51,398 research outputs found

    Thermal Transients in District Heating Systems

    Full text link
    Heat fluxes in a district heating pipeline systems need to be controlled on the scale from minutes to an hour to adjust to evolving demand. There are two principal ways to control the heat flux - keep temperature fixed but adjust velocity of the carrier (typically water) or keep the velocity flow steady but then adjust temperature at the heat producing source (heat plant). We study the latter scenario, commonly used for operations in Russia and Nordic countries, and analyze dynamics of the heat front as it propagates through the system. Steady velocity flows in the district heating pipelines are typically turbulent and incompressible. Changes in the heat, on either consumption or production sides, lead to slow transients which last from tens of minutes to hours. We classify relevant physical phenomena in a single pipe, e.g. turbulent spread of the turbulent front. We then explain how to describe dynamics of temperature and heat flux evolution over a network efficiently and illustrate the network solution on a simple example involving one producer and one consumer of heat connected by "hot" and "cold" pipes. We conclude the manuscript motivating future research directions.Comment: 31 pages, 7 figure

    Assessment on the Efficiency of an Active Solar Thermal Facade: Study of the Effect of Dynamic Parameters and Experimental Analysis When Coupled/Uncoupled to a Heat Pump

    Get PDF
    The building sector presents poor performance in terms of energy efficiency and is looking for effective alternatives aimed at reducing the use of fossil fuels. The facade is a key element able to harness renewable energy as an Active Solar Thermal Facade (ASTF). The main purpose of this study is the assessment of a novel design concept based on a steel sandwich panel technology. The performance of the active system will be first addressed by a parametric study in order to analyze its behavior and secondly, by describing a real case based on an experimental test by connecting the active panels to a heat pump. The study shows the impact of solar irradiation and mass flow on the thermal jump achieved, while ambient and fluid inlet temperatures are the most influencing parameters in the efficiency of the facade. When coupled to the heat pump, results from a measurement campaign demonstrate a remarkable improvement in the performance of the ASTF. The results presented provide significant proof about the benefits of a synergetic combination of both technologies—solar facades and heat pumps—as efficient alternatives for the building sector, aiming to improve energy efficiency as well as reduce their dependence on non-renewable sources.This research was partially funded by the Basque Government through IT781-13 and IT1314-19 research groups and by the University of the Basque Country UPV/EHU through PES17/25. Additionally, TECNALIA Research & Innovation supported the research activities research through a cooperation agreement (PT10516) with UPV/EHU

    CFD model-based analysis and experimental assessment of key design parameters for an integrated unglazed metallic thermal collector façade

    Get PDF
    Active façade systems incorporating solar thermal collectors currently offer very promising energetic solutions. From among the available systems, a simple solution is the unglazed heat collector for potential integration in low-temperature applications. However, when adopting system definitions, the modification of some design parameters and their impact has to be fully understood. In this study, the case of an unglazed collector integrated into a sandwich panel is assessed and a specific analysis is performed for a proper assessment of the influence of key design parameters. Based on that case study of the real built system, a CFD model is developed and validated and a parametric assessment is then performed, by altering the configurations of both the panel and the hydraulic circuit. In this way, the potential of each measure to harness solar energy can be evaluated and each parameter with its different level of impact can be highlighted, to identify those of higher relevance. A characterization of the real solution completes the study, by providing the efficiency curves and the total energy collected during the experimental campaign. The maximum estimate of the efficiency of a 6 m2 façade was within a range between 0.47 and 0.34 and the heat loss factor was between 4.8 and 7.5. The case study exercises reveal the real energy efficiency and solar production patterns. There was also an opportunity to consider significant improvements to increase the output of the active façade. The main conclusions concerned the different criteria that improved the definition of the system and greater comprehension of alternative designs that may be integrated in the underlying concept.The authors are grateful to the Basque Government for fundingthis research through projects IT781-13 and IT1314-19 and to allthose involved in the different stages for their guidance andinvaluable help.The authors would also like to thank all those companies andresearchers participating in the BASSE project for their stronginvolvement during that research. Results from BASSE project haveinspired present research. The BASSE project received funding fromthe European Union, RFCS Program, Research Fund for Coal and Steel project Building Active Steel Skin (BASSE, Grant Agreement noRFSR-CT-2013-00026

    Heating and cooling a tri-level house with a hydronic baseboard-valance system

    Get PDF
    Cover title.Prepared as part of an investigation conducted by the Engineering Experiment Station, University of Illinois at Urbana-Champaign

    Dynamic simulation model of trans-critical carbon dioxide heat pump application for boosting low temperature distribution networks in dwellings

    Get PDF
    This research investigates the role of new hybrid energy system applications for developing a new plant refurbishment strategy to deploy small scale smart energy systems. This work deals with a dynamic simulation of trans-critical carbon dioxide heat pump application for boosting low temperature distribution networks to share heat for dwellings. Heat pumps provide high temperature heat to use the traditional emission systems. The new plant layout consists of an air source heat pump, four trans-critical carbon dioxide heat pumps (CO2-HPs), photovoltaic arrays, and a combined heat and power (CHP) for both domestic hot water production and electricity to partially drive the heat pumps. Furthermore, electric storage devices adoption has been evaluated. That layout has been compared to the traditional one based on separated generation systems using several energy performance indicators. Additionally, a sensitivity analysis on the primary energy saving, primary fossil energy consumptions, renewable energy fraction and renewable heat, with changes in building power to heat ratios, has been carried out. Obtained results highlighted that using the hybrid system with storage device it is possible to get a saving of 50% approximately. Consequently, CO2-HPs and hybrid systems adoption could be a viable option to achieve Near Zero Energy Building (NZEB) qualification

    Advancements in hybrid photovoltaic-thermal systems: performance evaluations and applications

    Get PDF
    Due to European Directives (2010/31/UE on buildings energy performance, 2009/28/CE on the use of renewable energy, 2012/27/UE on the energy efficiency) the electric and thermal energy needs of new and retrofitted buildings are faced by increasing percentages of renewable energy. Solar energy and heat pumps are the most promising technologies mainly in residential buildings as they have reached great maturity. Anyway, in most cases solar energy utilizations systems are thermal (which convert solar energy to thermal energy) and photovoltaic (which convert solar energy to electricity) used as separated collectors. Commercial photovoltaic modules have nowadays an efficiency around 15 % - 18 %. It means that the most relevant part of solar radiation is lost. Such a remark gets more importance if the active surface is located in an urban environment, where the availability of surfaces exposed to the sun is scarce if compared to the buildings thermal loads. PhotoVoltaic / Thermal cogeneration (PV/T) aims to utilize the same area both for producing electricity and heat. As solar cells are sensitive to temperature (their efficiency lowers when temperature increases), heat is beneficially collected but it cannot be available at high temperatures. Many researches on performances and characteristics of different hybrid photovoltaic\u2013thermal technologies and systems have been carried out during the last years to face this problem; among these designs, systems utilizing air, liquid, heat pipes, phase change materials, and thermoelectric devices to aid cooling of PV cells. This paper provides a description of the applications of the photovoltaic\u2013thermal systems, such as building integrated PV/T, concentrating PV/T systems and photovoltaic\u2013thermal heat pump systems. Several factors affecting the performances and characteristics of the photovoltaic\u2013thermal systems are also summarized
    • …
    corecore