1,154 research outputs found

    The Trade-off between Processing Gains of an Impulse Radio UWB System in the Presence of Timing Jitter

    Get PDF
    In time hopping impulse radio, NfN_f pulses of duration TcT_c are transmitted for each information symbol. This gives rise to two types of processing gain: (i) pulse combining gain, which is a factor NfN_f, and (ii) pulse spreading gain, which is Nc=Tf/TcN_c=T_f/T_c, where TfT_f is the mean interval between two subsequent pulses. This paper investigates the trade-off between these two types of processing gain in the presence of timing jitter. First, an additive white Gaussian noise (AWGN) channel is considered and approximate closed form expressions for bit error probability are derived for impulse radio systems with and without pulse-based polarity randomization. Both symbol-synchronous and chip-synchronous scenarios are considered. The effects of multiple-access interference and timing jitter on the selection of optimal system parameters are explained through theoretical analysis. Finally, a multipath scenario is considered and the trade-off between processing gains of a synchronous impulse radio system with pulse-based polarity randomization is analyzed. The effects of the timing jitter, multiple-access interference and inter-frame interference are investigated. Simulation studies support the theoretical results.Comment: To appear in the IEEE Transactions on Communication

    Performance Evaluation of Impulse Radio UWB Systems with Pulse-Based Polarity Randomization

    Full text link
    In this paper, the performance of a binary phase shift keyed random time-hopping impulse radio system with pulse-based polarity randomization is analyzed. Transmission over frequency-selective channels is considered and the effects of inter-frame interference and multiple access interference on the performance of a generic Rake receiver are investigated for both synchronous and asynchronous systems. Closed form (approximate) expressions for the probability of error that are valid for various Rake combining schemes are derived. The asynchronous system is modelled as a chip-synchronous system with uniformly distributed timing jitter for the transmitted pulses of interfering users. This model allows the analytical technique developed for the synchronous case to be extended to the asynchronous case. An approximate closed-form expression for the probability of bit error, expressed in terms of the autocorrelation function of the transmitted pulse, is derived for the asynchronous case. Then, transmission over an additive white Gaussian noise channel is studied as a special case, and the effects of multiple-access interference is investigated for both synchronous and asynchronous systems. The analysis shows that the chip-synchronous assumption can result in over-estimating the error probability, and the degree of over-estimation mainly depends on the autocorrelation function of the ultra-wideband pulse and the signal-to-interference-plus-noise-ratio of the system. Simulations studies support the approximate analysis.Comment: To appear in the IEEE Transactions on Signal Processin

    Ultra Wideband Impulse Radio Systems with Multiple Pulse Types

    Full text link
    In an ultra wideband (UWB) impulse radio (IR) system, a number of pulses, each transmitted in an interval called a "frame", is employed to represent one information symbol. Conventionally, a single type of UWB pulse is used in all frames of all users. In this paper, IR systems with multiple types of UWB pulses are considered, where different types of pulses can be used in different frames by different users. Both stored-reference (SR) and transmitted-reference (TR) systems are considered. First, the spectral properties of a multi-pulse IR system with polarity randomization is investigated. It is shown that the average power spectral density is the average of the spectral contents of different pulse shapes. Then, approximate closed-form expressions for the bit error probability of a multi-pulse SR-IR system are derived for RAKE receivers in asynchronous multiuser environments. The effects of both inter-frame interference (IFI) and multiple-access interference (MAI) are analyzed. The theoretical and simulation results indicate that SR-IR systems that are more robust against IFI and MAI than a "conventional" SR-IR system can be designed with multiple types of ultra-wideband pulses. Finally, extensions to multi-pulse TR-IR systems are briefly described.Comment: To appear in the IEEE Journal on Selected Areas in Communications - Special Issue on Ultrawideband Wireless Communications: Theory and Application

    Impulse Radio Systems with Multiple Types of Ultra-Wideband Pulses

    Full text link
    Spectral properties and performance of multi-pulse impulse radio ultra-wideband systems with pulse-based polarity randomization are analyzed. Instead of a single type of pulse transmitted in each frame, multiple types of pulses are considered, which is shown to reduce the effects of multiple-access interference. First, the spectral properties of a multi-pulse impulse radio system is investigated. It is shown that the power spectral density is the average of spectral contents of different pulse shapes. Then, approximate closed-form expressions for bit error probability of a multi-pulse impulse radio system are derived for RAKE receivers in asynchronous multiuser environments. The theoretical and simulation results indicate that impulse radio systems that are more robust against multiple-access interference than a "classical" impulse radio system can be designed with multiple types of ultra-wideband pulses.Comment: To be presented at the 2005 Conference on Information Sciences and System

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    A Statistical Analysis of Multipath Interference for Impulse Radio UWB Systems

    Full text link
    In this paper, we develop a statistical characterization of the multipath interference in an Impulse Radio (IR)-UWB system, considering the standardized IEEE 802.15.4a channel model. In such systems, the chip length has to be carefully tuned as all the propagation paths located beyond this limit can cause interframe/intersymbol interferences (IFI/ISI). Our approach aims at computing the probability density function (PDF) of the power of all multipath components with delays larger than the chip time, so as to prevent such interferences. Exact analytical expressions are derived first for the probability that the chip length falls into a particular cluster of the multipath propagation model and for the statistics of the number of paths spread over several contiguous clusters. A power delay profile (PDP) approximation is then used to evaluate the total interference power as the problem appears to be mathematically intractable. Using the proposed closed-form expressions, and assuming minimal prior information on the channel state, a rapid update of the chip time value is enabled so as to control the signal to interference plus noise ratio.Comment: 17 pages, 9 figures; submitted to the Journal of the Franklin Institute on Sept. 24, 201

    Comparison of direct and heterodyne detection optical intersatellite communication links

    Get PDF
    The performance of direct and heterodyne detection optical intersatellite communication links are evaluated and compared. It is shown that the performance of optical links is very sensitive to the pointing and tracking errors at the transmitter and receiver. In the presence of random pointing and tracking errors, optimal antenna gains exist that will minimize the required transmitter power. In addition to limiting the antenna gains, random pointing and tracking errors also impose a power penalty in the link budget. This power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne QFSK system. For the heterodyne systems, the carrier phase noise presents another major factor of performance degradation that must be considered. In contrast, the loss due to synchronization error is small. The link budgets for direct and heterodyne detection systems are evaluated. It is shown that, for systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, and the direct detection system shows a superior performance because it is less sensitive to the spatial tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains are in general limited by the launch cost, and suboptimal antenna gains are often used in practice. In which case, the heterodyne system has a slightly higher power margin because of higher receiver sensitivity

    Programmable rate modem utilizing digital signal processing techniques

    Get PDF
    The engineering development study to follow was written to address the need for a Programmable Rate Digital Satellite Modem capable of supporting both burst and continuous transmission modes with either binary phase shift keying (BPSK) or quadrature phase shift keying (QPSK) modulation. The preferred implementation technique is an all digital one which utilizes as much digital signal processing (DSP) as possible. Here design tradeoffs in each portion of the modulator and demodulator subsystem are outlined, and viable circuit approaches which are easily repeatable, have low implementation losses and have low production costs are identified. The research involved for this study was divided into nine technical papers, each addressing a significant region of concern in a variable rate modem design. Trivial portions and basic support logic designs surrounding the nine major modem blocks were omitted. In brief, the nine topic areas were: (1) Transmit Data Filtering; (2) Transmit Clock Generation; (3) Carrier Synthesizer; (4) Receive AGC; (5) Receive Data Filtering; (6) RF Oscillator Phase Noise; (7) Receive Carrier Selectivity; (8) Carrier Recovery; and (9) Timing Recovery
    • 

    corecore