, our aim is to prove that |Ω〉 = 0. To this end we first notice that Eqs. (4.46)
imply the following correlations

〈ψ ′|Z(−)
i Z(+)

j |ψ ′〉=
1
N
, (4.55)

where i 6= j and i, j = 1, . . . ,N− 1. This is a direct consequence of the fact that Z(±)
i ≤

1, which in turn implies that each of correlators in (4.55) is bounded from above by
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〈ψ ′|Z(−)
i |ψ ′〉 and from below by 〈ψ ′|Z(+)

1 . . .Z(+)
i−1Z(−)

i Z(+)
i+1 . . .Z

(+)
N−2Z(+)

N−1|ψ ′〉 and both are
assumed to equal 1/N [cf. Eq. (4.46)].

The first relation in Eq. (4.55) together with Eq. (4.46) and the fact that Z(+)
j +Z(−)

j =

1 yields 〈ψ ′|Z(−)
i Z(−)

j |ψ ′〉 = 0. This, due to the fact that Z(−)
i Z(−)

j is a projector, allows
one to write

Z(−)
i Z(−)

j |ψ ′〉= 0 (4.56)

for i, j = 1, . . . ,N−1. This is enough to conclude that |Ω〉= 0, which when plugged into
Eq. (4.43), leads directly to Eq. (4.47) because each component in |Ω〉 has either three τi
which equal 1, or two τi that equal one but then τN = 0.

Since the self-test relies on the maximal violation of the CHSH Bell inequality by
a set of states |ψ̃i〉 (i = 1, . . . ,N − 1), it also inherits self-testing of the optimal CHSH
measurements, meaning that

ΦN

(
Zi |ψ ′〉 |0〉⊗N

)
= |junk〉⊗σ

(i)
Z |xWN〉

ΦN

(
Xi |ψ ′〉 |0〉⊗N

)
= |junk〉⊗σ

(i)
X |xWN〉 (4.57)

for i = 1, . . . ,N−1, and

ΦN

(
DN |ψ ′〉 |0〉⊗N

)
= |junk〉⊗ σ

(i)
Z +σ

(i)
X√

2
|xWN〉 ,

ΦN

(
EN |ψ ′〉 |0〉⊗N

)
= |junk〉⊗ σ

(i)
Z −σ

(i)
X√

2
|xWN〉 . (4.58)

This completes the proof.

It should be noticed that our self-test of the W state exploits two observables per site
and, as in the case of the partially entangled GHZ state, the number of correlators one
needs to determine is 2N, and thus scales linearly with N.

4.4 Symmetric Dicke states
Let us now consider the symmetric Dicke states. These are simultaneous eigenstates of
the square of the total angular momentum operator J2 of N qubits and its projection onto
the z-axis Jz. In a concise way they can be stated as

|Dk
N〉=

1√(N
k

)∑
i

Pi(|1〉⊗k |0〉⊗(N−k)), (4.59)

where the sum goes over all permutations of the parties and k is the number of excitations.
For instance, for k = 1 they reproduce the N-qubit W state:

|WN〉=
1√
N
(|0 . . .01〉+ |0 . . .10〉+ . . .+ |10 . . .0〉). (4.60)
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Interestingly, Dicke states have been generated experimentally [Pre+09] and have impor-
tant role in metrology tasks [Kri+11] and quantum networking protocols [Chi+12].

Let us now show how the self-test of the N-partite W state can be used to con-
struct a self-test of all the Dicke states. Notice that a Dicke state with m ≤ bN/2c
is unitarily equivalent to a Dicke state with m ≥ dN/2e, i.e., |Dm

N〉 = σ
⊗N
Z |DN−m

N 〉 for
m = 0, . . . ,bN/2c. For this reason below we consider the Dicke states with m ≥ bN/2c.
To facilitate our considerations we show how to self-test the following unitarlity equiva-
lent state

|xDm
N〉 = σ

(N)
Z |xDm

N〉

=
1

∑
i1,...,iN−m−1=0

√(m+1
m−Σ

)√(N
m

) |i1, . . . , iN−m−1〉 |xDm−∑

m+1 〉 . (4.61)

We then notice that the state corresponding to i1 = . . .= iN−m−1 = 0 is exactly |xDm
m+1〉=

σ
⊗(m+1)
X |xWm+1〉with |xWm+1〉 defined in Eq.(4.41). Moreover, since |xDm

N〉 is symmetric
on the first N−1 parties, the state σ

⊗(m+1)
X |xWm+1〉 will appear in any decomposition of

the form (4.61) in which any choice of N−m− 1 parties from the first N− 1 ones are
in state |0〉. Importantly, we already know how to self-test the W state σ

⊗(m+1)
X |xWm+1〉.

However, due to the transformation σ
⊗(m+1)
X we have to modify the conditions specified

in Theorem 7 in the following way:

Z(+)
i ↔ Z(−)

i (i = 1, . . . ,N−1),
DN →−EN and EN →−DN . (4.62)

Now, to self-test a Dicke state |Dm
N〉 for any m≥ bN/2c we can proceed in the follow-

ing way:

1. Project any (N−m−1)-element subset Si of the first N−1 parties of |ψ〉 (there are( N−1
N−1−m

)
such subsets) onto

⊗
j∈Si

Z(+)
j and check whether the state corresponding

to the remaining parties satisfies the conditions for |xDm
m+1〉= σ

⊗(m+1)
X |xWm+1〉.

2. For every sequence τ = (τ1, . . . ,τN) consisting of m+ 1 ones on the first N − 1
positions, check that the state |ψ〉 obeys the following correlations

〈ψ ′|Z(τ1)
1 ⊗ . . .⊗Z(τN)

N |ψ ′〉= 0, (4.63)

where Z(τi)
i = [1+(−1)τiZi]/2
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Let us now see in more details how the above procedure allows one to self-test |Dm
N〉. It is

not difficult to see that the first condition leads us to the following decomposition

ΦN(|ψ ′〉 |0〉⊗N) =

[⊗
l∈Si

Z(+)
l |junki〉

]
⊗
[
|0〉⊗(N−m−1)

Si
|xDm

m+1〉
]
+ |Φi〉 (4.64)

for any i = 1, . . . ,
( N−1

N−1−m

)
, where all Si stand for different (N−m−1)-element subsets

of the (N−1)-element set {1, . . . ,N−1}, and |junki〉 is defined as

|junki〉=
⊗

l∈{1,...,N}\Si

XlZ
(−)
l |ψ ′〉 . (4.65)

In other words, to construct |junki〉 from |ψ ′〉 one has to act on the latter with XlZ
(−)
l on

all parties who do not belong to Si. Finally, |Φi〉 is some state from the global Hilbert
space collecting the remaining terms.

Let us now show that all the states

|junk′i〉=
⊗
l∈Si

Z(+)
l |junki〉 (4.66)

are the same. To this end, we will exploit the conditions (4.50) and (4.52), which are
clearly preserved under the transformation (4.62), and also the fact that:

(Xi−XN) |ψ ′〉= |ψ ′〉 (4.67)

for any i = 1, . . . ,N − 1. Consider two vectors |junk′i〉 and |junk′j〉 such that the corre-
sponding sets Si and S j share N−m−2 elements (remember that these sets are equinu-
merous). Let q and p be the two elements by which these sets differ, i.e., p ∈Si (q ∈S j)
and p /∈S j (q /∈Si). Then, using the condition (4.52) we turn the operator XtZ

(−)
t into

Z(+)
t Xt at positions t = q and t = N for the state |junk′i〉, and, analogously, at positions

t = p and t = N for the state |junk′j〉. We utilize the fact that XiXN |ψ ′〉 = |ψ ′〉 for all
i = 1, . . . ,N− 1 stemming from (4.67), which shows that |junk′i〉 = |junk′j〉. Finally, re-
peating this procedure for all pairs of states for which the corresponding sets Si differ by
two elements, one finds that |junk′i〉 ≡ |junk〉 for all i.

As a result, the state (4.64) simplifies to

ΦN(|ψ ′〉 |0〉⊗N) = |junk〉 |xDm
N〉+ |Φ〉 , (4.68)

|Φ〉 is a vector from the global Hilbert space defined as

|Φ〉= ∑
τ

(
Xτ1

1 Z(τ1)
1 ⊗ . . .⊗XτN

N Z(τN)
N |ψ ′〉

)
⊗|τ〉 , (4.69)
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where the summation is over all sequences τ = (τ1, . . . ,τN) that contain less than N−m−
1 zeros (or, equivalently, more than m ones) on the first N−1 positions.

Now, to prove that |Φ〉= 0 it suffices to exploit the second step in the above procedure.
That is, the condition (4.63) is equivalent to

Z(τ1)
1 ⊗ . . .⊗Z(τN)

N |ψ ′〉= 0 (4.70)

for every sequence (τ1, . . . ,τN) consisting of m+1 ones at the first N−1 positions. Then,
every component of the vector in Eq. (4.69) contains a sequence of at least m+ 1 Z(−)

operators, which by virtue of (4.70) implies that |Φ〉= 0. This completes the proof.
For the self-testing of measurements the same argumentation as in the case of W -state

self-test applies:

Φ(Zi |ψ ′〉 |0〉⊗N) = |junk〉⊗σ
(i)
Z |xDm

N〉 (i = 1, . . . ,N−1),

Φ(Xi |ψ ′〉 |0〉⊗N) = |junk〉⊗σ
(i)
X |xDm

N〉 (i = 1, . . . ,N−1),

Φ(ZN |ψ ′〉 |0〉⊗N) = |junk〉⊗
(

σ
(N)
Z +σ

(N)
X√

2

)
|xDm

N〉 ,

Φ(XN |ψ ′〉 |0〉⊗N) = |junk〉⊗
(

σ
(N)
Z −σ

(N)
X√

2

)
|xDm

N〉 .

Notice that our self-test exploits two observables per site and the total number of corre-
lators one has to determine for every Dicke state in this procedure again scales linearly
with N, in contrast with the exponential scaling of quantum state tomography.

4.5 Graph states
We finally demonstrate that our method applies also to the graph states. These are N-
qubit quantum states that have been widely exploited in quantum information processing,
in particular in quantum computing, error correction, and secret sharing (see, e.g., Ref.
[Hei+06]). It is thus an interesting question to design efficient methods of their certifica-
tion, in particular self-testing. Such a method was proposed in Ref. [McK14] however,
in general it needs three measurements for at least one party. Below we show that the
approach based on violation of the CHSH Bell inequality provides a small improvement,
as it requires only two measurements at each site.

Let |ψG〉 be an N-qubit graph state that corresponds to a graph G = {V,E}, where
V = {1, . . . ,N} and E stand for the sets of vertices and edges, respectively. Recall that
any graph state can be written in the following form

|ψG〉=
1√
2N ∑

i∈{0,1}N

(−1)µ(i) |i〉 , (4.71)
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where the summation is over all sequences i = (i1, . . . , iN) with i j = 0,1, and µ(i) is the
number of edges connecting qubits being in the state |1〉 in ket |i〉 (without counting the
same edge twice).

Let then νi be the set of neighbours of the ith qubit, that is, all those qubits that
are connected with i by an edge, while by |νi| we denote the number of elements in νi.
Likewise, we denote by νi, j the set of neighbours of a pair of qubits i and j, i.e., all those
qubits that are connected to either i or j (notice that νi, j = ν j,i), and |νi, j| the number of
elements of νi, j. We also assume that the parties are labelled in such a way that qubits
N− 1 and N are connected and the party N has the smallest number of neighbours, i.e.,
|νN | ≤ |νi| for all i.

The main property of the graph states underlying our simple self-test is that by mea-
suring all the neighbours of a pair of connected qubits i, j in the σZ basis, the two qubits
i and j are left in one of the Bell states [cf. Prop. 1 in Ref. [HEB04]]:

1√
2
(σmi

Z ⊗σ
m j
Z )(|0+〉+ |1−〉) (4.72)

where mi (m j) is the number of parties from set νi, j \ j (νi, j \ i) whose result of a measure-
ment in σZ basis was −1, and where we have neglected an unimportant −1 factor that
might appear.

Let us denote Z(τ)
νi, j = ⊗l∈νi, jZ

(τl)
l , where τ is an |νi, j|-element sequence with each

τl ∈ {+,−} (the operator Z(τ)
νi, j acts only on the parties belonging to νi, j).

Theorem 8. Let |ψ ′〉 and measurements Zi,Xi with i = 1, . . . ,N − 1 and DN ,EN ,ZN ≡
DN−EN√

2
,XN ≡ DN+EN√

2
satisfy the following conditions〈

Z(τ)
νN−1,N

〉
=

1
2|νN−1,N | ,

〈
Z(τ)

νN−1,N ⊗B
(mN−1,mN)
N−1,N

〉
=

2
√

2
2|νN−1,N | (4.73)

for every choice of the |νi, j|-element sequence τ . The Bell operators B
(mN−1,mN)
N−1,N are

defined as

B
(mN−1,mN)
N−1,N = (−1)mN XN−1⊗ (DN +EN)+(−1)mN−1ZN−1⊗ (DN−EN), (4.74)

where mN−1 and mN are the numbers of neighbours of the qubits, respectively, N−1 and
N (excluding the Nth qubit and N−1th qubit, respectively) which are projected onto the
eigenvector of Z−i .

We then assume that〈
Z(τ)

νi, j

〉
=

1
2|νi, j| ,

〈
Z(τ)

νi, j ⊗Zi⊗X j

〉
=

(−1)m j

2|νi, j| (4.75)

for all connected pairs of indices i 6= j except for 6= (N,N − 1) . As before, Z(τ)
νi, j =

⊗l∈νi, jZ
(τl)
l . Then, for the isometry ΦN one has

ΦN

(
|ψ ′〉 |0〉⊗N

)
= |junk〉 |ψG〉 . (4.76)
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Proof. The conditions in Eq. (4.73) imply that the normalized state

|ψ̃(τ)
N−1,N〉=

√
2|νN−1,N |Z(τ)

νN−1,N |ψ ′〉 (4.77)

violates maximally the CHSH Bell inequality, which in turn implies that

{XN−1,ZN−1}|ψ̃(τ)
N−1,N〉= 0 and {XN ,ZN}|ψ̃(τ)

N−1,N〉= 0, (4.78)

where XN = (DN +EN)/
√

2 and ZN = (DN−EN)/
√

2. These identities hold true for any
of 2|νi, j| projected states |ψ̃(τ)

N−1,N〉, and therefore it must also hold for the initial state |ψ〉,
i.e.,

{XN−1,ZN−1}|ψ ′〉= 0 and {XN ,ZN}|ψ ′〉= 0. (4.79)

This is because one can always decompose |ψ ′〉 in the eigenbasis of the operator ZνN−1,N

which is a tensor product of Z operators acting on the neighbours of i, j.
Then, let us focus on the second bunch of conditions (4.75). They imply that the

length of the projected vectors |ψ(τ)
i, j 〉= Z(τ)

νi, j |ψ ′〉 is 1/
√

2|νi, j|, so is the norm of Zi |ψ(τ)
i, j 〉

and X j |ψ(τ)
i, j 〉 for any connected pair i 6= j. This together with (4.75) mean that the vectors

Zi |ψ(τ)
i, j 〉 and X j |ψ(τ)

i, j 〉 are parallel or antiparallel, or, more precisely, that

(−1)m jZi |ψ(τ)
i, j 〉= X j |ψ(τ)

i, j 〉 (4.80)

for any connected pair of parties i 6= j.
Let us now consider one of the parties connected to the party N− 1 (there must be

at least one such party as otherwise the Nth one would not be the one with the smallest
number of neighbours or the graph would be bipartite). We label this vertex by N−2. It
then follows from conditions (4.80) that for the particular pair of vertices N− 2,N− 1,
one has the following identities

XN−2 |ψ(τ)
N−2,N−1〉= (−1)mN−2ZN−1 |ψ(τ)

N−2,N−1〉 (4.81)

and
ZN−2 |ψ(τ)

N−2,N−1〉= (−1)mN−1XN−1 |ψ(τ)
N−2,N−1〉 (4.82)

hold true for all configurations of τ . With their aid the following sequence of equalities

XN−2ZN−2 |ψ(τ)
N−2,N−1〉 = (−1)mN−1XN−2XN−1 |ψ(τ)

N−2,N−1〉
= (−1)mN−1+mN−2XN−1ZN−1 |ψ(τ)

N−2,N−1〉
= −(−1)mN−1+mN−2ZN−1XN−1 |ψ(τ)

N−2,N−1〉
= −(−1)mN−2ZN−1ZN−2 |ψ(τ)

N−2,N−1〉
= −ZN−2XN−2 |ψ(τ)

N−2,N−1〉 (4.83)
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holds true for any choice of τ , where first and the second equality stems from Eqs. (4.82)
and (4.81), respectively, the third one is a consequence of the anticommutativity of XN−1
and ZN−1. Finally, the fourth and the fifth equality follows again from Eqs. (4.82) and
(4.81), respectively.

Since the identity (4.83) is obeyed for any configuration of τ , it must also hold for the
state |ψ ′〉, that is, {XN−2,ZN−2}|ψ ′〉= 0. Taking into account the conditions (4.73), this
procedure can be recursively applied to any pair of connected particles, yielding (together
with (4.79))

{Xi,Zi}|ψ ′〉= 0 (4.84)

for any i = 1, . . . ,N.
The action of the isometry is given by

ΦN(|ψ ′〉 |0〉⊗N) =
1

∑
i1,...,iN=0

X i1
1 . . .X

iN
N Z(i1)

1 . . .Z(iN)
N |ψ ′〉 |i1 . . . iN〉 (4.85)

Let us now consider a particular term in the above decomposition in which the se-
quence i1, . . . , iN has k > 0 ones at positions j1, . . . , jk, i.e.,

X
i j1
j1 . . .X

i jk
jk

⊗
l /∈I

Z(+)
l

⊗
l∈I

Z(−)
l |ψ ′〉 , (4.86)

where I = { j1, . . . , jk}. By using the previously derived relations, we want to turn this
expression into one that is proportional to the junk state Z(+)

1 ⊗ . . .⊗Z(+)
N |ψ ′〉. To this

end, let us first focus on the party jk and consider one of its neighbours which we denote
by l. For this pair of parties, the conditions (4.80) imply that

X jk |ψ jk,l〉= (−1)m jk Zl |ψ jk,l〉 , (4.87)

where, to recall, m jk is the number of neighbours of jk being in the state |1〉 except for l.
The above identity together with the anticommutativity relation {X jk ,Z jk}|ψ ′〉= 0 allow
us to replace in Eq. (4.86) the operator X ik

jk Z(−)
jk by (−1)m jk Z(+)

jk Zl . Now, if the value of
il in the corresponding ket |i1, . . . , iN〉 is zero, the last operator Zl can be simply absorbed
by Z(+)

l , while if il = 1, one uses that fact that Z(−)
l Zl =−Z(−)

l , meaning that one has an

additional minus sign. Altogether this turns the operator X ik
jk Z(−)

jk into (−1)m′jk Z(+)
jk , where

m′jk is the number of neighbours of jk (including il) which are in the state |1〉. Plugging
this into Eq. (4.86) we can rewrite the latter as

(−1)m′jk X
i j1
j1 . . .X

i jk−1
jk−1

⊗
l /∈I′

Z(+)
l

⊗
l∈I′

Z(−)
l |ψ ′〉 , (4.88)

where now I′ = I \ {il}, and so we have lowered the number of elements of I by one. It
should be stressed that this affects the numbers of neighbours of those parties that are still
in I′, which will be of importance for what follows.
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Now, we can apply recursively the same reasoning to the remaining elements of I′,
keeping in mind that at each step one element is removed from I′. We thus arrive at

(−1)µ ′(i)Z(+)
1 ⊗ . . .⊗Z(+)

N |ψ ′〉 , (4.89)

with µ ′ defined as

µ
′(i) =

k

∑
l=1

m>
jl , (4.90)

where m>
jl is the number of neighbours of i jl being in the state |1〉 and having smaller

indices than jl , or, in other words, those elements of I = { j1, . . . , jk} smaller than jl that
are neighbours of i jl . One immediately notices that µ ′(i) equals µ(i) for a given i, and
therefore by applying the above reasoning to every term in Eq. (4.85), one arrives at

ΦN(|ψ ′〉 |0〉⊗N) =
(

Z(+)
1 ⊗ . . .⊗Z(+)

N |ψ ′〉
)
⊗∑

i
(−1)µ(i) |i〉 , (4.91)

which after normalizing both terms can be written as

ΦN(|ψ ′〉 |0〉⊗N) = |junk〉 |ψG〉 (4.92)

with |junk〉= (1/
√

2N)(Z(+)
1 ⊗ . . .⊗Z(+)

N |ψ ′〉).

Once relation (4.84) is satisfied for all is the proof for measurement self-testing goes
along the same lines as the proof for the self-testing of the state. Let us check how
isometry Φn acts on the state Xĩ |ψ ′〉. Eq. (4.88) takes the form:

ΦN(Xĩ |ψ ′〉 |0〉⊗N) = ∑
I,l
(−1)m′jk X

i j1
j1 . . .X

i jk−1
jk−1

⊗
l /∈I′

Z(+)
l

⊗
l∈I′

Z(−)
l Xĩ |ψ ′〉

= ∑
I⊕ĩ,l

(−1)m′jk+1X
i j1
j1 . . .X

i jk−1
jk−1

⊗
l /∈I′

Z(+)
l

⊗
l∈I′

Z(−)
l |ψ ′〉

=
(

Z(+)
1 ⊗ . . .⊗Z(+)

N |ψ ′〉
)
⊗∑

i
(−1)µ(i⊕ĩ) |i〉

= |junk〉⊗σX
(ĩ) |ψG〉 , ∀ĩ ∈ {1,2, . . . ,N−1}

where I⊕ ĩ is equal to I/ĩ if ĩ ∈ I and to I ∪ ĩ otherwise, and µ(i⊕ ĩ) is the number of
edges connecting qubits being in the state |1〉 in ket |i⊕ (0 . . .0ĩ0 . . .0)〉 (without counting
the same edge twice). Similarly it can be shown that

ΦN(Zĩ |ψ ′〉 |0〉⊗N) = |junk〉⊗σZ
(ĩ) |ψG〉 , ∀ĩ ∈ {1,2, . . . ,N},

ΦN(DN |ψ ′〉 |0〉⊗N) = |junk〉⊗
(

σ
(N)
X +σ

(N)
Z√

2

)
|ψG〉 ,

ΦN(EN |ψ ′〉 |0〉⊗N) = |junk〉⊗
(
−σ

(N)
X +σ

(N)
Z√

2

)
|ψG〉 .
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Finally, note that for self-testing graph-states one has to measure 3+ |E| correlators,
where |E| is the total number of edges, which even for the fully connected graph is strictly
better scaling than the complexity of quantum state tomography.

4.6 Discussion
We investigated a simple, but potentially general, approach to self-testing multipartite
states, inspired by [Wu+14], which relies on the well understood method of self-testing
bipartite qubit states based on the maximal violation of the tilted CHSH Bell inequal-
ity. This approach allows one to self-test, with few measurements, all permutationally-
invariant Dicke states, all partially entangled GHZ qubit states, and to recover self-testing
of graph states (which was previously known through stabilizer-state methods). In our
work, we also generalize self-testing of partially entangled GHZ qubit states to the qudit
case, using techniques from [CGS17]. We obtain the first self-testing result for a class of
multipartite qudit states, by showing that all multipartite qudit states that admit a Schmidt
decomposition can be self-tested. Importantly, our self-tests have a low complexity in
terms of resources as they require up to four measurement choices per party, and the total
number of correlators that one needs to determine scales linearly with the number of par-
ties.

As a direction for future work, we are particularly interested in extending this ap-
proach to self-test any generic multipartite entangled state of qubits (which is local-
unitary equivalent to its complex conjugate in any basis). The main challenge here is
to provide a general recipe to construct a single isometry that self-tests the global state
from the different ones derived from various subtests (i.e. from projecting various sub-
sets of parties and looking at the correlations of the remaining ones). This appears to be
challenging for states that do not have any particular symmetry.

Finally, notice that all presented self-tests which rely on the maximal violation of the
CHSH Bell inequality can be restated and proved in terms of the other available self-tests.
In particular, any self-test discussed in [WWS16] would work in case of two measure-
ments per site, and self-tests in [ŠASA16] would work for higher number of inputs.
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Chapter 5

Self-testing through
EPR-steering

In Chapter 2 we learned that a nonlocal probability distribution witnesses in a device-
independent manner the presence of entanglement in the system. The protocol of entan-
glement detection can be lifted to the self-testing - certifying the presence of a specific
entangled state. Both, entanglement detection and self-testing, draw its conclusions from
a violation of an adequate Bell inequality; any violation suffices for the former, while
the maximal is necessary for the latter. In the two previous chapters we saw how dif-
ferent quantum states can be self-tested with the aid of different Bell inequalities or in
some cases specific nonlocal behaviours. All the self-testing protocols we encountered
are by construction device-independent. On the middle ground, we saw that entangle-
ment can also be witnessed through EPR-steering. A natural question is whether one can
perform robust self-testing in such a scenario? This is obviously true since we can check
the violation of the adequate Bell inequality when the trusted party performs exactly the
measurements leading to the maximal violation. A better question is whether it is vastly
more advantageous to consider self-testing in this scenario? In this chapter we address
this question.

5.1 Motivation and technical preliminaries
Before moving to the main contributions, let us motivate this self-testing scenario from
the standpoint of quantum information. One of the tasks which can make use of EPR-
steering scenarios is blind quantum computing (BQC). This task is relevant when a client
having access to a limited quantum operations wants to securely delegate a computation to
a ”server” who has a full-power quantum computer [BFK09, RUV13]. Security consists
in inability of the server to learn, nor the input to the computation, neither the particular
computation itself. Another task, utilising EPR-steering is one-sided device-independent
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quantum key distribution, differing from the standard DIQKD in the fact that one party
can trust its devices [Bra+12, Wal+16]. Finally let us mention randomness certification in
quantum networks which can be more easily performed if some parties trust their devices
[Mat+17].

Motivated by terminology from BQC, instead of Alice and Bob, we will name two
involved parties, a client and a user. Since the client now has characterized and trusted
devices in their laboratory, they can perform quantum state tomography. As we saw in
Section 2.4, in EPR-steering the object of study becomes an assemblage: the set of client’s
reduced states conditioned on a measurement made on the provider’s side. Self-testing
inferred from an assemblage will be denoted as robust assemblage-based one-sided self-
testing (AST), where ”one sided” indicates that the operating scenario is one-sided device-
independent. In the following sections we will show that AST can be achieved with the
physical state being at least O(

√
ε)-close to the reference state if the observed elements

of an assemblage are ε-close to the ideal elements (where distance in both cases is the
trace distance). Additionally, the client can perform some measurements on the elements
of an assemblage, obtaining in this way correlations between the client and the provider.
Self-testing obtained from these correlations will be called robust correlation-based one-
sided self-testing (CST).

Standard self-testing implies CST so the latter scenario will never perform any worse
than the former. Additionally, CST implies AST so the latter truly captures the novel
capabilities in the formalism. In this chapter, when it comes to self-testing we show both
analytically and numerically that one can do better in the framework of CST and AST
as compared to current methods in conventional self-testing. This is not surprising since
by trusting one side, we should have access to more information about the physical state.
On the other hand, we show that improvement is not as big as we would like. To put it
more precisely, if the assemblage is, in some sense, ε-close to the ideal assemblage, we
can only establish O(

√
ε)-closeness of the physical experiment to the reference one. This

quadratic difference is also shown to be a general limitation and not just a limitation of
our specific methods. In this way, from the point-of-view of self-testing, EPR-steering
behaves asymptotically in the same way as Bell nonlocality.

We indicate where AST and CST could also prove advantageous over standard self-
testing and this is in the case of establishing the structure of sub-systems within multi-
partite quantum states. That is, in certain self-testing proofs a lot of work and resources
goes into establishing that untrusted devices have quantum systems that are essentially
independent from one another. In addition to considering the self-testing of a bipartite
quantum state, we show that one can get further improvements by establishing a tensor
product structure between sub-systems. This could be where the essential novelties of
AST and CST lie.
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Aside from work in the remit of self-testing there is other work in the direction of
entanglement verification between many parties. For example, Pappa et al show how
to verify GHZ states among n parties if some of them can be trusted while others not
[PCWDK12]. Their verification proofs boil down to establishing the probability with
which the quantum state passes a particular test given the state’s distance from the ideal
case. This can be seen as going in the other direction compared to CST, where we ask
how close a state is to ideal if we pass a test (demonstrating some ideal correlations) with
a particular probability. Our work thus nicely complements some of the existing methods
in this direction.

Another line of research that is related to our own is to characterize (non-local) quan-
tum correlations given assumptions made about the dimension of the Hilbert space for
one of the parties [NDV14]. This assumption of limiting the dimension is a relaxation of
the assumption that devices in one of the parties’ laboratories are trusted. These works
are relevant for semi-device-independent quantum cryptography and device-independent
dimension witnesses [PB11, GBHA10].

5.1.1 General set-up
For simplicity and relevance we restrict ourselves to the bipartite scenarios. In Sec. 5.6
we will extend the framework to multipartite systems. In our setting (see Fig. 5.1), the
client and the provider share both quantum and classical communication channels and all
devices are assumed to satisfy the laws of quantum theory. Henceforth, the shared state
lives in the tensor product of the finite-dimensional Hilbert spaces H C (client’s share)
and H P (provider’s share). The provider uses the quantum communication channel to
send a quantum system to the client, so they share a quantum state ρCP ∈ B(H C⊗H P).
Crucially, in our scenario, the dimension of the Hilbert space H C is known but the space
H P can have an unrestricted dimension since we do not, in general, trust the provider.
Therefore, without loss of generality we can work with the pure states ρCP = |ψ ′〉〈ψ ′|,
since we can always dilate the space H P to find an appropriate purification. The client
uses the classical communication channel to ask the provider to perform a measurement
labelled by x ∈ {1, · · · ,d}. For each measurement, there are k ∈ N possible outcomes la-
belled by the symbol a∈ {0,1,2, ...,(k−1)}, and the provider sends back to the client the
measurement outcome they obtained. Again, since the dimension of H P is unrestricted,
we assume that measurement operators {M′a|x} are projective.

Conditioned on each measurement outcome a given the choice x, the client per-
forms state tomography on their part of the state |ψ ′〉 and obtains the assemblage ele-
ments σ ′a|x = trP

(
1

C⊗M′a|x |ψ ′〉〈ψ ′|
)

. Recall that the elements of assemblage satisfy

no-signalling relation ∑a σ ′a|x = trP(|ψ ′〉〈ψ ′|) = ρ ′C, where ρ ′C is the reduced state of
the client’s system. One can extract the probability p(a|x) of the provider’s measurement
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Source

Client's device

Provider

x

a

Figure 5.1: In our framework we have a client who has direct access to his part of the
quantum system generated by the source in the provider’s laboratory. We can also ask the
provider to perform a measurement labelled by x and generate an outcome labelled by a
all the while treating the provider’s measurement device and the source as a black box.
The dotted lines denote classical channels, while full lines represents a quantum channel

outcome a for the choice x by taking tr(σ ′a|x) = p(a|x).

The experiment can be equivalently characterized by the correlations between the
client and provider where both parties make measurements and look at the conditional
probabilities p(a,b|x,y) where y∈ {0,1, ...,(d−1)} is the client’s choice of measurement
and b ∈ {0,1,2, ...,(k− 1)} the outcome for that choice. If the client performs POVMs
{Nb|y}, then these correlations can be readily obtained from elements of the assemblage

as p(a,b|x,y) = tr
(

Nb|yσ ′a|x

)
.

As in the previous chapters, the reference experiment is denoted with un-primed letters
{Ma|x,Nb|y, |ψ〉}, as opposed to the above defined physical experiment {M′a|x,N′b|y, |ψ ′〉}.
The aim is to show the equivalence (2.24) between the reference and the physical experi-
ment.

5.2 Reduced states and the purification principle
It may seem that self-testing in the scenario defined here is a trivial task due to the
Schrödinger-HJW thorem [Sch36, HJW93], which says that every density matrix ρA can
result as the reduced state of some bipartite pure state |ψ〉AB on a joint system, according
to ρA = trB(|ψ〉〈ψ|AB), and this pure state is uniquely defined up to a unitary transforma-
tion on system B. Analogously, in our formalism, the reduced state ρ ′C = trP(|ψ ′〉〈ψ ′|)
can be described by the state |ψ ′〉 up to a unitary on the provider’s system. More pre-
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cisely, from the density matrix ρ ′C = ∑i λi |µi〉〈µi| (such that ∑i λi = 1 and λi ≥ 0 for all
i) we can easily get the Schmidt decomposition of the purification:

|ψ ′〉= ∑
i

√
λi |µi〉 |νi〉

where {|µi〉}i ({|νi〉}i) is some set of orthogonal states in H C (H P).

Consequently, we can ensure equivalence between |ψ〉 and |ψ ′〉 solely by checking if
the reduced state ρC = trP(|ψ〉〈ψ|) is the same as the reduced state ρ ′C = trP(|ψ ′〉〈ψ ′|).
Note that just from the fact that ρ ′C is mixed the client may be sure that they share some
entanglement with the provider. This is purely a consequence of the assumption that they
share a pure state. Indeed, in cryptographic scenario it is well-motivated to assume that
the provider produces a pure state since this gives them maximal information about the
devices that are used in a protocol.

Even though self-testing of states is rendered easy by our assumptions, the self-testing
of measurements does not follow from only looking at the reduced state ρ ′C. In other
words, knowing the global pure |ψ ′〉 from the reduced state ρ ′C, does not immediately
imply that the provider is making the required measurements on a useful part of that pure
state. It should be emphasized that in any one-sided device-independent quantum infor-
mation protocol, measurements will be made on a state in any task to extract classical
information from the systems, both trusted and untrusted. The self-testing of measure-
ments made by an untrusted agent is, as explicitly stated in Eq. (2.24), crucial. We give
a simple example to illustrate this point. This is an example of a physical system that a
provider can prepare and a measurement they can perform.

Example 8.1. Establishing that the client and the provider share a state that is equivalent
to a reference state is not immediately useful. Consider the situation where the provider
prepares the state |ψ ′〉 = 1√

2

(
|0C〉 |0P1〉 |0P2〉+ |1C〉 |1P1〉 |0P2〉

)
where the subscripts P1

and P2 label two qubits that the provider retains and sends the qubit with the subscript Cc
to the client. The two qubits labelled by P1 and P2 can be jointly measured or individually
measured. In this example the provider’s measurement solely consists of measuring qubit
P2 and ignoring qubit P1 such that measurement projectors are of the form 1P1⊗(M′a|x)

P2 .

Therefore, the reduced state of the client is ρC = 1

2 which indicates that the client and
provider share a maximally entangled state. However, every element of the assemblage
{σ ′a|x}a,x is σa|x =

1

2 , and thus unaffected by any measurement performed by the provider.
Therefore we cannot say anything about the provider’s measurements and, furthermore,
the entanglement is not being utilized by the provider and will thus not be useful for any
quantum information task.

This example just highlights that in our scenario it only makes sense to establish equiv-
alence between a physical experiment and reference experiment taking into account both
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the state and measurements. The example motivates the need to study the assemblage
generated in our scenario and not just the reduced state. Also, as will be shown later,
this allows us to construct explicit isometries demonstrating equivalence between a phys-
ical and reference experiment instead of just knowing that such an isometry exists. In
colloquial terms, being able to explicitly construct an isometry allows one to be able to
“locate” their desired state within the physical state.

So far we have assumed perfect equivalence between the reference and physical exper-
iment as described by Eqs. (2.24). In Sec. 5.3 we extend our discussion to the case where
equivalence can be established approximately which is known as robust self-testing. In-
stead of using the reduced state of the client and assemblage, we may wish to study
self-testing given the correlations resulting from measurements on the assemblage and
we discuss this in Sec. 5.4.

5.3 Robust assemblage-based one-sided self-testing
In this section we formally introduce robust assemblage-based one-sided self-testing (AST)
and discuss its advantages and limitations. For discussing robustness we first need to de-
cide about the appropriate distance measure when it comes to assemblages. Since ele-
ments of an assemblage are operators on a Hilbert space, we will use the Schatten 1-norm
‖A‖1 for A ∈ L(H ) being a linear operator acting on H . This norm is directly related to
D(ρ,σ), the trace distance between quantum states since

D(ρ,σ) =
1
2
‖ρ−σ‖1

for density matrices ρ and σ . Equivalently,

D(ρ,σ) =
1
2 ∑

i
|λi|

where λi is the i-th eigenvalue of the operator (ρ−σ). The trace distance has even simpler
form when ρ = |a〉〈a| and σ = |b〉〈b| are pure [NC00]:

D(|a〉〈a| , |b〉〈b|) =
√

1−|〈a |b〉 |2.

A distance measure is introduced for consideration of imperfect experiments. The
task is to infer closeness of our physical and reference experiments if their predictions
differ by a small amount. In this formalism we will use the trace distance to estimate
closeness between the physical state |ψ ′〉 and reference state |ψ〉. Thus, if D(ρ ′C,ρC) =
ε > 0 where ρC = trP(|ψ〉〈ψ|), then the minimal distance between physical and reference
states, allowing for isometries Φ on the provider’s side, will be the minimal value of

D(|Φ〉〈Φ| , |junk〉〈junk|⊗ |ψ〉〈ψ|) =
√

1−|〈junk|⊗ 〈ψ |Φ〉 |2 (5.1)
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for |Φ〉= Φ(|ψ ′〉). Clearly,

D(|Φ〉〈Φ| , |junk〉〈junk|⊗ |ψ〉〈ψ|)≥ D(ρC,ρ ′C) = ε (5.2)

since the trace distance does not increase when tracing out the provider’s sub-system.
The lower bound given in Eq. (5.2) does not tell us if an isometry achieving it exists

at all. Our aim is to be able to prove that there is an isometry for which the distance from
Eq. (5.1) is small. Moreover, it would be good if we can construct such an isometry. We
now formalize this intuition in the following definition:

Definition 8.1. Given a reference experiment consisting of the state |ψ〉 ∈H C⊗H ′P

with reduced state ρC and measurements {Ma|x}a,x such that the assemblage {σa|x}a,x has
elements σa|x = trP

[
(1C⊗Ma|x) |ψ〉〈ψ|

]
, ∀ a, x. Also given a physical experiment with

the state |ψ ′〉 ∈H C⊗H P, reduced state ρ ′C and measurements {M′a|x}a,x such that the

assemblage {σ ′a|x}a,x has elements σ ′a|x = trP

[
(1C⊗M′a|x) |ψ ′〉〈ψ ′|

]
, ∀ a, x. Let there is

a real, positive number ε such that D(ρC,ρ ′C) ≤ ε and ‖σa|x−σ ′a|x‖1 ≤ ε , for all a, x.
Then f (ε)-robust assemblage-based one-sided self-testing ( f (ε)-AST) is possible if the
assemblage {σ ′a|x}a,x implies that there exists an isometry Φ : H P →H P⊗H ′P such
that

D(|Φ〉〈Φ| , |junk〉〈junk|⊗ |ψ〉〈ψ|)≤ f (ε),

‖|Φ,M′a|x〉〈Φ,M′a|x|−|junk〉〈junk|⊗ (1C⊗Ma|x) |ψ〉〈ψ|(1C⊗Ma|x)‖1 ≤ f (ε) (5.3)

for |Φ〉= Φ(|ψ ′〉), |Φ,M′a|x〉= Φ(1C⊗M′a|x |ψ ′〉), |junk〉 ∈H P and f : R→ R.

In this definition, for the sake of simplicity, we have introduced the same function
f (ε) as the bound for all the distances in the experiment. It will often be the case that
the trace distance between reduced states will be smaller than the distance between the
assemblage elements, but we are considering the worst case analysis. In further study,
it could be of interest to give a finer distinction between these distance measures in the
definition. Note also that, in this definition, we only claim the existence of an isometrty,
without specifying its nature. Later, in Sec. 5.5, we will deal with constructing an explicit
isometry. Also, robust self-testing makes sense, and justifies its name, if the function f is
not too steep, i.e. if f (ε)≤ O(ε

1
p ) where p is upper-bounded by a small positive integer.

Since D(ρC,ρ ′C) = ε establishes a lower bound on the distance between physical and
reference experiments, the ideal case would be O(ε)-AST. Unfortunately such bound is
not possible, which we show by constructing a simple example contradicting it.

Example 8.2. The client has a three-dimensional Hilbert space H C. The reference
experiment consists of the state |ψ〉CP = 1√

2
(|00〉+ |11〉) with measurements {MP

0|0 =

|0〉〈0| ,MP
1|0 = |1〉〈1| ,MP

0|1 = |+〉〈+| ,MP
1|1 = |−〉〈−|} and |±〉 = 1√

2
(|0〉± |1〉) where
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H ′P is a two-dimensional Hilbert space. The assemblage for this reference experiment
has the following elements:

σ
C
0|0 =

1
2
|0〉〈0| , σ

C
1|0 =

1
2
|1〉〈1| ,

σ
C
0|1 =

1
2
|+〉〈+| , σ

C
1|1 =

1
2
|−〉〈−| .

The physical experiment consists of the state |ψ ′〉CPP′ =
√

1− ε |ψ〉 |0〉+√ε |ξ 〉 |1〉 where
|ξ 〉CP = |20〉 and the subscript P′ denotes a second qubit that the provider has in their
possession. The measurements in the physical experiment are M′PP′

i| j = MP
i| j⊗|0〉〈0|

P′ +

|i〉〈i|P⊗|1〉〈1|P′ for i ∈ {0,1}. The state |ψ ′〉 has the reduced state ρ ′C = (1−ε)
2 (|0〉〈0|+

|1〉〈1|)+ ε |2〉〈2| thus implying that D(ρ ′C,ρC) = ε . The assemblage for this physical
experiment then has the elements:

σ
′C
0|0 =

(1− ε)

2
|0〉〈0|+ ε |2〉〈2| , σ

′C
1|0 =

(1− ε)

2
|1〉〈1| ,

σ
′C
0|1 =

(1− ε)

2
|+〉〈+|+ ε |2〉〈2| , σ

′C
1|1 =

(1− ε)

2
|−〉〈−| .

From the above assemblages we observe that ‖σa|x−σ ′a|x‖1 <
3
2ε = ε ′, for all a, x. Here

we have just defined a new closeness parameter ε ′ for the convenience of our defini-
tions. Given these physical and reference experiments, we now wish to calculate a lower
bound on D(|Φ〉〈Φ| , |junk〉〈junk|⊗ |ψ〉〈ψ|) for all possible isometries Φ in the defini-
tion above; this will give a lower-bound on the function f (ε ′) for f (ε ′)-AST. To do this,
we introduce the notation |0̃〉 for the ancillae that the provider can introduce and U as the
unitary that they can perform jointly on the ancillae and their share of the physical state
|ψ〉. This then gives us:

D
(

U
(
|ψ ′〉〈ψ ′|⊗ |0̂〉〈0̂|

)
U†, |junk〉〈junk|⊗ |ψ〉〈ψ|

)
=
√

1−F2,

where

F = | 〈junk| 〈ψ|U |ψ ′〉 |0̂〉 |

=

√
1− ε

2
| 〈junk|

(
〈0C0P|(1C⊗U) |0C0P〉+ 〈1C1P|(1C⊗U) |1C1P〉

)
|0̂〉 |,

where 1
C is the identity on the client’s system. Thus maximizing this quantity for all

isometries, we obtain the maximal value F∗ =
√

1− ε =
√

1− 2ε ′
3 and the lower bound

D(|Φ〉〈Φ| , |junk〉〈junk|⊗ |ψ〉〈ψ|)≥
√

2ε ′
3 .

This example excludes the possibility of having O(ε)-AST given that the client’s
Hilbert space is three-dimensional. We will later return to this reference experiment in
Sec. 5.5.1 with the modification that the client’s Hilbert space is two-dimensional.
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5.4 Robust correlation-based one-sided self-testing
As outlined earlier, EPR-steering can be studied from the point-of-view of the probabil-
ities obtained from measurements performed on elements of an assemblage, i.e. known
measurements made by the trusted party. This point-of-view is native to Bell non-locality
and is suitable for making further parallels between non-locality and EPR-steering. In this
regard one can construct EPR-steering inequalities (the EPR-steering analogues of Bell
inequalities) which can be written as a linear combination of the measurement probabil-
ities [CJWR09]. The two figures-of-merit, assemblages and measurement correlations,
lead to a certain duality in the theory of EPR-steering. The approach that one will use
depends on the underlying scenario. In the case when correlations are obtained by per-
forming a tomographically complete set of measurements (on the trusted system) the
two approaches become completely equivalent. However, in some cases probabilities ob-
tained by performing a tomographically incomplete set of measurements, or even just
the amount of violation of some steering inequality can provide all necessary informa-
tion. Another possibility is that a trusted party can perform only two measurements and
nothing more, i.e. has no resources to perform complete tomography. In this section
we consider the definition and utility of defining robust self-testing with respect to these
probabilities for an appropriate notion of robustness. This approach to self-testing is not
immediately equivalent to the notion of AST defined previously (even if tomographically
complete measurements are made) for reasons that will be become clear.

Recall the probabilities p′(a,b|x,y) = tr(Nb|yσ ′a|x) for Nb|y being elements of a gen-
eral measurement associated with the outcome b for measurement choice y such that
∑b Nb|y = 1

C. Naturally, we can also obtain the probabilities p′(b|y) = tr(Nb|yρ ′C). In
addition to the “physical probabilities” p(a,b|x,y), we have the “reference probabilities”
{p(a,b|x,y)} which refer to the probabilities resulting from making the same measure-
ments {Nb|y}b,y on a reference assemblage {σa|x} as described above. Performing robust
self-testing given these probabilities will be the focus of this section.

A useful definition of the Schatten 1-norm is ‖A‖1 = sup‖B‖≤1|tr(BA)| where ‖ · ‖ is
the operator norm. Since Fb|y is a positive operator with operator norm upper bounded by
1 and if D(ρ ′C,ρC)≤ ε and for all elements σ ′a|x of an assemblage ‖σa|x−σ ′a|x‖1 ≤ ε we
can conclude that

|p(a,b|x,y)− p′(a,b|x,y)|= |tr
[
Nb|y

(
σa|x−σ

′
a|x
)]
| ≤ ‖σa|x−σ

′
a|x‖1 ≤ ε,

|p′(b|y)− p(b|y)|= |tr
[
Nb|y

(
ρ
′C−ρ

C)] | ≤ 2D(ρ ′Cρ
C)≤ 2ε

for all a, b, x, y. This then establishes that closeness of the reference and the physi-
cal assemblages implies closeness in the probabilities obtained from both experiments.
Clearly, the converse is not necessarily true and closeness in probabilities does not al-
ways imply closeness of reduced states and assemblages. Assemblages can be calcu-
lated from the statistics obtained by performing tomographically complete measurements,
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and then the distance (in Schatten 1-norm) between this assemblage and some ideal
assemblage can be calculated. However, even for tomographically complete measure-
ments {Nb|y}b,y, we only have that |tr

[
Nb|y

(
σ ′a|x−σa|x

)]
| ≤ ‖σa|x−σ ′a|x‖1 thus having

|tr
[
Nb|y

(
σ ′a|x−σa|x

)]
| ≤ ε does not imply ‖σa|x−σ ′a|x‖1 ≤ ε . This goes to show that the

AST approach is distinct from solely looking at the difference between probabilities.

Inspired by the literature in standard self-testing (see, e.g. Refs. [MYS14, RUV13]),
it should still be possible to attain robust self-testing based on probabilities for measure-
ments on assemblages and with this in mind, we give the following definition:

Definition 8.2. Given a reference experiment consisting of the state |ψ〉 ∈H C⊗H ′P

with reduced state ρC and measurements {Ma|x}a,x such that the assemblage {σa|x}a,x

has elements σa|x = trP
(
1

C⊗Ma|x |ψ〉
)
, ∀ a, x. Also given a physical experiment with

the state |ψ ′〉 ∈ H C⊗H P, reduced state ρ ′C and measurements {M′a|x}a,x such that

the assemblage {σ ′a|x}a,x has elements σ ′a|x = trP

(
1

C⊗M′a|x |ψ ′〉
)

, ∀ a, x. Additionally

given a set {Nb|y}b,y of general measurements that act on H C such that p′(a,b|x,y) =
tr
(

Nb|yσ ′a|x

)
and p(a,b|x,y) = tr

(
Nb|yσa|x

)
∀ a, x. If, for some real ε > 0,

|p(a,b|x,y)− p′(a,b|x,y)| ≤ ε,

|p(b|y)− p′(b|y)| ≤ ε,

|p(a|x)− p′(a|x)| ≤ ε,

∀ a, x, b, y, then f (ε)-robust correlation-based one-sided self-testing ( f (ε)-CST) is
possible if the probabilities imply that there exists an isometry Φ : H P →H P⊗H ′P

such that

D(|Φ〉〈Φ| , |junk〉 |ψ〉〈junk| 〈ψ|)≤ f (ε),

‖|Φ,M′a|x〉〈Φ,M′a|x|− |junk〉(1C⊗Ma|x) |ψ〉〈junk| 〈ψ|(1C⊗Ma|x)‖1 ≤ f (ε)

for |Φ〉= Φ(|ψ〉), |Φ,M′a|x〉= Φ(1C⊗M′a|x |ψ ′〉), |junk〉 ∈H P and f : R→ R.

Instead of directly bounding the distance between reference and physical probabilities,
we can indirectly bound this distance by utilising an steering inequality. In the literature
on standard self-testing, probability distributions that near-maximally violate a Bell in-
equality robustly self-test the state and measurements that produce the maximal violation
[MYS14, RUV13, Kan16]. As a first requirement, there needs to be a unique probability
distribution that achieves this maximal violation, and we now have many examples of Bell
inequalities where this happens. The same applies to steering inequalities: there needs to
be a unique assemblage that produces the maximal violation of a steering inequality. Fur-
thermore this unique assemblage needs to imply a unique reference experiment (up to a
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local isometry). For steering inequalities of the form ∑a|x αa,xtr
(

Na|bσ ′a|x

)
≤ 0 for real

numbers αa,x, any assemblage that violates this inequality necessarily demonstrates steer-
ing. If all quantum assemblages satisfy ∑a|x αa,xtr

(
Fa|bσa|x

)
≤ β for some positive real

number β then β is the maximal violation of the steering inequality. If we consider proba-
bilities of the form p′(a,b|x,y)= tr

(
Nb|yσ ′a|x

)
that satisfy ∑a|x αa,xtr

(
Na|bσ ′a|x

)
≥ (β−ε)

then they are at most ε-far from the reference experiment that produces the maximal vio-
lation of −β . We will make use of this approach to CST in Sec. 5.5.2.

As explained in Section 2.5 an important issue in standard self-testing is that exper-
imental probabilities are invariant upon taking the complex conjugate of both the state
and measurements, which is not a physical operation. In this sense , the AST approach
is advantageous to the standard self-testing approach in that we can rule out the state and
measurements in the reference experiment both being the complex conjugate of our ideal
reference experiment. This is because the assemblage is not invariant with respect to the
complex conjugation. In this respect CST inherits problems from the standard self-testing
if the measurements performed by the client are invariant under complex conjugation. In
that case the provider can prepare a state and make measurements that are both the com-
plex conjugate of the ideal case without altering the statistics. This can be remedied by the
client choosing measurements that have complex entries as long as it does not drastically
affect the ability to achieve f (ε)-CST.

5.5 Self-testing of a maximally entangled pair of qubits
In this section we discuss the possibilities to self-test the emblematic state of quantum
information, the maximally entangled pair of qubits (or, ebit). Nowadays there is an ex-
tensive literature on standard self-testing of an ebit. The most compact self-test relies
on the maximal violation of the CHSH inequality (see Sec. 2.5.2). The result is robust,
meaning that a violation of 2

√
2− ε necessarily comes from states that are O(

√
ε)-close

to the ebit (up to local isometries). We turn to AST and CST to see if we can improve
the current approaches from the standard self-testing when it comes to robustness. In
particular, in Sec. 5.5.1 we use analytical approaches for AST and show that, for the ebit,
O(
√

ε)-AST is possible with a reasonable constant in front of the
√

ε . In Sec. 5.5.2 we
exploit numerical methods for CST where the study of probabilities instead of assem-
blages is currently more amenable. We show that O(

√
ε)-CST is possible and also that

our numerical methods do better than existing numerical methods for the standard self-
testing. Thirdly, in Sec. 5.5.3 we show that O(

√
ε)-AST is essentially the best that one

can hope for by explicitly giving a physical state and measurements where f (ε) in the
definition of f (ε)-AST will be at least

√
ε . In other words, O(ε)-AST is impossible.
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5.5.1 Analytical results utilising the SWAP isometry
At this point let us define the reference experiment that will be the main aim of this
section. The reference state and measurements are

|ψ〉= |Φ+〉= 1√
2
(|00〉+ |11〉) ,

M0|0 = |0〉〈0| , M1|0 = |1〉〈1| ,
M0|1 = |+〉〈+| , M1|1 = |−〉〈−| ,

where we have dropped the system labels for clarity. The assemblage corresponding to
this reference experiment has the following elements:

σ0|0 =
1
2
|0〉〈0| , σ1|0 =

1
2
|1〉〈1| ,

σ0|1 =
1
2
|+〉〈+| , σ1|1 =

1
2
|−〉〈−| .

For this reference experiment we will use name EPR experiment. We are now ready to
state the main result about AST for this experiment.

Theorem 9. For the EPR experiment, f (ε)-robust assemblage-based one-sided self-testing
is possible for f (ε) = 24

√
ε + ε .

Before proving this theorem we will present two useful observations that will be used
in the proof. The first observation is a lemma about the norm that we are using while
the second is specific to the self-testing of the EPR experiment. We require the notation
‖|v〉‖=

√
〈v |v〉.

Lemma 9.1. For any two vectors |u〉, |v〉 where ‖|u〉‖ ≤ 1 and ‖|v〉‖ ≤ 1, if ‖|u〉−|v〉‖ ≤
η ≤ 1, then for another vector |t〉 such that ‖|t〉‖ ≤ β , ‖(|u〉− |v〉)〈t|‖1 ≤ βη and
‖|t〉(〈u|− 〈v|)‖1 ≤ βη

Proof. This fact essentially follows from the definition of ‖ · ‖. That is, ‖|u〉− |v〉‖ =√
〈u |u〉+ 〈v |v〉−〈u |v〉−〈v |u〉 and since the rank of B = (|u〉− |v〉)〈t| is 1 then the
‖B‖1 =

√
tr(BB†) = ‖|t〉‖

√
〈u |u〉+ 〈v |v〉−〈u |v〉−〈v |u〉 which, along with the fact that

‖B‖1 = ‖B†‖1, concludes our proof.

The next observation follows directly from the definition of f (ε)-AST:

Lemma 9.2. If ‖σ ′a|x−σa|x‖1 ≤ ε and D(ρ ′C,ρC)≤ ε then

‖1C⊗M′a|x |ψ ′〉−Ma|x⊗1P |ψ ′〉‖ ≤ 2
√

ε
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Proof. The proof follows from a series of basic observations:

‖1C⊗M′a|x |ψ ′〉−Ma|x⊗1P |ψ ′〉‖=

=
√
〈ψ ′|1C⊗M′a|x |ψ ′〉+ 〈ψ ′|Ma|x⊗1P |ψ ′〉−2〈ψ ′|Ma|x⊗M′a|x |ψ ′〉

≤
√

1+2ε−2〈ψ ′|Ma|x⊗M′a|x |ψ ′〉

≤
√

1+2ε−2(
1
2
− ε)

= 2
√

ε.

The first inequality results from the fact that 〈ψ ′|1C⊗M′a|x |ψ ′〉= trP

(
σ ′a|x

)
and 〈ψ ′|Ma|x⊗

1
P |ψ ′〉= trP(Ma|xρ ′C) and that |tr(σ ′a|x−σa|x)| ≤ ε and |tr(Ma|xρ ′C−Ma|xρC)| ≤ ε . The

second inequality follows from the observation that |tr(Ma|xσ ′a|x−Ma|xσa|x)| ≤ ε .

We are now in a position to prove Theorem 9.

Proof. Recall that we are promised that

D(ρ ′C,ρC)≤ ε,

‖σ ′a|x−σa|x‖1 ≤ ε,

for all a, x where ρC = trP (|ψ〉〈ψ|). The aim is now to find an explicit isometry Φ that
gives a non-trivial upper bound for the following expression:

‖|Φ,Q′a|x〉〈Φ,Q′a|x|− |junk〉〈junk|⊗ (1C⊗Qa|x) |ψ〉〈ψ|(1C⊗Qa|x)‖1, (5.4)

for Q′a|x ∈ {1,M′a|x}, Qa|x ∈ {1,Ma|x} and |Φ,Q′a|x〉 as defined before. We first focus on
the cases where Q′a|x = 1

P and Qa|x = 1
P and use this to argue the more general result.

The isometry that we use is the so-called SWAP isometry that has already been in-
troduced in Chapter sec:chainST. Here we use the variant of the isometry apt for the
steering scenario. In this isometry (see Fig. 5.2) an ancilla qubit is introduced in the state
|+〉P′ ∈H P′ where P′ denotes the ancilla register on the provider’s side in addition to the
provider’s Hilbert space H P. After introducing the ancilla a unitary operator is applied
to both the provider’s part of the physical state and the ancilla, i.e. |ψ ′〉 |+〉P′ → (1C⊗
V HU) |ψ ′〉 |+〉P′ where U = |0〉〈0|P′⊗1P+ |1〉〈1|P′⊗ZP, V = |0〉〈0|P′⊗1P+ |1〉〈1|P′⊗
XP and H = |+〉〈0|+ |−〉〈1| and Z = 2M′0|0−1P, X = 2M′0|1−1P and X2 = Z2 = 1

P.
After applying this isometry to the physical state |ψ ′〉 we obtain the state

M′0|0 |ψ ′〉 |0〉P
′
+XM′1|0 |ψ ′〉 |1〉P

′
.
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|+〉P
′

|ψ′〉PC

Z

H

X |junk〉 |ψ〉P
′C

Figure 5.2: For readers’ convenience we give the figure of the SWAP gate suitable for the
steering scenario. It is the special case of the standard SWAP gate represented on Fig. 3.1.
In case the provider is applying the anticommuting measurement observables the circuit
will transfer providers state to the ancillary qubit initiated in the state |+〉.

Therefore we wish to give an upper bound to

‖|Ξ〉〈Xi|− |junk〉〈junk|⊗ |ψ〉〈ψ|‖1 . (5.5)

where
|Ξ〉= (M′0|0 |ψ ′〉) |0〉P

′
+(XM′1|0 |ψ ′〉) |1〉P

′

At this point we can now apply a combination of Lemma 9.1 and Lemma 9.2 to bound
this norm. Firstly, we observe that by virtue of Lemma 9.2 we have that∥∥∥((M′0|0 |ψ ′〉) |0〉P′+(XM′1|0 |ψ ′〉) |1〉P

′)−((M0|0 |ψ ′〉) |0〉P
′
+(XM′1|0 |ψ ′〉) |1〉P

′)∥∥∥≤ 2
√

ε,∥∥∥((M0|0 |ψ ′〉) |0〉P
′
+(XM′1|0 |ψ ′〉) |1〉P

′)−((M0|0 |ψ ′〉) |0〉P
′
+(M1|0⊗X |ψ ′〉) |1〉P′

)∥∥∥≤ 2
√

ε,

where, for the sake of brevity, we do not write identities 1
C, e.g. M′0|0 |ψ ′〉 = 1

C ⊗
M′0|0 |ψ ′〉.

We can apply these observations in conjunction with Lemma 9.1 (and noticing that
‖(M′0|0 |ψ ′〉) |0〉

P′+(XM′1|0 |ψ ′〉) |1〉
P′ ‖= 1) to Eq. 5.5 to obtain∥∥∥(M′0|0 |ψ ′〉 |0〉P

′
+XM′1|0 |ψ ′〉 |1〉P

′)(〈ψ ′|M′0|0 〈0|P′+ 〈ψ ′|M′1|0X 〈1|P′
)
− J⊗Ψ

∥∥∥
1

≤ 2
√

ε +
∥∥∥(M0|0 |ψ ′〉 |0〉P

′
+XM′1|0 |ψ ′〉 |1〉P

′)(〈ψ ′|M′0|0 〈0|P′+ 〈ψ ′|M′1|0X 〈1|P′
)
− J⊗Ψ

∥∥∥
1

≤ 4
√

ε +
∥∥∥(M0|0 |ψ ′〉 |0〉P

′
+M′1|0X |ψ ′〉 |1〉P′

)(
〈ψ ′|M′0|0 〈0|P

′
+ 〈ψ ′|M′1|0X 〈1|P′

)
− J⊗Ψ

∥∥∥
1
,

where J = |junk〉〈junk| and Ψ= |ψ〉〈ψ|. Since X = 2M′0|1−1 and, for the Pauli-X matrix
σX = 2 |+〉〈+|−1, we obtain

‖1C⊗XP |ψ ′〉−σ
C
X ⊗1P |ψ ′〉‖ ≤ 2‖1C⊗M′0|1

P |ψ ′〉−MC
0|1⊗1P |ψ ′〉‖−‖|ψ ′〉− |ψ ′〉‖ ≤ 4

√
ε.
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This further implies∥∥∥(M′0|0 |ψ ′〉 |0〉P
′
+XM′1|0 |ψ ′〉 |1〉P

′)(〈ψ ′|M′0|0 〈0|P′+ 〈ψ ′|M′1|0X 〈1|P′
)
− J⊗Ψ

∥∥∥
1

≤ 8
√

ε +
∥∥∥(E0|0 |ψ〉 |0〉P

′
+M1|0X |ψ〉 |1〉P′

)(
〈ψ|E0|0 〈0|P

′
+ 〈ψ ′|M′1|0X 〈1|P′

)
− J⊗Ψ

∥∥∥
1
.

We will now apply the same reasoning to
(
〈ψ ′|M′0|0 〈0|

P′+ 〈ψ ′|M′1|0X 〈1|P′
)

but we need
the fact that∥∥∥M0|0 |ψ ′〉 |0〉P

′
+M1|0σX |ψ ′〉 |1〉P

′∥∥∥=√2〈ψ ′|M0|0 |ψ ′〉 ≤
√

1+2ε ≤ 1+ ε,

which follows from the condition on the reduced state ρ ′C and M1|0σX = σXM0|0. Using
these observations and Lemma 9.2 we arrive at∥∥∥(M′0|0 |ψ ′〉 |0〉P

′
+XM′1|0 |ψ ′〉 |1〉P

′)(〈ψ ′|M′0|0 〈0|P′+ 〈ψ ′|M′1|0X 〈1|P′
)
− J⊗Ψ

∥∥∥
1

≤ 16
√

ε +8ε
√

ε

+
∥∥∥(M0|0 |ψ ′〉 |0〉P

′
+M1|0σX |ψ ′〉 |1〉P

′)(〈ψ ′|M0|0 〈0|P
′
+ 〈ψ ′|σXM1|0 〈1|P

′)− J⊗Ψ

∥∥∥
1

= 16
√

ε +8ε
√

ε

+
∥∥∥(〈0C |ψ ′〉 |00〉CP′+ 〈0C |ψ ′〉 |11〉CP′

)(
〈ψ ′|0〉C 〈00|CP′+ 〈ψ ′|0〉C 〈11|CP′

)
− J⊗Ψ

∥∥∥
1

= 16
√

ε +8ε
√

ε +
∥∥2〈0C |ψ ′〉 |ψ〉〈ψ ′|0〉C 〈ψ|− J⊗Ψ

∥∥
1

≤ 16
√

ε +8ε
√

ε +
∥∥2〈0C |ψ ′〉〈ψ ′|0〉C− J

∥∥
1

≤ 16
√

ε +8ε
√

ε +2ε,

where to obtain the last inequality we chose |junk〉 to be the pure state that is propor-
tional to |0〉C 〈0C |ψ ′〉, i.e. |junk〉 = β−

1
2 |0〉C 〈0C |ψ ′〉 where β = 〈ψ ′|0〉C〈0C |ψ〉 thus

|tr
(
|0〉C〈0C|ρ ′C

)
− tr

(
|0〉C〈0C|ρC) | ≤ |β − 1

2 | ≤ ε .

We have shown that D(|Φ〉〈Φ| , |junk〉〈junk|⊗ |ψ〉〈ψ|)≤ 8
√

ε +4ε
√

ε +ε . Now we
consider the case of self-testing where measurements are made. That is, establishing an
upper bound on the expressions of the form in Eq. (5.4) where Q′a|x 6= 1

P and Qa|x 6= 1 and
after applying the SWAP isometry described above, the projector acting on the physical
state M′a|x |ψ ′〉 gets mapped to

M′0|0M′a|x |ψ ′〉 |0〉P
′
+XM′1|0M′a|x |ψ ′〉 |1〉P

′
.

In the case x = 0, utilising the fact that M′a|xM′a′|x = δ a
a′M
′
a|x, for Eq. (5.4) we obtain:∥∥∥∥M′0|0 |ψ ′〉〈ψ ′|M′0|0⊗|0〉〈0|P

′− 1
2
|junk〉〈junk|⊗ |00〉〈00|CP′

∥∥∥∥
1

for a = 0,∥∥∥∥XM′1|0 |ψ ′〉〈ψ ′|M′1|0X⊗|1〉〈1|P′− 1
2
|junk〉〈junk|⊗ |11〉〈11|CP′

∥∥∥∥
1

for a = 1.
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By using the same reasoning as above we obtain the bounds 4
√

ε + ε and 12
√

ε + ε for
the a = 0 and a = 1 cases respectively. For the case that x = 1, more work is required in
bounding Eq. (5.4). However, again by repeatedly applying the observation in Lem. 9.2
we obtain the bound of∥∥∥|Φ,Q′a|x〉〈Φ,Q′a|x|− |junk〉〈junk|⊗ (1C⊗Qa|x) |ψ〉〈ψ|(1C⊗Qa|x)

∥∥∥
1
≤ 24
√

ε + ε,

(5.6)
thus concluding the proof.

Central to the proof of this theorem was Lemma 9.2, but it is worth noting that the
minimal requirements for proving this lemma were bounds on the probabilities and not
necessarily bounds on the elements of the assemblage. We utilized the fact that bounds on
the probabilities are obtained from the elements of the assemblage, but if one only bounds
the probabilities then our result still follows. We then obtain the following corollary.

Corollary 9.1. For the EPR experiment, f (ε)-robust correlation-based one-sided self-
testing is possible for f (ε) = 24

√
ε + ε .

The fact that the function f (ε) in Thm. 9 and Cor. 9.1 are the same suggests at the
sub-optimality of our analysis, since AST could utilize more information than CST.

It is now worth commenting on the function f (ε) and contrasting it with results in
the standard self-testing literature. In particular, we want to contrast this result with other
analytical approaches.1 This is quite difficult since the measure of closeness to the ideal
case is measured in terms of closeness to maximal violation of a Bell inequality and not in
terms of elements of an assemblage or individual probabilities. Here we give an indicative
comparison between the approach presented here and the current literature. Firstly, McK-
ague, Yang and Scarani developed means of robust self-testing where if the observed
violation of the CHSH inequality is ε-close to the maximal violation then the state is
O(ε(1/4))-close to the ebit [MYS14]. This is a less favourable polynomial than our result
which demonstrates O(

√
ε)-closeness. On the other hand, the work of Reichardt, Unger

and Vazirani [RUV13] does demonstrate O(
√

ε)-closeness in the state again if ε-close to
the maximal violation of the CHSH inequality. However, the constant factor in front of
the
√

ε term has been calculated in Ref. [BNSTY15] to be of the order 105 and our result
is several orders of magnitude better. In various other works [MS12, BP15, ŠASA16]
more general families of self-testing protocols also demonstrate O(

√
ε)-closeness of the

physical state to the ebit when the violation is ε-far from Tsirelson’s bound. We must
emphasize that our analysis could definitely be tightened at several stages to lower the
constants in f (ε) but EPR-steering already yields an improvement over analytical meth-
ods in standard self-testing.

1These results were published prior to the publication of the currently best analytical robustness self-
testing methods in Ref. [Kan16]. Thus, we compare robustness bounds to those known at the time of
publication of the results from this chapter. The application of methods from Ref. [Kan16] to AST and
CST should be subject of future research.
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5.5.2 Numerical results utilising the SWAP isometry
Numerical approaches proved to be very useful for obtaining optimal robustness in the
standard self-testing scenario [YVBSN14, BNSTY15]. In this section we explore ro-
bustness bounds of the ebit self-testing through EPR-steering with the aid of SDP opti-
mizations. For that purpose we will shift from AST to CST, since that method is more
appropriate and makes the comparison with the standard self-testing easier. We will not
be considering CST in the strict sense, since we will only seek to establish a bound on the
trace distance between the physical and reference states (up to isometries).

We start as in the analytical considerations of the previous section: construct the same
SWAP isometry, apply it to the physical state and upper bound the norm from Eq. (5.5).
Since this is the trace distance between the pure states, M′0|0 |ψ ′〉 |0〉

P′ +XM′1|0 |ψ ′〉 |1〉
P′

and |junk〉 |junk〉, we have that [NC00]

1
2

∥∥∥(M′0|0 |ψ ′〉 |0〉P
′
+XM′1|0 |ψ ′〉 |1〉P

′)(〈ψ ′|M′0|0 〈0|P′+ 〈ψ ′|M′1|0X 〈1|P′
)
− J⊗Ψ

∥∥∥
1
≤

≤
√

1− (F∗)2

where F∗ = max F such that

F =

√
〈junk| 〈ψ|

(
M′0|0 |ψ ′〉 |0〉

P′+XM′1|0 |ψ ′〉 |1〉
P′
)(
〈ψ ′|M′0|0 〈0|

P′+ 〈ψ ′|M′1|0X 〈1|P′
)
|junk〉 |ψ〉

=
1√
2

√
〈junk|

(
〈0|C M′0|0 |ψ ′〉+ 〈1|

C XM′1|0 |ψ ′〉
)(
〈ψ ′|M′0|0 |0〉

C + 〈ψ ′|M′1|0X |1〉C
)
|junk〉.

In a similar manner like in Refs. [YVBSN14, BNSTY15], instead of bounding the fidelity
F , we wish to bound a related quantity G which is the singlet fidelity. For |ψ〉CP′ =

1√
2
(|00〉+ |11〉), this quantity is defined as

G = 〈ψ̃ ′| trP

[(
M′0|0 |ψ ′〉 |0〉P

′
+XM′1|0 |ψ ′〉 |1〉P

′)(〈ψ ′|M′0|0 〈0|P′+ 〈ψ ′|M′1|0X 〈1|P′
)]
|ψ〉

=
1
2

(
〈0|C σ

′
0|0 |0〉C +2〈0|C (σ ′0|1,0|0−σ

′
0|0,0|1,0|0) |1〉C+ (5.7)

+ 2〈1|C (σ ′0|0,0|1−σ
′
0|0,0|1,0|0) |0〉C + 〈1|C (ρ ′C−σ

′
0|0) |1C〉

)
such that

σ
′
0|1,0|0 = σ

′†
0|0,0|1 = trP(M′0|1M′0|0 |ψ ′〉〈ψ ′|)

and
σ
′
0|0,0|1,0|0 = trP(M′0|0M′0|1M′0|0 |ψ ′〉〈ψ ′|).
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Fidelity F∗ and singlet fidelity G are related through (F∗)2 ≥ 2G− 1 as shown in Ref.
[BNSTY15].

Having the expression for G the aim is to understand how to find its lower bound
given some correlations. As outlined in Sec. 2.4, every Bell inequality reduces to the cor-
responding steering inequality when the trusted side uses the adequate measurements. Let
us restate the steering inequality (2.23), obtained from the CHSH Bell inequality. For eas-
ier comparison of robustness bounds we will scale its maximal violation to be the same as
the maximal violation of the CHSH inequality. If the client applies measurements leading
to the maximal violation of the CHSH inequality, {(σZ±σX)/

√
2}, on the assemblage

generated in the EPR experiment the CHSH expression, denoted by trS, can be written as

trS = tr
1√
2

(
(σZ +σX)(σ

′
0|0−σ

′
1|0)+(σZ +σX)(σ

′
0|1−σ

′
1|1)+

+(σZ−σX)(σ
′
0|0−σ

′
1|0)− (σZ−σX)(σ

′
0|1−σ

′
1|1)
)

= tr
(√

2σZ(σ
′
0|0−σ

′
1|0)+

√
2σX(σ

′
0|1−σ

′
1|1)
)

= tr
(√

2σZ(2σ
′
0|0−ρ

′C)+
√

2σX(2σ
′
0|1−ρ

′C)
)
.

The maximal value of trS is the well known Tsirelson’s bound 2
√

2. For a near-maximal
violation we, thus, impose the constraint trS≥ 2

√
2−η .

Numerical minimising the singlet fidelity G given constraint trS ≥ 2
√

2−η can be
phrased as an SDP optimization:

min tr(MT
Γ) = G (5.8)

s. t. Γ≥ 0,

tr(NT
Γ) = trS≥ 2

√
2−η ,

where

Γ =


ρ ′C σ ′0|0 σ ′0|1 σ ′0|0,0|1
σ ′0|0 σ ′0|0 σ ′0|1,0|0 σ ′0|0,0|1,0|0
σ ′0|1 σ ′0|0,0|1 σ ′0|1 σ ′0|0,0|1

σ ′0|1,0|0 σ ′0|0,0|1,0|0 σ ′0|1,0|0 σ ′0|0,0|1,0|0

 ,
and

M =
1
2


W 0 0 Y

0 σZ 0 0
0 0 0 0

Y T 0 0 −2σX

 , N = 2
√

2


−σX−σZ

2 0 0 0
0 σZ 0 0
0 0 σX 0
0 0 0 0

 ,
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such that W =
(

0 0
0 1

)
, Y =

(
0 0
2 0

)
and 0 is a 2-by-2 matrix of all zeroes. We constrain Γ

in the optimization to be positive semi-definite. This is because Γ is a Gramian matrix
and all Gramian matrices are positive semi-definite. First observe that entries of Γ are
of the form Γi j = 〈i|C σ ′ | j〉C for σ ∈ {ρ ′C,σ ′0|0,σ ′0|1,σ ′0|1,0|0,σ ′0|0,0|1,σ ′0|0,0|1,0|0}. By the
cyclic property of the partial trace we can also write σ ′ = trP(F |ψ ′〉〈ψ ′|G†) for F , G ∈
{1P,M′0|0,M

′
0|1,M

′
0|1M′0|0}. We now note that

〈i|C σ | j〉C = ∑
|y〉∈H P

〈i|C 〈y|F |ψ ′〉〈ψ ′|G† |y〉 | j〉C

=

 ∑
|y〉∈H P

〈i|C 〈y|F |ψ ′〉〈y|

 ∑
|y′〉∈H P

〈ψ ′|G† |y′〉 | jC〉 |y′〉


= ∑

y
αy 〈y|∑

y′
α
∗
y′ |y′〉

= 〈u |v〉

where {|y〉} is an orthonormal basis in H P such that 〈y′ |y〉= δ
y
y′ and αy = 〈i|C 〈y|F |ψ ′〉

is some scalar. Since the elements of Γ are all the inner product of vectors associated with
a row and column, Γ = V †V where V has column vectors associated with the vectors v.
Therefore, Γ is Gramian. This then makes the above optimization problem a completely
valid problem for lower bounding G. We further note that matrix Γ represents the EPR-
steering analogue of the moment matrix in the Navascués- Pironio-Acı́n (NPA) hierarchy
[NPA07] which is useful for approximating the set of quantum correlations.

In Fig. 5.3 we plot the lower bound on G achieved through this method and then
compare it to the value obtained through the method of Bancal et al in Ref. [BNSTY15].
In both cases the violation of the CHSH inequality is lower-bounded by 2

√
2−η , and

we clearly see that the lower-bound is more favourable for our optimization through
EPR-steering as compared to full device-independence. For the case of EPR-steering
we observed that the plot can be lower-bounded by the function 1−η/

√
2 whereas the

plot for device-independence is lower-bounded by 1− 5η/4. Respectively, these func-
tions give an upper bound on D(|Φ〉〈Φ| , |junk〉〈junk| ⊗ |ψ〉〈ψ|) of 2

1
4
√

η ≤ 1.19
√

η

and
√

10/2
√

η ≤ 1.59
√

η .

5.5.3 Optimality of the SWAP isometry
The swap isometry showed to be useful in both, analytical and numerical approaches to
self-testing in the EPR-steering scenario. While its simplicity allowed for clear demon-
strations that self-testing is possible, the question of its optimality naturally arises. In
other words, is there an isometry which would give a different error-scaling, better than
the
√

ε in the function f (ε) for f (ε)-AST? In Sec. 5.1.1 we gave a counterexample to
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Figure 5.3: A graph numerically comparing self-testing of the ebit in a device-
independent manner to our method based on EPR-steering. The error η is the distance
from the maximal violation of the CHSH inequality.

the claim that a better error scaling is possible. However, the example therein is a bit un-
natural, because the Hilbert space of the client, who is supposed to self-test a two-qubits
state, is three-dimensional. At this point we would like to ask the question of the optimal
error scaling while fixing the dimension of the client’s Hilbert space to be equal to 2. We
show that this is not possible and the best we can hope for is the O(

√
ε)-AST which we

have already established.

Let us now show that the trace distance between the physical and reference states
in the EPR experiment can be O(ε) for some isometries. For the EPR experiment, let
us consider the trace distance D(|Φ〉〈Φ| , |junk〉〈junk|⊗ |ψ〉〈ψ|) for all possible isome-
tries Φ and not just the SWAP isometry. An isometry will take the physical state |ψ ′〉
to U |ψ ′〉 |0̂〉 by introducing ancillae |0̂〉 and applying a unitary U to the physical state
and ancillae. As discussed in Sec. 5.1.1, the trace distance is then D(U(|ψ ′〉〈ψ ′| ⊗
|0̂〉〈0̂|)U†, |junk〉〈junk| ⊗ |ψ〉〈ψ|) =

√
1−F2 for F = | 〈junk| 〈ψ|U |ψ ′〉 |0̂〉 |. We write

|ψ ′〉 in terms of its Schmidt decomposition

|ψ ′〉=
√

λ |u〉 |v〉+
√

1−λ |u⊥〉 |v⊥〉

for λ as some real number such that 0 ≤ λ ≤ 1 and 〈u⊥ |u〉 = 〈v⊥ |v〉 = 0. Since |u〉 is a
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state of a qubit it may be written as |u〉= cos θ1
2 |0〉+ eiθ2 sin θ1

2 |1〉. Given this, we obtain

F =
1√
2

∣∣∣∣〈junk| 〈0|
(√

λ cos
θ1

2
|w〉+

√
1−λe−iθ2 sin

θ1

2
|w⊥〉

)
+

+ 〈junk| 〈1|
(√

λeiθ2 sin
θ1

2
|w〉−

√
1−λ cos

θ1

2
|w⊥〉

)∣∣∣∣,
where |w〉 = U |v〉 |0̂〉 and |w⊥〉 = U |v⊥〉 |0̂〉. We now maximize F for all isometries so
as to obtain a lower bound on D(|Φ〉〈Φ| , |junk〉〈junk|⊗ |ψ〉〈ψ|). The value of F will be
maximized when |w〉 and |w⊥〉 is in the linear span of {|junk〉 |0〉 , |junk〉 |1〉}. Therefore,
|w〉= cos θ3

2 |junk〉 |0〉+ eiθ4 sin θ3
2 |junk〉 |1〉 and F∗ will be the maximum of

1√
2

∣∣∣∣(√λ cos
θ1

2
cos

θ3

2
+
√

1−λe−i(θ2+θ4) sin
θ1

2
sin

θ3

2

)
+

+

(√
λei(θ2+θ4) sin

θ1

2
sin

θ3

2
+
√

1−λ cos
θ1

2
cos

θ3

2

)∣∣∣∣
which then implies that F∗ = (1/

√
2)(
√

λ +
√

1−λ ). We now wish to put bounds on
λ which can be easily attained since ρ ′C = λ |u〉〈u|+(1−λ ) |u⊥〉〈u⊥| and ρC = 1

21
C =

1
2(|u〉〈u|+ |u⊥〉〈u⊥|). If we assume that D(ρ ′C,ρC) = ε then we have that |λ − 1

2 | = ε

and thus

F∗ =
1√
2
(

√
1
2
+ ε +

√
1
2
− ε) = 1− 1

2
ε

2−O(ε3),

where in the last equation we take the Taylor series expansion of F∗ and O(ε3) repre-
sents polynomials of degree 3 and higher. In conclusion, given ε-closeness of the reduced
states, there is an isometry Φ such that D(|Φ〉〈Φ| , |junk〉〈junk|⊗ |ψ〉〈ψ|)≤ O(ε). This
then demonstrates that our SWAP isometry is not optimal for demonstrating such close-
ness between physical and reference states. However, the optimal isometry will be de-
pendent on the basis {|u〉 , |u⊥〉} and thus more complicated than the SWAP isometry.

We emphasize that this trace distance between physical and reference states (condition
given in the first line of Eq. (5.3)) only amounts to a part of the criteria for AST. The other
part of the criteria (the second line of Eq. (5.3)) rules out many isometries that might give
the optimal trace distance between physical and reference states only. With this in mind
we want to bound the expression in Eq. (5.4) for all possible isometries given ε-closeness
between the elements of the physical and reference assemblages. In particular, we give
an example of a physical experiment where ε-closeness for the assemblages is satisfied
but for all isometries, the smallest value of Eq. (5.4) is O(

√
ε).

Example 9.1. The physical state is

|ψ ′〉CPP′
=

1√
2

(√
1− ε |00〉+

√
ε |11〉

)
|0〉+ 1√

2

(√
ε |00〉+

√
1− ε |11〉

)
|1〉

120



where P and P′ denote two qubits that the provider has in their possession, thus ρ ′C =
1
21

C. The physical measurements are M′0|0 = 1
P⊗|0〉〈0|P′ , M′1|0 = 1

P⊗|1〉〈1|P′ , M′0|1 =

|+〉〈+|P⊗|+〉〈+|P′+ |−〉〈−|P⊗|−〉〈−|P′ and M′1|1 = |+〉〈+|
P⊗|−〉〈−|P′+ |−〉〈−|P⊗

|+〉〈+|P′ . These physical measurements on the state produce the following assemblage
elements:

σ
′
0|0 =

(1− ε)

2
|0〉〈0|C +

ε

2
|1〉〈1|C , σ

′
1|0 =

(1− ε)

2
|1〉〈1|C +

ε

2
|0〉〈0|C ,

σ
′
0|1 =

1
2
|+〉〈+|C , σ

′
1|1 =

1
2
|−〉〈−|C .

We see then that D(ρ ′C,ρC) = 0 and ‖σ ′a|x−σa|x‖ ≤ ε for all a, x.

We now show that
∥∥∥|Φ,M′0|0〉〈Φ,M′0|0|− |junk〉〈junk|⊗M0|0 |ψ〉〈ψ|M0|0

∥∥∥
1
≥√ε for

all possible isometries Φ. By considering all possible isometries we have

|Φ,M′0|0〉=UM′0|0 |ψ ′〉 |0̂〉=
1√
2

U
(√

1− ε |00〉CP +
√

ε |11〉CP
)
|0〉P′ |0̂〉= 1√

2
|ε〉 ,

for |ε〉 = U
(√

1− ε |00〉CP +
√

ε |11〉CP
)
|0〉P′ |0̂〉 and U being a unitary applied jointly

to the provider’s qubits and the ancillae |0̂〉. This then allows us to observe that∥∥∥|Φ,M′0|0〉〈Φ,M′0|0|− |junk〉〈junk|⊗M0|0 |ψ〉〈ψ|M0|0
∥∥∥

1
=

= D(|ε〉〈ε| , |junk〉〈junk|⊗ |00〉〈00|) =
√

1−|〈ε |junk〉 |00〉 |2.

We see that |〈ε |junk〉 |00〉 |2 = (1− ε)| 〈junk| 〈0|U |0〉 |0̂〉 |2 which achieves the maximal
value of (1− ε). Therefore ‖|Φ,M′0|0〉〈Φ,M′0|0| − |junk〉〈junk| ⊗M0|0 |ψ〉〈ψ|M0|0‖1 ≥√

ε for all possible isometries Φ.

This example demonstrates that O(ε)-AST is impossible for the EPR experiment and
our analytical results are essentially optimal (up to constants).

5.6 Self-testing multi-partite states
All results presented so for belong to the simple bipartite scenario. Multipartite states are
useful for many tasks and it is of interest to understand how self-testing of such states
behaves in semi-device-independent scenarios. In this section we give a brief indica-
tion of how to generalize our set-up to the consideration of multipartite states. In Sec.
5.6.1 we will discuss the self-testing of tripartite states and give initial numerical results
demonstrating the richness of this scenario. We will briefly sketch in Sec. 5.6.2 how EPR-
steering could prove useful in establishing a tensor product structure within the provider’s
Hilbert space.
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Figure 5.4: Here we depict the tripartite set-up with three parties where only one is the
client, called the 1-trusted setting in the text. There are two non-communicating providers
and we assume without loss of generality that one of them generates a quantum state and
sends one part to the client and another to the other provider. The client may communicate
with each provider individually and ask them to perform measurements.

5.6.1 Self-testing the GHZ state
There are several possible modifications of AST and CST set-ups when moving from the
bipartite to the tripartite scenario. The first question is how to treat the third party, i.e.
is it trusted or not? The simplest modifications is to make the additional party a trusted
part of the client’s laboratory. In that case the total Hilbert space of the client H C be-
comes the tensor product of the two Hilbert spaces associated with two trusted parties.
Alternatively, as shown in Fig. 5.4, we can make the third party untrusted. They receive
a share of the physical state via a quantum channel, but after that their communication
via quantum channel with the initial provider stops. There are classical communication
channels between both providers and the client. In this set-up the Hilbert spaces of two
untrusted parties have a tensor product structure.

To illustrate the interesting differences between the bipartite and tri-partite cases, we
look at the example of self-testing the Greenberger-Horne-Zeilinger (GHZ) state

|ψ〉= 1/
√

2
(
|Φ−〉1,2 |+〉3 + |Ψ+〉1,2 |−〉3

)
where |Φ−〉 = 1/

√
2(|00〉− |11〉) and |Ψ+〉 = 1/

√
2(|01〉+ |10〉). In the scenario with

two trusted parties (that together form the client), a qubit is sent from the provider to each
of these parties (say, qubits 1 and 2 are sent); we will call this scenario the 2-trusted set-
ting. In the other scenario with two non-communicating untrusted providers, a qubit (say,
qubit 1) is sent to the client; we will call this scenario the 1-trusted setting. These differ-
ent scenarios correspond to the different types of multipartite EPR-steering introduced in
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Ref. [Cav+15].

We now describe the reference experiments for both settings for the state |ψ〉. In
the case of the 2-trusted setting, as in the EPR experiment, the provider claims to make
measurements M j|0 = | j〉〈 j| for j ∈ {0,1} as well as M0|1 = |+〉〈+| and M1|1 = |−〉〈−|.
The assemblage for the two trusted parties has elements

σ0|0 =
1
4
(|Φ−〉+ |Ψ+〉)(〈Ψ+|+ 〈Φ−|), σ1|0 =

1
4
(|Φ−〉− |Ψ+〉)(〈Φ−|− 〈Ψ+|),

σ0|1 =
1
2
|Φ−〉〈Φ−| , σ1|1 =

1
2
|Ψ+〉〈Ψ+| .

For the 1-trusted setting, in addition to the provider claiming to making the above mea-
surements, the second untrusted party, or second provider claims also to make the same
measurements, which we denote by M̄c|z for c, z ∈ {0,1}. The assemblage will be
{σa,c|x,z}a,c,x,z where each element is σa,c|x,z = trP(1

C⊗ M̄c|z⊗Ma|x |ψ〉〈ψ|). The as-
semblage for the one trusted party will have 16 elements but for the sake of brevity we
will not write out the elements.

We then wish to self-test this reference experiment when the elements of the physical
assemblage are close to the elements of the ideal, reference experiment. Instead of doing
this, we will mimic the numerical approach in Sec. 5.5.2 by considering the Mermin
inequality (see Eq. (2.16)) adapted to the 1-trusted and 2-trusted scenarios. Utilising the
notation of σX and σZ for the Pauli-X and Pauli-Z matrices respectively, for the 2-trusted
and 1-trusted settings, the inequalities respectively are:

trB2 =2tr
(
(σZ⊗σZ)(2σ

′
0|1−ρ

′C)+(σX⊗σZ)(2σ
′
0|0−ρ

′C)+

+(σZ⊗σX)(2σ
′
0|0−ρ

′C)− (σX⊗σX)(2σ
′
0|1−ρ

′C)
)
≤ 2,

trB1 =2tr
(

σZ(σ
′
00|01−σ

′
01|01−σ

′
10|01 +σ

′
11|01)+σX(σ

′
00|00 +σ

′
11|00−σ

′
01|00−σ

′
10|00)

)
+

2tr
(

σZ(σ
′
00|10 +σ

′
11|10−σ

′
01|10−σ

′
10|10)−σX(σ

′
00|11 +σ

′
11|11−σ

′
01|11−σ

′
10|11)

)
≤ 2.

The maximal quantum violation of these inequalities is 4. We now aim to carry out self-
testing if the physical experiment achieves a violation of 4−η . For the untrusted parties,
we implement the SWAP isometry to each of their systems as outlined in Sec. 5.5.1.
For the 2-trusted setting, the physical state |ψ ′〉 gets mapped to |ψ1〉 = M′0|0 |ψ ′〉 |0〉

P′ +

XM′1|0 |ψ ′〉 |1〉
P′ . In the 1-trusted setting, the physical state |ψ〉 gets mapped to

|ψ2〉= M′0|0M̄′0|0 |ψ ′〉 |0〉P
′ |0〉P′′+XM′1|0M̄′0|0 |ψ ′〉 |1〉P

′ |0〉P′′+
+M′0|0X̄M̄′1|0 |ψ ′〉 |0〉P

′ |1〉P′′+XM′1|0X̄M̄′1|0 |ψ ′〉 |1〉P
′ |1〉P′′
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where M̄′c|z is the physical measurement made by the second untrusted party, X̄ = 2M̄′0|1−
1 and P′ denotes the ancilla qubit introduced for one party and P′′ for the other party.

Our figure of merit for closeness between the physical and reference states is the GHZ
fidelity which for the 2-trusted and 1-trusted settings is G2 and G1 respectively where

G2 = 〈ψ| trP (|ψ1〉〈ψ1|) |ψ〉 ,
G1 = 〈ψ| trP (|ψ2〉〈ψ2|) |ψ〉 ,

where in both cases we trace out the provider’s (providers’) Hilbert space(s) H P. Now
we minimize G2 while trB2 ≥ 4−η and minimize G1 such that trB1 ≥ 4−η . These prob-
lems again can be lower-bounded by an SDP and in Fig. 5.5 we give numerical values
obtained with these minimization problems. This case is numerically more expensive than
the simple self-testing of the EPR experiment and for tackling it we used the SDP pro-
cedures described in Ref. [Wit15]. We also compare our results to those obtained in the
device-independent setting where all three parties are not trusted but the violation of the
GHZ-Mermin inequality is 4−η . We see that the GHZ fidelity increases when we trust
more parties. Interestingly, we can see that the curve for 1-trusted scenario is obviously
closer to the curve of 2-trusted scenario than to the device-independent one. This may hint
that multi-partite EPR-steering behaves quite differently to quantum non-locality. How-
ever, to draw this conclusion from self-testing one would have to pursue more rigorous
research, since we have only obtained numerical lower bounds on the GHZ fidelity using
only one specific isometry.

5.6.2 Establishing a tensor product structure
Another well-researched task in the standard self-testing literature is the certification of
the existence of a tensor product of N EPR-pairs shared between two parties. The first
work, proving this self-testing result in the scenario when parties make sequential, i.e.
one after another, measurements on each EPR pair, was [RUV13]. Later the result was
improved in the parallel scenario, when all the measurements are performed at the same
time [Col17, McK17, CN16]. The main difficulty in these kinds of self-tests is to prove
that the Hilbert spaces of the untrusted parties decompose as a tensor product of N two-
dimensional Hilbert spaces: in each sub-space there is one-half of an ebit. The previous
section hints that self-testing through EPR-steering could lead to a substantial improve-
ment exactly in this scenario: establishing a tensor product structure in the provider’s
Hilbert space. A useful simplification EPR steering offers in this task is that in the client’s
laboratory a tensor product structure is known: the client knows they have, say, two qubits.
If the assemblage for each qubit is close to the ideal case of being one half of an ebit, then
we may use Lemma 9.2 to ”transfer” the providers’s physical operations to one of the
client’s qubits. We also note that this observation forms part of the basis of the work
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Figure 5.5: A graph numerically comparing the minimum GHZ fidelity for a given vi-
olation of the GHZ-Mermin inequality for different levels of trust in the devices. We
observe that the line for the 1-trusted setting is closer to the 2-trusted setting than device-
independence.

presented in Ref. [GWK17], in the context of verification of quantum computation.

More precisely, the client’s Hilbert space is constructed from a tensor product of N
two-dimensional Hilbert spaces, i.e. H C =

⊗N
i=1 H Ci where H Ci =C2. In this situation

the reference state is |ψ〉 =⊗N
i=1 |ψi〉 ∈

⊗N
i=1 H Pi ⊗H Ci for each |ψi〉 = 1√

2
(|00〉+

|11〉) ∈H Pi⊗H Ci . On each Hilbert space HPi acts a projective measurement {Mai|xi},
where ai, xi ∈ {0,1} . Henceforth, the global reference projector is

⊗N
i=1 Mai|xi which

acts on the Hilbert space
⊗N

i=1 H Pi . Accordingly, the measurement choices and outputs
are not bits, but bit-strings x := (x1,x2, ...,xN) and a := (a1,a2, ...,aN) respectively. We
call this reference experiment the N-pair EPR experiment and we are now in a position to
generalize Lemma 9.2.

Lemma 9.3. For the N-pair EPR experiment, if for all i,
∥∥∥σ ′a|x−σa|x

∥∥∥
1
≤ ε and D(ρ ′C,ρC)≤

ε where σa|x =
⊗N

i=1 σai|xi and ρC =
⊗N

i=1
1

C

2 then∥∥∥∥∥1C⊗M′a|x |ψ ′〉−
N⊗

i=1

Mai|xi⊗1P |ψ ′〉
∥∥∥∥∥≤ 2

√
ε. (5.9)
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The proof of this lemma is completely equivalent to the proof of Lemma 9.2 so we will
leave it out from our discussion. A nice relaxation of the conditions of the above lemma
is to insist that each observed element of an assemblage σ ′ai|xi

is ε-close to σai|xi and still
recover a similar result. This requires a little bit more work since we have not been specific
about the model of the provider’s measurements. For example, we have not stipulated
whether the probability distribution p(a|x) = tr(σ ′a|x) satisfies the no-signalling principle.
Furthermore, even if these probabilities satisfy this principle, it does not immediately
enforce a constraint on the behaviour of the measurements. For the sake of brevity we
will not address this issue in this thesis.

5.7 Discussion
In this chapter we introduced and explored possibilities of self-testing based on EPR-
steering. We have shown that the semi-device-independent scenario offers a broad range
of tools useful for self-testing. By getting use of all the available resources one can per-
form quantum state tomography of a part of the state and use this information to develop
better and simpler analytical methods. Alternatively, in some cases correlations of mea-
surement outcomes of some fixed measurements with the outcomes of some untrused
measurements is enough to obtain what is necessary for self-testing. Moreover, a near-
maximal violation of an appropriate steering inequality can also suffice. After introducing
different methods tailored for self-testing through EPR-steering we compared them to the
standard device-independent approach and showed that EPR-steering simplifies proofs
and gives more useful bounds for robustness. Hopefully, our approach could be used in
future experiments where states produced are quite far from ideal but potentially useful
for quantum information tasks. However, we note that EPR-steering-based self-testing
substantially only improves the constants in the error terms (for robustness) and not the
polynomial of the error, i.e. we can only demonstrate O(

√
ε)-AST for the EPR experi-

ment. This highlights that from the point-of-view of self-testing, EPR-steering behaves in
the same way as Bell non-locality and not entanglement verification in which all parties
are trusted.

One direction of research for the future work could be exploration of the self-testing
of other quantum states, particularly non-maximally entangled states, such as partially
entangled pairs of qubits. It is desirable to develop a general framework for self-testing
many different states and measurements. This would be something akin to the work of
Yang et al [YVBSN14] that utilizes the NPA hierarchy of SDPs. A related work by Ko-
gias et al [KSCAA15] could prove useful in this aim. In addition to this, our work has
hinted at the interesting possibilities for studying self-testing based on EPR-steering in the
multipartite case. In future work we will investigate adapting our techniques to general
multipartite states. For example, the general multipartite GHZ state can be self-testing by
adapting the family of Bell inequalities found in Refs. [Ard92, BK93, HCLB11].

126



One may question our use of the Schatten 1-norm as a measure of distance between
elements of a reference and physical assemblage. For example, the Schatten 2-norm is a
lower bound on the 1-norm so could be a more useful measure of closeness. It may be
worthwhile to explore this possibility but we note that the argument for the impossibility
of O(ε)-AST for the EPR experiment in Section 5.5.3 still applies even if we replace all
the distance measures with the 2-norm.

Finally, it would be interesting to consider relaxing the assumption of systems being
independent and identically distributed (i.i.d) and tomography being performed in the
asymptotic limit. This would take into account the provider having devices with memory
as well as only being given a finite number of systems. In the case of CST, we may use
statistical methods to bound the probability that the provider can deviate from their claims
and trick us in accepting their claims. For the case of AST, tools from non-i.i.d. quantum
information theory might be required which makes the future study of AST interesting
from the point-of-view of quantum information.

127



Part II

Certification of different
quantum resources and protocols
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Chapter 6

Certifying and quantifying
entanglement and randomness in
quantum networks

The relation between Bell nonlocality and entanglement is one of the open questions in
the foundations of quantum theory. While nonlocal correlations can only be obtained
by performing local measurements on an entangled state, not every entangled state can
lead to nonlocality. As it was first shown by Werner [Wer89] the probability distributions
obtained by local measurements applied to certain entangled quantum states can be sim-
ulated by a purely classical model called a local-hidden-variable model. Werner’s result
was later generalized in many ways [Bar02, AGT06].

Since the standard Bell scenario exposes a gap between nonlocality and entanglement,
one may ask if it is possible to come up with some alternative scenario in which every
entangled state exhibits nonlocal correlations. One possibility is to make use of many
copies of the shared entangled state. It has been proven that some entangled states which
are not nonlocal in the standard Bell scenario can violate a Bell inequality in this scenario
[Pal12, CABV13], a phenomenon known as super-activation. Whether every entangled
state can be super-activated in this way is again an open problem. Another possibility is
to consider a quantum network consisting of many copies of the same state shared among
many parties [SBBZ05]. Similarly to superactivation, some states that are local in the
standard Bell scenario become nonlocal in the network scenario. However, the general
relation between entanglement and nonlocality is also unknown in this case. Another al-
ternative Bell scenario, historically preceding the others, was suggested in Ref. [Pop95]
and is known as the hidden nonlocality scenario. In it the parties are allowed to perform
pre-processing on their shared state before applying their measurements. Even though
some local entangled states can become nonlocal in this new scenario it has recently been
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shown that there are entangled states which can never exhibit hidden nonlocality, i.e. they
remain nonlocal after arbitrary pre-processing [Hir+16]. Finally, it is possible to combine
all the nonstandard Bell scenarios, but still there is no conclusive statement about the re-
lation between entanglement and nonlocality in what would be called multy-copy with
pre-processing scenario.

There is however one modification of the standard Bell scenario that can reveal nonlo-
cal correlations from every entangled state. It consists of using measurement devices that
receive quantum systems as inputs [Bus12] (See also Refs. [BRLG13, RBGL13, CHW13,
Hal16] for further developments and Refs. [NMAB15, Xu+14, Ver+16] for experimental
demonstrations). The observation of nonlocal correlations in this scenario can be seen
as an entanglement test with uncharacterized measurement devices, which motivated the
name of measurement-device-independent nonlocality.

In this chapter we shed new light on some aspects of this scenario with quantum
inputs, explore its power for entanglement detection and quantification in quantum net-
works, and finally study its advantages for randomness certification.

6.1 Measurement-device-independent entanglement cer-
tification

We start this section by reviewing some of the main results on entanglement certification
in Bell scenario with quantum inputs, and by proposing some improvements on this task.
We consider two separated parties, Alice and Bob, sharing a bipartite system in an un-
known state ρAB acting on the tensor product of Hilbert spaces H A⊗H B. They want
to certify if their system is entangled, but do not know how their measurement devices
work. Buscemi proposed a solution to this problem [Bus12]: at each round of the experi-
ment Alice and Bob encode their measurement choices in quantum states ωx ∈H A0 and
ωy ∈H B0 respectively, which they use as inputs for their measurement devices. After
receiving the quantum inputs the measurement devices provide classical outputs a and b
according to the probability distributions

p(a,b|ωx,ωy) = Tr[(MA0A
a ⊗MBB0

b )(ωA0
x ⊗ρ

AB⊗ω
B0
y )], (6.1)

where MA0A
a and MBB0

b are the measurement operators applied by the measurement de-
vices on the corresponding input systems and their shares of state ρAB. Buscemi proved
that if {ωx/y}x/y correspond to tomographically complete sets of input states 1 in H A/B,
and each box performs a Bell state measurement, then every entangled state ρAB produces

1By a tomographically complete set of input states we mean that the set is sufficient to perform quantum
process tomography
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a set of probability distributions {p(a,b|ωx,ωy)}a,b,x,y that cannot be reproduced with any
separable state.

Building on this result, the authors of Ref. [BRLG13] provided a way to construct Bell
tests with quantum inputs from every entanglement witness, and named them measurement-
device-independent entanglement witnesses (MDIEW). However, when it comes to prac-
tical entanglement detection, MDIEW are useful only when one has a good guess on
which entangled state should be detected, and can thus start from an entanglement wit-
ness which is able to detect its entanglement. In Ref. [Ver+16] a solution at the single
copy level was given, by showing that the quantum inputs scenario can be cast as an SDP
optimization problem, readily solvable with available software. We present here the said
SDP in a slightly different form.

The starting point is the fact that the joint outcome probability distribution can be
written in the following way

p(a,b|ωx,ωy) = Tr[MA0B0
a,b (ωA0

x ⊗ω
B0
y )], (6.2)

where M̃a,b is an effective POVM operator defined by

MA0B0
a,b = TrAB[(MA0A

a ⊗MBB0
b )(1A0⊗ρ

AB⊗1B0)]. (6.3)

By construction, the effective POVM MA0B0
a,b satisfies a number of conditions, which can

be thought of as playing the role of ‘no-signalling’ conditions. In particular,

∑
a

MA0B0
a,b = 1

A0⊗MB0
b ∑

b
MA0B0

a,b = MA0
a ⊗1B0 (6.4)

where MB0
b ≡ trB[M

BB0
b (ρB⊗1B0)]≥ 0 and MA0

a ≡ trA[M
AA0
a (1A0⊗ρA)]≥ 0 are effective

local POVMs for Alice and Bob (i.e. such that ∑a MA0
a = 1

A0 and ∑b MB0
b = 1

B0). We
will write {MA0B0

a,b }a,b ∈M to denote the fact that the effective POVM satisfies these
conditions, i.e.

M =
{
{MA0B0

a,b }a,b|MA0B0
a,b ≥ 0,∑

a
MA0B0

a,b = 1
A0⊗MB0

b ,

∑
b

MA0B0
a,b = MA0

a ⊗1B0,∑
a

MA0
a = 1

A0,∑
b

MB0
b = 1

B0
}

(6.5)

Now, if the shared state ρAB separable, i.e. ρAB = ∑λ pλ ρA
λ
⊗ ρB

λ
, then Eq. (6.3)

becomes

MA0B0
a,b = ∑

λ

pλ TrA[MA0A
a (1A0⊗ρ

A
λ
)]⊗TrB[M

BB0
b (ρB

λ
⊗1B0)]

= ∑
λ

pλ MA0
a|λ ⊗MB0

b|λ . (6.6)
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where MA0
a|λ ≡ TrA[M

A0A
a (1A0⊗ρA

λ
)] and MB0

b|λ ≡ TrB[M
BB0
b (ρB

λ
⊗1B0)] are effective local

POVMs for Alice and Bob. Consequently, the fact that ρAB is separable, implies that the
operator MA0B0

a,b is a separable operator for all a and b.
Alice and Bob can thus check the separability of ρAB by solving the following feasi-

bility problem:

given {p(a,b|ωx,ωy)}a,b,x,y

find {M̃A0B0
a,b }a,b (6.7)

s.t. p(a,b|ωx,ωy) = Tr[MA0B0
a,b (ωA0

x ⊗ω
B0
y )] ∀a,b,x,y,

{MA0B0
a,b }a,b ∈S

where S denotes the subset of M which are separable operators, i.e.

S =
{
{MA0B0

a,b }a,b|{MA0B0
a,b }a,b ∈M , MA0B0

a,b = ∑
λ

τa|λ ⊗χb|λ ,τa|λ ≥ 0,χb|λ ≥ 0
}

(6.8)
This problem is in principle hard to solve, due to the lack of the efficient character-

ization of the set of separable operators. However one can relax the constraint of sep-
arability, and impose instead that each operator MA0B0

a,b is positive under partial trans-
pose (PPT). In the feasibility problem above this amounts to replacing the condition
MA0B0

a,b = ∑λ τa|λ ⊗ χb|λ ,τa|λ ≥ 0,χb|λ ≥ 0 by (MA0B0
a,b )TA0 ≥ 0 ∀ a,b. With this replace-

ment, the problem becomes a feasibility SDP optimisation problem, which can then be
solved efficiently.

Notice however that this relaxation is not able to detect PPT entangled states. A sec-
ond, more stringent, relaxation of the set of separable operators is the set of the operators
having a k-symmetric extension [DPS02]. Imposing that the operators MA0B0

a,b have a
k symmetric extension amounts to demanding that there exist a (k+ 1)-partite operator
NA0B0...Bk−1

a,b ≥ 0 such that NA0Bi
a,b = MA0B0

a,b ∀ i. For every fixed k, the above feasibility
optimisation problem with this replacement is again an SDP feasibility problem, which
now can also detect PPT entangled states [DPS04]. Finally, we note that by increasing
the order k of the extension, we obtain stronger SDP tests that converge to the separability
test above in the limit of k→ ∞.

Finally, it is an important fact that once the sets of quantum inputs used are tomograph-
ically complete, then the probabilities p(a,b|ωx,ωy) allow for an exact reconstruction of
the effective POVM elements MA0B0

a,b , using quantum process tomography. In this special
case, any available entanglement criterion, not just those that can be checked via SDP, can
be used to determine if it is a separable operator or not, leading directly to a conclusion
of whether or not the shared state was entangled.
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6.2 Measurement-device-independent entanglement esti-
mation

One step beyond certifying the presence of entanglement in a system is to estimate how
much entanglement it contains. As discussed in Chapter 2 Section 2.1.2 there are many
different entanglement measures, but they are in general not easy to compute even if one
knows the full state of the system . In fact the problem of deciding if a given quantum
state is entangled is NP-hard, which implies hardness of computing entanglement mea-
sures. Quantification of entanglement in a measurement-device-independent scenario was
the subject of Ref. [SHR17] where the authors define the best possible pay-off in a semi-
quantum games that a state can achieve as an entanglement measure. In what follows we
show how to place measurement-device-independent bounds on two well-known entan-
glement quantifiers, the robustness [VT99] and the negativity [VW02].

6.2.1 MDI lower bound on the robustness of entanglement
A physically well motivated way of quantifying entanglement is through its robustness to
noise [VT99], defined as the amount of noise one can add to an entangled state before it
becomes separable. As already shown in Section 2.1.2, the generalized robustness rg of a
state ρ is given by

rS(ρ
AB) = min

r,σAB
r

s.t.
ρAB + rσAB

1+ r
∈ SEP,

σ
AB ∈ S

(6.9)

where S is a subset of quantum states, which defines the type of robustness, and SEP
denotes the set of separable states. Typical choices for S include the set of all quantum
states (generalized robustness), the set of separable states (classical robustness) or the
maximally mixed state (random robustness).

In a similar way we define the robustness of MDI-nonlocality r̃MDI
S as the minimum

amount of noise that has to be added to the set of probability distributions {p(a,b|ωx,ωy)}
before it can be reproduced by a separable state, where the noise comes from the set S.
Formally, the MDI-nonlocality robustness is the solution of the following optimization
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problem

r̃MDI
S [p(a,b|ωx,ωy)] = min

{MA0B0
a,b }a,b,{N

A0B0
a,b }a,b

r (6.10)

s.t.
p(a,b|ωx,ωy)+ rπ(a,b|ωx,ωy)

1+ r
= Tr[MA0B0

a,b (ωA0
x ⊗ω

B0
y )],

π(a,b|ωx,ωy) = Tr[NA0B0
a,b (ωA0

x ⊗ω
B0
y )] ∀a,b,x,y,

{MA0B0
a,b }a,b ∈S , {NA0B0

a,b }a,b ∈MS.

where MS is the set of effective POVMs associated to the noise S. For example, for the
generalized robustness, when the set S corresponds to all quantum states, then MS = M .
Similarly, for the robustness, when the set S corresponds to all separable states, then
MS = S . Finally, for the random robustness, when S = {1AB/dAdB}, then MS ={
{M̃A0B0

a,b }a,b|{MA0B0
a,b }a,b ∈M,MA0B0

a,b = MA0
a ⊗MB0

b

}
.

We now show that r̃MDI
S is a lower bound to the robustness of entanglement rS of the

underlining state being measured. To see this consider that the robustness of the state
ρAB is given by r∗S. This means that there exist a state σ∗AB ∈ S for which the state
(ρ +r∗Sσ∗)/(1+r∗S) is separable. Thus for any POVMs {MA0A

a }a and {MB0B
b }b satisfying

(6.1),

MA0B0
a,b = TrAB

[(
MA0A

a ⊗MBB0
b

)(
1

A0⊗ ρAB + r∗Sσ∗AB

1+ r∗S
⊗1B0

)]
, (6.11)

and
NA0B0

a,b = TrAB

[(
MA0A

a ⊗MBB0
b

)(
1

A0⊗σ
∗AB⊗1B0

)]
, (6.12)

are feasible for the problem (6.10) (i.e. satisfy all the constraints) and achieve the value
r = r∗S, as can be verified by direct substitution. Since {MA0B0

a,b }a,b and {NA0B0
a,b }a,b given

by Eqs. (6.11) and (6.12) do not necessarily provide an optimal solution to the problem
(6.10), then

r̃MDI
S [p(a,b|ωx,ωy)]≤ r∗S(ρ

AB). (6.13)

This bound can be easily interpreted. If the measured state is separable, i.e. r∗S(ρ
AB) = 0,

then the probability distribution obtained by measuring it trivially has a separable re-
alisation, so r̃MDI

S [p(a,b|ωx,ωy)] = 0. On the other hand, if Alice and Bob detect that
r̃MDI

S [p(a,b|ωx,ωy)] > 0, then they immediately conclude that the underlining state is
entangled, and moreover can place a lower bound on the amount of entanglement, as
measured by the robustness (with respect to S), that is necessary to explain the data.

6.2.2 MDI lower bound on the negativity
Another widely used entanglement measure of entanglement is the negativity [VW02].
Analogously to the device-independent estimation of negativity [Mor+13] it is possible
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to put a lower bound on the negativity in a measurement-device-independent way. As
discussed in Section 2.1.2 the negativity N of some state ρAB is defined as the sum of
the absolute values of the non-positive eigenvalues of the partially transposed state ρTA .
It has been shown in Ref. [VW02] that it admits the following representation

N (ρAB) = min
ρ+,ρ−

Tr[ρ−], (6.14)

s.t. ρ
AB = ρ+−ρ−,

ρ
TA
± ≥ 0.

Having in mind the decomposition ρAB = ρ+− ρ− it is possible to write the observed
probabilities from the quantum inputs scenario in the following way

p(a,b|ωx,ωy) = Tr
[(

MA0A
a ⊗MBB0

b

)(
ω

A0
x ⊗ρ

AB⊗ω
B0
y
)]

= q+(a,b|ωx,ωy)−q−(a,b|ωx,ωy),

where

q+(a,b|ωx,ωy) = Tr
[(

MA0A
a ⊗MBB0

b

)(
ω

A0
x ⊗ρ+⊗ω

B0
y
)]
,

q−(a,b|ωx,ωy) = Tr
[(

MA0A
a ⊗MBB0

b

)(
ω

A0
x ⊗ρ−⊗ω

B0
y
)]
.

According to Eq. (6.14) the negativity can be obtained by minimizing tr[ρ−], which can
be written as

∑
a,b

q−(a,b|ωx,ωy)

= Tr

[(
∑
a

MA0A
a ⊗∑

b
MBB0

b

)(
ω

A0
x ⊗ρ−⊗ω

B0
y
)]

= Tr[ρ−]. (6.15)

In order to estimate the negativity by an SDP optimization it is necessary to understand the
form an effective POVM Ma,b corresponding to a PPT state. We recall that for an arbitrary
state an effective POVM must be positive and satisfy no-signalling principle, as encoded
in Eq. (6.5), and for a separable state it also has to be a separable operator, as encoded
in Eq. (6.8). An effective POVM corresponding to a PPT state, besides satisfying the no-
signalling constraints, must also be a PPT operator. To see this consider partial transpose
of an effective POVM(

MA0B0
a,b

)TA0
= TrAB

[((
MA0A

a
)TA0 ⊗MBB0

b

)(
1

A0⊗ρ
AB⊗1B0

)]
,

= TrAB

[((
MA0A

a
)T ⊗MBB0

b

)(
1

A0⊗
(
ρ

AB)TA⊗1B0
)]
.
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The second equality follows from the fact that tr[AT B] = tr[ABT ]. Since the full transpose

is a CPTP map,
(

MA0A
a

)T
is a positive operator and thus

(
MA0B0

a,b

)TA0 is positive if the

state ρAB is PPT, which is exactly the claim we wanted to prove. We will denote by P
the set of effective POVMs that are also PPT, i.e.

P =
{
{MA0B0

a,b }a,b|{MA0B0
a,b }a,b ∈M ,

(
MA0B0

a,b

)TA0 ≥ 0
}

(6.16)

Now we have all the ingredients for the formulation of the SDP whose solution lower
bounds the negativity of a state compatible with some observed probability distribution
p(a,b|ωx,ωy) in the quantum input scenario:

NMDI[p(a,b|ωx,ωy)] = min
{MA0B0
±,a,b }a,b

∑
a,b

q−(a,b|ωx,ωy), (6.17)

s.t. p(a,b|ωx,ωy) = q+(a,b|ωx,ωy)−q−(a,b|ωx,ωy),

q±(a,b|ωA0
x ,ωB0

y ) = Tr
[
MA0B0
±,a,b (ωx⊗ωy)

]
, ∀a,b

{MA0B0
±,a,b}a,b ∈P

6.3 Multipartite case
In this section we generalize the previous entanglement detection and quantification tech-
niques to the multipartite scenario. In Buscemi’s paper [Bus12] there is an outline of the
proof that all multipartite entangled states exhibit some kind of nonlocality when queried
with quantum inputs. Moreover, the approach via entanglement witnesses is also ex-
plained in Ref. [BRLG13], but as in the bipartite case the witness is tailored for a specific
state. Here, as before, we are interested in the detection of multipartite entanglement
without a priori knowledge of the system under study.

In the bipartite case we saw that the problem reduces to finding a separable effective
POVM that returns the observed data when applied to the chosen set of inputs. This gen-
eralizes to the multipartite case as follows: given a certain type of separability, we want
to find the properties of the effective POVM which by acting on the given set of quantum
inputs returns the observed probability distribution. As expected, we will show that the
effective POVM should have the same type of separability properties as the underlying
state. For the sake of simplicity we will consider the tripartite scenario, with the general-
ization to more parties being straightforward.

136



The scenario involves three parties, Alice, Bob and Charlie, each of whom can input
quantum systems in the states ωx, ωy and ωz respectively in their measuring devices, that
subsequently provide classical outputs a, b and c. The experiment is characterized by the
set of joint probabilities of the form

p(a,b,c|ωx,ωy,ωz) = Tr
[(

MA0A
a ⊗MB0B

b ⊗MC0C
c
)(

ρ
ABC⊗ω

A0
x ⊗ω

B0
y ⊗ω

C0
z
)]
, (6.18)

where MA0A
a is a POVM Alice applies to the input ψx and her share of the state ρABC, and

analogous for MB0B
b and MC0C

c . In the same way as in the bipartite scenario it is useful to
define an effective POVM

MA0B0C0
a,b,c = TrABC

[(
MA0A

a ⊗MB0B
b ⊗MC0C

c
)(

ρ
ABC⊗1A0B0C0

)]
(6.19)

which allows one to write

p(a,b,c|ωx,ωy,ωz) = Tr
[
MA0B0C0

a,b,c (ωA0
x ⊗ω

B0
y ⊗ω

C0
z )
]
. (6.20)

As in the bipartite case, the effective POVM elements satisfy a number of constraints by
construction, which play the role of no-signalling conditions. For example

∑
a

MA0B0C0
a,b,c = 1

A0⊗MB0C0
b,c , (6.21)

with MB0C0
b,c another effective POVM for Bob and Charlie. We will denote the set of ef-

fective POVMs which satisfy all such conditions in the tripartite case by M ABC.

In what follows we show that the entanglement properties of the effective POVM
elements (6.19) are the same as entanglement properties of the shared state ρABC .

Fully separable states can be written in the form ρABC = ∑λ pλ ρA
λ
⊗ρB

λ
⊗ρC

λ
and if

Alice, Bob and Charlie share such a state the corresponding effective POVM elements
(6.19) will also be fully separable operators

MA0B0C0
a,b,c = ∑

λ

pλ MA0
a|λ ⊗MB0

b|λ ⊗MC0
c|λ (6.22)

where MA0
a|λ = TrA

[
MA0A

a
(
1

A0⊗ρA
λ

)]
is an effective POVM, and analogously for MB0

b|λ
and MC0

c|λ . Analogously to the bipartite case, we define a subset S A|B|C of all effective

tripartite POVMs M ABC, which are also fully separable,

S A|B|C =
{
{MA0B0C0

a,b,c }a,b,c|{MA0B0C0
a,b,c }a,b,c ∈M ABC,MA0B0C0

a,b,c =

= ∑
λ

τa|λ ⊗χb|λ ⊗ωc|λ ,τa|λ ≥ 0,χb|λ ≥ 0,ωc|λ ≥ 0
}
.
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With this in place, full separability of the shared state can thus be cast by the following
feasibility problem:

given {p(a,b,c|ωx,ωy,ωz)}a,b,c,x,y,z,

find {MA0B0C0
a,b,c }a,b,c (6.23)

s.t. p(a,b,c|ωx,ωy,ωz) = Tr
[
MA0B0C0

a,b,c (ωA0
x ⊗ω

B0
y ⊗ω

C0
z )
]

∀a,b,c,x,y,z
{MA0B0C0

a,b,c }a,b,c ∈S A|B|C

In the similar way as in the bipartite scenario, it is necessary to choose an appropriate
relaxation of the set of fully separable tripartite operators in order to turn this feasibility
problem into an SDP. The set of operators which are PPT across all biparititons is one
choice. A second option is to use the multipartite generalisation of the k-shareability hi-
erarchy of SDPs [Doh14].

Recall that tripartite states have a richer entanglement structure than bipartite states,
such that even if the problem (6.23) confirms that there is some entanglement in the sys-
tem, a full entanglement characterization is not yet complete. It can happen, for example,
that the entanglement is shared only between two parties. States which have such en-
tanglement structure are called separable across a certain bipartition. For example the
state ρABC = ∑λ pλ ρAB

λ
⊗ρC

λ
is separable with respect to the bipartition AB|C. A state

is biseparable if it can be written as a convex combination of the states that are separable
with respect to different bipartitions:

ρ
ABC = ∑

λ

pA|BC
λ

ρ
A
λ
⊗ρ

BC
λ

+∑
µ

pB|AC
µ ρ

B
µ ⊗ρ

AC
µ +∑

ν

pC|AB
ν ρ

AB
ν ⊗ρ

C
ν . (6.24)

The strongest form of entanglement that can be present in a tripartite system is genuine
multipartite entanglement (GME). A state ρABC is genuinely multipartite entangled if it
is not biseparable.

Let us assume that the state shared between Alice, Bob and Charlie is biseparable
(6.24). In that case the effective POVM reads

MA0B0C0
a,b,c = ∑

λ

pA|BC
λ

MA0
a|λ ⊗MB0C0

b,c|λ +∑
µ

pB|AC
µ MB0

b|µ ⊗MA0C0
a,c|µ +∑

ν

pAB|C
ν MA0B0

a,b|ν ⊗MC0
c|ν ,

(6.25)
where

MA0
a|λ = Tr

[
MA0A

a
(
ω

A0
x ⊗ρ

A
λ

)]
,

MA0
b,c|λ = Tr

[(
MB0B

b ⊗MCC0
c

)(
ω

B0
y ⊗ρ

BC
λ
⊗ω

C0
z
)]

and analogously for all other operators. Thus, the fact that the state ρABC is biseparable
implies that the operators (6.25) are also biseparable.
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With this structure in mind it is possible to construct a feasibility problem to test
whether an observed probability distribution in the quantum input scenario can be ob-
tained with a biseparable state:

given {p(a,b,c|ωx,ωy,ωz)}a,b,c,x,y,z,

find {MA0B0C0
a|b,c ,MA0B0C0

b|a,c ,MA0B0C0
c|a,b }a,b,c (6.26)

s.t. p(a,b,c|ωx,ωy,ωz) = Tr
[
MA0B0C0

a,b,c (ωA0
x ⊗ω

B0
y ⊗ω

C0
z )
]

∀a,b,c,x,y,z
MA0B0C0

a,b,c = MA0B0C0
a|b,c +MA0B0C0

b|a,c +MA0B0C0
c|a,b ∀a,b,c

{MA0B0C0
a|b,c }a,b,c ∈S A|B,C, {MA0B0C0

b|a,c }a,b,c ∈S B|A,C,

{MA0B0C0
c|a,b }a,b,c ∈S C|A,B.

where S A|B,C denotes the subset of effective tripartite POVMs M ABC that are also sepa-
rable across the bipartition A|B,C and analogously for S B|A,C and S C|A,B. Once more,
by replacing the sets S by the set of PPT operators or operators having k-symmetric ex-
tension the above problem becomes an instance of a SDP.

Quantification of multipartite entanglement can be performed in a similar manner
as in the bipartite scenario. Namely, one can lower bound the robustness of genuine
multipartite entanglement, or simply robustness of multipartite entanglement, by defining
MDI multipartite nonlocality robustness analogously to (6.10).

6.4 Randomness from quantum inputs
Nonlocal correlations, as proven by Bell’s theorem, cannot be explained by any classical,
deterministic model or a convex combinations of such models. Consequently, a violation
of a Bell inequality can be used to certify that the data generated is intrinsically random.
As explained in Section 2.6 this reasoning led to the development of the protocols for
so-called device-independent randomness certification [AM16]. In these protocols the
amount of (global) randomness stemming from some Bell experiment is characterized by
the guessing probability Gx,y with which an external eavesdropper can guess a pair of
outcomes observed by Alice and Bob when they make measurements x and y. A lower
bound on the guessing probability is

Gx∗,y∗ = max
a,b

p(a,b|x∗,y∗). (6.27)

and this is the best that an external observer uncorrelated with Alice and Bob can guess.
However, an eavesdropper, usually named Eve, can have side-information – a system
that is correlated (or even entangled) with the state of Alice and Bob. In principle she
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could have even provided all the measuring devices, and can possibly achieve much better
guessing probability than the lower bound (6.27). Thus the aim of a device-independent
randomness estimation protocol is to quantify the randomness of Alice’s (and/or Bob’s)
measurement outcomes by optimizing over all possible eavesdropping strategies of Eve
compatible with the obtained Bell inequality violation. The scenario assumes that by
sharing a tripartite state, and performing some measurement on her share, Eve steers the
state of Alice and Bob. Her strategy is to perform a measurement such that her outcome,
denoted by e, will give her the highest probability to guess the pair of outcomes for one
particular choice of measurements for Alice and Bob.

In such a scenario calculating Eve’s guessing probability, if the obtained value of
a Bell expression ∑a,b,x,y ba,b,x,y p(a,b|x,y) is equal to I can be cast as the following
optimisation problem

Gx∗,y∗ = max
{p(a,b,e|x,y)}a,b,e,x,y

∑
e

p(a,b,e = (a,b)|x∗,y∗), (6.28)

s.t ∑
a,b,e,x,y

ba,b,x,y p(a,b,e|x,y) = I ;

{p(a,b,e|x,y,z)}a,b,e,x,y ∈Q.

where Q denotes the set of quantum behaviours, i.e. the set of all {p(a,b,e|x,y)}a,b,e,x,y
that can arise by performing local measurements on a tripartite quantum state. This pro-
gram gives the highest probability with which Eve’s outcome e is the same as Alice’s and
Bob’s outcomes, a and b, for some specific pair of inputs x∗ and y∗, with the constraints
that the overall probabilities must be compatible with quantum mechanics and the ob-
served violation of a Bell inequality. In general this problem cannot be solved exactly,
due to the set Q having no known simple characterisation (in particular since it implicitly
contains all behaviours compatible with any quantum state and measurements in a Hilbert
space of any dimension). However, by using the Navascues-Pironio-Acin (NPA) hierar-
chy of SDP relaxations of the quantum set of behaviours [NPA07], computable upper
bounds can be placed on the guessing probability.

One generalization of this protocol to the quantum-input scenario under the name
measurement-device-independent randomness certification has been introduced in Ref.
[CB15]. Analogously to the ability to detect entanglement of all entangled states, even
those that do not violate any Bell inequality, the authors of Ref. [CB15] prove that it
is possible to extract randomness from local entangled states in a measurement-device-
independent way. They use the analogue of the program (6.28) with the constraint that
the probabilities p(a,b|ωx,ωy) violate the inequality corresponding to a specific MDIEW.
As already noted in the previous text, a MDIEW is usually constructed with respect to a
specific entangled state. It can nevertheless be used to check if some other entangled
state in principle can be useful for randomness extraction. However, as the source provid-
ing Alice’s and Bob’s shared state is uncharacterized it may not be clear which witness
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should be used, and therefore it is desirable to have a method to certify randomness that
does not rely on a specific MDIEW. Another way to certify randomness in the quantum
input scenario is the subject of Ref. [CZM15]. In this approach the source has to prepare
a tomographically complete set of inputs which are used to perform quantum process to-
mography of the measurement device. Randomness is generated by measuring one of the
prepared quantum inputs by the characterized POVM. A method do quantify the amount
of randomness is presented for two-outcome POVMs. This approach was used to experi-
mentally generate randomness in a measurement-device-independent manner [Nie+16].

In the rest of this section we show the way to quantify the amount of randomness
resulting from an experiment with quantum inputs without assuming the underlying state.
This can be seen as the generalisation of the approach of Refs. [NSPS13, BSS14] from
the standard Bell scenario to the quantum inputs scenario. The protocol works for mea-
surements with arbitrary number of outputs and the set of quantum inputs does not have
to be tomographically complete, which makes it more general than [CZM15].

Before presenting the more general approach to randomness estimation in the quan-
tum inputs scenario, let us consider in more detail the essential novelty of this scenario,
which is the fact that before guessing the measurement outcome Eve has to guess the
input state. Due to this it is not only possible to extract randomness from local entangled
states as observed in Ref. [CB15], but also from a single black-box, i.e. without the use
of entanglement.

This leads us to the change of scenario: now we have only one party, Alice, who has
a characterized device which prepares quantum input states ωx. Alice measures these
states using an uncharacterized black box, modelled by POVM {Ma}a and obtains some
outcomes a. By repeating the process she can calculate the set of probabilities p(a|ωx),
to get an outcome a when the quantum input is ωx. The question is how random Alice’s
outputs are for Eve. In some cases Alice can be sure that her outcomes are genuinely
random. If the set of quantum inputs is tomographicaly complete Alice can perform
process tomography and exactly learn which POVM her black-box is applying. In the
special case when the obtained POVM is extremal Eve cannot be correlated with Alice’s
experiment because extremal POVMs cannot be decomposed as a convex combination
of other POVMs. Therefore Eve’s guessing probability is obtained simply from (6.27)
(restricted to a single party Alice, instead of Alice and Bob). An extremal d-dimensional
POVMs cannot have more than d2 outcomes [DPP05], which means that when preparing
qubit quantum inputs Alice at best can get 2 bits of randomness. One example is the
case when Alice prepares the following informationally complete set of quantum inputs
{12 , |0〉 ,

|0〉+|1〉√
2
, |0〉+i|1〉√

2
} and observes the probability distribution which corresponds to

measuring these inputs with an extremal four-outcome tetrahedral POVM. The probabil-
ities to get any of the four outcomes when measuring the input which is in the maximally
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mixed state 1

2 is equal to 0.25, which corresponds to 2 bits of randomness.

In the general case, when the set of quantum inputs is not tomographically complete,
or the applied POVM is not extremal it is still possible to construct an SDP-based estima-
tion of randomness analogous to (6.28). Since the measuring device is uncharacterized it
has to be assumed that it was possibly prepared by Eve. In that case Eve can be quantumly
correlated with the box. That is, she can prepare an ancillary entangled pair of particles
ρAE, and place half inside the box, while keeping the other half. In each round Alice’s
box then performs a joint measurement MA0A

a , where a corresponds to Alice’s outcome,
and Eve performs a measurement NE

e , with outcome e. Thus, the probability for Alice to
get outcome a and Eve to get e, when the quantum input is ωx

A0 is

p(a,e|ωx) = Tr
[
(MA0A

a ⊗NE
e )
(
ω

A0
x ⊗ρ

AE)] (6.29)

= tr[MA0
a,eω

A0
x ]

where Ma,e is an effective POVM which satisfies the relation

MA0
a,e = TrAE

[
(MA0A

a ⊗NE
e )
(
1

A0⊗ρ
AE)] . (6.30)

From this relation, it follows that the effective POVM satisfies the relation

∑
a

MA0
a,e = p(e)1A0, (6.31)

where p(e) ≥ 0. As in the above, this can be seen as the no-signalling constraint from
Alice to Eve.

With the above in place, the optimisation problem which bounds the guessing proba-
bility of Eve is

Gx∗ = max
{MA0

a,e }a,e

tr∑
e

MA0
a=e,eω

A0
x∗ , (6.32)

s.t tr∑
e

MA0
a,eω

A0
x = p(a|ωx), ∀x,a;

∑
a

MA0
a,e = p(e)1A0, ∑

e
p(e) = 1, ∀e.

The objective function maximizes the probability for Eve to guess the outcome a when
Alice measures the quantum input ω

A0
x , by optimizing over all possible effective POVMs

MA0
a,e. The first constraint ensures that that effective POVMs are in accordance with the

observed probability distribution, while the second imposes no-signalling and complete-
ness of the measurement. For any probability distribution obtained by measuring some set
of quantum inputs, the above optimisation problem, which is an SDP, gives the guessing
probability, and thus the randomness of the outcomes.
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A similar analysis can be applied in the bipartite case. As mentioned above, in the
standard Bell scenario one does not need to consider a specific Bell inequality in order for
randomness estimation, but rather can use the full nonlocal behaviour (set of correlations)
obtained in a Bell experiment [NSPS13, BSS14]. In what follows we generalize this
method, providing an alternative way to quantify randomness in a measurement-device-
independent manner. Specifically we show that it is possible to certify randomness even
when Alice and Bob share a separable state.

In the scenario with quantum inputs Eve again distributed a state to Alice and Bob with
which she is entangled. By performing a local POVM Ne on her share, and conditioned
on the outcome e, she prepares an subnormalized state ρAB

e , whose norm is equal to the
probability for Eve to obtain the outcome TrρAB

e = p(e). The full joint probability is
given by

p(a,b,e|ωx,ωy) = Tr
[(

MA0A
a ⊗MBB0

b

)(
ω

A0
x ⊗ρ

AB
e ⊗ω

B0
y
)]

= Tr
[
MA0B0

a,b,e

(
ω

A0
x ⊗ω

B0
y
)]

(6.33)

where Ma,b,e is an effective POVM defined by

MA0B0
a,b,e = TrAB

[(
MA0A

a ⊗MBB0
b

)(
1

A0⊗ρ
AB
e ⊗1B0

)]
. (6.34)

These effective POVMs, apart from satisfying the completeness relation ∑a,b,e MA0B0
a,b,e =

1
A0B0 also satisfy the no-signalling constraints

∑
a

MA0B0
a,b,e = 1

A0⊗MB0
b,e,

∑
b

MA0B0
a,b,e = MA0

a,e⊗1B0,
(6.35)

where {MB0
b,e}b and {MA0

a,e}b are subnormalized POVMs (for Bob and Alice respectively),

for all values of e, with the same normalisation for each e, i.e. ∑b MB0
b,e = p(e)1B0 and

∑a MA0
a,e = p(e)1A0 .

Like in the standard Bell scenario Eve’s optimal strategy is to perform a measurement
such that the outcome e will be equal to the pair (a,b) with a probability as high as
possible, for some specific pair of quantum inputs ω

A0
x∗ and ω

B0
y∗ . Eve’s optimal guessing
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probability is then the solution of the following SDP

GMDI
x∗,y∗ = max

{Ma,b,e}
A0B0
a,b,e

tr∑
e

MA0B0
a,b,e=(a,b)

(
ω

A0
x∗ ⊗ω

B0
y∗

)
,

s.t tr∑
e

MA0B0
a,b,e

(
ω

A0
x ⊗ω

B0
y
)
= p(a,b|ωx,ωy),∀x,y,a,b,

MA0B0
a,b,e ≥ 0 ∀a,b,e,

∑
a

MA0B0
a,b,e = 1

A0⊗MB0
b,e ∀b,e,

∑
b

MA0B0
a,b,e = MA0

a,e⊗1B0 ∀a,e;

∑
b

MB0
b,e = p(e)1B0 ∀e,

∑
a

MA0
a,e = p(e)1A0 ∀e,

∑
e

p(e) = 1.

(6.36)

The objective function is the total probability for Eve to guess Alice’s and Bob’s outputs
for some specific pair of quantum inputs ω

A0
x∗ and ω

B0
y∗ . The first constraint imposes con-

sistency with the observed behaviour in the experiment, while the remaining constraints
ensure a valid effective POVM (which is normalized and no-signalling).

As an example this program can be used to obtain the optimal guessing probability
compatible with the probability distribution which arises by Alice and Bob performing
Bell state measurements on a shared Werner state |Ψ〉〈Ψ|= w |Φ+〉〈Φ+|+(1−w)14 and
with quantum inputs corresponding to the vertices of tetrahedron on the Bloch sphere.
The resulting guessing probability in terms of parameter w is given presented in Fig. 6.1.

The correlations obtained on the maximally entangled state (w = 1) allow to extract
four bits of randomness, because the guessing probability is 1

16 . As in Ref. [CB15]
some randomness can be observed from all entangled Werner states, even those admitting
a local model. What may be particularly surprising is that actually all Werner states
except for the maximally mixed state manifest some randomness. As commented earlier,
intuitively this can be explained by the fact that Eve cannot with certainty guess which
quantum input was used, which makes the probability distribution random even when
there is no entanglement at all.

6.5 Discussion
In this section we have provided new insights into entanglement and randomness detec-
tion and quantification in the measurement-device-independent scenario. As explained,
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Figure 6.1: Min-entropy (− logGx∗y∗) versus noise w for the probability distribution that
arises by performing Bell state measurements on the two-qubit Werner state, and quantum
inputs along the vertices of a tetrahedron on the Bloch sphere. For all w 6= 0 (i.e. whenever
the state is not equal to the maximally mixed state), then randomness can be certified.

this scenario differs from the well-known device-independent scenario by the fact that
parties possess a characterized device that can prepare quantum system in some defined
quantum states. The scenario in which some parties do not trust their sources and mea-
surements but have a characterized preparation device is not so uncommon in quantum in-
formation processing and has been used for constructing protocols for quantum key distri-
bution [LCQ12, BP12] and universal blind quantum computation [BFK09]. In particular,
we showed how one can estimate the values of two widely used entanglement measures,
robustness-based quantifiers of entanglement, and entanglement negativity. Furthermore
we showed how entanglement detection and quantification can be performed in quantum
networks (i.e. in situations involving multiple parties, not just two).

On the other hand we showed how possessing a characterized preparation device can
decrease adversarial power in guessing measurement outputs. Already a single party
which can prepare specific states and measure them with a black box can extract two bits
of randomness. Two parties sharing some quantum state can extract randomness even
when they do not share any entanglement.

There are a number of interesting directions for future work. First is to study whether
the results presented here for the measurement-device-independent scenario can be adapted
to other device-independent scenarios. A second interesting avenue is to explore the
prospects with regard to full quantum state recovery. A third direction is to focus on
mixed quantum inputs – in which can one can imagine that the eavesdropper holds a pu-
rification. It is interesting to ask how this affects entanglement detection, and randomness
estimation.
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Chapter 7

Certifying non-classical
teleportation

While the teleportation of physical objects remains an unlikely endeavour present only
in science fiction, the teleportation of quantum states stands as one of the cornerstones
of quantum information theory. The seminal work by Bennett et al [Ben+93] from 1993
demonstrated the possibility to faithfully transfer the quantum state of a system onto an-
other, spatially distant one. Named quantum teleportation, this protocol made a huge
impact on the development of quantum information processing, being a building block
for more advanced protocols such as cryptographic tasks [GRTZ02], quantum repeaters
[BDCZ98], quantum computing [GC99, RB01] and many others. It has also been exper-
imentally demonstrated in a variety of different systems [Bos+98, Bow+97, Fur+98]. In
this chapter we explore teleportation in the context of nonlocal correlations (Section 7.5),
provide a simple way to certify (Sections 7.2 and 7.4) and quantify (Section 7.3) telepor-
tation and show that every entangled state can lead to a teleportation experiment which
cannot be simulated classically.

7.1 Introduction and classical teleportation
Ideally, in order to realize teleportation, two parties, Alice and Bob, need to share a pair
of particles in a maximally entangled state |Φ+〉 = ∑

d−1
i=0 |ii〉/

√
d, where d is the local

Hilbert space dimension of the system. Then, Alice applies a joint Bell state measurement
(a measurement where all measurement operators are maximally entangled) on a third
system in state |ω〉 and her share of the maximally entangled state and communicates the
result to Bob. Bob, upon receiving the message from Alice, applies a unitary operation on
his system, which ends up in the desired state |ω〉. A very important feature of quantum
teleportation is that Alice does not need to know which state she is teleporting to Bob. A
similar protocol in which Alice has knowledge of the state to be transferred is known as
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ρAB

ρa|x

a

Figure 7.1: Teleportation scenario: Alice and Bob share a bipartite state ρAB. A verifier,
who wants to check whether this state is entangled, sends systems in one of the states ωV

x
to Alice, and asks her to transmit it to Bob. Alice applies a global measurement on the
state given to her by the verifier and her share of ρAB, which produces the states ρB

a|ωx
for

Bob. The verifier has to determine if ρAB is entangled based on the knowledge of {ωV
x }x

and {ρB
a|ωx
}a,x.

the remote state preparation [Pat00, Ben+01]. The protocol can be stated without need for
Bob to implement the correcting unitaries. In this case there is a third party, called verifier,
who sends the states to be teleported to Alice via a quantum channel. Bob uses another
quantum channel to send the final state he has to the verifier (see Fig. 7.1). The success of
the protocol is estimated by the verifier who simply compares the states obtained by Bob
to the states sent to Alice. Before the protocol starts Alice knows that the verifier will send
her one of the states from some previously established set, {ωx}x,ωx ∈ B(H V), which
we will call the set of input states. The set of states Bob has at the end of the protocol
will be named the set of output states.

Witnessing non-classical teleportation
In realistic conditions it is impossible to achieve perfect quantum teleportation. There
has been a lot of effort in describing imperfect teleportation as well as the role of generic
entangled states in the protocol. In a teleportation experiment where a set of states {ωx}x
– which need not necessarily be pure states – is teleported, the most common benchmark
between classical and quantum teleportation is the average fidelity of teleportation

Fσa|ωx
=

1
|x|∑a,x

p(a|ωx)F(Uaρ
B
a|ωx

U†
a ,ωx) (7.1)
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where F(ρ,σ) = ‖√ρ
√

σ‖1 is the fidelity, and

ρ
B
a|ωx

=
trVA[(MVA

a ⊗1B)(ωV
x ⊗ρAB)]

p(a|ωx)
(7.2)

is the state Bob obtains, conditioned on the input state ωx and Alice’s measurement out-
put a, while p(a|ωx) is the probability for Alice to obtain the outcome a when the input
state is ωx. The teleportation process is considered to be quantum (i.e. non-classical) if
the fidelity of teleportation is higher than the fidelity that could be obtained using solely
classical resources (i.e. no entanglement pre-shared between Alice and Bob). Based on
this figure of merit, not all entangled states are useful for achieving non-classical telepor-
tation, among them the bound entangled states [HHH99].

7.2 Characterization of non-classical teleportation as a
SDP optimization

While the benchmark based on the fidelity is widely used to certify non-classical telepor-
tation, one may argue that it is suboptimal to characterize the whole experiment with a
single number. Indeed, the verifier has control of sending the input states to Alice and
keeps track of the corresponding output states returned by Bob, which, in principle, bears
more information than the average fidelity between these two sets of states. Anticipat-
ing the optimal characterization, let us recognize a teleportation channel mapping each
element from the set of input states {ωx}x to the classical label a and the corresponding
output state ρa|ωx . In this section we present a new method to estimate non-classicality
of a teleportation experiment by looking for a classical model which could simulate the
performance of the corresponding teleportation channel.

Sub-normalized outputs states of Bob are given by

σa|ωx = trVA[(MVA
a ⊗1B)(ωx

V⊗ρ
AB)],

where MVA
a are the operators describing the measurement happening inside Alice’s box

Analogously to the terminology in EPR-steering let us call the set of sub-normalized out-
put states {σa|ωx}a,x a teleportation assemblage. Its elements can alternatively be written
as

σa|ωx = trA[(MVB
a (ωx

V⊗1B)], (7.3)

where
MVB

a = trA
[
(MVA

a ⊗1B)(1V⊗ρ
AB)
]

(7.4)

is the so-called channel operator, since from Eq. (7.3) we see that it completely char-
acterizes the teleportation channel mapping {ωx} to {σa|ωx}a,x. Let us inspect the form
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of the channel operator when Alice and Bob share a separable state, i.e. when ρAB =

∑λ pλ ρA
λ
⊗ρB

λ
:

MVB
a = ∑

λ

pλ trA
[
(MVA

a ⊗1B)(1V⊗ρ
A
λ
⊗ρ

B
λ
)
]

= ∑
λ

pλ trA
[
MVA

a (1V⊗ρ
A
λ
)
]
⊗ρ

B
λ
.

(7.5)

We see that a separable shared state leads to the separable channel operators. On the other
hand we can consider the case where the measurement applied by Alice is separable, i.e.
where MVA = ∑λ QV

a,λ ⊗RA
a,λ , for all a and Alice and Bob share any entangled state ρAB.

In this case the channel operator is again separable

MVB
a = ∑

λ

trA

[
(QV

a,λ ⊗RA
a,λ ⊗1B)(1V⊗ρ

AB)
]

= ∑
λ

QV
a,λ ⊗ trA

[
(RA

a,λ ⊗1B)ρAB
]
.

(7.6)

The insight that classical resources lead to separable channel operators allows formulating
the certification of a non-classical teleportation as a conic optimization problem:

given {σa|ωx}a,x,{ωV
x }x

find MVB
a

s.t. σa|ωx = tr[MVB
a (ωV

x ⊗1B)] ∀a,x,
MVB

a ∈S ,

(7.7)

where S denotes the set of separable operators, i.e. operators of the form ∑λ Yλ ⊗Zλ ,
with Yλ ≥ 0 and Zλ ≥ 0 for all λ . Apart from the simple case of 2× 2 systems, this set
has a complicated structure. However, in general we can consider the set of k-shareable
operators as a superset of separable operators, which does have a simpler structure. In
particular, by considering this set, the above conic problem becomes an SDP, which can
then be solved using standard software packages.

All entangled states demonstrate non-classical teleportation
The observation that classical resources lead to separable channel operators allows to
make some further interesting insights about the relation between teleportation and en-
tanglement. Let us assume that Alice applies a Bell state measurement MVA

a = (Ua⊗
1)|Φ+〉〈Φ+|(U−1

a ⊗1), where Ua are the unitaries shifting between different Bell states.
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In that case the channel operator has the following form

MVB
a = trA

[(
MVA

a ⊗1B)(
1

V⊗ρ
AB)] (7.8)

= trA
{[
(Ua⊗1) |Φ+〉〈Φ+|

(
U−1

a ⊗1
)
⊗1B](

1
V⊗ρ

AB)}
=

1
dVA

trA[1
A⊗ (Ua⊗1)ρVB(U−1

a ⊗1)]

=
1

dVA
(Ua⊗1)ρVB(U−1

a ⊗1),

where ρVB = ρAB and dVA is the product of the dimensions of H V and H A. This means
that if ρAB is entangled, then MVB

a will also be entangled for all a. Furthermore, from Eq.
(7.3) we see that if the set of input states {ωx}x is tomographically complete it is possible
to use it to perform quantum process tomography, learn the exact form of operators MVB

a
and use any available criterion to estimate its entanglement. Hence, if the set of input
states is tomographically complete and Alice applies the Bell state measurement every
entangled state she shares with Bob will lead to an entangled channel operator MVB

a . This
is in a sharp contrast with the fidelity benchmark, according to which, as we noted earlier,
not all entangled states can be used to produce non-classical teleportation.

7.3 Quantifying teleportation
After defining non-classical teleportation as one which cannot be simulated with classical
resources and providing the means to certify it, it is interesting to understand how it can
be quantified. Basically, the aim is to answer the question of how to say which one of
two given experiments demonstrating non-classical teleportation is more non-classical?
Quantifying some non-classical property is a very common problem in quantum informa-
tion theory, examples being quantum coherence [BSP14, MS16, Nap+16], entanglement
[PV07], Bell nonlocality [Vic14], EPR-steering [SNC14] and others.

An intuitive way to quantify a property of some non-classical object (entangled state,
unsteerable assemblage, non-local probability distribution etc.) is in terms of its robust-
ness to noise. Such robustness measure is expressed as the maximal amount of noise
which can be added to the given object before it becomes classical. Specifying the type of
added noise allows for different types of robustness to be defined. Entanglement robust-
ness [VT99], introduced in Sec. 2.1.2, can be seen as a prototype for robustness measures
of different non-classical resources. Recall that for a bipartite state ρAB entanglement
robustness is defined through the following optimization problem

ε(ρAB) = min
r,ρs,σS

r (7.9)

s.t.
1

1+ r
ρ

AB +
r

1+ r
ρs = σS

σS ∈ Σ,
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where Σ denotes the set of separable states. Depending on the properties of ρs different
types of entanglement robustness can be defined:

? generalized entanglement robustness [Ste03] εgen, obtained when the only con-
straint is that ρs is a valid quantum state;

? separable entanglement robustness εsep, obtained when the state ρs is separable;

? random entanglement robustness εr, obtained when the state ρs is maximally mixed
ρs =

1

d2 .

Based on the inclusion relations between the sets of states to which ρs belongs, it follows

εgen ≤ εsep ≤ εr.

Analogously to entanglement robustness it is possible to define teleportation robustness.
The central object in a teleportation experiment is the teleportation assemblage {σa|ωx}a,x.
Robustness of teleportation represents the maximal proportion of a ”noise assemblage”
{σ̄a|ωx}a,x with which {σa|ψx}a,x can be mixed before it becomes classical:

τ(σa|ωx) = max
r,{σ̄a|ωx}a,x{M∗a}a

r

s.t.
1

1+ r
σ

B
a|ωx

+
r

1+ r
σ̄

B
a|ωx

= trV[M∗a
VB(ωV

x ⊗1B)], ∀a,x (7.10a)

∑
a

M∗a
VB = 1

V⊗
∑a σB

a|ωx
+ r ∑a σ̄B

a|ωx

1+ r
, (7.10b)

M∗a
VB ∈S ∀a. (7.10c)

The constrains on the mixing assemblage {σ̄a|ωx}a,x determine different types of telepor-
tation robustness:

? generalized teleportation robustness τgen, obtained when the only constraint on the
mixing teleportation assemblage is that it is allowed by quantum theory;

? classical teleportation robustness τcl, obtained when the mixing teleportation as-
semblage describes classical teleportation;

? random teleportation robustness τr, obtained when each element of the mixing tele-
portation assemblage is proportional to the maximally mixed state.

In the following subsections we show that each type of teleportation robustness puts a
lower bound to the corresponding type of entanglement robustness of the shared state.
Moreover, we show that in case Alice applies a full Bell state measurement and the set of
input states is tomographically complete each type of teleportation robustness equals the
corresponding type of entanglement robustness of the shared state ρAB.
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7.3.1 Lower bounds on entanglement robustness
Entanglement present in the shared state ρAB is a necessary resource for non-classicality
of teleportation assemblage {σa|ωx}a,x. With given robustness-based non-classicality mea-
sures for both state ρAB and teleportation assemblage {σa|ωx}a,x it is instructive to com-
pare these two values. Given robustness-based non-classicality measures for both the state
ρAB and the teleportation assemblage {σa|ωx}a,x, it is instructive to compare their values.

Generalized teleportation robustness

Let us examine the generalized teleportation robustness of a teleportation assemblage
{σa|ωx}a,x obtained by using a measurement {Ma} on a shared state ρAB and a set of
input states {ωx}x. This measure is obtained from (7.10) when the only constraint on
{σ̄a|ωx}a,x is that it is admissible by quantum theory:

τgen({σa|ωx}a,x) = min
r,{M∗a}a,{σ̄a|ωx}a,x

r (7.11)

s.t.
σB

a|ωx
+ rσ̄ rB

a|ωx

1+ r
= trV

[
M∗a

VB(ωV
x ⊗1B)

]
;

σ̄
B
a|ωx
∈ Tq,

∑
a

M∗a
VB = 1

V⊗
Σaσa|ωx + rΣaσ̄a|ωx

r+1
,

M∗a
VB ≥ 0, M∗a

VB ∈S , ∀a;

where Tq is the set of teleportation assemblages admissible by quantum theory. The set of
constraints given above imposes that the mixture of the observed assemblage {σa|ωx}a,x
and some other hypothetical assemblage {σ̄a|ωx}a,x can be simulated classically. With
an appropriate relaxation of the set of separable operators, all constraints can be written
in the linear form and the problem is readily solved by using semidefinite programming
optimization (SDP). The only nontrivial constraint regards characterization of the set Tq,
but in the next subsection we will show that membership to such set can also be imposed
as a semidefinite programming constraint.

Note that the generalized entanglement robustness εg(ρ
AB) satisfies

1
1+ εgen(ρAB)

ρ
AB +

εgen(ρ
AB)

1+ εgen(ρAB)
ρs = σS (7.12)

for a specific quantum state ρs and a separable state σS. By tensoring with ωV
x and apply-
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ing the measurement MVA
a , the previous equation becomes

1
1+ εgen(ρAB)

trVA
[(

MVA
a ⊗1B)(

ω
V
x ⊗ρ

AB)]+
+

εgen(ρ
AB)

1+ εgen(ρAB)
trVA

[(
MVA

a ⊗1B)(
ω

V
x ⊗ρ

AB
s
)]

= trVA
[(

MVA
a ⊗1B)(

ω
V
x ⊗σ

AB
S
)]

for every x and a. It is equivalent to

1
1+ εgen(ρAB)

σa|ωx +
εgen(ρ

AB)

1+ εgen(ρAB)
σ̄a|ωx = trV

[
M∗a

VB (
ω

V
x ⊗1B)] , (7.13)

where
σ̄a|ωx = trVA

[(
MVA

a ⊗1B)(
ω

V
x ⊗ρ

AB
s
)]
,

is a valid teleportation assemblage, while

M∗a
VB = trA

[(
MVA

a ⊗1B)(
1

V⊗σ
AB
S
)]

(7.14)

is separable because σS is separable. Furthermore, we can write

∑
a

M∗a
VB = trA

[(
ΣaMVA

a ⊗1B)(
1

V⊗σ
AB
S
)]

= trA
(
1

V⊗σ
AB
S
)

= 1
V⊗ trA ρAB + εgen(ρ

AB) trA ρAB
s

1+ εgen(ρAB)

= 1
V⊗

Σaσa|ωx + εgen(ρ
AB)Σaσ̄a|ωx

1+ εgen(ρAB)

(7.15)

where the second line follows from the completeness relation ΣaMa = 1, the third line
follows from Eq. (7.12), and the last line is obtained by using the definitions of σa|ωx and
σ̄a|ωx . From Eqs. (7.13), (7.15) and separability of M∗a

VB it follows that εgen(ρ
AB) satis-

fies all the constraints from (7.11). Since the mixing teleportation assemblage σ̄a|ωx did
not have any special property, besides being realizable in quantum theory, the generalized
teleportation robustness of {σa|ωx}a,x cannot be bigger than εgen(ρ

AB):

τgen(σa|ωx)≤ εgen(ρ
AB). (7.16)

Classical teleportation robustness

Classical teleportation robustness τcl is defined by (7.10) with the additional constraint
that the mixing teleportation assemblage corresponds to classical teleportation. Such a
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teleportation assemblage is characterized by a positive and separable channel operator
M̄VB

a as shown in Eqs. (7.5) and (7.6). With these constraints the classical teleportation
robustness can be obtained from the following optimization problem

τcl ({σa|ωx}a,x) = min
r,{M̄a}a,{M∗a}a

r

s.t.
σB

a|ωx
+ rσ̄B

a|ωx

1+ r
= trV[M∗a

VB(ωV
x ⊗1B)];

σ̄
B
a|ψx

= trV
[
M̄VB

a
(
ω

V
x ⊗1B)] ∀a,x

M̄VB
a ,M∗VB

a ≥ 0, ∀a; (7.17)

M̄VB
a ,M∗VB

a ∈S , ∀a;

∑
a

M̄VB
a = 1

V⊗Σaσ̄a|ωx ;

∑
a

M∗VB
a = 1

V⊗
Σaσa|ωx + rΣaσ̄a|ωx

1+ r
.

Separability of M̄VB
a and M∗VB

a cannot be constrained exactly. To solve this issue, the
relaxations of the set of separable operators can be used, for example the set of PPT
operators or the set of operators admitting k-symmetric extension [DPS02]. The classical
teleportation robustness mirrors the separable entanglement robustness, εsep(ρ

AB) which
satisfies the following equation

1
1+ εsep(ρAB)

ρ
AB +

εsep(ρ
AB)

1+ εsep(ρAB)
ρs = σS (7.18)

where now both states ρs and σS are separable. By tensoring with ωV
x and applying the

measurement MVA
a it becomes

1
1+ εsep(ρAB)

σa|ωx +
εsep(ρ

AB)

1+ εsep(ρAB)
σ̄a|ωx = trV

[
M∗a

VB (
ω

V
x ⊗1B)] , (7.19)

but now the mixing assemblage can be expressed in terms of separable channel operators
M̄VB

a

σ̄a|ψx = trV
[
M̄VB

a
(
ω

V
x ⊗1B)] ;

M̄VB
a = trA

[(
MVA

a ⊗1B)(
1

V⊗ρ
AB
s
)]

;

∑
a

M̄VB
a = 1

V⊗∑
a

σ̄a|ωx

The channel operators M∗a
VB remain separable and still satisfy relation (7.15). Together

with Eqs. (7.19) and separability of M̄VB
a this implies that εsep(ρ

AB) already satisfies
all the constraints of the classical teleportation robustness of a teleportation assemblage
{σa|ωx}a,x leading to:

τcl(σa|ωx)≤ εsep(ρ
AB). (7.20)
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Random teleportation robustness

The random teleportation robustness was introduced in [CSŠ17], where it is defined as a
special case of (7.10) with the additional constraint σ̄a|ωx =

1
|o|

1

d , where |o| is the number
of outcomes of Alice’s measurement. Here we consider a more general version defined
as the solution to the following optimization problem

τr = min
r,{p(a),M∗a}a

r

s.t.
σB

a|ωx
+ rp(a)1

B

d

1+ r
= trV[M∗a

VB(ωV
x ⊗1B)], ∀a,x

∑
a

p(a) = 1, M∗a
VB ≥ 0, M∗a

VB ∈S ∀a

∑
a

M∗a
VB = 1

V⊗ ρB + r1
B

d
1+ r

.

(7.21)

Let us start from the equation satisfied by random entanglement robustness εr(ρ
AB)

1
1+ εr(ρAB)

ρ
AB +

εr(ρ
AB)

1+ εr(ρAB)

1

d2 = σS. (7.22)

Analogously to the previous cases this equation implies

1
1+ εr(ρAB)

σ
B
a|ωx

+
εr(ρ

AB)

1+ εr(ρAB)
p(a)

1

d
= trV [M∗a

VB(ωV
x ⊗1B)],

where

p(a) = tr
[

MVA
a

(
ω

V
x ⊗

1
A

d

)]
(7.23)

and M∗a
VB satisfies Eqs. (7.14) and (7.15) when Σaσ̄a|ωx =

1

d . Note that (7.23) confirms
that Σa p(a) = 1. We have confirmed that εr(ρ

AB) satisfies all the constraints from (7.21),
thus presenting an upper bound to the random teleportation robustness

τr(σa|ωx)≤ εr(ρ
AB). (7.24)

7.3.2 Equivalence between teleportation robustness and entanglement
robustness

Following the comparison of teleportation and entanglement quantifiers, in this section
we prove that the entanglement robustness of ρAB is proportional to the corresponding
teleportation robustness of {σa|ωx}a,x in case Alice applies (full or partial) Bell state mea-
surement and has access to a tomographically complete set of input states Ω = {ωx}x.
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Before considering each type of teleportation robustness separately, let us give in advance
the proofs for two auxiliary statements, which will be repeatedly used throughout the
remaining part of this section.

Lemma 9.4. Every element of a teleportation assemblage {σa|ωx}a,x resulting from an
arbitrary measurement MVA

a and a shared state ρAB could have also been obtained, up to
a multiplicative factor, by using as a measurement Φ+VA

= |Φ+〉〈Φ+|VA and some other
state ρ ′a

AB.

Proof. The identity

trB

[(
1

A⊗MBC)(
Φ

+AB⊗1C
)]

=
1
d

(
MAC)TA . (7.25)

allows us to write any member of a teleportation assemblage {σa|ωx}a,x in the following
way

σ
B
a|ωx

= trVA
[
(MVA

a ⊗1B)(ωV
x ⊗ρ

AB)
]

= dtrVV1A

[(
(ωV

x )
T ⊗MV1A

a ⊗1B)(
Φ

+VV1⊗ρ
AB
)]

= dtrVV1A
[(

ω
V
x )

T ⊗1V1AB)(
1

V⊗MV1A
a ⊗1B)(

Φ
+VV1⊗ρ

AB
)] (7.26)

In case MV1A
a = Φ+V1A the previous equation reduces to:

σ
B
a|ωx

=
1
d

trV
[(
(ωV

x )
T ⊗1B)

ρ
VB]

On the other side, if MV1A
a is not a Bell state measurement, Eq. (7.26) reduces to

σ
B
a|ωx

= dtrVV1

[(
ω

V
x )

T ⊗1V1AB)
ρ
′
a

VV1AB
]

= d p(a)trV

[(
(ωV

x )
T ⊗1B)

ρ
′
a

VB
]
, (7.27)

where
p(a) = tr

[(
1

V⊗MV1A
a ⊗1B)(

Φ
+VV1⊗ρ

AB
)]
, (7.28)

and
ρ
′
a

VB
=

1
p(a)

trV1A
(
1

V⊗MV1A
a ⊗1B)(

Φ
+VV1⊗ρ

AB
)
.

The state ρ ′a
VB can be obtained from the state ρAB through a stochastic local operation,

which can be seen as a local version of entanglement swapping. To get ρ ′a from ρ Alice
uses two auxiliary systems in the maximally entangled state, and applies measurement
Ma on one auxiliary system and her share of the state ρAB. After the measurement she
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discards the measured systems. Finally, the expression given in Eq. (7.27) can be written
as:

σ
B
a|ωx

= d2 p(a)trVA

[(
ω

V
x ⊗1AB)(

Φ
+VA⊗1B

)(
1

V⊗ρ
′
a

AB
)]

= d2 p(a)trVA

[
(Φ+VA⊗1B)(ωV

x ⊗ρ
′
a

AB
)
]
, (7.29)

which proves Lemma 9.4. The multiplicative factor, mentioned in the statement, is equal
to d2 p(a).

The assumption that Alice applies a Bell state measurement implicitly bounds the
dimension of Alice’s reduced state ρA = trB(ρ

AB) to be equal to the dimension of the
input states d. For a general case, dA can be different from d and in Eqs. (7.26-7.29) there
is no assumption about dA.

Generalized teleportation robustness

Let us denote by τ∗gen the generalized teleportation robustness of a teleportation assem-
blage obtained when Alice performs a Bell state measurement {MVA

a }a and the set of
input states Ω = {ωx}x is tomographically complete. In this case the first constraint from
(7.11) can be rewritten as

1
1+ r

σ
B
a|ωx

+
r

1+ r
σ̄

B
a|ωx

= (7.30)

=
1

r+1
trVA

[(
UA

a Φ
+VAU†

a
A⊗1B

)(
ω

V
x ⊗ρ

AB)]+
+

1
r+1

trVA

[(
Φ

+VA⊗1B
)(

ω
V
x ⊗d2 p(a)ρ ′a

AB
)]

=
1
d

trV

(UV
a ρVBU†

a
V
+ rd2 p(a)ρ ′a

VB

r+1

)TV (
ω

V
x ⊗1B)

= trV[M∗a
VB(ωV

x ⊗1B)].

The second line comes from the assumption that Alice applies a Bell state measure-
ment and Ua are local unitary transformations shifting between different Bell states Ma =
UaΦ+U†

a . The third line uses a way to characterize a general teleportation assemblage
{σ̄a|ωx}a,x given in Lemma 9.4, with the specific constraint given in Eq. (7.29). To get
the fourth line we used the identity (7.25). Given that the set of quantum inputs Ω is
tomographically complete the last equality imposes

M∗a
VB =

1
d

(
1

r+1
UV

a ρ
VBU†

a
V
+

r
1+ r

d2 p(a)ρ ′VB
a

)TV

(7.31)
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With this in mind we can once more rewrite the optimization problem (7.11):

τ
∗
gen(σa|ωx) = min

{ra,M∗a ,p(a),ρ ′a}a
r

s.t.
1

r+1
UV

a ρ
VBU†

a
V
+

r
1+ r

d2 p(a)ρ ′VB
a = d

(
M∗a

VB
)TV

; (7.32a)

M∗a
VB ≥ 0, M∗a

VB ∈S ∀a; (7.32b)

∑
a

p(a)ρ ′VB
a =

1
V

d
⊗ρ

′B, ∑
a

p(a) = 1, (7.32c)

∑
a

M∗a
VB = 1V⊗ ρB + rρ ′B

1+ r
, (7.32d)

which resembles the optimization problem defining the generalized entanglement robust-
ness of the state ρVB = ρAB. Indeed the optimization problem (7.32) taken for one
specific value of a, say a = 0, for which U0 = 1 is similar to (7.9), the difference be-
ing that d2 p(a)ρ ′a and dM∗a

V B are not necessarily normalized and the added constraints
(7.32c) and (7.32d). The constraint (7.32a) for a = 0 has a solution if d trM∗0

VB =
(1+ rd2 p(0))/(1+ r). Taking this into account, the constraint can be rearranged in the
following way

ρVB + rd2 p(0)ρ ′0
VB

1+ rd2 p(0)
=

1
trM∗0

VB

(
M∗0

VB
)TV

, (7.33)

which is now equivalent to the first constraint from (7.9). Thus, the minimal r satis-
fying this constraint for separable M∗0

VB is equal to εgen(ρ
AB)/(d2 p(0)). In a simi-

lar manner the minimal r satisfying (7.32a) for a 6= 0 and separable M∗a
VB is equal to

εgen(ρ
AB)/(d2 p(a)) because the generalized entanglement robustness is the same for all

the states which are mutually related by a local unitary transformation. Let us, for a
moment, suppose that there is at least one a such that d2 p(a) ≥ 1. Since there are d2

different values of a, Eq. (7.32c) implies that for some other value of a, say a = a′ it must
be d2 p(a′) ≤ 1. But in this case the smallest r satisfying constraints (7.32a) and (7.32b)
for all a must be strictly bigger than εgen(ρ

AB). On the other side, if d2 p(a) = 1 for all
values of a, the smallest r satisfying (7.32) is exactly equal to εgen(ρ

AB). Since p(a) are
optimization variables the minimal τgen will be achieved when all p(a)s are equal.

Finally, we have to make sure that constraints (7.32c) and (7.32d) are satisfied by the
solution r = εgen(ρ

VB). If (7.32a) for a = 0 is satisfied for some ρ ′0
VB and M∗0

VB, for
a 6= 0 it will be satisfied with the same r, ρ ′a

VB =UV
a ρ ′0

VBU†
a

V and M∗a
VB =UV

a M∗0
VBU†

a
V

implying

∑
a

p(a)ρ ′a
VB

=
1

V

d
⊗ρ

′B
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because ∑aUV
a ρ ′a

VBU†
a

V
= d1V⊗ρ ′B. Validity of (7.32d) is verified by summing (7.32a)

over all different values of a:

∑
a

M∗a
VB =

1
d ∑

a
UV

a

(
ρVB)TV + r

(
ρ ′0

VB
)TV

1+ r
U†

a
V

= 1
V⊗ ρB + rρ ′B

1+ r
.

By establishing the equivalence between the optimization problem (7.11), in case Alice
performs a full Bell state measurement on her share of the state and an element from a
tomographically complete set of input states, and the one for generalized entanglement
robustness we can conclude that

τ
∗
gen({σa|ωx}a,x) = εgen(ρ

AB). (7.34)

Classical teleportation robustness

For the easier comparison let us restate the definition of separable entanglement robust-
ness, which is obtained from (7.9) with the constraint that ρs is a separable state

εsep(ρ
AB) = min

r,ρs,σS
r (7.35)

s.t.
1

1+ r
ρ

AB +
r

1+ r
ρs = σS

ρs,σS ∈ Σ,

Let us consider the classical teleportation robustness of a teleportation assemblage ob-
tained when Alice applies a full Bell state measurement and uses a tomographically com-
plete set of inputs and denote it by τ∗cl. In order to reduce (7.17) to (7.35), it is useful to
switch from variables M̄a to p(a) and ρ ′a which are related in the following way:

d p(a)
(

ρ
′VB
a

)TV
= M̄VB

a (7.36)

Now, the teleportation assemblage members σ̄B
a|ψx

can be written in the form given in Eq.
(7.29).

The simplification used in (7.30) can be again used in exactly the same way to reduce
the second line of (7.17) to

trV

[(
1

r+1
UV

a ρ
VBU†

a
V
+

r
1+ r

d2 p(a)ρ ′a
VB
)TV (

ω
V
x ⊗1B)]

= dtrV[M∗a
VB(ωV

x ⊗1B)]. (7.37)
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Since the set of input states is tomographically complete Eq. (7.37) implies

1
r+1

UV
a ρ

VBU†
a

V
+

r
1+ r

d2 p(a)ρ ′a
VB

= d
(

M∗a
VB
)TV

,

but in this case ρ ′a are separable, which is the consequence of (7.36) and the separability
of M̄VB

a . Now the optimization (7.17) reduces to

τ
∗
cl(σa|ωx) = min

r,{M̄a,p(a)ρ ′a}a

r (7.38a)

s.t.
1

r+1
UV

a ρ
VBU†

a
V
+

r
1+ r

d2 p(a)ρ ′VB
a = d

(
M∗a

VB
)TV

; (7.38b)

M∗a
VB ≥ 0, M∗a

VB ∈S ∀a; (7.38c)

ρ
′
a

VB ≥ 0, ρ
′
a

VB ∈ Σ ∀a; (7.38d)

∑
a

p(a)ρ ′a
VB

=
1

V

d
⊗ ρ̄

B; (7.38e)

∑
a

M∗VB
a = 1

V⊗ ρB + rρ̄B

1+ r
. (7.38f)

In order to emphasize the resemblance with (7.35) let us rewrite (7.38b) in the following
way

UV
a ρVBU†

a
V
+ rd2 p(a)ρ ′VB

a
1+ rd2 pa

=
1

trM∗a
VB

(
M∗a

VB
)TV

.

Since all states mutually related by local unitary transformations have the same value of
classical entanglement robustness, the smallest r satisfying the last equation for each a is
equal to εsep/d2 p(a). Analogously to the case of generalized teleportation robustness the
optimal r is obtained when p(a) = 1/d2 and ρ ′a =Uaρ ′0U†

a , for all values of a and is equal
to εsep(ρ

AB), which implies
τ
∗
cl(σa|ωx) = εsep(ρ

AB). (7.39)

Random teleportation robustness

Finally, we consider the random teleportation robustness of a teleportation assemblage
obtained when Alice applies a full Bell state measurement and uses a tomographically
complete set of input states and denote it by τ∗r . Let us compare it to the random entan-
glement robustness εr:

εr(ρ
AB) = min

r,σS
r (7.40)

s.t.
1

1+ r
ρ

AB +
r

1+ r
1

d2 = σS

σS ∈ Σ.
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Recall that the definition of the random teleportation robustness of a teleportation assem-
blage {σa|ωx}a,x is given in (7.21). The first constraint of (7.21) in case Alice applies a
Bell state measurement reads

1
1+ r

σ
B
a|ωx

+
r

1+ r
p(a)

1
B

d
=

= trVA

[(
Φ

+VA⊗1B
)(

ω
V
x ⊗

UA
a ρABU†

a
A
+ rp(a)1AB

1+ r

)]

=
1
d

trV

(UV
a ρVBU†

a
V
+ rp(a)1VB

1+ r

)TV (
ω

V
x ⊗1B) (7.41)

= trV

[
M∗a

VB(ωV
x ⊗1B)

]
For a tomographically complete set of inputs this condition is satisfied if and only if

UV
a ρVBU†

a
V
+ rp(a)1AB

1+ r
= d

(
M∗a

VB
)TV

(7.42)

Following this simplification, Eq. (7.21) reduces to

τr = min
r,{M∗a ,p(a)}a

r

s.t.
UV

a ρVBU†
a

V
+ rp(a)1VB

1+ r
= d

(
M∗a

VB
)TV ∀a,x (7.43a)

M∗a
VB ≥ 0, M∗a

VB ∈S ∀a, (7.43b)

∑
a

M∗a
VB = 1⊗ ρB + r1

B

d
1+ r

. (7.43c)

Eq. (7.43a) for every a can be transformed in the following way

UV
a ρVBU†

a
V
+ rd2 p(a)1

AB

d2

1+ rd2 p(a)
=

1
trM∗a

VB

(
M∗a

VB
)TV

.

Thus, the smallest r satisfying (7.43a) and (7.43b) for each a separately is equal to
εr(UV

a ρVBU†
a

V
)/d2 p(a) = εr(ρ

VB)/d2 p(a). Since there are d2 different outcomes a, the
smallest r which can simultaneously satisfy (7.43a) for all values of a is equal to εr. By
summing (7.42) over a, we get that a constraint equivalent to the one from (7.21) is satis-
fied, which finally implies

τ
∗
r (σa|ωx) = εr(ρ

AB).

When considering teleportation protocols in which Alice applies a two-outcome measure-
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Figure 7.2: Average fidelity of teleportation versus random teleportation robustness for
ρAB

1 = p|Φ+〉〈Φ+|+(1− p)1
AB

4 (red) and ρAB
2 = p|Φ+〉〈Φ+|+(1− p)|01〉〈01| (blue).

The shaded area shows the region where the average fidelity of teleportation is below the
classical average fidelity F̄cl = 2/3. The inset shows the same quantities as a function of
the noise parameter p for the two states. Notice that for the same values of F tel the two
states give different values for τr. This means that, although the two states perform equally
as quantified by the average fidelity, when quantified instead by the random teleportation
robustness ρAB

2 produces teleportation data which is more non-classical than ρAB
1 does.

ment, the benchmark for success is the situation when Alice performs a partial Bell state
measurement using the POVM MVA

0 = Φ+VA, MVA
1 = ∑

d2−1
i=1 UV

i Φ+VAU†
i

V
and has access

to a tomographically complete set of input states. Let us the denote random teleportation
robustness of a teleportation assemblage obtained by performing such measurement as
τ ′r . Taking into account that the set of input states is tomographically complete, τ ′r can be
obtained from the following optimization problem

τ
′
r = min

r,{M∗a ,p(a)}a
r

s.t.
ρVB + rp(0)1VB

1+ r
= d

(
M∗0

VB
)TV

, (7.44a)

∑
d2−1
i=1 UV

i ρVBU†
i

V
+ rp(1)1VB

1+ r
= d

(
M∗1

VB
)TV

, (7.44b)

M∗a
VB ≥ 0, M∗a

VB ∈S ∀a, (7.44c)

∑
a

M∗a
VB = 1⊗ ρB + r1

B

d
1+ r

. (7.44d)
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Note that constraint (7.44b), based on (7.44a) and satisfying (7.44d) can be reduced to

M∗1
VB =

d2−1

∑
i=1

M∗0
VB +

(
p(1)− p(0)(d2−1)

)
1

VB

d(1+ r)
,

which is separable whenever M∗0
VB is separable1. This means that every r satisfying

(7.44a) also satisfies (7.44b), which in turn implies that τ ′r(σa|ωx) is equal to the smallest
r satisfying (7.44a) and (7.44c). Following the equivalence of (7.44) and (7.40), such
smallest r is equal to εr(ρ

AB)/d2 p(0)). The optimal mixing assemblage is the trivial one
{1B/d,0} leading to

τ
′
r(σa|ωx) =

εr(ρ
AB)

d2 , (7.45)
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Figure 7.3: Teleportation robustnesses and the average fidelity of teleportation for the
state ρ = p |Φ+〉〈Φ+|+(1− p) |01〉〈01|. The set of quantum inputs consists of all eigen-
states of the three Pauli operators. For this particular teleportation assemblage the gen-
eralized and classical teleportation robustness coincide. We can see that even when the
average teleportation fidelity is smaller than 2/3 the robustness quantifiers are larger than
zero, demonstrating non-classical teleportation.

7.3.3 Teleportation weight
Another operationally meaningful teleportation quantifier different than robustness is the
teleportation weight. Any teleportation assemblage can be written as a convex combi-
nation of an assemblage obtained via classical teleportation and a non-classical one. The

1This is expected since constraint (7.44b) corresponds to the member of teleportation assemblage which
is obtained by using separable measurement MVA

1 .
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minimal proportion of the non-classical teleportation assemblage defines the teleportation
weight. It can be seen as an analogue to the best separable approximation [LS98], steer-
ing weight [SNC14], incompatibility weight [Pus15] or recently introduced asymmetry
and coherence weight [BNS17]. Mathematically, we define teleportation weight in the
following way

TW(σB
a|ωx

) = min p

s.t. σ
B
a|ωx

= trV[(pM̃VB
a +(1− p)M̄VB

a )ωV
x ⊗1B]

∑
a

trV[M̃∗VB
a (ωV

x ⊗1B)] = ∑
a

trV[M̃∗VB
a (ω ′Vx ⊗1B)], ∀x,x′,

M̄VB
a ≥ 0, M̄VB

a ∈S , ∀a,(
M̃∗VB

a
)TV ≥ 0, ∀a.

(7.46)

In this definition the channel operators M̄VB
a are describing classical teleportation, which

is why they have to be positive and separable , while M̃VB
a are the channel operators

corresponding to non-classical teleportation, satisfying constraint on the positivity of the
partial transpose (7.25). A non-zero teleportation weight witnesses that teleportation is
non-classical, which in turn means that the state Alice and Bob share is entangled. When
the set of input states is tomographically complete and the state Alice and Bob share is
maximally entangled the teleportation weight must be equal to 1. Moreover, any pure
entangled shared state with tomographically complete set of input states has the maximal
teleportation weight.

Just as teleportation robustness quantifiers can be seen to provide bounds on the cor-
responding entanglement robustness quantifiers, so too does the teleportation weight of
the teleportation assemblage {σa|ωx}a,x place a lower bound on the best separable approx-
imation of the state ρ〉B. The best separable approximation of a bipartite state ρ〉B is a
monotone which says how much of a separable state is contained in the state ρAB and is
defined as

εBSA(ρ
AB) = min

p,ρs,σS
p

s.t. ρ
AB = pρs +(1− p)σS,

σS ∈S ,

(7.47)

For the state ρAB and its best separable approximation εBSA(ρ
AB) there exist a corre-

sponding quantum state ρ̃AB and separable state ρ̄AB such that

ρ
AB = εBSA(ρ

AB)ρ̃AB +(1− εBSA(ρ
AB))ρ̄AB
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By tensoring ρAB with the state ωV
x and applying a joint measurement MVA

a , this implies

trVA
[(

MVA
a ⊗1B)(

ω
V
x ⊗ρ

AB)]=
εBSA(ρ

AB) trVA
[(

MVA
a ⊗1B)(

ω
V
x ⊗ ρ̃

AB)]
+(1− εBSA(ρ

AB)) trVA
[(

MVA
a ⊗1B)(

ω
V
x ⊗ ρ̄

AB)] ,
i.e.

σ
B
a|ωx

= trV

[(
εBSA(ρ

AB)M̃VB
a +

(
1− εBSA(ρ

AB)
)

M̄VB
a

)
ω

V
x ⊗1B

]
, (7.48)

where

M̃VB
a = trA

[(
MVA

a ⊗1B)(
1

V⊗ ρ̃
AB)] ,

M̄VB
a = trA

[(
MVA

a ⊗1B)(
1

V⊗ ρ̄
AB)] , (7.49)

for all a and x, (7.48) is equivalent to the first constraint from the optimization problem
(7.46). Moreover, the operators M̃VB

a and M̄VB
a defined in (7.49) satisfy all the other

constraints from (7.46). Thus, the teleportation weight of the teleportation assemblage
{σa|ωx}a,x can only be smaller than the best separable approximation of the shared state
ρAB, i.e.

TW({σB
a|ωx
}a,x)≤ εBSA(ρ

AB).

The teleportation weight of the state p |Φ+〉〈Φ+|+(1− p)14 corresponding to different
scenarios (i.e. different sets of input states) is presented in Fig. 7.4. We see that the
teleportation weight for a tomographically complete set of input states is larger than zero
whenever p> 1

3 , which is the separability bound for Werner states. This does not change
even if Alice does not apply the full Bell state measurements, but projects only onto one of
the Bell states (i.e. a partial Bell state measurement). When the set of input states consists
of eigenstates of two Pauli observables, non-classical teleportation is detected only when
p> 1

2 .
One of the most striking new insights resulting from using all the observable data in

a teleportation experiment is that all entangled states can be used to certify non-classical
teleportation. Previously, all bound entangled states were considered to be useless for tele-
portation. One of the most famous examples of bound entangled states is the Horodecki
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Figure 7.4: Teleportation weight for different scenarios involving the state p |Φ+〉〈Φ+|+
(1− p)14 : Alice either performs a full or partial Bell State Measurement, and uses either
a tomographically complete set of inputs (eigenstates of σX,σY and σZ), or a tomographi-
cally incomplete set of measurements (eigenstates of σX and σZ. The teleportation weight
is insensitive to the choice of measurements for both sets of inputs, indicating that it is
only the conclusive events (corresponding to POVM elements that are entangled) that
count.

state [Hor97]:

ρH =
1

8a+1



a 0 0 0 a 0 0 0 a

0 a 0 0 0 0 0 0 0

0 0 a 0 0 0 0 0 0

0 0 0 a 0 0 0 0 0

a 0 0 0 a 0 0 0 a

0 0 0 0 0 a 0 0 0

0 0 0 0 0 0 1+a
2 0

√
1−a2

2

0 0 0 0 0 0 0 a 0

a 0 0 0 a 0
√

1−a2

2 0 1+a
2



, (7.50)

for values a ∈ (0,1). The dependence of the teleportation weight of the teleportation as-
semblage obtained by using the Horodecki state with parameter a is given on Fig. 7.5. The
set of input states is chosen to be tomographically complete and a partial Bell state mea-
surements is performed (MVA

1 = |Φ+〉〈Φ+|, MVA
2 = 1−MVA

1 ). The teleportation weight
of the Horodecki state is small in value, but we observed that other bound entangled states
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Figure 7.5: Dependence of the teleportation quantifiers introduced here on parameter
a a the Horodecki state, using a tomographically complete set of input states (chosen
randomly to produce this plot), and a partial Bell State Measurement. For all values of a 6=
0 or 1, non-classical teleportation is demonstrated. Separability of the channel operators
was relaxed to the requirement of having a 2-symmetric PPT extension [DPS02].

give higher weights, even maintaining a partial Bell state measurement. For example, the
“pyramid” unextendable product bases (UPB) state [Ben+99], with tomographically com-
plete set of inputs, has teleportation weight equal to 0.2350.

7.3.4 Estimating entanglement negativity from a teleportation exper-
iment

As shown in the previous sections, different types of teleportation robustness can put a
lower bound on the corresponding types of entanglement robustness. The naturally aris-
ing question is whether teleportation experiments can provide lower bounds to some other
entanglement quantifiers. Negativity of entanglement [VW02] is a widely used entangle-
ment measure, which is largely due to the fact that it can be computed efficiently. Already
in the original paper introducing the entanglement negativity [VW02] the authors found
that for some states it puts a lower bound on its teleportation capacity. Here we will prove
that by using all the accessible information from a teleportation experiment one can put a
lower bound on the entanglement negativity of the shared state ρAB.

As explained in Sec. 2.1.2 the entanglement negativity of a state ρAB can be found on
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the following way:

N (ρAB) = min
ρ+,ρ−

tr(ρ−) (7.51)

s.t. ρ
AB = ρ+−ρ−

ρ±TA ≥ 0.

A complete information accessible in a teleportation experiment i.e. knowledge of the
teleportation assemblage {σa|ωx}a,x allows one to construct a semidefinite program whose
solution represents a lower bound on the negativity of the shared state ρAB:

min
σ
±
a|ωx

∑
a

tr
(

σ
−
a|ωx

)
(7.52)

s.t. σa|ωx = σ
+
a|ωx
−σ

−
a|ωx

σ
±
a|ωx

= trV

[
M∗a

VB (
ω

V
x ⊗1B)]

M∗a
VB ≥ 0. (7.53)

The second line is the equivalent of the constraint ρAB = ρ+−ρ− from eq. (7.51), so that

σ
±
a|ωx

= trVA
[(

MVA
a ⊗1B)(

ω
V
x ⊗ρ

AB
±
)]

With this in mind the objective function is easily identified as

∑
a

tr
(

σ
−
a|ωx

)
= tr

(
ω

V
x ⊗ρ

AB
−
)
= tr

(
ρ

AB
−
)

(7.54)

The last constraint characterizes the effective measurements coming from a PPT state.
From eq. (7.25) we get

d
(

M∗a
VB
)T

= trV1A

[(
1

V⊗MV1A
a ⊗1B)(

Φ
VV1
+ ⊗ρ

ABTB
)]
. (7.55)

If the state ρAB is PPT the l.h.s. of the last equation represents an unnormalized quantum

state which means that operators
(

M∗a
VB
)T

and hence
(

M∗a
VB
)

are also positive, which
justifies the last constraint from Eq. (7.52).

Now we need to prove that the solution to (7.52) lower bounds the negativity of en-
tanglement of the state ρAB given as the solution of (7.51). First let us note that in the
case the set of input states is tomographically complete and Alice applies the Bell state
measurement the solutions to (7.51) and (7.52) coincide. To see that, let us rewrite the

168



optimization problem (7.52) for a = 0 given that MVA
0 = ΦVA

+ :

min
ρ±

trρ− (7.56)

s.t. trVA
[(

Φ
VA
+ ⊗1B)(

ω
V
x ⊗ρ

AB)]= trVA
[(

Φ
VA
+ ⊗1B)(

ω
V
x ⊗

(
ρ

AB
+ −ρ

AB
−
))]

σ
±
a|ωx

= trV

[
M∗a,±

VB (
ω

V
x ⊗1B)]

M∗a
VB = trA

[(
MVA

a,±⊗1B)(
1

V⊗ρ
AB
±
)]

=
1
d

ρ
TB
± ≥ 0.

The first constraint in case of a tomographically complete set of inputs is satisfied if and
only if

ρAB = ρ+−ρ−,

which finally reduces (7.52) to (7.51). For the other values of a the constraints from (7.56)
are authomatically satisfied. The first constraint can be rewritten as

trVA

[(
UV

a Φ
VA
+ U†

a
V⊗1B

)(
ω

V
x ⊗ρ

AB)]=
= trVA

[(
UV

a Φ
VA
+ U†

a
V⊗1B

)(
ω

V
x ⊗

(
ρ

AB
+ −ρ

AB
−
))]

which is equivalent to

trVA

[(
Φ

VA
+ ⊗1B)(U†

a
V

ω
V
x UV

a ⊗ρ
AB
)]

=

= trVA

[(
Φ

VA
+ ⊗1B)(U†

a
V

ω
V
x UV

a ⊗
(
ρ

AB
+ −ρ

AB
−
))]

.

If the set {ωx}x is tomographically complete so is {U†
a ψxUa}x, and thus the last state-

ment is equivalent to ρAB = ρ+−ρ−. Similarly the last constraint from (7.56) reduces to
Uaρ

TB
± U†

a ≥ 0, which is satisfied if ρ
TB
± ≥ 0. Thus, we see that when Alice applies the full

Bell state measurement and has access to a tomographically complete set of input states,
the optimization problems (7.52) and (7.51) are equivalent.

In a general case, note that the states ρ ′± leading to the optimal solution of (7.51)
by forming σ

±
a|ωx

= trVA[(MVA
a ⊗1B)(ωV

x ⊗ ρAB
± )] with arbitrary measurements {MVA

a }
and input states {ωx}x satisfy all the constraints of (7.52). The equivalence between the
objective functions follows from Eq. (7.54) and the last constraint is satisfied due to
(7.55). This means that the solution to (7.52) cannot be higher than N (ρAB), i.e. it puts
a lower bound to the entanglement negativity of ρAB.

7.4 Teleportation witnesses
An advantage of having an SDP formulation for certifying the non-classicality of tele-
portation is that it also provides linear constraints satisfied by any teleportation data that
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admits a classical scheme, which generalize the average fidelity of teleportation. These
constraints work as non-classical teleportation witnesses, which, similarly to the idea
entanglement witnesses, can be used to test the non-classicality of any experimental tele-
portation data. Let us consider a slightly different form of the SDP (7.21) for finding the
random teleportation robustness

given {σa|ωx}a,x,

min
{M∗a VB}

r (7.57)

s.t. σ
B
a|ωx

+ r
1

B

oAd
= trV[M∗a

VB(ωV
x ⊗1B)] ∀a,x,

∑
a

M∗a
VB = 1

V⊗ (ρB + r
1

B

d
)

M∗a
VB ∈ Σ ∀a,

r ≥ 0 (7.58)

It differs from (7.21) in fixing p(a) = 1/oA, omitting the common denominator (1+ r)
and adding the trivial constraint r ≥ 0.
The Lagrangian for (7.57) is

L = r+ tr∑
a,x

FB
a|ωx

(
σ

B
a|ωx

+ r
1

B

oAd
− trV[M∗a

VB(ωV
x ⊗1B)]

)
+

+ trGVB
(

∑
a

M∗a
VB−1V⊗ (ρB + r

1
B

d
)

)
− tr∑

a
HVB

a M∗a
VB−µr,

= r

(
1+

1
oAd

tr∑
a,x

FB
a|ωx
− 1

d
trGVB−µ

)
+ tr∑

a
M∗a

VB
(
−∑

x
ω

B
x ⊗FB

a|ωx
+GVB−HVB

a

)
+ tr∑

a,x
FB

a|ωx
σ

B
a|ωx
− tr[GB

ρ
B] (7.59)

where {FB
a|ωx
}a,x, GVB, {HVB

a }a, and µ are the Lagrange multipliers corresponding to
each set of constraints respectively. By taking HVB

a ∈ W , where W = {W | tr[Wρsep] ≥
0,∀ρsep ∈ Σ} is the set of entanglement witnesses (operators which are positive on all
separable operators), and µ ≥ 0, then by enforcing that the first and second brackets
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vanish, we can ensure L ≤ r and thus the dual formulation of (7.57) is

given {σB
a|ωx
}a,x,

max
{Fa|ωBx

},GVB,{HVB
a }

tr∑
a,x

FB
a|ωx

σ
B
a|ωx
− tr[GB

ρ
B]

s.t. 1+
1

oAd
tr∑

a,x
FB

a|ωx
− 1

d
trGVB−µ = 0, (7.60)

−∑
x

ω
V
x ⊗FB

a|ωx
+GVB−HVB

a = 0 ∀a,

HVB
a ∈W ∀a,

µ ≥ 0.

It is seen that {HVB
a }a and µ play the role of slack variables (they do not appear in the ob-

jective function), and can thus be eliminated from the problem, to arrive at the equivalent
formulation

given {σB
a|ωx
}a,x,

max
{Fa|ωBx

},GVB
tr∑

a,x
FB

a|ωx
σ

B
a|ωx
− tr[GB

ρ
B]

s.t. 1+
1

oAd
tr∑

a,x
FB

a|ωx
− 1

d
trGVB ≥ 0, (7.61)

−∑
x

ω
V
x ⊗FB

a|ωx
+GVB ∈W ∀a,

By taking all dual variables to be proportional to the identity, it is straightforward to see
that all constraints can be strictly satisfied, and hence strong duality holds. As such, the
optimal value of the primal and dual formulations coincide.

7.4.1 Examples
Consider the teleportation of the states {ωx}x = {|0〉 , |1〉 ,(|0〉±|1〉)/

√
2,(|0〉±i |1〉)/

√
2}

using the two-qubit Werner state

ρ
AB = p|Φ+〉〈Φ+|+(1− p)

1
AB

4
(7.62)

and full Bell state measurement, {MVA
a }a = {|Φ+〉〈Φ+|, |Ψ+〉〈Ψ+|, |Φ−〉〈Φ−|, |Ψ−〉〈Ψ−|}.

The teleportation witness is given in Table 7.1 2. We have tr∑a,x FB
a|ωx

σB
a|ωx

= 6(1
3 − p),

2In this section we denote Pauli matrices with X ,Y and Z, unlike the previous sections where they
were denoted with σX,σY and σZ. This is to avoid confusion between Pauli operators and teleportation
assemblage elements σa|ωx .
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and therefore teleportation is certified for all p > 1/3, which coincides with the separa-
bility bound of the state (7.62). Finally, we note that

{Wa}a = {4|Ψ−〉〈Ψ−|,4|Φ−〉〈Φ−|,4|Ψ+〉〈Ψ+|,4|Φ+〉〈Φ+|} (7.63)

and thus tr[Waρsep]≥ 0 as required by (7.61).

x

a

FB
a|ωx

0 1 2 3 4 5

0 1

3 −X 1

3 +X 1

3 −Y 1

3 +Y 1

3 −Z 1

3 +Z

1 1

3 −X 1

3 +X 1

3 +Y 1

3 −Y 1

3 +Z 1

3 −Z

2 1

3 +X 1

3 −X 1

3 +Y 1

3 −Y 1

3 −Z 1

3 +Z

3 1

3 +X 1

3 −X 1

3 −Y 1

3 +Y 1

3 +Z 1

3 −Z

Table 7.1: Teleportation witness for the two-qubit Werner state (7.62). The verifier pro-
vides the states {ωx}x = {|0〉 , |1〉 ,(|0〉± |1〉)/

√
2,(|0〉± i |1〉)/

√
2} to Alice. By mea-

suring the observables FB
a|ωx

when Bob forwards the state σB
a|ωx

to the verifier, the value

tr∑a,x FB
a|ωx

σB
a|ωx

= 6(1
3 − p) is obtained, which is negative for all p > 1/3. Thus all en-

tangled two-qubit Werner states are witnessed as useful for teleportation.

Consider now the so-called ‘tiles’ bound entangled state [Ben+99]:

ρtiles =
1
4

(
1−

4

∑
i=0
|φi〉〈φi|

)
, (7.64)

where the states |φi〉 form a UPB:

|φ0〉=
1√
2
|0〉(|0〉− |1〉), |φ1〉=

1√
2
|2〉(|1〉− |2〉), (7.65)

|φ2〉=
1√
2
(|0〉− |1〉) |2〉 , |φ3〉=

1√
2
(|1〉− |2〉) |0〉 ,

|φ4〉=
1
3
(|0〉+ |1〉+ |2〉)(|0〉+ |1〉+ |2〉).

According to the benchmark based on the average fidelity this state is useless for tele-
portation [HHH99]. For the set of input states {ωx}x = {|0〉 , |2〉 ,(|0〉− |1〉)/

√
2,(|1〉−

|2〉)/
√

2,(|0〉+ |1〉+ |2〉)/
√

3,1/3} and partial Bell state measurement which projects on
|Φ+〉〈Φ+|, we generate the teleportation witness given in Table 7.2. The state achieves
the value tr∑a,x FB

a|ωx
σB

a|ωx
= −ε/3, which shows that the bound entangled states are in

fact useful for teleportation.
A couple of additional comments are in order. First, note that the set of input states

{ωx}x in this instance is not even tomographically complete, and yet teleportation can
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x

a

FB
a|ωx

0 1 2 3 4 5

0 ω2 ω3 ω1 ω0 ω4 −3ε1

1 0 0 0 0 0 0

Table 7.2: Teleportation witness for the two-qutrit bound entangled ‘tiles’ state
(7.64). The verifier provides the states {ωx}x = {|0〉〈0|, |2〉〈2|,(|0〉 − |1〉)(〈0| −
〈1|)/2,(|1〉− |2〉)(〈1|− 〈2|)/2,(|0〉+ |1〉+ |2〉)(〈0|+ 〈1|+ 〈2|)/3,1/3} to Alice. Here,
ε ∈ (0,0.02842]. By measuring the observables FB

a|ωx
when Bob forwards the state σB

a|ωx

to the verifier, the value tr∑a,x FB
a|ωx

σB
a|ωx

=−ε/3 is obtained. This demonstrates the fact
that, contrary to what is usually claimed, bound entangled states are useful for teleporta-
tion.

nevertheless be certified. Second, here we considered only a partial Bell state measure-
ment. Since MVA

1 is a separable operator in this instance, it is for this reason that FB
1|ωx

vanish. Finally, we note that W0 = ∑x ωV
x ⊗FB

1|ωx
= ∑i |φi〉〈φi| − ε1 is precisely the en-

tanglement witness which is violated by the ‘tiles’ UPB state (7.64) for ε ∈ (0,0.02842]
[Güh+02]. This demonstrates that the constraint in (7.61) is indeed satisfied.

7.5 Teleportation as a type of nonlocality
The results presented so far in this chapter indicate that it is highly beneficial to regard
teleportation as a specific nonlocality scenario. In this section we compare teleportation
to the other known types of nonlocality and discuss these relations in more details. To
facilitate the discussion let us recapitulate the main properties of Bell nonlocality and
EPR-steering, before continuing with the other modifications of the standard Bell sce-
nario.

We start with the concept of Bell nonlocality (for more details see Sec. 2.2), describing
the correlations between Alice’s and Bob’s measurement outcomes. All experimental
devices are treated as black boxes, corresponding to the so-called device-independent
scenario [Aci+07, CK11]. The parties choose the measurements by sending classical
inputs to their black boxes. All conclusions about the systems are drown solely from the
set of the conditional correlations probabilities {p(a,b|x,y)}, obtained by the Born rule

p(a,b|x,y) = Tr
[(

MA
a|x⊗MB

b|y
)

ρ
AB
]

where Ma|x and Mb|y are Alice’s and Bob’s measurements respectively and ρAB is the
shared state. If the probability distribution {p(a,b|x,y)} is nonlocal it excludes the exis-
tence of the local hidden variable models for the outputs of Alice’s and Bob’s measure-
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ments [Bell64].

Different relaxations of the device-independent scenario lead to different types of non-
locality (See Fig. 7.7). Another fundamentally and practically important type of nonlo-
cality is EPR-steering [WJD07, CS17] (for more details see Section 2.4). It differs from
Bell nonlocality in the fact that Bob’s measurements are fully characterized. In particular,
it can be assumed that Bob is able to perform full state tomography on his system. Thus,
EPR-steering describes correlations between Alice’s measurement outputs and the states
prepared for Bob. Bob’s reduced states following Alice’s different measurement have the
following form

σa|x = TrA

[(
MA

a|x⊗1B
)

ρ
AB
]
.

The set {σa|x}a,x is termed assemblage and it is said to be steerable if there is no local hid-
den state model for the outputs of Alice’s measurements and corresponding Bob’s states.
The scenario native to EPR steering is termed one-sided-device-independent and it has
proven to be useful for various quantum information protocols [PCPA15, LTBS14, ŠH16,
GWK17].

Bell  
nonlocality

EPR steeringEntangled
state

Incompatible
measurements

Entangling
measurements

Buscemi 
nonlocality

Quantum 
teleportation

Figure 7.6: The relations among different types of nonlocality (blue boxes) and neces-
sary resources(red boxes). Presence of any of the four types of nonlocality implies the
presence of entanglement in the underlying system. While some entangled states never
lead to Bell nonlocality or steering, every entangled state can lead to Buscemi nonlocal-
ity and quantum teleportation. The resource for EPR steering and Bell nonlocality are
incompatible measurements. Every set of incompatible measurements can demonstrate
EPR steering, while some sets of incompatible measurement cannot demonstrate to Bell
nonlocality. The necessary resource for Buscemi nonlocality and quantum teleportation
are entangling joint measurements. Every entangling measurement can demonstrate both
Buscemi nonlocality and quantum teleportation.

Another relaxation of the device-independent scenario is obtained when Alice and
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(a)

x y

a b

(b)

ωyωx

a b

(c)

σa|x

a

x

(d)

ωx

a

σa|x

Figure 7.7: Scenario (a) corresponds to Bell nonlocality, (b) represents Buscemi nonlo-
cality, (c) EPR steering and (d) quantum teleportation. The transition from left to right
corresponds to the exchange of classical inputs with quantum ones, while the transition
from top to bottom corresponds to characterising measurement devices of one of the par-
ties.

Bob use quantum states as inputs, while the boxes still return classical outputs. This sce-
nario, known as measurement-device-independent [BRLG13], was introduced by Buscemi
[Bus12] leading to the new type of nonlocality, here termed Buscemi nonlocality (for
more details check Section 6.1). All measurement devices and the source of the shared
state are treated as black boxes but both Alice and Bob have a trusted preparation device.
The only source of information about the system are the correlation probabilities

p(a,b|ωx,ωy) =
[(

MA′A
a ⊗MBB′

b

)(
ω

A′
x ⊗ρ

AB⊗ω
B′
y

)]
which are obtained when Alice and Bob apply joint measurements Ma and Mb on their
part of the shared state ρAB and the quantum inputs ωx and ωy respectively. The remark-
able fact about measurement-device-independent scenario is that every entangled state
can lead to Buscemi nonlocal correlation probabilities.

Finally, quantum teleportation is positioned in the intersection of the two above men-
tioned relaxations of the device-independent scenario. In, what would be called, one-
sided measurement-device-independent scenario Alice uses quantum states as inputs for
her black box, while Bob can apply quantum state tomography to his share of the state.
This scenario exactly describes what is happening in a quantum teleportation experiment.
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Putting teleportation in this context enables applying the well developed framework
for exploring different forms of nonlocality to teleportation experiments. Rephrasing it in
the language of nonlocality, quantum teleportation manifests in the nonlocal correlation
between Alice’s joint measurement outputs and states prepared for Bob. The states to
be teleported are just the quantum inputs for Alice’s box, while teleported states corre-
spond to reduced states of Bob forming a kind of teleportation assemblage (teleportage in
[HS17]). Consequently, a teleportation experiment is non-classical if it excludes a ”local
hidden channel model”, which would in a classical way correlate Alice’s outputs with
Bob’s reduced states ( like, for example, in the model described in [PM95]).

7.6 Discussion
In this Chapter we have studied quantum teleportation using the full data available in an
experiment. We have shown that this allows us to test directly whether the data has any
classical explanation via the method of semidefinite programming. Using the full data, ev-
ery entangled state can be certified to implement non-classical teleportation, and we show
that this can be tested in an experimentally friendly way using a teleportation witness.
This overthrows the popular belief that not all entangled states are useful for teleporta-
tion (in particular bound entangled states), a conclusion which was based upon a single
figure of merit, the average fidelity of teleportation, which our teleportation witnesses
generalize. We introduced several teleportation quantifiers which allow us to compare
compatible teleportation experiments. Moreover, each introduced teleportation quantifier
can be used to bound the amount of entanglement the parties are sharing.

In the future research it would be interesting to see which properties of teleportation
can be mirrored in some other important protocols such as remote state preparation or
quantum secret sharing. Also, it may be instructive to see if these new insights in the
relation between entanglement and teleportation affect some more complex quantum in-
formation protocols which use teleportation as a sub-routine.
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Chapter 8

Universal device-independent
entanglement certification

Any protocol for entanglement detection has to deal with a trade-off between the gener-
ality, i.e. the degree of applicability and the amount of required resources. On one side
is certification of entanglement through entanglement witnesses, as described in Section
2.1.1. This approach is fully general, meaning that every entangled state can be certified
in this way, but it requires the precise characterisation of the measurements performed in
the process. Failing to account for all the errors and deviations in the experimental set-up
leads to either a false certification or loss of the universality of the approach [Ros+12]. On
the other side lies device-independent entanglement certification, exploiting nonlocal cor-
relations stemming from entangled states which violate a Bell inequality. This approach
makes minimal assumptions about the experimental set-up, treating all devices as black
boxes, but fails when it comes to the universality. As described in the introductory re-
marks of Chapter 6, there are entangled states which never produce nonlocal correlations.

Various semi-device-independent approaches represent the middle ground between
entanglement witnesses and DI entanglement certification. In principle, the more re-
laxed device-independence of the approach is, the more entangled states can be certified.
In section 6.1 we discussed measurement-device-independent entanglement witnessing
(MDIEW), introduced in [Bus12]. This approach can be used to certify all entangled
states, but it is not fully device-independent because the set-up involves a trusted prepa-
ration device. It is used to prepare states which serve as quantum inputs to the black boxes.

In this chapter we construct a fully device-independent protocol for certification of
all entangled states. It combines results from the field of self-testing with ideas from
MDIEW. The lack of characterized preparation device necessary for MDIEW is compen-
sated by moving to the quantum network set-up. Intuitively, our protocol can be under-
stood as a device-independent extension of MDIEWs, in which the input quantum states

177



are certified device-independently through a self-testing protocol.

8.1 Protocol for device-independent certification of all en-
tangled states

In this section we define the set-up for the device independent certification of entangle-
ment in bipartite systems and give an informal description of the protocol. The general-
ization to the multipartite states is straightforward and will be discussed in the conclusion
of this chapter. As outlined in the introductory remarks, the entanglement of a bipartite
state ρAB is certified by putting the state in a quantum network. Two parties holding the
shares of the state ρAB are named Alice and Bob. The set-up involves two additional
parties, Charlie and Daisy. Charlie and Alice share state ρCA0 , Bob and Daisy ρB0D, and
as stated before, Alice and Bob share the state ρAB. Hence, Alice and Bob, each have two
systems in their boxes labelled by A0 and A for Alice and B0 and B for Bob. All parties
treat their devices as black boxes, exchanging classical messages with them. Classical
inputs sent to the boxes are denoted by x for Alice, y for Bob, z for Charlie and w for
Daisy, and corresponding outputs, returned by boxes, are denoted by a for Alice, b for
Bob, c for Charlie and d for Daisy. Inputs label the choice of measurement, while the
outputs represent the obtained outputs. For example, a pair (x,a) corresponds to applying
a POVM Ma|x, and similarly for the other parties. At the end, the protocol is characterized
by the joint conditional probability distributions p(a,b,c,d|z,x,y,w).

z x y w

c a b d

SAC SAB SBD

AC B D

Figure 8.1: The scenario for the fully device-independent certification of all entangled
states. Four parties are involved sharing the states emitted from three independent sources.
The source SAB emits the state ρCA0 , shared by Charlie and Alice. The source SAB emits
the state ρAB shared by Alice and Bob. Finally, the source SBD emits the state ρB0D.
In the ideal specification, the state ρAB is entangled while the states ρCA0 and ρB0D are
maximally entangled.

Let us recall that Alice and Bob can certify every entangled state if both have access to
a tomographically complete set of quantum states, which they treat as inputs for the black
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boxes (for more details see Ch. 6, Sec. 6.1 ). This scenario allows for the aforementioned
MDI entanglement certification protocol. Observe that the protocol can be modified by
exchanging the preparation device with a form of the remote state preparation in the
scenario from Fig. 8.1. Assume that each of the two auxiliary states ρCA0 and ρB0D

is a maximally entangled state |Φ+〉. In that case Charlie and Daisy can steer Alice’s
and Bob’s states by applying the corresponding projective measurements. Assume that
ρCA0 = |Φ+〉〈Φ+| and Mc|z = |0〉〈0|. Then, upon Charlie’s measurement Alice’s system
is in the state

trC
[
(|0〉〈0|C⊗1A0)|Φ+〉〈Φ+|CA0

]
∼ |0〉〈0|A0.

In a similar manner Charlie can remotely prepare for Alice other states from a tomo-
graphically complete set of input states Ψ. Analogously, Daisy can steer Bob’s system
B0 to any element from the same set Ψ. Alice and Bob can use the states from the set Ψ

as quantum inputs and continue performing entanglement certification task in the same
way as they would perform a MDIEW. The advantage of the protocol based on the re-
mote preparation compared to the standard MDIEW is that former can be formulated in a
device-independent manner. For that purpose we used the self-testing techniques. Indeed,
self-testing protocols can be used to certify in a device-independent way that the state
ρCA0 (ρB0D) is equivalent to the maximally entangled state |Φ+〉 and that measurements
{Mz|c}z,c ({Md|w}d,w) are indeed those necessary to prepare the states Alice (Bob) needs.
For the certification of entanglement in qubit states the simple modification of known
self-testing protocols ([MY04, MYS14, Kan16]) will suffice. For states of a generic local
dimension, the adaptation of the existing self-testing protocols to the form useful for en-
tanglement certification will require a more careful approach. This will be the main topic
of Section 8.2.

Here we will outline the protocol for fully device-independent entanglement certifica-
tion of all entangled states:

1. Self-testing part. Partial conditional probability distributions p(c,a|z,x) and p(b,d|y,w)
are collected and used to certify that Alice with Charlie and Bob with Daisy shares
a maximally entangled pair of qudits.

2. Entanglement witnessing. Full conditional probability distributions p(c,a,b,d|z,x,y,w)
are used to certify the entanglement of ρAB by using the analogue of MDIEW in-
troduced in Chapter 6.

8.2 Self-testing maximally entangled states and Pauli ob-
servables

In this section we describe the self-testing of the maximally entangled states and an in-
formationally complete set of measurements. As outlined in the previous section Alice
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z x y w

c a b d

AC B DρCA ρAB ρBD

z x y w

c a b d

A BρAB Φ+C D

x y

a b

A BρAB

φy

a b

A BρAB

ψx
a)

b)

c)

d)

Φ+

Figure 8.2: (a) Standard Bell scenario for device independent entanglement certification.
The estimated probabilities p(ab|xy) are tested for violation of a Bell inequality in order
to certify the entanglement of the state ρAB. (b) Scenario for MDI entanglement certifi-
cation. Here, the inputs are given by trusted quantum states ψx and φy. (c) Equivalent
MDI scenario in which the inputting of the states ψx and φy in scenario (b) is replaced
by giving Alice and Bob each one half of a maximally entangled state and performing
local measurements on them. (d) Our proposal for DI entanglement certification. The
entangled state ρAB to be detected is placed in a network containing additional auxiliary
entangled states. Using self-testing techniques, these entangled states are certified to be
maximally entangled and perform the expected measurements as required in (c).

has to perform such a self-test with Charlie and Bob with Daisy. Since the role of Alice
and Charlie is completely equivalent to the role of Bob and Daisy we will concentrate
on the former, with all the conclusions holding for the latter pair. The simplified set-up
we consider here involves two parties, Charlie and Alice, who share the quantum state
|ψ〉CA0 1 and perform local measurements labelled by z and x, obtaining outcomes c and
a. In accordance with the Born rule the partial conditional probabilities can be written as

p(ca|zx) = tr
[
(MC

c|z⊗MA0
a|x)|ψ〉〈ψ|

CA0
]
, (8.1)

1To simplify notation in this chapter we depart from the notation used in Part I, where physical states
were primed and reference non-primed. Here reference state will always be either |Φ+〉 or a tensor product
of |Φ+〉-s
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where Mc|z, Ma|x denote the local projective measurement operators applies by Charlie and
Alice respectively. Note that the self-testing scenario allows us to work with purifications
|ψ〉CA0 instead of possibly mixed states ρCA0 , and assume that all applied measurements
are projective.

The basics of self-testing were introduced in Ch. 2 Sec. 2.5 and further discussed
as the main topic of chapters 3, 4, 5 and ??. For easier reading, let us reproduce here
the most important concepts related to the self-testing of maximally entangled states.
The conditional probabuilities p(ca|xz) self-test the reference quantum state reference
quantum state |Φ+〉 = ∑

d−1
i=0 |ii〉, if they are produced uniquely by |Φ+〉 up to a certain

equivalence class. The equivalence class is captured by the notion of a local isometry,
which takes into account the possibility of all physical transformations which leave the
observed probability distributions invariant. Such operations are local unitary operations
applied to the state and measurements, possible embedding in a Hilbert space of larger
dimension and/or the existence of additional degrees of freedom. Thus, we say that the
correlations p(ca|zx) self-test the state |Φ+〉 ∈H C′⊗H A′0 if for all states and all mea-
surement operators satisfying Eq. (8.1) there exist Hilbert spaces H C, H A0 such that
|ψ〉 ∈H C⊗H A0 , a local auxiliary state |00〉 ∈H C′⊗H A′0 and a local unitary operator
U =UA0⊗UC such that

U [|ψ〉⊗ |00〉] = |junk〉⊗ |Φ+〉 , (8.2)

where |junk〉 ∈ H C⊗H A0 is any state representing possible uncorrelated additional
degrees of freedom. Intuitively, self-testing means proving the existence of local channels
(given by the local unitaries and local auxiliary states) which extract the target state |Φ+〉
from the physical state |ψ〉 into the H C′⊗H A′0 space.
Besides self-testing the state |Φ+〉 we are interested in certifying that the measurement
operators are equivalent to some target measurements {M̄c|z}, {M̄a|x} acting on |Φ+〉.
Self-testing statements are simpler when the target measurements can be expressed using
real numbers alone, i.e. (M̄c|z)∗ = M̄c|z for all c,z and (M̄a|x)∗ = M̄a|x for all a,x. We
say that the correlations p(ca|zx) self-test the state |Φ+〉 and real-valued measurements
{M̄c|z}, {M̄a|x} if p(ca|zx) self-tests the state |Φ+〉 according to Eq. 8.2 and furthermore

U
[
Mc|z⊗Ma|x |ψ〉⊗ |00〉

]
= |junk〉⊗ (M̄c|z⊗ M̄a|x |Φ+〉) (8.3)

for each c,a,z,x.
The situation is a bit more complicated when the measurements cannot be expressed

using real numbers alone, as noted in Section 2.5. This is because observed probabil-
ity distributions are invariant under complex conjugation of the state and measurement
operators:

tr[(M̄c|z⊗ M̄a|x)|Φ+〉〈Φ+|] = tr[(M̄′∗c|z⊗ M̄∗a|x)|Φ+〉〈Φ+|] (8.4)

(where M∗ denotes the complex conjugation operation). Note that the complex conjuga-
tion is not a physical operation and it is not captured by the concept of a local isometry.
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Henceforth, in compliance with the discussion from Section 2.5 and following the method
of [McKM11], we introduce additional local Hilbert spaces H C′′ and H A′′0 which act as
a control space for possible complex conjugation of the measurement operators. Our
precise definition of self-testing is as follows.

Definition 9.1. We say that the correlations p(ca|zx) self-test the state |Φ+〉 ∈H C′⊗H A′0

and (complex-valued) measurements {M̄c|z}, {M̄a|x} if for all states and all measure-
ment operators satisfying (8.1) for there exist Hilbert spaces H C, H A0 such that |ψ〉 ∈
H C⊗H A0 , a local auxiliary state |00〉 ∈ [H C′′ ⊗H C′]⊗ [H A′′0 ⊗H 〉′0 ] and a local
unitary operator U =U〉0⊗UC such that

U
[
Mc|z⊗Ma|x |ψ〉⊗ |00〉

]
= M̃c|z⊗ M̃a|c [|junk0〉⊗ |00〉+ |junk1〉⊗ |11〉]⊗|Φ+〉 , (8.5)

where |junk j〉 ∈ H C ⊗H A0 are some unknown subnormalized junk states such that
〈junk0|junk0〉+ 〈junk1|junk1〉 = 1 and the M̃ operators are related to the target mea-
surements by

M̃c|z = 1
C⊗

[
M0⊗ M̄c|z +M1⊗ (M̄c|z)

∗] ; (8.6)

M̃a|x = 1
A0⊗

[
M0⊗ M̄a|x +M1⊗ (M̄a|x)

∗] , (8.7)

with M0 +M1 = 1
C′′ and 〈0|M0|0〉= 〈1|M1|1〉= 1.

The measurements given above can be understood as ‘controlled conjugation’ mea-
surements: one first measures the double primed ancillary systems with the measurement
{M0,M1}; conditioned on this outcome, one then measures the target measurement or
its complex conjugation on the target state |Φ+〉. The measurement operators and state
|junk0〉⊗ |00〉+ |junk1〉⊗ |11〉 have such form that the potential complex conjugation is
correlated between Charlie and Alice, as implied from (8.4). The norm of the vectors
|junk j〉 determines the probability for this complex conjugation to happen. In principle
this probability is unknown since the self-testing data is not sufficient to infer the norm of
these states.

In order to construct the local unitary U used to prove the self-testing statements one
typically considers linear combinations of the probabilities p(c,a|z,x) (corresponding to
some Bell inequality) of the form

I [p(c,a|z,x)] = ∑
c,a,z,x

βc,a,z,x p(c,a|z,x), (8.8)

for which the maximal value in quantum theory I = βQ occurs using the target state
and measurements. The observation I = βQ then implies relations between the state and
measurements performed in the experiment via (8.8), and one can prove the existence of
the local unitary from the measurement operators themselves.
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H

|junk〉 |Φ+〉

Figure 8.3: Self-testing circuit used for the proof of Lemma 9.5. The unitaries ẐA0 ,
X̂A0 , ŶA0 can be found in the Appendix A. The target state is extracted into the primed
ancillary systems. The double primed ancillary systems are used to control potential
complex conjugation of the physical measurements. The circuit is an extension of the
partial SWAP gate, first time used in [McKM11].

The majority of the existing self-tests are useful not only for the certification of quan-
tum states but also for the certification of measurements. However, most of them apply
to the self-testing of real-valued measurements. The simplest set of measurements which
cannot be expressed using real numbers alone is given by the three Pauli observables
σZ,σX,σY, acting on maximally entangled pair of qubits. In Section 8.2.1 we prove self-
testing statements for these measurements, inspired by the approach of [McKM11] where
similar results were obtained. We then extend this to a parallel self-test in sections 8.2.2
and 8.2.3 in order to prove self-testing statements for n-fold tensor products of the Pauli
measurements, which form an informationally complete set in dimension 2n.

8.2.1 Self-testing of Pauli measurements
We begin by proving a self-testing statement for the maximally entangled state of two
qubits |Φ+〉= 1√

2
[|00〉+ |11〉] and the three Pauli observables for Charlie. Since there does

not exist a basis in which these observables can be written using real numbers only, our
self-testing statement will be of the form of Def. 9.1. We note that this is not the first proof
of such a result; similar results have been obtained in previous works by generalising the
Mayers-Yao self-test [McKM11], by studying the properties of the ‘elegant’ Bell inequal-
ity [APVW16, And+17] and combinations of the CHSH Bell inequality [APVW16] and
in a more general approach to the problem [Kan17] focused on commutation relations.

Before proceeding let us clarify the notation. Unless explicitly written, for the sake
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of shorter expressions, we omit tensor products signs, e.g. XC |ψ〉CA0 should be under-
stood as XC⊗1A0 |ψ〉CA0 . This convention then follows for the product of operators, e.g.
XCEA

0 |ψ〉CA0 should be understood as XC⊗EA
0 |ψ〉CA0 .

The relaxed scenario we consider in this section is as follows. Charlie and Alice share
a bipartite quantum state |ψ〉 ∈H C⊗H A0 . Charlie has a choice of three measurements
z = 1,2,3, with outcomes c =±1 denoted by the observables XC,YC and ZC. Alice has a
choice of six ±1 valued measurements x = 1, · · · ,6, a =±1, denoted by the observables
DA0

x,z,E
A0
x,z,D

A0
x,y,E

A0
x,y,D

A0
y,z,E

A0
y,z. Note that each of these observables is Hermitian and uni-

tary. We then consider the following Bell operator (introduced in [APVW16]), which we
call the triple CHSH Bell operator

B = ZC(DA0
x,z +EA0

x,z)+XC(DA0
x,z−EA0

x,z)+ZC(DA0
y,z +EA0

y,z)−YC(DA0
y,z−EA0

y,z)

+XC(DA0
x,y +EA0

x,y)−YC(DA0
x,y−EA0

x,y).
(8.9)

This Bell operator consists of a sum of three CHSH Bell operators. The correlations
that we use for self-testing correspond to those which maximize 〈ψ|B |ψ〉, which has
maximum value 6

√
2 (since each CHSH operator is upper bounded by 2

√
2). This can be

achieved by taking the following states and observables

|ψ〉= |Φ+〉= 1√
2
[|00〉+ |11〉] ,

ZC = σZ , XC = σX , YC = σyy,

DA0
i, j =

σi +σ j√
2

, EA0
i, j =

σi−σ j√
2

, (8.10)

for (i, j) = (z,x),(z,y),(x,y). The basic intuition of the self-testing is that since maximal
violation of a single CHSH inequality requires anti-commuting qubit observables on a
maximally entangled state [CHSH69], the maximum value of (8.9) should imply three
mutually anti-commuting observables on the maximally entangled state, given by the
three Pauli observables (or their transpositions). Indeed, we will see that this is the case.

One way to achieve this is to build a sum-of-squares (SOS) decomposition of the
shifted Bell operator 6

√
21−B of the form

6
√

21−B = ∑
λ

P†
λ

Pλ . (8.11)

Such a decomposition is given by

2
(

6
√

21−B
)
=
[
ZC− 1√

2
(DA0

x,z +EA0
x,z)
]2

+
[
XC− 1√

2
(DA0

x,z−EA0
x,z)
]2
+

+
[
ZC− 1√

2
(DA0

y,z +EA0
y,z)
]2

+
[
YC + 1√

2
(DA0

y,z−EA0
y,z)
]2
+

+
[
XC− 1√

2
(DA0

x,y +EA0
x,y)
]2

+
[
YC + 1√

2
(DA0

x,y−EA0
x,y)
]2

(8.12)
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Here, the Pλ ’s are Hermitian and so P†
λ

Pλ = P2
λ

. At maximal value one has 〈ψ|B |ψ〉 =
6
√

2 and so

∑
λ

〈ψ|P†
λ

Pλ |ψ〉= 0. (8.13)

Since each term in the above is greater or equal to zero we have Pλ |ψ〉 = 0 for all λ .
Applying this to the SOS decomposition (8.12) gives

ZC |ψ〉= 1√
2
[DA0

x,z +EA0
x,z] |ψ〉= 1√

2
[DA0

y,z +EA0
y,z] |ψ〉 , (8.14)

XC |ψ〉= 1√
2
[DA0

x,z−EA0
x,z] |ψ〉= 1√

2
[DA0

x,y +EA0
x,y] |ψ〉 , (8.15)

YC |ψ〉= 1√
2
[EA0

y,z−DA0
y,z] |ψ〉= 1√

2
[EA0

x,y−DA0
x,y] |ψ〉 . (8.16)

Since for any two unitary observables G1 and G2, the composite observables G1+G2√
2

and
G1−G2√

2
anti-commute by construction, from the above three equations it follows that on

the support of state |ψ〉 observables ZC,XC and YC mutually anti-commute:

{ZC,XC}|ψ〉= {ZC,YC}|ψ〉= {XC,YC}|ψ〉= 0. (8.17)

The conditions (8.14) - (8.16) and (8.17) allow us to construct a local unitary which will
give us our desired self-testing. This unitary can be understood via the circuit of Fig. 8.3,
and is based on the swap gate introduced in [MYS14] and is the same as the circuit found
in [McKM11]. The unitaries ẐA0 , X̂A0 , ŶA0 are regularized versions of the operators

ZA0 =
DA0

x,z +EA0
x,z√

2
, XA0 =

DA0
x,z−EA0

x,z√
2

, YA0 =
EA0

y,z−DA0
y,z√

2
.

For example, ẐA0 is obtained by setting all zero eigenvalues of ZA0 to one and then defin-
ing ẐA0 = ZA0|ZA0|−1. Using standard techniques (see Appendix A), these can be shown
to act in the same way as the non-regularized versions. With this we are ready to present
the first of our self-testing lemmas.

Lemma 9.5. Let the state |ψ〉 ∈H C⊗H A0 and ±1 outcome observables XC, YC, ZC,
DA0

x,z, EA0
x,z, DA0

x,y, EA0
x,y, DA0

y,z, EA0
y,z satisfy

〈ψ|B |ψ〉= 6
√

2. (8.18)

Then there exist local auxiliary states |00〉 ∈ [H C′′⊗H C′]⊗ [H A′′0 ⊗H A′0] and a local
unitary U =UC⊗UA0 such that:

U [|ψ〉⊗ |00〉] = |junk〉⊗ |Φ+〉C′A′0 , (8.19)

U [XC |ψ〉⊗ |00〉] = |junk〉⊗σ
C′
X |Φ+〉C′A′0 , (8.20)

U [ZC |ψ〉⊗ |00〉] = |junk〉⊗σ
C′
Z |Φ+〉C′A′0 , (8.21)

U [YC |ψ〉⊗ |00〉] = σ
C′′
Z |junk〉⊗σ

C′
Y |Φ+〉C′A′0 , (8.22)

185



where |junk〉 takes the form

|junk〉= |junk0〉CA0⊗|00〉C′′A′′0 + |junk1〉CA0⊗|11〉C′′A′′0 . (8.23)

Note that the complex observable σY has an additional σZ measurement on the C′′

space, as expected from Def. 9.1. Hence, the measurement Y can be understood as first
measuring σZ on the state |junk〉, whose outcome decides whether ±σY is performed on
the state |Φ+〉. The probability that the observables {σX,σY,σZ} are used rather than the
transposed measurements {σX,−σY,σZ} is given by the probability to obtain +1 for the
σC′′

Z measurement. This probability remains unknown since one does not know the pre-
cise form of |junk〉 from the self-testing correlations alone. The proof of Lemma 1 can be
found in Appendix A.

8.2.2 Parallel self-testing of Pauli observables
The protocol described above can be extended to a parallel self-test. Here, our aim is to
self-test the n-fold tensor product of the maximally entangled state |Φ+〉⊗n (which itself
is a maximally entangled state of dimension 2n) and all combinations of n-fold tensor
products of Pauli measurements for Charlie, i.e. σi1 ⊗σi2 ⊗·· ·⊗σin for i j = x,y,z. This
is achieved by an n-fold maximal parallel violation of the Bell inequality used in Lemma
9.5. As a basis we use the techniques of [Col17], where parallel self-testing of σX and
σZ observables on the maximally entangled state was proven. Besides [Col17], parallel
self-testing of n-fold tensor products of maximally entangled pairs of qubits has been pre-
sented in [McK17] and [CN16], and in [WBMS16] for n = 2. This section can thus be
seen as an extension of these results to all three Pauli observables. Although we use the
term ‘self-testing’ here, we will see that simply performing the protocol of Lemma 9.5 in
parallel does not lead to a self-test according to definition 9.1. In the following subsection
we correct this by adding additional Bell state measurements between local subsystems.

The scenario we consider is as follows. Charlie and Alice share the state |ψ〉 ∈
H C ⊗H A. Charlie has a choice of 3n measurements collected into the vector z =
(z1,z2, · · · ,zn) with zi = 1,2,3, and each measurement has 2n possible outcomes given
by c = (c1,c2, · · · ,cn) with ci = ±1. Similarly, Alice has a choice of 6n measurements
given by the vector x = (x1,x2, · · · ,xn) with xi = 1,2,3,4,5,6, each with 2n possible out-
puts given by a = (a1,a2, · · · ,an) with ai = ±1. Fixing a value of i we thus have three
possible settings for Charlie and six for Alice, corresponding to the self-test of the pre-
vious section that we now perform in parallel. In order to achieve this we will define an
analogous Bell operator to (8.9) for each value of i.

To this end, we denote Charlie’s and Alice’s measurement projectors by ΠC
c|z and ΠA

a|x
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respectively. We then define the following unitary observables for Charlie

Oi|z = ∑
c|ci=+1

Π
C
c|z− ∑

c|ci=−1
Π

C
c|z. (8.24)

These operators can be understood as ±1 valued observables that depend on the output
ci only for a particular choice of input z, and are thus analogous to one of the three
Pauli measurements (given by the value zi) acting on the ith subspace of the maximally
entangled state. Next we define the operators

ZC
i =

1
3n−1 ∑

z|zi=1
Oi|z, (8.25)

XC
i =

1
3n−1 ∑

z|zi=2
Oi|z, (8.26)

YC
i =

1
3n−1 ∑

z|zi=3
Oi|z, (8.27)

that is, the average observables compatible with a particular choice of zi.
Similarly for Alice we define the unitary observables

Pi|x = ∑
a|ai=+1

Π
A0
a|x− ∑

a|ai=−1
Π

A0
a|x (8.28)

and the six operators

DA0
xz,i =

1
6n−1 ∑

x|xi=1
Pi|x, EA0

xz,i =
1

6n−1 ∑
x|xi=2

Pi|x,

DA0
yz,i =

1
6n−1 ∑

x|xi=3
Pi|x, EA0

yz,i =
1

6n−1 ∑
x|xi=4

Pi|x,

DA0
xy,i =

1
6n−1 ∑

x|xi=5
Pi|x, EA0

xy,i =
1

6n−1 ∑
x|xi=6

Pi|x. (8.29)

We now consider Bell operators of the form

Bi = ZC
i (D

A0
xz,i +EA0

xz,i)+XC
i (D

A0
xz,i−EA0

xz,i)+ZC
i (D

A0
yz,i +EA0

yz,i)−YC
i (D

A0
yz,i−EA0

yz,i)

+XC
i (D

A0
xy,i +EA0

xy,i)−YC
i (D

A0
xy,i−EA0

xy,i). (8.30)

This is simply the Bell inequality (8.9), for the inputs zi and xi averaged over all com-
patible z and x. One can thus obtain 〈ψ|Bi |ψ〉 = 6

√
2 for each i by taking n copies of

the maximally entangled state of dimension two and adopting the previous measurement
strategy (8.10) independently on each of the copies. From the observation of maximal
violation for all i, a self-testing circuit (a parallel version of the circuit of Lemma 1) can
be constructed, see Fig. B.1 in Appendix B. We then have the following lemma.
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Lemma 9.6. Let the state |ψ〉 ∈H C⊗H A0 and operators ZC
i , XC

i , YC
i , DA0

xz,i, EA0
xz,i, DA0

yz,i,

EA0
yz,i, DA0

xy,i, EA0
xy,i defined above satisfy

〈ψ|Bi |ψ〉= 6
√

2, (8.31)

for every i ∈ {1, . . .n}. Then there exists a local unitary U = UC⊗UA0 , local registers
|00〉 ∈ ⊗n

i=1[H
C′′i ⊗H C′i]⊗ [H A′′i ⊗H A′i] and a normalized state |ξ 〉 such that

U [|ψ〉⊗ |00〉] = |ξ 〉⊗
[
⊗n

i=1|Φ+〉C′iA′i
]
,

U
[
ZC

j |ψ〉⊗ |00〉
]

= |ξ 〉⊗
[
σZ

C′j ⊗n
i=1 |Φ+〉C′iA′i

]
,

U
[
XC

j |ψ〉⊗ |00〉
]

= |ξ 〉⊗
[
σX

C′j ⊗n
i=1 |Φ+〉C′iA′i

]
,

U
[
YC

j |ψ〉⊗ |00〉
]

= σX
C′′j |ξ 〉⊗

[
σY

C′j ⊗n
i=1 |Φ+〉C′iA′i

]
,

for every j ∈ {1,2, . . .n}, where |ξ 〉 takes the form

|ξ 〉= ∑
q̄
|ξq̄〉CA0⊗|q̄q̄〉C′′A′′0 (8.32)

and the sum is over all bit strings q̄ = (0,1)n

The proof of the above Lemma can be found in Appendix B. Note that since the
self-tested measurements are extremal then the above statement must hold not only for
the operators Z j, X j, Y j but for each of the observables Oi|z appearing in their definition,
which implies that the input zi indeed corresponds to the desired Pauli measurement on the
correct subspace. The measurement σZ

C′′j on the state |ξ 〉 again plays the role of deciding

whether the measurement σ
C′j
Y or −σ

C′j
Y is performed on the maximally entangled state.

However, note that due to the form of |ξ 〉, this is not guaranteed to be correlated with the
other measurements of σY on different local subspaces. As a result, one cannot equate this
freedom to a local transposition on all of Charlie’s subsystems, as needed from definition
9.1. In the following section we show how to overcome this problem by introducing
additional measurement for Alice.

8.2.3 Aligning reference frames
As mentioned, Lemma 9.6 suffers from one drawback, namely that the y direction for each
of Charlie’s local subsystems need not be aligned. For example, if we take the case n = 2,
Lemma 9.6 gives four possibilities for Charlie’s effective measurements on the maximally
entangled state given by {σX,±σY,σZ}⊗{σX,±σY,σZ}. The probability that each of
these strategies is used is unknown and could, for example, be 1

4 for each. In this case,
when the first subsystem measures σY, the second subsystem has equal probability to
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Figure 8.4: Graphical representation of the additional measurements performed by Alice
for x = ♦ and x = �. Boxes between subspaces represent Bell state measurements.

measure either σY or −σY. This lack of alignment is an artefact from performing the
protocol of Lemma 9.5 in parallel without trying to introduce any dependencies between
the n individual self-tests. In the following we show that one can further restrict the the
state |ξ 〉 to be of the form

|ξ 〉= |ξ0〉⊗ |00 · · ·0〉C′′A′′0 + |ξ1〉⊗ |11 · · ·1〉C′′A′′0 (8.33)

by introducing additional Bell state measurements between subsystems of Alice. Since
|ξ 〉 now has only two terms, the flipping of the σY measurements is always correlated;
either none of the measurements are flipped (each subsystem measures σY) or all the
measurements are flipped (each subsystem measures −σY). We note that a similar result
was recently obtained in [CGJV17].

To illustrate the basic idea let us again consider the case n = 2, and assume we adopt
the ideal measurement strategy (i.e. the strategy (8.10) in parallel). We now add an ad-
ditional Bell state measurement for Alice which she performs on her two halves of the
maximally entangled states. If Alice receives the outcome corresponding to the projector
|Φ+〉〈Φ+|, via entanglement swapping Charlie will hold the state |Φ+〉 in his local subsys-
tem (for the other outcomes he will hold a different Bell state). This state has correlations
〈Φ+|σX⊗σX |Φ+〉 = +1, 〈Φ+|σY⊗σY |Φ+〉 = −1, 〈Φ+|σZ⊗σZ |Φ+〉 = +1. Hence, in
order to reproduce these correlations, the direction of Charlie’s two measurements of σY
need to be correlated as otherwise we would not have perfect anti-correlation for the mea-
surement σY⊗σY. In the following we formalize this intuition to strengthen Lemma 9.6
so that |ξ 〉 is of the form (8.33).

The precise scenario we consider is the following. In addition to the 6n measure-
ments of Lemma 9.6 given by the vector x, Alice has two extra measurements denoted
by x = ♦ and x = �. These measurements have respectively 4m and 4m′ outcomes, where
m = bn

2c and m′ = bn−1
2 c, which are grouped into the vectors a = (a1,a2, · · · ,am) and

a = (a1,a2, · · · ,am′) with ai = 0,1,2,3. We denote by Πa,♦ and Πa,� the projectors corre-
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1 Z2l−1Z2l X2l−1X2l Y2l−1Y2l

Sl,0
1
4

1
4

1
4 −1

4

Sl,1
1
4

1
4 −1

4
1
4

Sl,2
1
4 −1

4
1
4

1
4

Sl,3
1
4 −1

4 −1
4 −1

4

1 Z2lZ2l+1 X2lX2l+1 Y2lY2l+1

Tl,0
1
4

1
4

1
4 −1

4

Tl,1
1
4

1
4 −1

4
1
4

Tl,2
1
4 −1

4
1
4

1
4

Tl,3
1
4 −1

4 −1
4 −1

4

Table 8.1: Elements of the table give correlation 〈ψ|C⊗R |ψ〉 where C is the operator
labelling the column and R the operator labelling the row.

sponding to the outcomes of these measurements and define the projectors for l = 1, · · · ,n

Sl,a∗ = ∑
a:al=a∗

Πa|♦, Tl,a∗ = ∑
a:al=a∗

Πa|�, (8.34)

that is, the projectors onto the the subspace corresponding to al = a∗ for the two measure-
ments.

To generate our self-testing correlations we use the same strategy as Lemma 2 for
the inputs x and z. The two new measurements for Alice x = ♦,� correspond to Bell
state measurements between successive pairs of qubits of her system, where the Bell
state measurements for the input � are shifted with respect to those for ♦ (see Fig. 8.4).
Specifically,

Πa,♦ =

b n
2 c⊗

l=1

|Ψai〉〈Ψai|A2l−1A2l (8.35)

Πa,� =

b n−1
2 c⊗

l=1

|Ψai〉〈Ψai|A2lA2l+1, (8.36)

where {|Ψ0〉 , |Ψ1〉 , |Ψ2〉 , |Ψ3〉} = {|Φ+〉 , |Φ-〉 , |Ψ+〉 , |Ψ-〉}. With this choice, the corre-
lations are given by Table 8.1, which follow from the correlations of the four Bell states.
We are now ready for our final self-testing lemma (see Appendix C).
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Lemma 9.7. Let the state |ψ〉 ∈H C⊗H A0 and ±1 outcome observables XC,YC,ZC,DA0
x,z,

EA0
x,z,D

A0
x,y, EA0

x,y,D
A0
y,z,E

A0
y,z satisfy the conditions of Lemma 9.6 so that |ξ 〉 has the form

(8.32). Furthermore, let projectors Sl,a∗ and Tl,a∗ satisfy the correlations given in Tables
8.1 for all l. Then |ξ 〉 has the form

|ξ 〉= |ξ0〉⊗ |0 . . .0〉+ |ξ1〉⊗ |1 . . .1〉 . (8.37)

Note that |ξ 〉 now has the form of definition 9.1 as desired.

8.3 Entanglement certification
In this section we show how to make use of the preceding self-testing results to construct
device-independent entanglement certification protocols for all bipartite entangled quan-
tum states. The precise scenario that we consider is a quantum network featuring three
bipartite states: ρAB shared between Alice and Bob, and two auxiliary states ρCA0 and
ρB0D shared between Charlie and Alice, and Bob and Daisy respectively. Thus we have
ρAB ∈ B(H A⊗H B), ρCA0 ∈ B(H C⊗H A0) and ρB0D ∈ B(H B0⊗H D). We are in-
terested in certifying the entanglement of the state ρAB when placed in a line network (see
Fig. 8.1) featuring the auxillary states ρCA0 and ρB0D. In such a network, the correlations
{p(c,a,b,d|z,x,y,w)} are given by:

p(c,a,b,d|z,x,y,w) = tr
[(

MC
c|z⊗MA0A

a|x ⊗MBB0
b|y ⊗MD

d|w
)(

ρ
CA0⊗ρ

AB⊗ρ
B0D)] ,

(8.38)

where the Mi| j are the local measurement operators for each party. In the device-independent
scenario, one only has access to the observed correlations p(c,a,b,d|z,x,y,w). Hence, a
device-independent certification of the entanglement of ρAB is possible only if the ob-
served correlations cannot be reproduced by (8.38) for any separable ρAB. That is, one
must show

p(c,a,b,d|z,x,y,w) 6= tr
[(

M′Cc|z⊗M′A0A
a|x ⊗M′BB0

b|y ⊗M′Dd|w
)(

ρ
′CA0⊗ρ

AB
SEP⊗ρ

′B0D)]
(8.39)

for any choice of separable ρAB
SEP, and any local measurement operators M′i| j and auxillary

states ρ ′CA0 and ρ ′B0D. Note that the auxiliary states may be entangled and that since we
impose no constraints on the dimension of the auxiliary systems in (8.39), we may purify
them and take all measurements to be projective without loss of generality.

As we work in the device-independent scenario, all devices are treated as black boxes
that process classical information. The precise assumptions we then make about the ex-
periment are as follows.

1. States and measurements are described by quantum mechanics
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2. The rounds of the experiment are independent and identically distributed (i.i.d.)

3. The network of Fig. 8.1 correctly describes the experimental setup

The first assumption is standard in device-independent studies. The second one appears
in some cases and ideally one would like to drop it, but for simplicity we keep it here (see
[DFR16, AFR16] for some recent progress) . The last assumption is required so that we
may write our probabilities in the form (8.38). Physically this assumption means that one
is able to prepare the three states independently and that they are trusted to interact in the
way described by the network of Fig. 8.1 (for example the state ρCA0 should only interact
with Charlie and Alice and not Bob or Daisy).

8.3.1 Certification protocols
We now present our entanglement certification protocols. These can be seen as a device-
independent extension of the measurement device-independent entanglement witnesses
(MDIEWs) presented in previous works [Bus12, BRLG13, Ver+16]. There, measure-
ment devices are treated as black boxes, however inputs are given as a set of known
informationally complete quantum states (in contrast to using classical variables as in-
puts). Then, an entanglement certification protocol can be built for every entangled state
starting from an entanglement witness for the state. However, since this scheme requires
a set of trusted input quantum states it is only partially device-independent. To see how
these protocols can be made fully device-independent (i.e. how to remove the trust on
the input states) consider that in the network of Fig. 8.1 the auxiliary states are given
by maximally entangled states and that the complete set of projectors for Charlie’s (resp.
Daisy’s) measurements form an informationally complete set. This can in fact be certified
device-independently using the self-testing protocols of the first part of the chapter (see
Lemma 9.5, Lemma 9.6 and Lemma 9.7). With this, the states that Alice (Bob) receives
in the Hilbert space H A0 (H B0) conditioned on the different inputs and outputs of Char-
lie (Daisy) also form an informationally complete set. By interpreting these states as the
inputs in a MDIEW protocol, one is essentially in the MDIEW scenario and the same
techniques can be applied. Here, one has to be a bit careful due to the issue of transpo-
sition encountered in the self-testing sections, which we deal with in the supplementary
material.

We now formalize this intuition and move to the main result of this section.

The entanglement of all bipartite entangled states can be certified device-independently
in the network of Fig. 8.1.
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In order to show this, we give an explicit family of entanglement certification protocols.
The protocols we consider have the same structure for all states and are summarized as
follows:

* [generation of correlations] The parties perform local measurements on their subsys-
tems to obtain the correlations p(c,a,b,d|z,x,y,w).

* The following is then verified:

* [self-testing] The marginal distributions p(c,a|z,x) and p(b,d|y,w) maximally vio-
late a Bell inequality that certifies that the auxiliary states each contain a maximally
entangled state and that Charlie and Daisy each perform Pauli measurements on their
subsystems.

* [entanglement certification] The correlations violate an additional inequality

I (p(c,a,b,d|z,x,y,w)≥ 0

that certifies ρAB is entangled.

For now, we have the unrealistic requirement that we have a maximum violation of a Bell
inequality in step (ii). This can be weakened to allow for some noise on the statistics,
which we discuss in the publication [BŠCA18a]. We now describe in detail the above
protocol, starting with the case of two-qubit states.

8.3.2 Entanglement certification of all two-qubit entangled states
We start by defining the scenario in which we work. Charlie and Daisy both have a choice
of three measurements z,w = 1,2,3 and Alice and Bob both have a choice of seven inputs
x,y = 1,2,3,4,5,6,?. All outputs are ±1 valued.

(i) Generation of correlations— To generate the correlations in step (i) of the protocol,
the parties chose ρCA0 = ρB0D = |Φ+〉〈Φ+|. Measurements for inputs z = 1,2,3 and
x = 1, · · · ,6 for Charlie and Alice should be chosen so that the conditions of Lemma 9.5
are satisfied, i.e. given by the qubit observables

σZ, σX, σY z = 1,2,3 (8.40)
σZ±σX√

2
,

σZ±σY√
2

,
σX±σY√

2
x = 1, · · ·6 (8.41)

acting on the H C and H A0 spaces respectively. Measurements for Daisy and Bob are
defined analogously. Lastly, the measurement operators for inputs x = ?, y = ? are pro-
jections onto the maximally entangled state:

MAA0
+|? =MB0B

+|? = |Φ+〉〈Φ+|. (8.42)
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(ii) Self-testing— Our next step is to define the Bell inequality used in step (ii) of the
protocol. Here we focus on Charlie and Alice; the Bell inequality used by Daisy and Bob
is the same. The inequality we consider is constructed by combining three CHSH Bell
inequalities [CHSH69]. Define the expectation value for inputs z, x as

Ez,x = ∑
c,a=±1

c ·a p(c,a|z,x). (8.43)

We then define the triple CHSH Bell inequality

J = E1,1 +E1,2 +E2,1−E2,2

+E1,3 +E1,4−E3,3 +E3,4

+E2,5 +E2,6−E3,5 +E3,6. (8.44)

Note that each line in the above is a CHSH inequality, and each of Charlie’s inputs appears
in two of the lines, and that at this stage the inputs x,y= ? remain unused. Using the states
and measurements above one finds J = 6

√
2. Via Lemma 9.5, this provides a self-test

of the auxiliary states and measurements of Charlie and Daisy defined in step (i), up to
local transposition. While our protocol is based on ’chaining’ CHSH inequality, any other
self-test of the maximally entangled pair of qubits and three Paili observables would work
as well.

Entanglement certification— Our next task is to construct the inequality used in the
final step of the protocol. The inequality is constructed from an entanglement witness W
for the state ρAB. We thus have tr[W σ ]≥ 0 for all separable states σ and tr[W ρAB]< 0.
Consider the projectors πc|z =

1
2 [1+ cσZ] with c = ±1 and z = 1,2,3, that is, projec-

tors onto the plus and minus eigenspaces of the Pauli operators. Since these form an
(over-complete) basis of the set of Hermitian matrices, any entanglement witness may be
decomposed as

W = ∑
cdzw

ω
zw
cd πc|z⊗πd|w. (8.45)

To define our inequality, we make use of the additional inputs for both Alice and Bob
x = ? and y = ?. The inequality is then given by

I = ∑
cdzw

ω
zw
cd p(c,+,+,d|z,x = ?,y = ?,w)≥ 0 (8.46)

and is satisfied for all separable states but violated using ρAB. We first show that one can
achieve I < 0 for entangled ρ〉B. Using the states and measurements defined above one
has

p(c,+,+,d|z,x = ?,y = ?,w) = (8.47)

tr
[
πc|z⊗|Φ+〉〈Φ+|⊗ |Φ+〉〈Φ+|⊗πd|w |Φ+〉〈Φ+|⊗ρ

AB⊗|Φ+〉〈Φ+|
]

=
1
4

tr
[
|Φ+〉〈Φ+|⊗ |Φ+〉〈Φ+|πT

c|z⊗ρ
AB⊗π

T
d|w
]

(8.48)

=
1
16

tr
[
πc|z⊗πd|w ρ

AB] , (8.49)

194



where we have used trA[|Φ+〉〈Φ+|πA
i| j⊗1] = 1

2πT
i| j in the third and fourth line. One thus

has

I =
1

16 ∑
czdw

ω
zw
cd tr[πc|z⊗πd|w ρ

AB] (8.50)

I =
1

16
tr[W ρ

AB]< 0, (8.51)

which follows from the fact that W is an entanglement witness for the state.

For separable sates, one sees that if the auxiliary states and measurements the same as
above, then from (8.51) one has I ≥ 0 from the fact that W is an entanglement witness.
Moreover, one can show that given maximal violations of (8.44) in the previous part of
the protocol, then for any auxiliary states and measurements one has

I = tr
[
W Λ(ρAB)

]
, (8.52)

where Λ is a local, positive map on separable quantum states and so I ≥ 0 (see Appendix
D.1). A crucial observation in the proof of the above is that although the measurements
for Charlie and Daisy are only certified via self-testing up to a possible transposition,
this uncertainty can be mapped to possible local transpositions on the state ρAB. Since
local transpositions map separable states to separable states, this then allows for the same
technique as [BRLG13] to be applied. More precisely, in some instances the witness W
is measured, and in other the witness W TA is measured instead. But given that

tr
[
W ρsep

]
> 0,

it also holds
tr
[
W TAρsep

]
= tr

[
W ρ

TA
sep
]
> 0,

because ρ
TA
sep must be separable.

8.3.3 Entanglement certification of high dimensional states
The previous protocol for two-qubit states can be applied in parallel to construct entan-
glement certification protocols for bipartite states of any dimension. In the following we
construct protocols for states of local dimension 2n where n = 2,3, · · · . Since a state of
local dimension d can be seen as a particular case of a state of dimension 2n for some
n≥ log2 d this implies a protocol for any dimension.

The scenario we consider is as follows. Charlie and Daisy each have 3n inputs, given
by the vectors z = (z1, · · · ,zn) and w = (w1, · · · ,wn) with zi,wi = 1,2,3, each with 2n out-
comes given by c = (c1, · · · ,cn) and d = (d1, · · · ,dn) with ci,di =±1. Alice and Bob each
have 6n inputs given by the vectors x = (x1, · · · ,xn), y = (y1, · · · ,yn) with xi,yi = 1, · · · ,6,
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with outcomes a = (a1, · · · ,an), b = (b1, · · · ,bn) with ai,bi = ±1. Further to this Alice
and Bob have each two additional inputs x = ♦,� and y = ♦,� with 4b

n
2 c and 4b

n−1
2 c out-

puts respectively (as in Lemma 9.7), and inputs x = ? and y = ? with outputs a = ±1,
b =±1 (to be used in step (iii) of the protocol).

(*) Generation of correlations— Since we will perform the previous protocol in paral-
lel, the Hilbert spaces of the auxiliary systems are written as the tensor product of n qubit
spaces: H C = ⊗iH Ci , H A0 = ⊗iH Ai (and similarly for Daisy, Bob). The auxiliary
states are then n-fold tensors of maximally entangled states on each two-qubit subspace:

ρ
CA0 =⊗n

i=1|Φ+〉〈Φ+|CiAi; ρ
B0D =⊗n

i=1|Φ+〉〈Φ+|BiDi.

Measurements are a parallel version of the measurements (8.40), (8.41), i.e. they are given
by n-fold tensor products of the measurements (8.40), (8.41), acting on each maximally
entangled state. For example zi = 1,2,3 corresponds to a measurement of σZ,σX,σY on
the ith subsystem of Charlie with outcome ci. As before, the measurements M+|? are
projections onto the maximally entangled state:

MAA0
+|? =MB0B

+|? = |Φ+〉〈Φ+| (8.53)

where here |Φ+〉 = 1√
2n ∑i |ii〉 ∈H C⊗H A0 . Finally, the measurements for the inputs

x,y = ♦,� are chosen to be tensor products of Bell state measurements between succes-
sive pairs of qubits of the local subsystems of Alice and Bob, and where the Bell state
measurements for the input ♦ are shifted with respect to those for � (see Fig. 8.4 and
Section 8.2.3 for more details).

(**) Self-testing— The Bell inequality is now a parallel version of (8.44) (again we
just describe the inequality for Charlie and Alice). Define the average expectation value
for the bits ci, ai given zi = z, xi = x as

E i
z,x =

1
3n−16n−1 ∑

z|zi=z
x|xi=x

∑
c,a

ci ·ai p(c,a|z,x). (8.54)

For each i, we now have the triple CHSH Bell inequality:

Ji = E i
1,1 +E i

1,2 +E i
2,1−E i

2,2

+E i
1,3 +E i

1,4−E i
3,3 +E i

3,4

+E i
2,5 +E i

2,6−E i
3,5 +E i

3,6. (8.55)

For the entanglement certification protocol we require maximum violation of each of
these inequalities, i.e.

n

∑
i=1

Ji = n ·6
√

2. (8.56)
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We further require that the measurements x,y = ♦,� correctly reproduce the Bell state
measurement correlations given in tables 8.1, which is achieved by our chosen measure-
ment strategy and detailed in section 8.2.3. With these conditions met, we may apply
Lemma 9.7 and move on to the entanglement certification of ρAB.

(***)Entanglement certification— Similarly to (8.45), we may decompose an entan-
glement witness for ρAB ∈ ⊗i[H Ai ⊗H Bi] using tensor products of Pauli projectors as
an (over-complete) basis:

W = ∑
c,d,z,w

ω
zw
cd ⊗i

[
π

Ai
ci|zi
⊗π

Bi
di|wi

]
. (8.57)

The inequality that is used to certify entanglement is then

I = ∑
c,d,z,w

ω
zw
cd p(c,+,+,d|z,x = ?,y = ?,w)≥ 0, (8.58)

which for separable states gives

I = tr
[
W Λ(ρAB)

]
≥ 0, (8.59)

where Λ is again a local positive map on separable states (see supplementary material D.2
for a full proof). Note here that simply using two-qubit strategy in parallel (i.e. using
Lemma 9.6) without the additional Bell state measurements for inputs x,y = ♦,� would
lead to problems. This is because the measurements for Charlie and Daisy would be
certified only up to possible flipping of any number of their n σY measurements. When
mapping this uncertainty to the state ρAB, this corresponds to possible local transposition
on part of a local subsystem of ρAB, which may map separable states to unphysical (non-
positive) states. Hence, the additional Bell state measurements ensure that either none
or all σY measurements are flipped, corresponding to a transposition of the entire local
subsystem of ρAB so that the map Λ is positive on separable states.

Finally, we show that I is violated by ρAB. Using the measurement strategy above
and that trA[|Φ+〉〈Φ+|πA

i| j⊗1] = 1
d πT

i| j for the maximally entangled state of dimension d,
it is straightforward to show using the same technique as (8.47) - (8.49) that

I =
1
d4 ∑

c,d,z,w
ω

zw
cd tr

[
⊗i

(
π

Ai
ci|ui
⊗π

Bi
di|wi

)
ρ

AB
]

(8.60)

=
1
d4 tr

[
W ρ

AB]< 0, (8.61)

thus certifying the entanglement of ρAB.
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8.4 Discussion
We have shown that all bipartite entangled quantum states are capable of producing corre-
lations that cannot be obtained using separable states by placing them in a larger network
of auxiliary states and using tools from self-testing and measurement device-independent
entanglement witnesses. It is desirable to strengthen the self-testing part of our protocol;
in particular, improved robustness bounds for self-testing would immediately translate
into better noise-tolerance of our protocols. One would most likely be able to achieve this
using the protocols presented in [CGJV17] where self-testing statements for Pauli observ-
ables are presented with a robustness scaling that is independent of n. Furthermore, the
choice of measurements used for self-testing could be made much more efficient. In gen-
eral, one needs d2 linearly independent projectors to form an informationally complete
set, however for local dimension 2n we make use of an over-complete basis of 6n projec-
tors (coming from the tensor product of Pauli projectors), a difference that is exponential
in n. Hence, a more efficient self-test of informationally complete sets of measurements
would improve the efficiency of the protocol. Furthermore, given a particular state, one
typically does not need the full set of projectors in order to write an entanglement witness
for the state. It would therefore be interesting to study self-testing protocols that certify
only those projectors that appear in a particular decomposition of an entanglement wit-
ness.

Although we have focused on the task of entanglement certification, our technique can
in principle be applied to other convex sets of quantum states other than the separable set
where linear witnesses can also be used. Due to the ambiguity of local unitaries and local
transpositions in the self-testing part of our protocol, such sets would need to be closed
under local unitary operations and local transpositions (as is the case for the separable
set). For example, one could apply the same technique to certify entangled states with
negative partial transpose. Finally, it would also be interesting to investigate the possibil-
ity of using our general technique for other device-independent tasks, for example using
similar ideas to [LPTRG13, LCQ12, BP12] to construct device-independent quantum key
distribution protocols, or to generalize our protocol for the certification of genuine multi-
partite entanglement.
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Chapter 9

Conclusion and outlook

The main topic of this thesis is the certification of quantum resources which can be used
in quantum information protocols. Anticipating the significance quantum devices will
have in cryptographic and computational tasks, it is crucially important to build reliable
certification techniques. In any certification task the first step is the choice of initial as-
sumptions. Since quantum information protocols are usually subject to various kinds of
adversarial activities, the fewer the assumptions about a device to be certified, the stronger
the certification. In such circumstances the device-independent scenario gained a lot of
attention as it relies on a very small amount of reasonable assumptions. In the first part of
this thesis we explored one of the most fundamental device-independent protocols, that
of self-testing, i.e. the device-independent certification of a certain quantum state. In the
second part we considered the certification of quantum resources centred around a relax-
ation of the device-independent scenario, the so-called measurement-device-independent
scenario. We explored ways to estimate the amount of entanglement in this scenario and
later, by connecting these results to self-testing, we suggested a protocol for the device-
independent detection of all entangled states. We also identified quantum state telepor-
tation as a native measurement-device-independent protocol and explored its properties
from this new point-of-view. In this last chapter we briefly recall the achieved results, out-
line their significance and discuss the open questions and directions for future research.

Self-testing

When it comes to self-testing our aim was to find new self-testing protocols and extend
the validity of the known ideas in unexplored regions. Going in that direction in Chapter
3 we proved that chained Bell inequalities can be used to robustly self-test a maximally
entangled pair of qubits and a large class of real quantum measurements. The self-testing
proof is largely based on the 2nd order SOS decomposition of the shifted chained Bell
operator. This result enabled to prove that chained Bell inequalities are useful for ran-
domness generation, as conjectured in previous works. Though our self-testing protocol
is proven to be robust, the robustness bounds get worse when the number of measure-
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ments increases. To make our protocol more useful for practical purposes the imminent
aim would be to improve the scaling of robustness bounds with the number of inputs.
The authors of [BKP06] introduced a generalisation of chained Bell inequalities that is
maximally violated by the maximally entangled pair of qudits. It would be interesting to
see if our self-testing protocol generalizes to this class of Bell inequalities.

Another research direction presented in this thesis is the self-testing of multipartite
quantum states, presented in Chapter 4. Prior to our work, not much was known about
this topic. We showed that the method previously used to self-test tripartite W -state can
be used to self-test large classes of multipartite qubit states. Furthermore, we used the
extension of this method to formulate the first self-test of a multipartite qudit state. A nat-
ural question is if this method extends its validity to self-testing of arbitrary multipartite
pure entangled quantum states. It seems that for a generic state without any symmetries
the number of measurements necessary for self-testing would increase polynomially with
the number of parties. A big challenge is to understand if it is possible to self-test such
non-symmetric states with a constant number of measurements.

Finally, in Chapter 5 we explored the properties of self-testing in the semi-device-
independent scenario native to EPR steering. We defined two approaches to self-testing in
this scenario, correlation-based and assemblage-based, and compared their performance
to that of standard device-independent self-testing. While analytical bounds scale bet-
ter in semi-device-independent scenario, the assymptotical behaviour of the robustness
bounds is the same as for device-independent protocols, i.e. the improvement is constant.
However, analytical proofs tend to be simpler and we believe that exploring self-testing
in steering scenarios can be used as an intermediate step towards solving some difficult
questions in standard self-testing protocols. For example, finding truly robust self-testing
protocols for high-dimensional bipartite quantum states seems to be a difficult problem.
Exploring semi-device-independent variant could give valuable insights in what can be
achieved. Notably, it would give lower bounds on the robustness of device-independent
protocol, since the robustness in the semi-device-independent scenario can only be better.

Certification of quantum resources and measurement-device-independent scenario

Certification tasks can be done device-independently whenever the system under con-
sideration exhibits nonlocal correlations. For example, device-independent entanglement
detection relies on the violation of a Bell inequality. However, since not all entangled
states violate Bell inequalities not all of them can be detected in a device-independent
manner. A solution to this problem came through the measurement-device-independent
(MDI) scenario. In Chapter 6 we went a step further from just detecting bipartite en-
tanglement and discussed the quantification of entanglement in the MDI scenario. We
showed how one can put a lower bound on the entanglement negativity and robustness of
entanglement present in quantum networks. Besides entanglement, we explored how the
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MDI scenario affects randomness generation. Contrarily to the device-independent sce-
nario, we showed that in the MDI scenario randomness generation is not tied to nonlocal
correlations but to the inability of an eavesdropper to perfectly distinguish quantum states
that the parties use as inputs to their black boxes. In accordance with this, we proved that
randomness can be generated from single party experiments and in bipartite experiments
even from separable states. There are several directions for future research related to the
results presented in Chapter 6. Going beyond detecting and quantifying entanglement
in the MDI scenario it may be of interest to explore certification of quantum states, i.e.
MDI variant of self-testing. When it comes to randomness generation it is interesting
to see how MDI randomness generation compares to the other semi-device-independent
randomness generation protocols. Finally, we explored the case when parties have fully
characterized preparation devices. One may wonder how the security proofs are affected
if we consider a situation in which the parties prepare characterized mixed states but an
eavesdropper might hold the purifications.

The topic of Chapter 8 is closely related to the topic of Chapter 6. Since all entan-
gled states can be detected in the MDI scenario, the main idea of Chapter 8 is to make
MDI detection of entanglement witnessing device-independent. This can be done with
the aid of the main subject of the first part of the thesis, self-testing. Two parties, Alice
and Bob, want their quantum states which they use as quantum inputs to be prepared by
two additional spatially distant parties, Charlie and Daisy. This is possible if Alice and
Bob share with Charlie and Daisy maximally entangled pairs of qudits. By applying the
appropriate measurement on their share of maximally entangled pairs Charlie and Daisy
can conveniently steer Alice’s and Bob’s shares which they later use as quantum inputs.
Self-testing methods are employed to ensure that Charlie and Daisy apply projective mea-
surements on maximally entangled pairs of qudits. In this way, any entangled bipartite
state when put in a small quantum network consisting of four parties can produce overal
conditional probability distributions which cannot be reproduced by any separable state.
There are several open questions regarding the topic of device-independent detection of
all entangled states and the method presented in Chapter 8. Right away, it would be useful
to explore the robustness of the protocol and to try to make the whole method closer to
potential experimental applications. The bottleneck of all considerations regarding the
presence of noise and experimental imperfections is the robustness of the self-testing part
of the protocol. When it comes to the application of our methods it would be very inter-
esting to see if similar methods can be used for the (measurement-)device-independent
detection of Gaussian entangled states. Another MDI protocol where our methods could
be useful is measurement-device-independet quantum key distribution.

Finally, in Chapter 7 we discussed various aspects of the quantum state teleportation.
The crux of the whole chapter is identifying quantum state teleportation as a one-sided
measurement-device-independent protocol. This insight allowed us to apply well-known
methods from the MDI scenario to the study of teleportation. The main insight is that all
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entangled states are capable of producing teleportation data which cannot be simulated
with classically correlated states. This is in clear contrast with previous approaches to
characterising the non-classicality of teleportation based on the average teleportation fi-
delity. According to that benchmark some classes of entangled states, among which are
all bound entangled states, are useless for teleportation. We provided an semi-definite-
programming optimization which checks if there is a classical simulation of the given
teleportation data. The dual form of provides a teleportation witness, whose violation
indicates the non-classicality of the teleportation protocol. Furthermore, we introduced
ways to quantify the non-classicality of teleportation. The introduced teleportation quan-
tifiers can be used to put a lower bound on several entanglement measures, such as entan-
glement negativity, robustness of entanglement or the best separable approximation. The
first open question related to the results presented in Chapter 7 is whether similar meth-
ods can be used to characterize the non-classicality of continuous variable teleportation.
Finally, we are interested to explore the fundamental role of entanglement in more com-
plicated protcols based on teleportation such as measurement-based quantum computing
or quantum repeaters.
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Appendix A

Proof of Lemma 9.5

In this section we prove Lemma 9.5 from the main text. Define the following operators:

ZA0
x,z =

DA0
x,z +EA0

x,z√
2

, XA0
x,z =

DA0
x,z−EA0

x,z√
2

, ZA0
y,z =

DA0
y,z +EA0

y,z√
2

,

YA0
y,z =

DA0
y,z−EA0

y,z√
2

, XA0
x,y =

DA0
x,y−EA0

x,y√
2

, YA0
x,y =

DA0
x,y +EA0

x,y√
2

. (A.1)

From the (8.14) – (8.16) we have

ZA0
x,z |ψ〉= ZA0

y,z |ψ〉 , XA0
x,z |ψ〉= XA0

x,y |ψ〉 , YA0
y,z |ψ〉= YA0

x,y |ψ〉 . (A.2)

Hence, defining

ZA0 ≡ ZA0
x,z, XA0 ≡ XA0

x,z, YA0 ≡ YA0
y,z (A.3)

we have from (8.14) – (8.17) the conditions

ZC |ψ〉= ZA0 |ψ〉 , XC |ψ〉= X〉 |ψ〉 , YC |ψ〉=−YA0 |ψ〉 , (A.4)

{ZC,XC}|ψ〉= 0, {ZC,YC}|ψ〉= 0, {YC,XC}|ψ〉= 0, (A.5)

{ZA0,XA0}|ψ〉= 0, {ZA0,YA0}|ψ〉= 0, {YA0,XA0}|ψ〉= 0. (A.6)

Note that the operators ZA0 , XA0 , YA0 are not necessarily unitary. We may define the
regularized versions of these operators ẐA0 , X̂A0 , ŶA0 which are obtained from the orig-
inal operators by renormalising all eigenvalues to ±1 and setting any zero eigenvalues
to 1 (without changing the eigenvectors). Using standard techniques (for example see [?
ŠASA16]) one can show that the regularized operators respect the same conditions, that
is,

ZC |ψ〉= ẐA0 |ψ〉 , XC |ψ〉= X̂A0 |ψ〉 , YC |ψ〉=−ŶA0 |ψ〉 , (A.7)

{ZC,XC}|ψ〉= 0, {ZC,YC}|ψ〉= 0, {YC,XC}|ψ〉= 0, (A.8)

{ẐA0, X̂A0}|ψ〉= 0, {ẐA0, ŶA0}|ψ〉= 0, {ŶA0, X̂A0}|ψ〉= 0. (A.9)
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Let us prove the first equality from (A.7), the other two being analogous. The following
chain of equalities is satisfied

||(ẐA0−ZA0) |ψ〉 ||= ||(1− (Ẑ†)A0ZA0) |ψ〉 ||= ||(1−|ZA0|) |ψ〉 ||
= ||(1−|ZCZA0|) |ψ〉 || ≤ ||(1−ZCZA0) |ψ〉 ||= 0,

where the first equality comes from the fact that (Ẑ†)A0 is unitary, the second equality just
uses the definition of ẐA0 . The third equality is equivalent to |ZCZA0| = |ZA0|, which is
correct because ZC is unitary. The inequality is a consequence of A≤ |A|, and finally the
last equality is the consequence of (A.4).

We may now verify equations (8.19) to (8.23) of Lemma 9.5 using the above condi-
tions. The precise isometry that we use is shown in Fig. 8.3. We first verify that the circuit
acts correctly on the state |ψ〉CA0 . Up to and including the second set of controlled gates
the circuit is the well known SWAP circuit, and it is well known (see e.g. [? ]) that this
extracts the maximally entangled state in to the primed auxiliary systems. At this point
our state is thus

|++〉C′′A′′0 1+ZC
√

2
|ψ〉CA0⊗|Φ+〉C′A′0 . (A.10)

Let us denote |φ〉CA0 = 1√
2
[1+ZC] |ψ〉CA0 . The third pair of controlled gates evolves the

system to

1
2

[
|00〉C′′A′′0 |φ〉CA0 + |01〉C′′A′′0 iŶA0X̂A0 |φ〉CA0 + (A.11)

+ |10〉C′′A′′0 iYCXC |φ〉CA0−|11〉C′′A′′0 YCXCŶA0X̂A0 |φ〉CA0

]
|Φ+〉C′A′0 .

From (A.7) - (A.9) it follows that ŶA0X̂A0 |φ〉CA0 = YCXC |φ〉CA0 and so

1
2

[
|00〉C′′A′′0 |φ〉CA0 + |01〉C′′A′′0 iYCXC |φ〉CA0 + |10〉C′′A′′0 iYCXC |φ〉CA0 + |11〉C′′A′′0 |φ〉CA0

]
|Φ+〉C′A′0 .

(A.12)

Finally the last two Hadamards lead to

1
2
√

2

[
|00〉C′′A′′0 (1+ iYCXC)(1+ZC) |ψ〉CA0 + |11〉C′′A′′0 (1− iYCXC)(1+ZC) |ψ〉CA0

]
|Φ+〉C′A′0

(A.13)

= |ξ 〉CC′′A0A′′0 ⊗|Φ+〉C′A′0 (A.14)

as claimed. Following the same method and using (A.7) - (A.9), one easily verifies

U
(
XC |ψ〉CA0⊗|00〉

)
= |ξ 〉CC′′A0A′′0 ⊗σ

C′
X |Φ+〉C′A′0 , U

(
ZC |ψ〉CA0⊗|00〉

)
= |ξ 〉CC′′A0A′′0 ⊗σ

C′
Z |Φ+〉C′A′0 .

(A.15)
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The case YC |ψ〉CA0 ⊗ |00〉 is a bit more involved. After the second pair of controlled
gates the state is transformed to

|++〉C′′A′′0 1√
2

iYCXC(1+ZC) |ψ〉CA0 σ
C′
Y |Φ+〉C′A′0 . (A.16)

The third pair of controlled gates then transforms the state to

1
4
√

2

[
|00〉C′′A′′0 iYCXC |φ〉CA0 + |01〉C′′A′′0 |φ〉CA0 + |10〉C′′A′′0 |φ〉CA0 + |11〉C′′A′′0 iYCXC |φ〉CA0

]
σ

C′
Y |Φ+〉C′A′0 ,

(A.17)
which is simplified by two last Hadamards to

1
2
√

2

[
|00〉C′′A′′0 (1+ iYCXC)(1+ZC) |ψ〉CA0−|11〉C′′A′′0 (1− iYCXC)(1+ZC) |ψ〉CA0

]
σ

C′
Y |Φ+〉C′A′0 .

(A.18)

= σ
C′′
Z |ξ 〉CC′′A0A′′0 ⊗σ

C′
Y |Φ+〉C′A′0 (A.19)

This thus concludes the proof of Lemma 9.5.
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Appendix B

Proof of Lemma 9.6

The proof of Lemma 9.6 is split into two parts. The first part proves the necessary self-
testing relations between the state and measurements needed to construct the self-testing
circuit. The second part verifies that the circuit acts as claimed.

B.1 Self-testing relations
Here we follow closely the proof of [Col17], adapting it the allow for additional σY mea-
surements. We first define the following sets of operators:

{Z(k)
i }k = {Oi|z|zi = 1}; {X(k)

i }k = {Oi|z|zi = 2}; {Y(k)
i }k = {Oi|z|zi = 3}, (B.1)

for k = 1, · · · ,3n−1 and ordered according to some relation z< z′. Similarly we define

{D(l)
xz,i}l = {Pi|x|xi = 1}; {E(l)

xz,i}l = {Pi|x|xi = 2}; {D(l)
yz,i}l = {Pi|x|xi = 3}, (B.2)

{E(l)
yz,i}l = {Pi|x|xi = 4}; {D(l)

xy,i}l = {Pi|x|xi = 5}; {E(l)
xy,i}l = {Pi|x|xi = 6}. (B.3)

for l = 1, · · · ,6n−1 ordered according to some relation x < x′. Averaging over these sets
we thus obtain the operators in equations (8.25) - (8.29). We may now write

〈ψ|Bi |ψ〉=
1

3n−16n−1 ∑
k,l
〈ψ|
[
Z
(k)
i (D(l)

xz,i +E(l)
xz,i)+X

(k)
i (D(l)

xz,i−E(l)
xz,i)+Z

(k)
i (D(l)

yz,i +E(l)
yz,i)

−Y
(k)
i (D(l)

yz,i−E(l)
yz,i)+X

(k)
i (D(l)

xy,i +E(l)
xy,i)−Y

(k)
i (D(l)

xy,i−E(l)
xy,i)

]
|ψ〉= 6

√
2

(B.4)

for all i = 1, · · · ,n. Note that since the maximum value of the triple CHSH inequality is
6
√

2 and that the above is a convex mixture of triple CHSH inequalities for different k, l,
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for each k, l we have

〈ψ|
[
Z
(k)
i (D(l)

xz,i +E(l)
xz,i)+X

(k)
i (D(l)

xz,i−E(l)
xz,i)+Z

(k)
i (D(l)

yz,i +E(l)
yz,i) (B.5)

−Y
(k)
i (D(l)

yz,i−E(l)
yz,i)+X

(k)
i (D(l)

xy,i +E(l)
xy,i)−Y

(k)
i (D(l)

xy,i−E(l)
xy,i)

]
|ψ〉= 6

√
2.

Now, we may again use the SOS decomposition (8.12) for each i,k, l leading to

Z
(k)
i |ψ〉=

D(l)
xz,i +E(l)

xz,i√
2

|ψ〉=
D(l)

yz,i +E(l)
yz,i√

2
|ψ〉 , (B.6)

X
(k)
i |ψ〉=

D(l)
xz,i−E(l)

xz,i√
2

|ψ〉=
D(l)

xy,i +E(l)
xy,i√

2
|ψ〉 , (B.7)

Y
(k)
i |ψ〉=

D(l)
yz,i−E(l)

yz,i√
2

|ψ〉=
D(l)

xy,i−E(l)
xy,i√

2
|ψ〉 , (B.8)

which we may write as

Z
(k)
i |ψ〉= Z

(l)
i+n |ψ〉 ; X

(k)
i |ψ〉= X

(l)
i+n |ψ〉 ; Y

(k)
i |ψ〉= Y

(l)
i+n |ψ〉 , (B.9)

where

Z
(l)
i+n =

D(l)
xz,i +E(l)

xz,i√
2

, X
(l)
i+n =

D(l)
xz,i−E(l)

xz,i√
2

, Y
(k)
i |ψ〉=

D(l)
yz,i−E(l)

yz,i√
2

. (B.10)

As before, equations (B.6) – (B.8) imply mutual anti-communtation of Alice’s operators:

{Z(k)
i ,X

(k)
i }= 0; {Z(k)

i ,Y
(k)
i }= 0; {X(k)

i ,Y
(k)
i }= 0 ∀i,k (B.11)

Defining

Zi+n =
1

6n−1 ∑
l
Z
(l)
i+n; Xi+n =

1
6n−1 ∑

l
X
(l)
i+n; Yi+n =−

1
6n−1 ∑

l
Y
(l)
i+n (B.12)

we have from (B.9)

Z
(k)
i |ψ〉= Zi+n |ψ〉 ; X

(k)
i |ψ〉= Xi+n |ψ〉 ; Y

(k)
i |ψ〉=−Yi+n |ψ〉 (B.13)

for all k. Note that the operators Zi+n, Xi+n, Yi+n are not necessarily unitary. We therefore
define the regularized versions of these operators, denoted by Ẑi+n, X̂i+n and Ŷi+n, which
using standard techniques (see for example [BP15, ŠASA16]) can be shown to have the
same properties:

Z
(k)
i |ψ〉= Ẑi+n |ψ〉 ; X

(k)
i |ψ〉= X̂i+n |ψ〉 ; Y

(k)
i |ψ〉=−Ŷi+n |ψ〉 . (B.14)
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At this point we are nearly ready to construct our self-testing unitary. However, we still
need to prove that P(k)

i and P(k)
j for P ∈ {X,Y,Z} commute for i 6= j. Here, we again use

the method of [Col17] to achieve this, which we restate here. Note that for every i 6= j,
if we fix zi = 1 and z j = 1, there are 3n−2 choices for Charlie’s measurement vector z.

There are thus 3n−2 pairs of indices (k,k′) such that operators Z(k)
i and Z

(k′)
i are built from

the same set of orthogonal projectors that commute by construction. We thus have 3n−2

equations of the form

Z
(k)
i Z

(k′)
j |ψ〉= Z

(k′)
j Z

(k)
i |ψ〉 . (B.15)

Choosing a pair (k,k′) and using (B.13) and the fact that operators on Chalie and Alice’s
subsystems commute we then obtain

Z
(k)
i Zn+ j |ψ〉= Z

(k′)
j Zn+i |ψ〉 (B.16)

Zn+ jZ
(k)
i |ψ〉= Zn+iZ

(k′)
j |ψ〉 (B.17)

Zn+ jZn+i |ψ〉= Zn+iZn+ j |ψ〉 . (B.18)

In fact, by working backwards using different values of k, k′ and (B.13) again, one sees

Z
(k)
i Z

(k′)
j |ψ〉= Z

(k′)
j Z

(k)
i |ψ〉 ∀k,k′, i 6= j. (B.19)

In the same fashion, one proves

X
(k)
i X

(k′)
j |ψ〉= X

(k′)
j X

(k)
i |ψ〉 ∀k,k′, i 6= j, (B.20)

Y
(k)
i Y

(k′)
j |ψ〉= Y

(k′)
j Y

(k)
i |ψ〉 ∀k,k′, i 6= j, (B.21)

X
(k)
i Y

(k′)
j |ψ〉= Y

(k′)
j X

(k)
i |ψ〉 ∀k,k′, i 6= j, (B.22)

X
(k)
i Z

(k′)
j |ψ〉= Z

(k′)
j X

(k)
i |ψ〉 ∀k,k′, i 6= j, (B.23)

Y
(k)
i Z

(k′)
j |ψ〉= Z

(k′)
j Y

(k)
i |ψ〉 ∀k,k′, i 6= j, (B.24)

We have now finished the necessary groundwork to construct the self-testing circuit of
Lemma 9.6.

B.2 Verification of circuit
The circuit we use (see Fig. B.1) is a parallel version of the circuit used in the two qubit
case. To prove that it functions correctly, we make repeated use of the properties (B.11),
(B.14) and (B.19) - (B.24). Before the action of the first controlled gate the system is in
state

|ψ〉CA0
1

22n ∑
p,q,r,s∈(0,1)n

|p〉C′ |q〉C′′ |r〉A′0 |s〉A′′0 , (B.25)
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|+〉C
′
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|+〉C
′′
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|+〉A
′′
i

|+〉A
′
i

|ψ〉CA

Z
(k)
i

Ẑi+n

H

H

X
(k)
i

X̂i+n

iY
(k)
i X

(k)
i

iŶi+nX̂i+n

H

H

Figure B.1: Circuit diagram representing the local unitary of Lemma 2. The total unitary
consists of applying this circuit for each i= 1, · · · ,n, and k can be chosen to be any number
k = 1, · · · ,3n−1 (for example k = 1).

and after the first controlled gate the state evolves to

1
22n ∑

p,q,r,s∈(0,1)n

[
⊗n

i=1(Z
(k)
i )pi(Ẑi+n)

ri |ψ〉CA0
]
|p〉C′ |q〉C′′ |r〉A′0 |s〉A′′0 , (B.26)

where pi(ri) is the i-th element of string p(r). Hadamard gates evolve the state to

1
23n ∑

p,q,r,s∈(0,1)n

[
⊗n

i=1(1+(−1)piZ
(k)
i )(1+(−1)riẐi+n) |ψ〉CA0

]
|p〉C′ |q〉C′′ |r〉A′0 |s〉A′′0 ,

(B.27)
and the second controlled gates lead to

1
23n ∑

p,q,r,s∈(0,1)n

[
⊗n

i=1(X
(k)
i )pi(1+(−1)piZ

(k)
i )(X̂n+i)

ri(1+(−1)riẐi+n) |ψ〉CA0
]
|p〉C′ |q〉C′′ |r〉A′0 |s〉A′′0 .

(B.28)
Relations (B.14) and (B.23) allow us to simplify this to

1
23n ∑

p,q,r,s∈(0,1)n

[
⊗n

i=1(X
(k)
i )pi(1+(−1)piZ

(k)
i )(X̂n+i)

ri(1+(−1)riZ
(k)
i ) |ψ〉CA0

]
|p〉C′ |q〉C′′ |r〉A′0 |s〉A′′0 .

(B.29)
Unitarity and hermiticity of Z(k)

i implies (1+Z
(k)
i )(1−Z

(k)
i ) |ψ〉= 0 and 1

4(1+Z
(k)
i )(1+

Z
(k)
i ) |ψ〉 = 1

2(1+Z
(k)
i ) |ψ〉 so that for every i the state of the system can be further sim-

plified to obtain

1
22n ∑

p,q,s∈(0,1)n

[
⊗n

i=1(X
(k)
i )pi(1+(−1)piZ

(k)
i )(X̂n+i)

pi |ψ〉CA0
]
|p〉C′ |q〉C′′ |p〉A′0 |s〉A′′0 .

(B.30)
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This can be further simplified by using (B.11) and (B.20):

1
22n ∑

p,q,s∈(0,1)n

[
⊗n

i=1(1+Z
(k)
i ) |ψ〉CA0

]
|p〉C′ |q〉C′′ |p〉A′0 |s〉A′′0

=
1

2
3n
2

∑
q,s∈(0,1)n

[
⊗n

i=1(1+Z
(k)
i ) |ψ〉CA0

][
⊗n

i=1 |Φ+〉C′iA′i
]
|q〉C′′ |s〉A′′0 . (B.31)

Already here the state of the primed auxiliarys (extraction auxiliarys in the following
text) is n-fold tensor product of maximally entangled pairs of qubits. Since the rest of the
circuit does not affect extraction auxiliarys for the sake of simplicity it will be omitted
from the following expressions. Following the action of the third pair of controlled gates
the system evolves to

1

2
3n
2

∑
q,s∈(0,1)n

[
⊗n

i=1(iY
(k)
i X

(k)
i )qi(1+Z

(k)
i )(iŶn+iX̂n+i)

si |ψ〉CA0
]
|q〉C′′ |s〉A′′0 , (B.32)

By virtue of (B.14), (B.11), (B.24), (B.22) and (B.23) this simplifies to

1

2
3n
2

∑
q,s∈(0,1)n

[
⊗n

i=1(iY
(k)
i X

(k)
i )qi+si(1+Z

(k)
i ) |ψ〉CA0

]
|q〉C′′ |s〉A′′0 , (B.33)

Finally at the end of the circuit, after the action of the second pair of Hadamards we have:

1

2
5n
2

∑
q,s,q̄,s̄∈(0,1)n

[
⊗n

i=1(−1)q̄iqi+s̄isi(iY(k)
i X

(k)
i )qi+si(1+Z

(k)
i ) |ψ〉CA0

]
|q̄〉C′′ |s̄〉A′′0 . (B.34)

Note that each term from the sum is characterized by a pair of strings (q̄, s̄) and a set of
pairs of strings Ξ, such that q′′j + s′′j = q′j + s′j for every q′′,s′′,q′,s′ ∈ Ξ and every j. We
show that the multiplicative factor in front of every term is equal to zero whenever q̄′ 6= s̄′.
Let us assume q̄′ = s̄′. The multiplicative factor for a term corresponding to a pair of
strings q′,s′ is equal to

(−1)∑q′,s′∈Ξ, j q̄′jq
′
j+s̄′js

′
j = (−1)∑q′,s′∈Ξ, j q̄′j(q

′
j+s′j) =±1,

i.e., all the terms come with the same sign, since sum is over q′,s′ which have fixed q′j+s′j
for every j. Contrarily, in case q̄′ 6= s̄′ the multiplicative factor for a term corresponding
to a pair of strings q′,s′ is equal to

(−1)∑q′,s′∈Ξ, j q̄′jq
′
j+s̄′js

′
j = (−1)∑q′,s′∈Ξ, j q̄′j(q

′
j+s′j)+(s̄′j−q̄′j)s

′
j =

{
±1 when ∑ j s′j = 0
∓1 when ∑ j s′j = 1

= 0.
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In this case value of s′j determines the sign of the terms, and for half of the terms it is
equal 0 (one sign) and for the half it is equal to 1 (opposite sign). This means that only
terms of the sum which survive are those corresponding to q̄ = s̄.

1

2
5n
2

∑
q,s,q̄∈(0,1)n

[
⊗n

i=1(−1)q̄i(qi+si)(iY(k)
i X

(k)
i )qi+si(1+Z

(k)
i ) |ψ〉CA0

]
|q̄q̄〉C′′A′′0 . (B.35)

The sum has 23n different contributions (one for each triple q,s, q̄), but there are 22n

different terms, meaning that each term has contributions from 2n different pairs of strings
(q,s). This reduces the multiplicative factor in front of the sum to 2−

3n
2 . After summing

over q,s and making some rearrangements the expression reduces to

|ξ 〉= 1

2
3n
2

∑
q̄∈(0,1)n

[
⊗n

i=1(1+(−1)q̄iiY(k)
i X

(k)
i )(1+Z

(k)
i ) |ψ〉CA0

]
|q̄q̄〉C′′A′′0 . (B.36)

Finally, by returning the state of extraction auxiliary systems one obtains the statement
from Lemma 2:

U
[
|ψ〉CA⊗|00〉

]
= |ξ 〉⊗n

i=1 |Φ+〉C′iA′i. (B.37)

Before calculating the output of the circuit when the input is Z(k)
i |ψ〉 let us acknowledge

that Z(k)
i |ψ〉 = Z

(l)
i |ψ〉 for any two l and k, which can be seen from (B.14) which is

satisfied for any k. The same holds for X
(k)
i |ψ〉 and Y

(k)
i |ψ〉. By repeating the same

procedure as in the derivation above one can confirm two more statements from Lemma
2 for any k and j:

U
[
Z
(k)
j |ψ〉CA0⊗|00〉

]
= |ξ 〉

[
σZ

C′j ⊗n
i=1 |Φ+〉C′iA′i

]
, (B.38)

U
[
X
(k)
j |ψ〉CA0⊗|00〉

]
= |ξ 〉

[
σX

C′j ⊗n
i=1 |Φ+〉C′iA′i

]
.

The situation when the input state is Y(k)
j |ψ〉 is a bit more complicated so more details of

the derivation will be presented. After the second pair of controlled gates the state of the
system is:

1
23n ∑

p,q,r,s∈(0,1)n

[
⊗n

i=1(X
(k)
i )pi(1+(−1)piZ

(k)
i )Y

(k)
j (X̂n+i)

ri(1+(−1)riẐi+n) |ψ〉CA0
]
|p〉C′ |q〉C′′ |r〉A′0 |s〉A′′0 ,

(B.39)
which due to eqs. (B.11) and (B.24) simplifies to

1
23n ∑

p,q,r,s∈(0,1)n

[
⊗n

i=1(X
(k)
i )piY

(k)
j (1+(−1)pi⊕δi jZ

(k)
i )(X̂n+i)

ri(1+(−1)riẐi+n) |ψ〉CA0
]
|pq〉C′C′′ |rs〉A′0A′′0 ,

(B.40)
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By using (B.19), (B.11) and the fact that 1+Z
(k)
i

2 and 1−Z(k)
i

2 are projectors onto different

eigenspaces of Z(k)
i the above reduces to

1
22n ∑

q,r,s∈(0,1)n

[
⊗n

i=1(−1)ri⊕δi jY
(k)
j X

(k)
j (1+Z

(k)
i ) |ψ〉CA0

]
|r⊕1 j〉C

′ |q〉C′′ |r〉A′0 |s〉A′′0 ,

(B.41)
where 1 j is an n-element string whose j-th element is one with all the other elements
being zeros. The last expression can be rewritten in the following way:

1

2
3n
2

∑
q,s∈(0,1)n

[
⊗n

i=1iY(k)
j X

(k)
j (1+Z

(k)
i ) |ψ〉CA

]
σ

C′j
Y

[
⊗n

i=1 |Φ+〉C′iA′i
]
|q〉C′′ |s〉A′′0 . (B.42)

Since the rest of the circuit does not affect the state of extraction auxiliarys we will drop
it from the following few equations. After applying the third pair of controlled gates on
this state one obtains

1

2
3n
2

∑
q,s∈(0,1)n

[
⊗n

i=1(iY
(k)
i X

(k)
i )qi+δi j(1+Z

(k)
i )(iŶi+nX̂i+n)

si |ψ〉CA0
]
|q〉C′′ |s〉A′′0 , (B.43)

which due to (B.14) and anticommuting relations (B.11) reduces to:

1

2
3n
2

∑
q,s∈(0,1)n

[
⊗n

i=1(iY
(k)
i X

(k)
i )si+qi+δi j(1+Z

(k)
i ) |ψ〉CA0

]
|q〉C′′ |s〉A′′0 , (B.44)

and at the end of the circuit following the action of two last Hadamards this state trans-
forms to

1

2
5n
2

∑
q̄,s̄,q,s∈(0,1)n

(−1)q̄iqi+s̄isi
[
⊗n

i=1(iY
(k)
i X

(k)
i )qi+si+δi j(1+Z

(k)
i ) |ψ〉CA0

]
|q̄〉C′′ |s〉A′′0 .

(B.45)
Here the same reasoning like the one preceding to eq. (B.36) can be applied, the only
difference being factor (iY(k)

i X
(k)
i )δi j . This factor changes the sign of terms in (B.36)

which correspond to any string q̄ for which q̄ j = 1. The final form of the output of the
circuit when input is Y(k)

j |ψ〉 can be written as

1

2
3n
2

∑
q̄∈(0,1)n

[
⊗n

i=1(−1)q̄ j(1+(−1)q̄iiY(k)
i X

(k)
i )(1+Z

(k)
i ) |ψ〉CA0

]
σ

C′j
Y

[
⊗n

i=1 |Φ+〉C′iA′i
]
|q̄q̄〉C′′A′′0 ,

(B.46)
which is equivalent to the formulation from Lemma 2:

U
[
YC

j |ψ〉CA0⊗|00〉
]
= σZ

C′′j |ξ 〉
[
σY

C′j ⊗n
i=1 |Φ+〉C′iA′i

]
(B.47)

which completes the proof.
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Appendix C

Proof of Lemma 9.7

Correlations 〈ψ|Sl,a |ψ〉 = 〈ψ|Sl,a |ψ〉 = 1
4 for every l ∈ {1, . . .m} and a ∈ {0,1,2,3},

given in Table 8.1, imply that the norm of states Sl,a |ψ〉 and Tl,a |ψ〉 is equal to 1
2 . These

correlations allow us to write

Sl,0 |ψ〉 ∼
1
4

(
|ψ〉+Z

(k)
2l−1Z

(k)
2l |ψ〉+X

(k)
2l−1X

(k)
2l |ψ〉−Y

(k)
2l−1Y

(k)
2l |ψ〉

)
. (C.1)

Since states |ψ〉, Z(k)
2l−1Z

(k)
2l |ψ〉, X

(k)
2l−1X

(k)
2l |ψ〉 and Y

(k)
2l−1Y

(k)
2l |ψ〉 all have unit norm and

are mutually orthogonal they can be seen as a part of basis of all states from H C⊗H A0 .
Moreover Sl,0 |ψ〉 has the same norm as the expression from the right hand side of ∼ in
eq. (C.1) which implies that

Sl,0 |ψ〉=
1
4

(
|ψ〉+Z

(k)
2l−1Z

(k)
2l |ψ〉+X

(k)
2l−1X

(k)
2l |ψ〉−Y

(k)
2l−1Y

(k)
2l |ψ〉

)
. (C.2)

The same reasoning leads to the following set of equations:

Sl,1 |ψ〉 =
1
4

(
|ψ〉+Z

(k)
2l−1Z

(k)
2l |ψ〉−X

(k)
2l−1X

(k)
2l |ψ〉+Y

(k)
2l−1Y

(k)
2l |ψ〉

)
, (C.3)

Sl,2 |ψ〉 =
1
4

(
|ψ〉−Z

(k)
2l−1Z

(k)
2l |ψ〉+X

(k)
2l−1X

(k)
2l |ψ〉+Y

(k)
2l−1Y

(k)
2l |ψ〉

)
, (C.4)

Sl,3 |ψ〉 =
1
4

(
|ψ〉−Z

(k)
2l−1Z

(k)
2l |ψ〉−X

(k)
2l−1X

(k)
2l |ψ〉−Y

(k)
2l−1Y

(k)
2l |ψ〉

)
, (C.5)

Tl,0 |ψ〉 =
1
4

(
|ψ〉+Z

(k)
2l Z

(k)
2l+1 |ψ〉+X

(k)
2l X

(k)
2l+1 |ψ〉−Y

(k)
2l Y

(k)
2l+1 |ψ〉

)
, (C.6)

Tl,1 |ψ〉 =
1
4

(
|ψ〉+Z

(k)
2l Z

(k)
2l+1 |ψ〉−X

(k)
2l X

(k)
2l+1 |ψ〉+Y

(k)
2l Y

(k)
2l+1 |ψ〉

)
, (C.7)

Tl,2 |ψ〉 =
1
4

(
|ψ〉−Z

(k)
2l Z

(k)
2l+1 |ψ〉+X

(k)
2l X

(k)
2l+1 |ψ〉+Y

(k)
2l Y

(k)
2l+1 |ψ〉

)
, (C.8)

Tl,3 |ψ〉 =
1
4

(
|ψ〉−Z

(k)
2l Z

(k)
2l+1 |ψ〉−X

(k)
2l X

(k)
2l+1 |ψ〉−Y

(k)
2l Y

(k)
2l+1 |ψ〉

)
. (C.9)
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Equations (C.2-C.5) are equivalent to the following set of equations

Z
(k)
2l−1Z

(k)
2l |ψ〉 =

(
Sl,0 +Sl,1−Sl,2−Sl,3

)
|ψ〉 , (C.10a)

X
(k)
2l−1X

(k)
2l |ψ〉 =

(
Sl,0−Sl,1 +Sl,2−Sl,3

)
|ψ〉 , (C.10b)

Y
(k)
2l−1Y

(k)
2l |ψ〉 =

(
−Sl,0 +Sl,1 +Sl,2−Sl,3

)
|ψ〉 . (C.10c)

Based on the last set of equations and the fact that {Sl,a}l,a is orthogonal set of projectors
which all commute with all the operators from {Z(k)

j ,X
(k)
j } j,k one can show that

X
(k)
2l−1X

(k)
2l Z

(k)
2l−1Z

(k)
2l |ψ〉 = X

(k)
2l−1X

(k)
2l

(
Sl,0 +Sl,1−Sl,2−Sl,3

)
|ψ〉

=
(
Sl,0 +Sl,1−Sl,2−Sl,3

)(
Sl,0−Sl,1 +Sl,2−Sl,3

)
|ψ〉

=
(
Sl,0−Sl,1−Sl,2 +Sl,3

)
|ψ〉

= −Y(k)
2l−1Y

(k)
2l |ψ〉 . (C.11)

Starting from equations (C.6-C.9) one can obtain

X
(k)
2l X

(k)
2l+1Z

(k)
2l Z

(k)
2l+1 |ψ〉=−Y

(k)
2l Y

(k)
2l+1 |ψ〉 . (C.12)

Equations (C.11) and (C.12) hold for every k and every l. Let us take l = 1 and check how
eq. (C.11) affects vector |ξq̄〉 = ⊗n

i=1(1+(−1)q̄iiY(k)
i X

(k)
i )(1+Z

(k)
i ) |ψ〉. Let us write it

in the following form:

|ξq̄〉= Lrest⊗
(
1+(−1)q̄1iY(k)

1 X
(k)
1

)(
1+Z

(k)
1

)
⊗
(
1+(−1)q̄2 iY(k)

2 X
(k)
2

)(
1+Z

(k)
2

)
|ψ〉

where Lrest =⊗n
i=3(1+(−1)q̄iiY(k)

i X
(k)
i )(1+Z

(k)
i ). Let us assume q̄1 6= q̄2 and omit Lrest

for the sake of shorter exposition. Then |ξq̄〉 reads

|ψ〉± iY(k)
2 X

(k)
2 |ψ〉+Z

(k)
2 |ψ〉± iY(k)

2 X
(k)
2 Z

(k)
2 |ψ〉∓ iY(k)

1 X
(k)
1 |ψ〉+Y

(k)
1 X

(k)
1 Y

(k)
2 X

(k)
2 |ψ〉∓

∓ iY(k)
1 X

(k)
1 Z

(k)
2 |ψ〉+Y

(k)
1 X

(k)
1 Y

(k)
2 X

(k)
2 Z

(k)
2 |ψ〉+Z

(k)
1 |ψ〉± iZ(k)

1 Y
(k)
2 X

(k)
2 |ψ〉+Z

(k)
1 Z

(k)
2 |ψ〉±

± iZ(k)
1 Y

(k)
2 X

(k)
2 Z

(k)
2 |ψ〉∓ iY(k)

1 X
(k)
1 Z

(k)
1 |ψ〉+Y

(k)
1 X

(k)
1 Z

(k)
1 Y

(k)
2 X

(k)
2 |ψ〉∓ iY(k)

1 X
(k)
1 Z

(k)
1 Z

(k)
2 |ψ〉+

+Y
(k)
1 X

(k)
1 Z

(k)
1 Y

(k)
2 X

(k)
2 Z

(k)
2 |ψ〉 .

This expression can be written as a sum of expressions, each equal to 0. To show this let
us rearrange eq. (C.11) for the case l = 1. It can be written in eight different ways, which
are given below.

|ψ〉+Y
(k)
1 X

(k)
1 Z

(k)
1 Y

(k)
2 X

(k)
2 Z

(k)
2 |ψ〉= 0, Y

(k)
2 X

(k)
2 |ψ〉+Y

(k)
1 X

(k)
1 Z

(k)
1 Z

(k)
2 |ψ〉= 0,

Z
(k)
2 |ψ〉+Y

(k)
1 X

(k)
1 Z

(k)
1 Y

(k)
2 X

(k)
2 |ψ〉= 0, Y

(k)
2 X

(k)
2 Z

(k)
2 |ψ〉+Y

(k)
1 X

(k)
1 Z

(k)
1 |ψ〉= 0,

Y
(k)
1 X

(k)
1 |ψ〉+Z

(k)
1 Y

(k)
2 X

(k)
2 Z

(k)
2 |ψ〉= 0, Y

(k)
1 X

(k)
1 Y

(k)
2 X

(k)
2 |ψ〉+Z

(k)
1 Z

(k)
2 |ψ〉= 0,

Y
(k)
1 X

(k)
1 Z

(k)
2 |ψ〉+Z

(k)
1 Y

(k)
2 X

(k)
2 |ψ〉= 0, Y

(k)
1 X

(k)
1 Y

(k)
2 X

(k)
2 Z

(k)
2 |ψ〉+Z

(k)
1 |ψ〉= 0.

(C.13)
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All these equations are obtained from eq. (C.11) by using commutation relations (B.19),
expressions (B.14), anti-commutation relations (B.11) and the fact that operators P(k)

i for

P ∈ {X ,Y,Z} are reflections, defined by property P(k)
i

2
= 1 on the support of |ψ〉.

Premise q̄1 6= q̄2 leads to conclusion |ξq̄〉= 0. In a completely analogous way, starting
from eq. (C.11) one can show that |ξq̄〉= 0 if there exists l such that q̄2l−1 6= q̄2l . Similarly,
eq. (C.12) can be used to prove that |ξq̄〉 = 0 if there exists l such that q̄2l 6= q̄2l+1. The
only two states |q̄〉 which satisfy q̄2l−1 = q̄2l = q̄2l+1 are |q̄〉= |0 . . .0〉 and |q̄〉= |1 . . .1〉.
This means that

|ξ 〉= |ξ0〉⊗ |0 . . .0〉+ |ξ1〉⊗ |1 . . .1〉 , (C.14)

which is exactly what had to be proven.
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Appendix D

Entanglement certification proofs

D.1 Positivity of I for separable states: qubits
Our aim is to prove that under maximal violation in step (ii) of the protocol

I = ∑
cduw

ω
zw
cd p(c,+,+,d|z,x = ?,y = ?,w)≥ 0, (D.1)

holds for all separable ρAB. First, note that the projectors for Charlie’s measurement can
be compactly written

Π
C′C′′
c|z =U†

C ∑
j

(
π

C′
c|z
)T j

⊗| j〉〈 j|C′′UC, (D.2)

where UC is the local unitary from lemma 1 and πc|z are projectors onto the Pauli eigen-
vectors, i.e. πc|z =

1
2 [1+ cσz] for σz = σZ,σX,σY. Thus, at maximum violation, the

(sub-normalized) states that Alice receives in the 〉0 spaces conditional on a certain c,z
are given by

τc|z =
1
2

U†
A

[
∑

j
ρ

j
ξ
⊗ (π

A′0
c|z )

Tj

]
UA, (D.3)

where

ρ
j

ξ
= trC′′CC′

[
| j〉〈 j|C′′ |junk〉〈junk|C′′CA′′0A0

]
. (D.4)

Here, we have used the property trC[|Φ+〉〈Φ+|C⊗1] =CT . We thus have

p(c,+,+,d|z,x = ?,y = ?,w) = tr
[
MA0A

+|? ⊗MB0B
+|? ,τc|z⊗ρ

AB⊗ τd|w
]

(D.5)

= ∑
j,k

tr
[
A⊗B,ρ j

junk⊗ (π
A′0
c|z )

Tj ⊗ρ
AB⊗ (π

B′0
d|w)

Tk⊗ρ
k
junk

]
,

(D.6)
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where A = 1
2UAM

A0A
+|? U†

A, B = 1
2UBM

BB0
+|?U†

B. Now, assume that ρAB is product so that

ρAB = σA⊗σB (mixtures of such states will be considered later). Then the above takes
the form

∑
j,k

tr
[
π

Tj
c|z⊗π

Tk
d|w A j⊗Bk

]
(D.7)

where

A j = trAA0A′′0

[
Aρ

j
junk⊗1A′0

⊗σ
A
]

; Bk = trBB0B′′0

[
Bσ

B⊗1B′0
⊗ρ

k
junk

]
. (D.8)

Note that A j and Bk are positive operators since A j can be seen as a positive map applied
to σ 〉. Using this we may now write I as

I = ∑
jk

∑
cdzw

ω
zw
cd tr

[
π

Tj
c|z⊗π

Tk
d|w A j⊗Bk

]
(D.9)

= ∑
jk

∑
cdzw

ω
zw
cd tr

[
πc|z⊗πd|w ATj

j ⊗BTk
k

]
(D.10)

= ∑
jk

tr
[
W ATj

j ⊗BTk
k

]
≥ 0, (D.11)

where the second equality follows from tr[X ] = tr[XT ], and the final inequality follows
from the fact that ATj

j and BTk
k are positive operators and thus ATj

j ⊗BTk
k is a unnormalized

product state. Since I is linear in ρ〉B one also has I ≥ 0 for mixtures of product states
and thus all separable states.

D.2 Positivity of I for separable states: arbitrary di-
mension

The proof follows the same structure as for the qubit case. As a consequence of Lemma
9.7, we have that Alice receives the subnormalized steered states conditioned on z, c:

τc,z =
1
d

U†
A

[
1

∑
j=0

ρ
j

ξ
⊗
(

π
A′0
c|z

)T j
]

UA, (D.12)

where we define

π
A′0
c|z =⊗i π

A′0i
ci|zi

and ρ
j

ξ
= trC′′CC′

[
(⊗i| j〉〈 j|C

′′
i ) |ξ 〉〈ξ |C′′CA′′0A0

]
. (D.13)
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and Bob has analogous states conditioned on Daisy’s input and output. Now, the proba-
bilities are given by

p(c,+,+,d|z,x = ?,y = ?,w) = tr
[
MA0A

+|? ⊗MB0B
+|? τc|z⊗ρ

AB⊗ τd|w
]

(D.14)

= ∑
j,k

tr
[
A⊗Bρ

j
ξ
⊗ (π

A′0
c|z )

Tj ⊗ρ
AB⊗ (π

B′0
d|w)

Tk⊗ρ
k
ξ

]
,

(D.15)

and A = 1
dUAM

A0A
+|? U†

A, B = 1
dUBM

BB0
+|?U†

B. For separable ρ〉B = σ 〉⊗σB this takes the
form

p(c,+,+,d|z,x = ?,y = ?,w) = ∑
j,k

tr
[
π

Tj
c|z⊗π

Tk
d|w A j⊗Bk

]
(D.16)

where again we have the positive operators

A j = trAA0A′′0

[
Aρ

j
ξ
⊗1A′0

⊗σ
A
]

; Bk = trBB0B′′0

[
Bσ

B⊗1B′0
⊗ρ

k
ξ

]
. (D.17)

Hence we find

I = ∑
jk

∑
cdzw

ω
zw
cd tr

[
π

Tj
c|z⊗π

Tk
d|w A j⊗Bk

]
(D.18)

= ∑
jk

∑
cdzw

ω
zw
cd tr

[
πc|z⊗πd|w ATj

j ⊗BTk
k

]
(D.19)

= ∑
jk

tr
[
W ATj

j ⊗BTk
k

]
≥ 0. (D.20)

Again, due to the linearity of I in ρAB, one has I ≥ 0 for all separable states, completing
the proof.
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