39,826 research outputs found

    WPU-Net: Boundary Learning by Using Weighted Propagation in Convolution Network

    Full text link
    Deep learning has driven a great progress in natural and biological image processing. However, in material science and engineering, there are often some flaws and indistinctions in material microscopic images induced from complex sample preparation, even due to the material itself, hindering the detection of target objects. In this work, we propose WPU-net that redesigns the architecture and weighted loss of U-Net, which forces the network to integrate information from adjacent slices and pays more attention to the topology in boundary detection task. Then, the WPU-net is applied into a typical material example, i.e., the grain boundary detection of polycrystalline material. Experiments demonstrate that the proposed method achieves promising performance and outperforms state-of-the-art methods. Besides, we propose a new method for object tracking between adjacent slices, which can effectively reconstruct 3D structure of the whole material. Finally, we present a material microscopic image dataset with the goal of advancing the state-of-the-art in image processing for material science.Comment: technical repor

    Segmentation of Myocardial Boundaries in Tagged Cardiac MRI Using Active Contours: A Gradient-Based Approach Integrating Texture Analysis

    Get PDF
    The noninvasive assessment of cardiac function is of first importance for the diagnosis of cardiovascular diseases. Among all medical scanners only a few enables radiologists to evaluate the local cardiac motion. Tagged cardiac MRI is one of them. This protocol generates on Short-Axis (SA) sequences a dark grid which is deformed in accordance with the cardiac motion. Tracking the grid allows specialists a local estimation of cardiac geometrical parameters within myocardium. The work described in this paper aims to automate the myocardial contours detection in order to optimize the detection and the tracking of the grid of tags within myocardium. The method we have developed for endocardial and epicardial contours detection is based on the use of texture analysis and active contours models. Texture analysis allows us to define energy maps more efficient than those usually used in active contours methods where attractor is often based on gradient and which were useless in our case of study, for quality of tagged cardiac MRI is very poor

    Robot Autonomy for Surgery

    Full text link
    Autonomous surgery involves having surgical tasks performed by a robot operating under its own will, with partial or no human involvement. There are several important advantages of automation in surgery, which include increasing precision of care due to sub-millimeter robot control, real-time utilization of biosignals for interventional care, improvements to surgical efficiency and execution, and computer-aided guidance under various medical imaging and sensing modalities. While these methods may displace some tasks of surgical teams and individual surgeons, they also present new capabilities in interventions that are too difficult or go beyond the skills of a human. In this chapter, we provide an overview of robot autonomy in commercial use and in research, and present some of the challenges faced in developing autonomous surgical robots

    Representation, Shape, Topology and Evolution of Deformable Surfaces. Application to 3D Medical Image Segmentation

    Get PDF
    These last years, deformable models raised much interest and found various applications in the field of computer vision. They provide an extensible framework to reconstruct shapes. Deformable surfaces, in particular, are used to represent 3D objects. They have been used for pattern recognition [47,2], computer animation [118], geometric modelling [40,75], simulation [45], boundaries tracking [14], segmentation [83], etc. In this report we propose a deformable surfaces survey. Many surface representation have been proposed to meet different 3D reconstruction problem requirements. We try to classify the main representations proposed in the literature and we study the effect of the representation on the model evolution behavior, revealing some similarities between different approaches. Whe then focus on a powerful discrete mesh representation, the simplex meshes. We propose different algorithms to control simplex meshes shape and topology. Whe show results on 3D medical images segmentation

    Cell Segmentation and Tracking using CNN-Based Distance Predictions and a Graph-Based Matching Strategy

    Get PDF
    The accurate segmentation and tracking of cells in microscopy image sequences is an important task in biomedical research, e.g., for studying the development of tissues, organs or entire organisms. However, the segmentation of touching cells in images with a low signal-to-noise-ratio is still a challenging problem. In this paper, we present a method for the segmentation of touching cells in microscopy images. By using a novel representation of cell borders, inspired by distance maps, our method is capable to utilize not only touching cells but also close cells in the training process. Furthermore, this representation is notably robust to annotation errors and shows promising results for the segmentation of microscopy images containing in the training data underrepresented or not included cell types. For the prediction of the proposed neighbor distances, an adapted U-Net convolutional neural network (CNN) with two decoder paths is used. In addition, we adapt a graph-based cell tracking algorithm to evaluate our proposed method on the task of cell tracking. The adapted tracking algorithm includes a movement estimation in the cost function to re-link tracks with missing segmentation masks over a short sequence of frames. Our combined tracking by detection method has proven its potential in the IEEE ISBI 2020 Cell Tracking Challenge (http://celltrackingchallenge.net/) where we achieved as team KIT-Sch-GE multiple top three rankings including two top performances using a single segmentation model for the diverse data sets.Comment: 25 pages, 14 figures, methods of the team KIT-Sch-GE for the IEEE ISBI 2020 Cell Tracking Challeng
    corecore