2,998 research outputs found

    Non-Convex Multi-species Hopfield models

    Full text link
    In this work we introduce a multi-species generalization of the Hopfield model for associative memory, where neurons are divided into groups and both inter-groups and intra-groups pair-wise interactions are considered, with different intensities. Thus, this system contains two of the main ingredients of modern Deep neural network architectures: Hebbian interactions to store patterns of information and multiple layers coding different levels of correlations. The model is completely solvable in the low-load regime with a suitable generalization of the Hamilton-Jacobi technique, despite the Hamiltonian can be a non-definite quadratic form of the magnetizations. The family of multi-species Hopfield model includes, as special cases, the 3-layers Restricted Boltzmann Machine (RBM) with Gaussian hidden layer and the Bidirectional Associative Memory (BAM) model.Comment: This is a pre-print of an article published in J. Stat. Phy

    A walk in the statistical mechanical formulation of neural networks

    Full text link
    Neural networks are nowadays both powerful operational tools (e.g., for pattern recognition, data mining, error correction codes) and complex theoretical models on the focus of scientific investigation. As for the research branch, neural networks are handled and studied by psychologists, neurobiologists, engineers, mathematicians and theoretical physicists. In particular, in theoretical physics, the key instrument for the quantitative analysis of neural networks is statistical mechanics. From this perspective, here, we first review attractor networks: starting from ferromagnets and spin-glass models, we discuss the underlying philosophy and we recover the strand paved by Hopfield, Amit-Gutfreund-Sompolinky. One step forward, we highlight the structural equivalence between Hopfield networks (modeling retrieval) and Boltzmann machines (modeling learning), hence realizing a deep bridge linking two inseparable aspects of biological and robotic spontaneous cognition. As a sideline, in this walk we derive two alternative (with respect to the original Hebb proposal) ways to recover the Hebbian paradigm, stemming from ferromagnets and from spin-glasses, respectively. Further, as these notes are thought of for an Engineering audience, we highlight also the mappings between ferromagnets and operational amplifiers and between antiferromagnets and flip-flops (as neural networks -built by op-amp and flip-flops- are particular spin-glasses and the latter are indeed combinations of ferromagnets and antiferromagnets), hoping that such a bridge plays as a concrete prescription to capture the beauty of robotics from the statistical mechanical perspective.Comment: Contribute to the proceeding of the conference: NCTA 2014. Contains 12 pages,7 figure

    Neural Distributed Autoassociative Memories: A Survey

    Full text link
    Introduction. Neural network models of autoassociative, distributed memory allow storage and retrieval of many items (vectors) where the number of stored items can exceed the vector dimension (the number of neurons in the network). This opens the possibility of a sublinear time search (in the number of stored items) for approximate nearest neighbors among vectors of high dimension. The purpose of this paper is to review models of autoassociative, distributed memory that can be naturally implemented by neural networks (mainly with local learning rules and iterative dynamics based on information locally available to neurons). Scope. The survey is focused mainly on the networks of Hopfield, Willshaw and Potts, that have connections between pairs of neurons and operate on sparse binary vectors. We discuss not only autoassociative memory, but also the generalization properties of these networks. We also consider neural networks with higher-order connections and networks with a bipartite graph structure for non-binary data with linear constraints. Conclusions. In conclusion we discuss the relations to similarity search, advantages and drawbacks of these techniques, and topics for further research. An interesting and still not completely resolved question is whether neural autoassociative memories can search for approximate nearest neighbors faster than other index structures for similarity search, in particular for the case of very high dimensional vectors.Comment: 31 page

    Matrix Completion from Fewer Entries: Spectral Detectability and Rank Estimation

    Full text link
    The completion of low rank matrices from few entries is a task with many practical applications. We consider here two aspects of this problem: detectability, i.e. the ability to estimate the rank rr reliably from the fewest possible random entries, and performance in achieving small reconstruction error. We propose a spectral algorithm for these two tasks called MaCBetH (for Matrix Completion with the Bethe Hessian). The rank is estimated as the number of negative eigenvalues of the Bethe Hessian matrix, and the corresponding eigenvectors are used as initial condition for the minimization of the discrepancy between the estimated matrix and the revealed entries. We analyze the performance in a random matrix setting using results from the statistical mechanics of the Hopfield neural network, and show in particular that MaCBetH efficiently detects the rank rr of a large n×mn\times m matrix from C(r)rnmC(r)r\sqrt{nm} entries, where C(r)C(r) is a constant close to 11. We also evaluate the corresponding root-mean-square error empirically and show that MaCBetH compares favorably to other existing approaches.Comment: NIPS Conference 201

    Equilibrium Propagation: Bridging the Gap Between Energy-Based Models and Backpropagation

    Full text link
    We introduce Equilibrium Propagation, a learning framework for energy-based models. It involves only one kind of neural computation, performed in both the first phase (when the prediction is made) and the second phase of training (after the target or prediction error is revealed). Although this algorithm computes the gradient of an objective function just like Backpropagation, it does not need a special computation or circuit for the second phase, where errors are implicitly propagated. Equilibrium Propagation shares similarities with Contrastive Hebbian Learning and Contrastive Divergence while solving the theoretical issues of both algorithms: our algorithm computes the gradient of a well defined objective function. Because the objective function is defined in terms of local perturbations, the second phase of Equilibrium Propagation corresponds to only nudging the prediction (fixed point, or stationary distribution) towards a configuration that reduces prediction error. In the case of a recurrent multi-layer supervised network, the output units are slightly nudged towards their target in the second phase, and the perturbation introduced at the output layer propagates backward in the hidden layers. We show that the signal 'back-propagated' during this second phase corresponds to the propagation of error derivatives and encodes the gradient of the objective function, when the synaptic update corresponds to a standard form of spike-timing dependent plasticity. This work makes it more plausible that a mechanism similar to Backpropagation could be implemented by brains, since leaky integrator neural computation performs both inference and error back-propagation in our model. The only local difference between the two phases is whether synaptic changes are allowed or not

    The Little-Hopfield model on a Random Graph

    Full text link
    We study the Hopfield model on a random graph in scaling regimes where the average number of connections per neuron is a finite number and where the spin dynamics is governed by a synchronous execution of the microscopic update rule (Little-Hopfield model).We solve this model within replica symmetry and by using bifurcation analysis we prove that the spin-glass/paramagnetic and the retrieval/paramagnetictransition lines of our phase diagram are identical to those of sequential dynamics.The first-order retrieval/spin-glass transition line follows by direct evaluation of our observables using population dynamics. Within the accuracy of numerical precision and for sufficiently small values of the connectivity parameter we find that this line coincides with the corresponding sequential one. Comparison with simulation experiments shows excellent agreement.Comment: 14 pages, 4 figure

    Transient dynamics for sequence processing neural networks: effect of degree distributions

    Full text link
    We derive a analytic evolution equation for overlap parameters including the effect of degree distribution on the transient dynamics of sequence processing neural networks. In the special case of globally coupled networks, the precisely retrieved critical loading ratio αc=N1/2\alpha_c = N ^{-1/2} is obtained, where NN is the network size. In the presence of random networks, our theoretical predictions agree quantitatively with the numerical experiments for delta, binomial, and power-law degree distributions.Comment: 11 pages, 6 figure

    A three-threshold learning rule approaches the maximal capacity of recurrent neural networks

    Get PDF
    Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model has a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored patterns.Comment: 24 pages, 10 figures, to be published in PLOS Computational Biolog
    corecore