543 research outputs found

    Max-gain relay selection scheme for wireless networks

    Get PDF
    © 2020 Karabuk University Next generation wireless systems are supposed to handle high amount of data with broader coverage and high quality of service (QoS). When a signal travels from a source to destination, the signal quality may suffer from the fading, which makes it difficult to receive correct messages. To handle the impact of fading, various diversity techniques are performed with Multiple Input Multiple Output (MIMO). Considering cooperative wireless networks, virtual MIMOs are being used, which also called cooperative diversity. In this paper, we propose a max-gain relay selection scheme (MGRS) for buffer-aided wireless cooperative networks. This scheme determines the best link using the maximum gain based on quality of link and available buffer size. The time slot is divided into two parts, one is used to choose the best link from the source to relay transmission (odd slot) and another time slot (even) is used based on the selection of the best link from the relay to destination. Markov chain model is use to measure buffer status and QoS parameters to evaluate the performance. The proposed scheme provides better QoS (12%) compared to the existing relay selection schemes with respect to throughput, end-to-end delay and outage probability

    Study on Generalized Buffer-State-Based Relay Selection in Cooperative Cognitive Radio Networks

    Get PDF
    学位の種別: 修士University of Tokyo(東京大学

    New look on relay selection strategies for full-duplex multiple-relay NOMA over Nakagami-m fading channels

    Full text link
    This is an accepted manuscript of an article published by Springer in Wireless Networks on 07/07/2021, available online: https://doi.org/10.1007/s11276-021-02676-1 The accepted version of the publication may differ from the final published version.By removing the orthogonal use of radio-resources, non-orthogonal multiple access (NOMA) has been introduced to improve the spectral efficiency of fifth generation (5G) and beyond networks. This paper studies the system performance in a dual-hop multi-relay NOMA using decode-and-forward (DF) scheme over Nakagami-m fading channels. A group of NOMA users is considered, i.e. the near and far users which are decided by how strong these related channels are. Specifically, we obtain a closed-form expression of the outage probability of the near/far NOMA users when the several relay selection schemes are adopted for selecting the best among M intermediate relays. As main finding, this paper introduces three strategies including two-stage relay selection, max-min and power allocation based relay selection schemes. As main benefit, the NOMA users are considered to employ selection combining technique in order to improve signal transmissions for an increased reliability in the context of massive connections in 5G wireless communications. By conducting numerical simulations, we evaluate the impact of the number of intermediate relays, the NOMA power allocation factor, and the Nakagami-m fading severity parameter on the outage performance of the NOMA users. Finally, the outage probability along with throughout in delay-limited transmission mode are provided via numerical results and the necessary comparisons are provided.Published onlin

    Secrecy Enhancement in Cooperative Relaying Systems

    Get PDF
    Cooperative communications is obviously an evolution in wireless networks due to its noticeable advantages such as increasing the coverage as well as combating fading and shadowing effects. However, the broadcast characteristic of a wireless medium which is exploited in cooperative communications leads to a variety of security vulnerabilities. As cooperative communication networks are globally expanded, they expose to security attacks and threats more than ever. Primarily, researchers have focused on upper layers of network architectures to meet the requirements for secure cooperative transmission while the upper-layer security solutions are incapable of combating a number of security threats, e.g., jamming attacks. To address this issue, physical-layer security has been recommended as a complementary solution in the literature. In this thesis, physical layer attacks of the cooperative communication systems are studied, and corresponding security techniques including cooperative jamming, beamforming and diversity approaches are investigated. In addition, a novel security solution for a two-hop decode-and-forward relaying system is presented where the transmitters insert a random phase shift to the modulated data of each hop. The random phase shift is created based on a shared secret among communicating entities. Thus, the injected phase shift confuses the eavesdropper and secrecy capacity improves. Furthermore, a cooperative jamming strategy for multi-hop decode-and-forward relaying systems is presented where multiple non-colluding illegitimate nodes can overhear the communication. The jamming signal is created by the transmitter of each hop while being sent with the primary signal. The jamming signal is known at the intended receiver as it is according to a secret common knowledge between the communicating entities. Hence, artificial noise misleads the eavesdroppers, and decreases their signal-to-noise-ratio. As a result, secrecy capacity of the system is improved. Finally, power allocation among friendly jamming and main signal is proposed to ensure that suggested scheme enhances secrecy

    Machine Learning for Unmanned Aerial System (UAS) Networking

    Get PDF
    Fueled by the advancement of 5G new radio (5G NR), rapid development has occurred in many fields. Compared with the conventional approaches, beamforming and network slicing enable 5G NR to have ten times decrease in latency, connection density, and experienced throughput than 4G long term evolution (4G LTE). These advantages pave the way for the evolution of Cyber-physical Systems (CPS) on a large scale. The reduction of consumption, the advancement of control engineering, and the simplification of Unmanned Aircraft System (UAS) enable the UAS networking deployment on a large scale to become feasible. The UAS networking can finish multiple complex missions simultaneously. However, the limitations of the conventional approaches are still a big challenge to make a trade-off between the massive management and efficient networking on a large scale. With 5G NR and machine learning, in this dissertation, my contributions can be summarized as the following: I proposed a novel Optimized Ad-hoc On-demand Distance Vector (OAODV) routing protocol to improve the throughput of Intra UAS networking. The novel routing protocol can reduce the system overhead and be efficient. To improve the security, I proposed a blockchain scheme to mitigate the malicious basestations for cellular connected UAS networking and a proof-of-traffic (PoT) to improve the efficiency of blockchain for UAS networking on a large scale. Inspired by the biological cell paradigm, I proposed the cell wall routing protocols for heterogeneous UAS networking. With 5G NR, the inter connections between UAS networking can strengthen the throughput and elasticity of UAS networking. With machine learning, the routing schedulings for intra- and inter- UAS networking can enhance the throughput of UAS networking on a large scale. The inter UAS networking can achieve the max-min throughput globally edge coloring. I leveraged the upper and lower bound to accelerate the optimization of edge coloring. This dissertation paves a way regarding UAS networking in the integration of CPS and machine learning. The UAS networking can achieve outstanding performance in a decentralized architecture. Concurrently, this dissertation gives insights into UAS networking on a large scale. These are fundamental to integrating UAS and National Aerial System (NAS), critical to aviation in the operated and unmanned fields. The dissertation provides novel approaches for the promotion of UAS networking on a large scale. The proposed approaches extend the state-of-the-art of UAS networking in a decentralized architecture. All the alterations can contribute to the establishment of UAS networking with CPS

    Towards Trustworthy, Efficient and Scalable Distributed Wireless Systems

    Get PDF
    Advances in wireless technologies have enabled distributed mobile devices to connect with each other to form distributed wireless systems. Due to the absence of infrastructure, distributed wireless systems require node cooperation in multi-hop routing. However, the openness and decentralized nature of distributed wireless systems where each node labors under a resource constraint introduces three challenges: (1) cooperation incentives that effectively encourage nodes to offer services and thwart the intentions of selfish and malicious nodes, (2) cooperation incentives that are efficient to deploy, use and maintain, and (3) routing to efficiently deliver messages with less overhead and lower delay. While most previous cooperation incentive mechanisms rely on either a reputation system or a price system, neither provides sufficiently effective cooperation incentives nor efficient resource consumption. Also, previous routing algorithms are not sufficiently efficient in terms of routing overhead or delay. In this research, we propose mechanisms to improve the trustworthiness, scalability, and efficiency of the distributed wireless systems. Regarding trustworthiness, we study previous cooperation incentives based on game theory models. We then propose an integrated system that combines a reputation system and a price system to leverage the advantages of both methods to provide trustworthy services. Analytical and simulation results show higher performance for the integrated system compared to the other two systems in terms of the effectiveness of the cooperation incentives and detection of selfish nodes. Regarding scalability in a large-scale system, we propose a hierarchical Account-aided Reputation Management system (ARM) to efficiently and effectively provide cooperation incentives with small overhead. To globally collect all node reputation information to accurately calculate node reputation information and detect abnormal reputation information with low overhead, ARM builds a hierarchical locality-aware Distributed Hash Table (DHT) infrastructure for the efficient and integrated operation of both reputation systems and price systems. Based on the DHT infrastructure, ARM can reduce the reputation management overhead in reputation and price systems. We also design a distributed reputation manager auditing protocol to detect a malicious reputation manager. The experimental results show that ARM can detect the uncooperative nodes that gain fraudulent benefits while still being considered as trustworthy in previous reputation and price systems. Also, it can effectively identify misreported, falsified, and conspiratorial information, providing accurate node reputations that truly reflect node behaviors. Regarding an efficient distributed system, we propose a social network and duration utility-based distributed multi-copy routing protocol for delay tolerant networks based on the ARM system. The routing protocol fully exploits node movement patterns in the social network to increase delivery throughput and decrease delivery delay while generating low overhead. The simulation results show that the proposed routing protocol outperforms the epidemic routing and spray and wait routing in terms of higher message delivery throughput, lower message delivery delay, lower message delivery overhead, and higher packet delivery success rate. The three components proposed in this dissertation research improve the trustworthiness, scalability, and efficiency of distributed wireless systems to meet the requirements of diversified distributed wireless applications

    A Free Space Optic/Optical Wireless Communication: A Survey

    Get PDF
    The exponential demand for the next generation of services over free space optic and wireless optic communication is a necessity to approve new guidelines in this range. In this review article, we bring together an earlier study associated with these schemes to help us implement a multiple input/multiple output flexible platform for the next generation in an efficient manner. OWC/FSO is a complement clarification to radiofrequency technologies. Notably, they are providing various gains such as unrestricted authorizing, varied volume, essential safekeeping, and immunity to interference.
    corecore