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Abstract: These last years, deformable models raised much interest and found various
applications in the field of computer vision. They provide an extensible framework to re-
construct shapes. Deformable surfaces, in particular, are used to represent 3D objects.
They have been used for pattern recognition [47, 2], computer animation [118], geometric
modelling [40, 75], simulation [45], boundaries tracking [14], segmentation [83], etc. In this
report we propose a deformable surfaces survey. Many surface representation have been
proposed to meet different 3D reconstruction problem requirements. We try to classify the
main representations proposed in the literature and we study the effect of the representation
on the model evolution behavior, revealing some similarities between different approaches.
Whe then focus on a powerful discrete mesh representation, the simplex meshes. We propose
different algorithms to control simplex meshes shape and topology. Whe show results on 3D
medical images segmentation.
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Représentation, forme, topologie et évolution des
surfaces déformables. Application & la segmentation
d’images médicales 3D.

Résumé : Ces derniéres années, les modéles déformables ont trouvé de nombreuses ap-
plications dans le domaine de la vision par ordinateur. Ils constituent une représentation
extensible utile & la reconstruction de formes. Ils sont utilisés dans des applications aussi
diverses que la reconnaissance de motifs [47, 2], ’animation [118], la modélisation géomé-
trique [40, 75], la simulation [45], le suivi de contours [14], la segmentation [83], etc. Dans ce
rapport, nous détaillons les différentes approches fondées sur les surfaces déformables. De
nombreuses représentation ont été proposées pour résoudre des problémes de reconstruction
3D variés. Nous ordonnons les principales représentations trouvées dans la litérature et nous
étudions 'impact de la représentation sur 1’évolution des modéles, montrant les similarités
existantes entre différentes approches. Nous nous concentrons ensuite sur une représentation
souple et élégante: les maillages simplexes. Différents algorithmes de controle de la forme
et de la topologie sont décrits. Quelques résultats des segmentation d’images médicales 3D
illustrent la mise en ceuvre de ces surfaces déformables.

Mots-clés : Surface déformable, représentation, géométrie, topologie, images médicales,
3D



Representation, shape, topology and evolution of deformable surfaces. 3

1 Introduction

For the past decade, there has been a significant research effort for achieving 3D objects
modelling based on deformable models. The main motivation of these research works is to
provide reliable reconstruction tools that are both robust and generic.

Deformable models cover a very wide range of application and have been used in pattern
recognition [47, 2|, computer animation [118], geometric modelling [75], surgery simula-
tion [45], tracking [14], image segmentation [86, 61, 5, 59], etc. Extremely variable rep-
resentations have been used to fulfil different 3D modelling needs, from deformable 3D
lines [108, 54] to deformable volumes [121, 22]. In this paper we focus on deformable surfaces
that have been vigorously investigated for 3D objects modelling. Deformable models were
introduced by Kass et alin 2D as explicit deformable contours [60] and generalized to the 3D
case by Terzopoulos et al [120]. Parametric representations such as superquadrics [117, 10]
and discrete representations [89, 42| have also been proposed. Recently, implicit represen-
tations have been used with the ability to handle topology changes [74, 130, 69].

When considering the segmentation of images, the basic idea is to steer deformable
models towards the image structure boundaries. Due to the image noise and the lack of
contrast between structures in many image acquisition systems [1], it is in general needed
to constrain the model variation space and to introduce some prior information in the
deformation process. For instance, statistical shape variations from a training set [33] may
be used to constrain the deformation of a geometric model.

In this report, we propose a survey on existing deformable surfaces. Different approaches
are classified according to their surface representations in section 2. Different evolution laws
found in the literature are studied in section 3. Although the evolution may depend on
the kind of representation used, we exhibit some similarities between different approaches.
Surface representation has an effect on the deformation capability of a model. Similarly,
modifications of the evolution laws have been introduced to regularize surface deformations.
These methods are described in section 4. The ability of various representations to handle
topology changes is the topic of section 5. We then focus on a discrete surface representa-
tion called simplexr meshes. It provides a simple geometric representation combined with a
powerful framework for regularization (section 6). In section 6.2, several methods to achieve
shape regularization are shown. This is a key issue of deformable modelling. Local regular-
izing constraints are designed to ensure local surface regularity whether prior information
on the expected anatomical structures shape is available or not. The deformations are also
constrained at a global scale to make the segmentation process robust to outliers and false
positives. In section 6.3, an automatic model initialization method is described permitting
to generate a surface mesh from an image with the desired shape and topology. The use
of topology operators on discrete meshes to allow surface resampling as well as changes in
the surface genus is the topic of section 6.4. Finally, the ability of simplex meshes to handle
medical image segmentation is shown in section 7. Various image geometries as well as
imaging modalities are demonstrated. Heart left ventricle segmentation from 3D ultrasound
images are shown.

RR n° 3954



4 Montagnat, Delingette, Scapel, Ayache

The wide application field of deformable models has already led to the production of sev-
eral surveys. McInerney and Terzopoulos [78] study deformable models for medical image
analysis and classify the approach found in the literature by applications. Cheung et al [21]
are interested in deformable models for pattern recognition. Robert [98] details parametric
deformable models while Lachaud [63] reviews some deformable models considering simul-
taneously geometric representation and evolution laws. Gibson and Mirtich [52] propose a
general survey of deformable models in computer graphics classified by the method used for
computing deformations. Brown [17] focuses on registration methods as well as Audette et
al [4] who thoroughly classify registration techniques from an algorithmic point of view. This
paper focuses on the mathematical and computational foundations of deformable surfaces
used for 3D object reconstruction in a wide variety of applications.

2 Deformable surfaces geometry

A deformable surface is an object composed of a surface representation and an evolution
law allowing the deformation of this surface to represent a different shape. We first focus
on surface geometric representations.

2.1 Shape and Deformation parameters

A key aspect of deformable models lies in their geometric nature. Basically, two criteria may
be associated with the geometry of these models :

e Shape Description. A deformable model may be restricted to represent simple
shapes (for instance ellipsoids) or shapes of restricted topology (for instance spherical
Fourier descriptors) or may represent any shapes independently of their topology (for
instance spring-mass models).

e Deformation Description. The complexity of a model deformation may not be
related to the complexity of its shape. For instance, when deforming a surface mesh
by applying an affine transformation, the model deformation has only 12 degrees of
freedom whereas the mesh shape may be much more complex.

In terms of geometric description, a deformable surface Sq is controlled by a vector of
shape parameters q = (qi,...,qn,)"- If the surface has an explicit representation, it is
defined as a function :

Sq : RUMax — TR3
(Cha--ananaS) — pq(T,S)

(1)

However, in some cases, it may be useful to introduce an additional vector of deformation

parameters d = (dy,...,d,,)T that controls the application of a global transformation Ty
on the surface :
Sia) = Ta(Sq) © R xR™ x Q - R

2
(qla"'7qnq7d17"'7dn,mr73) = Td(pq(T',S)) ( )

INRIA



Representation, shape, topology and evolution of deformable surfaces. 5

Usually Ty is chosen as an endomorphism of IR3. It is important to note that we could
also include the set d into the set q of shape parameters. However, the mathematical
methods associated with these two formulations are slightly different (see sections 3.1 and
4 for the two approaches).

Therefore, we can distinguish between two extreme cases. On one hand, when ngy = 0
and ng # 0, we have a typical deformable model framework with a large variety of possible
surface representations. These surface representations are described in the rest of section 2.
and are illustrated in Figure 1.

On the other hand, when ny, = 0 and ng # 0, we have a surface registration framework,
where a surface is deformed through the application of a global transformation :

Sqg : RMxQ — IR? 3)
(dlv‘-‘adndarvs) [and Td(p(r7s))

In this case, the initial surface description S does not even have to be a parametric surface.
Indeed, this approach may be applied to any surface having an explicit representation even
a discrete surface mesh.

In section 4, we describe several approaches combining a global transformation ng # 0
and shape parameters n, # 0.

2.2 Continuous and discrete representations

First, we make a distinction between deformable surfaces having continuous and discrete
representations. With discrete representations, the geometry of surfaces is only known at
a finite set of points. Continuous representations must be discretized for computational
needs but they offer the ability to compute differential quantities such as surface normals
or curvatures almost everywhere on the surface. In fact, we have extended the notion of
discrete representation to include any surface representation having at most a C° continuity
(position continuity) along the surface. This is why we have included triangulations and
simplex meshes in the set of discrete surfaces.

Each family in turn can be divided into different classes of representations. Continuous
surfaces may be defined through an explicit or an implicit equation while discrete surfaces
are mainly represented through discrete meshes or particle systems.

2.3 Explicit representations

When using an explicit representation, surfaces are described by coordinates functions de-
pending on a vector of shape parameters q as described in equation 1. A further distinction
between these models can be made depending on the number and the nature the parameter
set q. The number of parameters has an impact on the complexity of the deformation.
Another criterion is the local or global deformation impact of these parameters. With pa-
rameters controlling local deformations, fairly complex shapes may be obtained but at the

RR n° 3954
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Deformable
surface

Discrete

models
Continuous Discrete Particle
models meshes systems
(section 2.5) | (section 2.6)
Simol Spring-mass
mplex
Explicit Implicit m;h model
(parameterized) representation
representation (section2.4) | Triangulation
(section 2.3)
. Level-set
f_P(_):ynomlaI ¢ Superquadric
INItESUPPOMt | peformable : _
i Algebraic Hyperquadric
representation
=+ template surface
. Modal
B-Splines _Finite decomposition
differences
Finite
elements

Figure 1: Different geometric representations of deformable surfaces.
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Representation, shape, topology and evolution of deformable surfaces. 7

expense of an important computational complexity. On the contrary, global shape para-
meters lead to more stable numerical schemes when a limited number of parameters are
estimated.

Polynomial finite support functions

In these representations, shape parameters correspond to the coefficients of polynomial
finite support functions. Each parameter has only a local impact on the surface shape.
This often leads to solve linear systems of equations with sparse matrices. This category
includes the different types of contour and surface splines among which B-splines are the
most widely used. In [80], Menet et al introduce «B-snakes», some deformable contours
represented as B-spline curves. B-splines are smooth curves or surfaces with high level of
geometric continuity but they allow sharp corners by duplicating some control points to make
the curve C° only. Menet et al use B-snakes for recovering building contours from aerial
images. B-spline surfaces have also encountered some success in the deformable models
community for registration of anatomical structures [54, 13] and contour tracking [11] in
image sequences. Leitner et al [67, 66] define deformable contours and surfaces based on
B-snakes with the ability to operate topology changes.

In fact most finite element models are based on shape functions that are polynomial
finite support functions. These shape functions are usually related to Hermite polynomials
in order to guarantee at least a C'! continuity along the surface. Also, these approaches are
often limited to represent surfaces of simple topologies because of their difficulty to ensure
C' or G! geometric continuity on surfaces of arbitrary topology (see for instance [48]) while
keeping local support functions.

Finite elements methods are mainly used as a numerical framework for minimizing de-
formation energy functionals. They are further studied in section 3.4.

Superquadrics

Superquadrics are a generalization of quadrics to surfaces. They certainly are the most
widely used parameterized surfaces [117, 10, 97, 124]. In particular, superellipsoids represent
closed surfaces. A superellipsoid is defined by the parametric equation :

aysign(cos T cos s)| cosr cos s|!
Qq(r,s) = 4 assign(cosrsins)|cosrsins|? |
agsign(sin s)| sin s/
where q = (a1,a2,a3,€1,¢€2,€3)T is the surface parameter vector, r € [0,27] and s € -3, 3]
Superquadrics allow the representation of relatively variable shapes but only with a symme-
try axis. Thus they cannot, in their primitive formulation, represent complex shapes.
Superquadrics can also be represented as implicit surfaces by the equation :

2/61
+

p_z 2/62 2/63

a1

Py

Fy(p) = as

The surface is defined as Sq = {p € R3|Fq(p) = 1}. This representation is suited to deter-
mine if a point p € IR? belongs to the interior (Fy(p) < 1) or the exterior (Fy(p) > 1) of

RR n° 3954



8 Montagnat, Delingette, Scapel, Ayache

the surface. Choosing one representation instead of the other affects the evolution behavior
of the model as we can see later in this report.

Deformable templates

In their paper, Yuille et al [129] define a parametric model suited to the representation
of the eye. The set of shapes that the model can represent is restricted to the specific needs
of the application. It overcomes the shape variation restrictions by using only parameters
adapted to a given application while making the evolution process robust since the number
of parameters is as small as possible.

Modal decomposition

Different representations use a modal decomposition of the model. The decomposition
basis is a set of different frequency harmonics. This representation is equivalent to a para-
metric surface set whose parameters are the mode weights. The sum of the first modes
composing the surface gives a rough approximation of its shape. The approximation refines
as higher frequency modes are added to the representation. In practice, it is desired to
reduce as much as possible the number of modes used to obtain a compact representation,
knowing that few modes usually allow the representation of rather complex shapes. More-
over, the small number of modes allows the regularization of the surface when considering
its evolution [89, 93].

Staib et al [105] investigate Fourier mode decomposition. A curve may be represented
as a sum of sinusoidal terms:

a > ar b cos kr
_ 0 k k
Cq(T)_(co)+;<ck dk)'(sink'r)’
where the parameter vector is q = (ag, ..., ax,b1,--,0K,Cos.--,Cx,d1,...,dg)T if only K

modes are used. This representation extends to surfaces by using spherical harmonics, for
instance, as in Székely et al [112]:

k

Sq(""vs) = Z Z C?Ykm(ns)a
k

k=0 m=—

where Y™ is a spherical harmonic of degree k and order m, and q = (¢; ", ..., c?)?. Other
decomposition bases may be used. To simplify the surface parameterization, Staib and Dun-
can [105] propose different bases depending on the surface topology (surfaces homeomorphic
to a sphere, a torus, a cylinder or a plane).

2.4 Implicit representation

Contrary to explicit models, implicit representations involve an implicit equation to locate
the surface points. An implicit surface is generally defined as the zeros’ set of a function f
valued in R. That is:

Sy ={p € R’[f(p) = 0}. (4)

INRIA
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Algebraic surfaces

Algebraic surfaces are surfaces satisfying equation 4 where f is a polynomial. They
have been widely used in the field of graphics and modelling [114]. Taubin et al [115] use
algebraic surfaces to reconstruct unstructured point set data. Algebraic surfaces have several
limitations. They are not necessarily closed, although it is possible to consider only some
even order polynomials. Algebraic surfaces are not straightforward to display on a graphic
screen. Moreover computing the distance from a point to an algebraic surface, which is
required by surface matching algorithms, is difficult. The value f(p) is often used as an
approximation.

Superquadrics
Superquadrics presented in section 2.3 may be represented in an implicit form. In par-
ticular, superellipsoids with implicit equation [9):

a
2

()@ @) - o

represent closed surfaces.

Hyperquadrics
Hyperquadrics [55, 25] have been proposed as a superquadric extension. They allow the
representation of a wider surface family. An hyperquadric is defined by equation:

n>3
fa(P) =Y la;pe +bipy + ¢;pz +d;| =1,
i=1
where €; > 0 for all j, and q = (a1,b1,¢1,d1,€1,--,@n,bnyCnydn,€,)T. This equation

does not have any explicit representation as soon as n > 3. The surface is enclosed in the
convex envelope defined by the set of planes a;p, + b;py + ¢jp. + d; = £1. As ¢; coeflicients
increase the surface merges with its convex envelope. As well as modal representation,
hyperquadrics is an extensive formulation allowing the iterative addition of terms that refine
the surface description. However, a hyperquadric must remain homeomorphic to a sphere.

Level sets

Level set methods were developed by Osher and Sethian [91] and introduced in the
medicine vision community by Malladi et al [74]. Level set methods are thoroughly described
in [101]. The main idea of level sets is to embed the deformable model in higher dimension
space. A surface is represented as the zero level set of a function ¥ : R? — IR:

S ={p € R’|¥(p) = 0}.

Thus S is necessarily a closed surface or a set of closed surfaces.
Given an initial surface Sy, the hypersurface ¥ is defined by :

¥(x) = dist(p, So),

RR n° 3954



10 Montagnat, Delingette, Scapel, Ayache

where «dist» is the signed Euclidean distance between a point and the surface. The distance
is positive if the point lies outside the surface and negative otherwise. The evolution of
surface S is guided by a partial differential equation involving function ¥. Its extension to
higher dimension space is straightforward.

The main advantage of level set methods is to naturally make surface topology changes.
S may split in several connected components or merge from several components while ¥
remains a function. Their main drawbacks are the computational cost, since a higher di-
mension space is used for updating the surface, and the lack of user interactivity. Malladi
et al [73] propose several technics to speed-up the numerical aspects including the use of
narrow bands.

Siddiqi et al [102] use a propagation equation similar to level sets to recognize the shape
of binary structures at different smoothing scales.

2.5 Discrete meshes

The representation of deformable models as discrete entities naturally rises the parame-
terization problem of continuous representations. However, this approach permits a large
number of degrees of freedom to the surface and it is therefore often necessary to constrain
the space of possible deformations. Most discrete models are meshes defined as a set of
points with some connecting relation.

Discrete contour

A discrete deformable contour C is just a set of vertices {py,...,Pq_1} connected to
produce a polygonal line closed or opened. Let PP; : {0,1} — [0,d — 1] be the neighborhood
relation of vertex i :

Vi€ [1,d—2],PP;(0) =i+1and PP;(1)=i—1
PP()(O) =1 and PPd,]_(l) =d—2
PPo(1) =d—1and PPy 1(0) =0 if C is closed.

Triangulation

A surface is also represented by a set of vertices and a neighborhood relation that induces
topological constraints. A common representation are triangulations (see figure 2 on the
left) for which the surface is composed of a set of adjacent triangles. Each triangle of a
triangulation shares at least one of its edges with a neighbor triangle.

Spring-mass model

Vasilescu and Terzopoulos [122] used spring-mass models composed of a set of nodes
connected by springs in the context of surface reconstruction. An example of a spring-mass
model where n point masses are linked eight by eight [89] is shown in figure 2 on the right.
The springs rest length determines the model rest shape although mass-spring models have
several equilibrium positions. The springs’ stiffness controls the model elastic properties. It
is possible to add springs between vertices that are not direct neighbors in order to improve
the mesh stability and to provide a better volumetric behavior.

INRIA



Representation, shape, topology and evolution of deformable surfaces. 11

Figure 2: Left: triangulation. Right: mass-spring model.

Simplex meshes

Simplex meshes were introduced by Delingette [39, 42] and studied in [82, 127, 53, 83].
A simplex mesh is a discrete model representation with a constant vertex connectivity.
2-simplex meshes are used to represent surfaces. Each vertex of a 2-simplex meshes is
connected to three, and only three, neighbors (see figure 3 on the right). 2-simplex meshes
are topologically dual to triangulations as illustrated in figure 3 on the right: there exists a
dual triangle for each mesh vertex and a dual triangulation vertex for each mesh face. Due
to their constant connectivity, the geometry of simplex meshes is fairly simple. A notion
of surface local shape allows the definition of shape memory constraint in the deformation
process (see section 6).

Figure 3: Left: 2-simplex mesh. Right: triangulation dual to a simplex mesh.

Other discrete meshes
Vemuri and Guo [123] use a hybrid model called pedal snake composed with a discrete
deformable contour and a parameterized generative ellipse. The discrete representation is

RR n° 3954



12 Montagnat, Delingette, Scapel, Ayache

also suited for dynamic programming of the model evolution as demonstrated in [3]. Also,
subdivision surface techniques [58, 106] allow to describe smooth surfaces by iteratively
subdividing an unstructured mesh. However, since the limit surface cannot be recovered
explicitly but only approximately as a function of the control points, it often leads to com-
putationally expensive schemes for approximating real data.

2.6 Particle systems

Particle systems are discrete models with a representation fundamentally different to meshes.
They are composed of a set of elementary objects called particles. Particles are described
by their location, speed, acceleration, mass, and any other parameter needed for a given ap-
plication. Each particle evolves according to Newtonian mechanical laws. Particles interfere
with each other through attraction-repulsion forces that tend to arrange them on a regular
lattice (hexagonal grid) when external forces vanish. Figure 4 shows an example of the
force amplitude used for a particle system in [68]. Particle systems are suited to represent
viscoelastic solids or fluids [46].

amplitude

distance

Figure 4: Particle system force amplitude.

In [111], Szeliski and Tonnensen propose oriented particles to represent surfaces. Each
particle is considered as a surface element, or surfel by analogy to pixels. To each particle is
associated a rotation matrix. The authors define coplanar and cocircular energies that tend
to align the particles on the surface of a plane or a sphere at rest respectively. Lombardo [68]
extends this framework to define a curvature on the surface. He proposes a hybrid model
combining a particle system and an implicit surface describing the model envelope.

Particle systems are adapted to represent surfaces with a variable topology. Szeliski and
Tonnensen [111] propose ad-hoc rules to dynamically add or remove particles to a system.
New particles fill in the surface holes. However, particle systems do not allow a direct
computation of the surface geometric properties and are rather complex to visualize.

INRIA
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3 Deformable models evolution

Regardless of the surface representation used, it is needed to deform the model to fit the
data. The surface representation affects the possible variability of a model. With few shape
parameters, a surface model has restricted shape variations. Implicit representation provides
much more freedom to the model that can undergo topology changes but it also makes the
model more sensitive to data noise. The deformation process also permits the introduction
of restrictions in the allowed shape deformations of a surface.

The deformation process generally involves a data term attracting the model towards
structures to reconstruct and a regularization term enforcing a smooth behavior of the
model. Data is used to drive the model deformation but the data noise or the outliers
make it necessary to constrain the possible deformation space in order to stabilize the model
evolution.

A classical approach consists in defining an energy functional E. The energy allows the
quantification of the model geometric quality (such as its smoothness or its distance to a
prior shape) and the data reconstruction accuracy. A regular model fitting the data has a
low energy while the energy increases with the model rough shape and its distance to the
data. An optimal model thus minimizes E. This minimization requires to differentiate and
to discretize the energy equation.

A second approach consists in using directly the derived equation. By analogy with
mechanical systems, the derived energy is a force. An ad-hoc set of forces is defined that
drives the surface : we then call these forces differential stabilizers [37].

Figure 5 sums up the resolution methods described in this section.

3.1 Energy

The energy E of a deformable model is composed of several terms including at least an
intrinsic regularizing term FEi.; and a data term FEey. In the rest of the paper we consider
L?(9), the set of square integrable functions on Q: L*(Q) = {f € (2 = R)| [, > < +o0}.
L?(9) is characterized by the scalar product (f,g) = [, fg and the induced norm || f||* =
(f, )

The energy of a n-dimensional parameterized surface S € L?(Q)" is defined by:

E : L2 — R
S — E(8)= Ereg(‘s) + Eext(S)

We admit that the energy functional is built such that its global minimum coincide with

the expected solution Sp:
So = msin E(S)

The regularizing term has a stabilizer role since the data term is usually very irregular
and shows a large amount of local minima. Tikhonov stabilizers are often used to measure
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Bayesian
formulation
(section 3.2)
Energy equation i Forces
E=EggtEgq (HON3D eqilibrium
(section 3.6)
Euler-Lagrange
Stationary equation Finite element
method
o (section 3.4)
Centered finite
differences
(section 3.3)
Discrete stationary equation  (section 3.7)
Global _
minimization Evol UtIV.e method
(section 35) (%Ctlon 371)
Lagrangian Newtonian
Gradient
Evolution equation descent
(section 3.7.2)

Finite differences
Semi-implicit

scheme Explicit scheme

Discrete evolution equation

Iterative
convergence

Solution

Figure 5: Solving deformable models’ evolution equation.
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the surface smoothness. Thus, a surface internal energy is:

(i + ) 9IS
Ereg(S " ilg! wis oridsi
Z+]<k

drds (6)

where w;; are positive functions. Second order stabilizers are mostly used (k = 2). The
stabilized surface must thus be twice differentiable, that is S € H2(2)? where H?((Q) is the
Sobolev space defined by:

2
H?*(Q) = {f € L*(N)|Vi, j aaif;;j € L2(Q)}

A surface regularized by a second order Tikhonov stabilizer is identical to a thin membrane
with mechanical energy Er,. Functions wig and wp: measure the membrane stress while
wag, woz and wq1 measure its rigidity.

The data term depends on a potential P computed from the data (e.g. for an image I,
P = —||VI|? in its simplest form):

Eex( /P r,8))drds

The problem is to determine the surface Sy such as:
, / as|” as|” 82s |?
So = min [ wyp
S Ja

or 0s rds
Equation 7 does not admit any analytical solution. It is needed to discretize this equation
and to apply an iterative scheme to solve it. The most common method is to rewrite this
equation as a stationary equation corresponding to a force equilibrium. The equilibrium
equation is then discretized using finite differences. Other resolution methods exist such as
dynamic programming [3], greedy algorithms [128] or simulated annealing [94, 107].

a?s|?
Bs?

a2s|?

+2wyy )

+wo1 +wa0 +wo2

drds+/ P(8)drds
Q

3.2 Bayesian approach

Another classical approach to optimize the shape of a surface S embedded in an image
I is to use a statistical framework [129, 109]. Probability P(S|I) denotes the posterior
statistical model. It estimates how a surface S fits the data image I. The searched solution
is the posterior mazimum (MAP), that is the surface that maximizes the posterior model
probability:

MAP = max P(S|I)

The posterior model is estimated by using Bayes rule:

P(S|I) = % (8)

composed of the following terms:
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16 Montagnat, Delingette, Scapel, Ayache

- P(I) =) ¢ P(I|S) is a normalization constant.

- The prior model P(S) is a geometric model measuring the surface shape quality with-
out taking data in account.

- The data model P(I|S) measures how the given surface generates the image intensity.
This is the stochastic process description linking the unknown state S with the data
1.

The prior model must lead to high probabilities for S configurations that correspond to
a weak regularization energy. A Gibbs (or Boltzmann) distribution is often used:

P(S) = 1 ¢~ Freg(S)
reg

where Z,., is a regularizing constant called the partition function.
Similarly, a Gibbs distribution may be used for the data model, supposing an acquisition
model based on linear measures disturbed by a Gaussian noise:

e_EeXt(S) .

P(I|S) =

ext

Finally, the posterior model is:
1
P(S|I) = ZG_E(S)'

The maximum of the conditional probability P(S|I) corresponds to the energy minimum.
This approach is interesting if the data term is computed taking the acquisition noise into
account. Otherwise, this framework is basically equivalent to the regularization framework
described in the previous section [109].
Terzopoulos and Szeliski [119] describe a “Kalman snake” based on a probabilistic mod-
elling by adding a Kalman filter to prior models and data with a Bayesian formulation.

3.3 Finite differences discretization

The energy is usually a non convex function that owns several local minima. The goal is to
make the model evolve towards one of those minima. The minimization result thus depends
on the initial pose and shape of the model.

Stationary equation
Using Euler-Lagrange equation (VE(S) = 0), it can be proved [24] that an energy local
minimum must satisfy:

i) S i) S 8?2 8%s 8?2 %S 5> %8\ _
{ = (Wi037) = 75 (w01 57) + 2575 (wu 87"35) + o (W53 ) + 52 (Worgr ) = —VP(S)

boundary conditions

9)
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This equation might be seen as an equilibrium between internal regularizing forces and
external data forces. It requires the computation of the surface fourth order derivatives
which might cause numerical stability problems. S must belong to H*(Q)P space.

A solution of equation 9 can be computed by discretizing this equation using centered
finite differences.

Finite differences

The parameter domain (Q is discretized along a regular grid Qa,as of size M x N. The
grid nodes are distant of Ar = 47— in one direction and As = w5 in the other. The

function f(r,s) is represented by the value array f[m,n] = f(mAr,nAs) with 0 <m < M
and 0 < n < N. The discrete derivation operators in the parameter space are defined by
centered differences:

OF (ahnsnha) = D, flm,n] = L™+ 1l = flm =17

o 2Ar
%(mhl,NhQ) ~ D, flm,n] = flm,n + 1]2;;[%“ _1]
%(mhl,n@) ~ D,, flm,n] = fim+1,n] - QanZ;n] + flm—1,n]
%(mhl,nhg) ~ Doy flm,n] = LM+ _gfgz;n] + fimon—1]
;:gs(mhl,n@) ~ D, f[m,n] = flm+1,n+1] - QQ[;,ZS] TS

After discretizing equation 6, the internal energy appears on a matrix form K(S)S where
K designates a MN x MN rigidity matrix and the force vector f(S) represents the data
potential. The stationary equation thus composes a non-linear system of dependent equa-

tions:
K(S)S = £(S). (10)

If w;; functions are fixed, the system becomes linear :
KS = £(S). (11)
3.4 Discretization using finite elements
The Sobolev space HZ() is defined by:
H;(Q) = {f € H*(Q)|f o0 = 0 and 9fpq = 0 and 9” fjgq = 0}

where 992 is the border of 2. It can be proved [24] that solving equation 9 is equivalent to
find a function v : t € [0,T] — v(t) = (u € 2 — S(u,t)) € HZ(Q) such as:

Vu € H3(2), a(v(t),u) = Ly(u),
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where a is a bilinear form defined as:

Ou Ov Ou Ov 0%u &%v 0%u 9%S 8%u 8%v

olwr0) = [ oG G+ g b g S pdeds

and L, is a linear form defined as:
L,(u) = —/ VP(v)udrds.
Q

The variational problem:
a(S,u) = Ls(u),Yu € H3 (D)

admits a unique solution if the regularization coefficients (wyg, wo1, w11, wao €t wo2) are
positive since a is HZ-elliptic.

The finite element method gives a discrete approximation v, of the solution v in a finite
dimension space V;, C HZ(Q) verifying:

lim ||v —vs|| = 0.
h—0

Function vy, is piecewise polynomial on a V}, basis whose generative functions are defined on
a restricted domain.

Q is split into triangular or rectangular elements. Rectangular elements do not allow
the representation of surfaces with unrestricted topology but they lead to a smaller linear
system that is easier to solve. In the following, we will consider the set of nodes Qa,as =
{Nmn}mn such as Ny, , = (mAr,nAs). It defines the rectangular finite elements K, , =
[Nm,na Nm+1,n] X [Nm,na Nm,n+1]-

We consider Bogner-Fox-Schmidt finite elements. Let @3(IR?) be the set of polynomials

{p(r, 8) = Y o<ki<s 'kals"r’}. V}, is defined by:
Vi = {veC' vk, , € Qa(Ki;)}

where Qs(K; ;) = {pk,,|p € Qs(IR?)}. Bogner-Fox-Schmidt finite elements basis can be
obtained by the tensor product of ® and ¥ base functions of Hermite finite elements in IR :

—&ed— Ha? +1 if z € [-h,0] xS + 222 +x if z € [—h,0]
—J) 23 _ 372 - _J) i, 3_5% 2> :
Q(r)=¢ 32° —z2°+1  if x€[0,R] U(z) =4 22’ — 72’ +2 if 2 €(0,h]
0 else 0 else

Thus vy, is given by:
ov
on(r,s) = 3> on(Ne)®(r) + h (Nk,l)‘lf(r)> B(s) +
. . r
[k—i|<1,]1—j]|<1

(%(Nk,n@(r) + gr};’; (Nk,z)\If(m) ¥(s)
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9un (Ny1) and 22 (Ny)

This is a linear system with unknown parameters vj, (N 1), %L: (Nk,p), 52

to each node. This system may be written:
Kx=1f

and is equivalent to equation 11.

As finite elements, B-splines represent the model as a tensor product of polynomial
curves. The model shape is controlled by a set of nodes. The B-spline representation is
indeed equivalent to finite elements on a particular basis [2§].

The finite element method only requires the computation of the surface second derivatives
as opposed to finite differences that make use of fourth derivatives. Furthermore, it allows
the computation of the surface differential attributes at any point, not only at the nodes.
In some finite element methods, v, is not linear and implies greater order combinations.
The finite element method requires fewer nodes than finite differences since it provides an
interpolation of the surface between nodes. However, finite elements are computationally
expensive compared to finite differences.

3.5 Global minimization

The energy functional is usually non-convex making the global minimization process difficult.
Few approaches have been proposed to find the energy global minima.

3.5.1 Simulated annealing

The simulated annealing [107] derives from the gradient descent method. Starting from an
initial surface Sy, a gradient descent iteratively evolves according to the equation:

Ski1 = Sk — AKVE(Sy)

until the model converges. The simulated annealing introduces a random component in the
convergence process. Let q denote the parameter vector of the discretized energy functional
E4. At each iteration, a component g; from vector q is randomly selected and the energy
variation

AEq = E{qo,-~~,qz'+§,~~ - Eq

-sqn }

resulting from ¢; variation by a constant ¢ is evaluated. If the energy variation is negative,
the energy descent is accepted. If AE is positive, the energy augmentation might be accepted
with a probability eﬁ where t is a «temperature» parameter decreasing from an initial
value towards 0 as the algorithm converges. A high temperature makes it possible to get
out of the energy local minima. As the system «freezesy», the algorithm becomes identical
to a gradient descent. Due to its stochastic nature and the difficulty to set the temperature

evolution law, simulated annealing may be very slow to converge and tricky to optimize.
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3.5.2 Dynamic programming

Dynamic programming was introduced by Amini et al [3] to solve the evolution equation of
deformable contours. It is based on a particular discretization of the contour energy:

d—1

E(C) = ZEreg(Pi) + Eext(Pi)7

where C = {po, ..., Pd—1}- This energy can be written:

E(C) = Eo(po,P1) + E1(P1,P2) + ... + Eq—1(Pd—1, Pd—2)- (12)

We consider the following notations:

{ so(p1) = ming, Ey(po, P1)
Vk € [1,d — 1], s,.(Pr41) = ming, {sx—1(Px) + Er(Pk, Pr—1)}

A global minimum min F = ming, , sq—2(p4—1) of the energy functional may be computed
by dynamic programming. The contour leading to this minimum is built by tracking back
into the position matrix. Geiger et al [51] propose an optimization to this method by using
a multi-scale approach.

Dynamic programming is one of the rare method finding the energy functional global
minimum. It is possible to introduce in the deformation process hard constraints such as
a minimal distance between each vertex pair. The algorithm might then fail if no solution
satisfy the given hard constraints.

This algorithm extension to the surface case is made difficult by the complex decompo-
sition of the energy functional as a sum equivalent to equation 12.

3.5.3 Other global minimization technics

The global minimization problem may be solved when additional constraints that regularize
the energy functional are available. Cohen and Kimmel [31, 30] find the minimal energy
path between two fixed points. An iterative algorithm is used to compute the level sets of
a potential function from the starting point. This algorithm determines the energy global
minimum path.

3.6 Forces equilibrium

Each term of the stationary equation 9 might be seen as an equilibrium between internal
forces (the left term) and external forces (the right term) that deform the surface. Ad-hoc
internal forces f;n: that enforce some regularizing constraints and external forces f..: that
steer the surface deformations towards the data might be computed without considering any
energy term [43]. The optimal model then verifies the equilibrium equation:

D finlS) = =Y fext(S)
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which can be solved in a similar way to the energy stationary equation 9.

Since these forces do not derive from an energy, it is needed to check that they will
lead to the desired smoothing level and to a stable behavior of the deformation process.
The internal forces must make the model evolve towards a unique shape and they have to
vanish when the regularizing constraints are satisfied. The external forces must make the
model converge towards the data without oscillations. External forces proportional to the
distance between the data and the model should be used. These forces vanish when the
model coincide with the data.

3.7 Evolution equation

Solving the stationary equation requires an iterative method which is initialized with an
approximate solution to converge towards a minimum. The first approach is based on a
direct minimization technique of a multivariate function such as the gradient descent. Many
of these unconstrained minimization schemes involve a line search for minimum along a given
direction, and a strategy for choosing a new direction, and essentially differ from the latter
strategy. Another approach is to introduce an evolutional term in the stationary equation
then to iteratively solve the differential equation.

3.7.1 Solving by a gradient descent

A gradient descent or one of its derived algorithms [95, 72| allow the minimization of a
function as a model energy. We suppose in this section that the energy E is discretized
using a finite difference scheme as detailed in section 3.3 for instance.

Gradient descent
This method is characterized by the evolution of an initial surface Sy in the steepest
energy direction. The surface iteratively evolves according to the equation:

Sk+1 = Sk — AtVE(Sk) (13)

where At is a positive constant. This method converges towards an energy local minimum.
The initial surface used is thus meaningful.

When the algorithm reaches a minimum of the energy function in a given direction,
then the steepest direction at that point is necessarily orthogonal to the direction previously
followed. A gradient descent thus evolves by constant steps with directions orthogonal to
each others. This procedure does not follow, in the general case, the shortest path toward a
local minimum. Hence, the convergence might require a larger number of iterations.

Conjugate gradient

The conjugate gradient method is similar to the gradient descent method but a different
direction is followed at each algorithm iteration. A direction orthogonal to every earlier
directions is computed. Let g, = —VE(S). If dy, is the direction followed by the algorithm
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at iteration k, the direction:

(8 —8K1) 8k g

dpy1 =gr +
8k—1-8k—1

is conjugated to directions d;,i € [0,k]. If E is a quadratic form, the algorithm is optimal
and requires exactly m iterations, where m is E matrix dimension.

Newton method
If the energy functional belongs to C2, it may be approximated by its Taylor expansion
up to the second order in the neighborhood of any point Sk:

T(S) = E(S) + (S — S,)VE(Sy) + %(5 —S)IVEE(S)(S - Si)

If the Hessian matrix V2E(Sy) is positive definite then T' admit a unique minimum defined
by:
Ser1 = S — [VZE(S))] VE(S) (14)

In the case of a quadratic form, this method converges towards the minimum in only one
iteration. In any other case, it is needed to iterate until convergence.

Levenberg-Marquardt method

If the energy functional is close to a quadratic form, the Newton method (equation 14)
is efficient and leads to a good approximation of the result. In the other cases, a gradient
descent (equation 13) is most efficient. The Levenberg-Marquardt method continuously go
from a Newton convergence to a gradient descent as the process converges. Both equation 13
and equation 14 can be written:

1 .
A(Sp)(Sks1 — Sk) = VE(Sy) with  A(Sk) = { At for equation 13 (15)

V2E(S) for equation 14
where [ is an identity matrix. The Levenberg-Marquardt method define A as:
A(Sk) = VQE(S]C) + pI

in equation 15.

If constant p is null or almost null, the algorithm evolves as the Newton method. Oth-
erwise, if p is large, the diagonal terms of A(S;) matrix prevail and the resolution is close
to a gradient descent.

In [124], Vemuri et ol introduce new numerical algorithms and compare their efficiency.

3.7.2 Evolutive approach

The discrete stationary equation 11 is not linear. Its resolution requires an evolutive frame-
work that iterates towards the solution. Many methods for solving iterative systems are
proposed in [95].
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The evolutive approach consider the deformable model as a dynamic object evolving
according to a parameter ¢ [116]:

S : Ox[0,400] — IR®
(u,t) — S(u,t)

and the corresponding energy term:
E(S,t) = E(S(.,1)).
Inertial terms are introduced in equation 11, of the first order (Lagrangian evolution):

oS 4
ot
or of the second order (Newtonian evolution) :
%S oS
M— +C— + KS =1£(S), 16
a2 TCh + (S) (16)
where M and C are two NM x NM matrices representing the model mass and the back-
ground damping. M et N are the dimensions of the discretized parameter space.

This formulation leads to an evolutional scheme suited to active surfaces since it allows
the user to interact with the model during the deformation process. It requires setting an
initial surface Sy = S(.,0) close enough to the solution. The initial surface evolves until
the inertial terms vanish. The surface then satisfies the stationary equilibrium between
regularizing and data forces.

Since the system deformations do not have any physical meaning, authors often consider
that the system mass is null thus suppressing the second order term in equation 16 [117, 27].

The dynamic system 16 must be discretized in time by the finite difference scheme. Given
a At time step, partial derivatives might be approximated by:

88 ~ St-l—At - St—At ~ St—l—At - St 828 ~ St-I—At - 2St + St—At

— ~ ~ et —— ~
ot 2At At ot? At?

M and C are diagonal or banded matrices. They lead to independent equations and are
eagily invertible. The time discretization leads either to an explicit numerical scheme, or to
an implicit numerical scheme.

An explicit numerical scheme:

MSH—At — 28+ Si—at n CSH-At - &

converges only if the selected time step is small enough [95]. However, equation 17 give an
explicit way of computing S;ya: from S; and S;—ay:

M C\ '//2M C M
Sitar = (A—t2 + A_t) ((A—tz + At K) S — A—tQStht + f(St)) - (18)
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This equation is simple and can be solved at low cost. If M = 0 and C = I, equation 18
simplifies:
St+At = St - At(KSt - f(St)) = St — AtVE

It can be seen that the Lagrangian explicit numerical scheme leads to an equation identical
to a gradient descent 13.
An implicit numerical scheme:

S, — 28+ S;_ S, - S
t+ At t + Ot—At LC t+ At t— At

M
At? 2At

+ KS;1ar = (St ae)-
cannot be solved since it would require the knowledge of f(S;ya;). In practice, a semi-
implicit scheme is used:

St+At - 2875 + St—At + CSt+At - Stht

M
At? 2At

+ KSi1ar = £(Sh)- (19)

The semi-implicit scheme is more stable than the explicit scheme and insures the numerical
convergence even for larger time steps. However, the semi-implicit scheme 19 requires the
resolution of a dependent equation set at each iteration:

M C 1 /oM C M
frd _— _ K - - — f .
Serar (At2 toar T ) (At2 Set (2At At2> Se-ae + (1) )

Although a larger time step reduces the number of iterations, the semi-implicit scheme
requires the costly inversion of matrix K. This matrix inversion is computed each time the
model topology or its physical coefficients w;; change.

Case of parameterized models
In the case of parameterized models, a parameter vector q defines surface Sq = Tq where
T is a transformation matrix. This discrete representation leads to an evolution equation

similar to equation 16:
d*q dq
Ml oY Kkg=1,
az g TR
where M’, C’' and K’ depends on M, C, K and T. The resolution of the dynamic equation

is similar to 16.

3.8 Discrete model evolution

A discrete model geometry is defined only at its vertices. Model deformations are not
governed by a partial differential equation but by the model vertex displacements compared
to its neighbors. A vertex ¢ might be considered as a point mass governed by a Newtonian

law of motion: P p
m(i) g = =Y + ) fur (i) + B foxa (P), (20)
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where m(i) is the vertex mass, v(7) is the background damping, fin is the regularizing force,
fext is the data force, and « and  are two weights controlling the internal and external
terms. This equation corresponds to an equilibrium between the acceleration, the inertial
force, the regularizing force and the data force.

For a model with n vertices, there are n independent linear equations that may be written
with a matrix form equivalent to equation 16:

2

% + C% + fint = _fexta
where M = diag(m(0),...,m(n—1)), C = diag(v(0),...,v(n—1)), and £,y and feyt are the
internal and external force vectors. Solving equation 20 requires a discretization in time.
Using centered finite differences and an explicit scheme it leads to [42]:

M

i+ = pt+ (1= ZS0) 0 = p8) + 20 (@i (6) + A S (B) - (21)

3.9 Implicit models evolution

Algebraic surfaces

Implicit models are characterized by an equation such as Fq(p) = 1. The distance from
a point p to the surface may be roughly approximated as Fq(p) — 1. Given d data points
{Pi}ie[o,d—u: the model energy may be estimated by:

d—1
Eq({pi}) = Y _ 11 = Fy(p:)I
i=0

The resolution consist in finding the implicit surface parameters qq verifying:

Eq, = min Ey.
q
This energy is minimized by using one of the gradient descent method proposed in
section 3.7.1. In many cases, function |1 — Fy| is a poor estimation of the distance from

a point to the surface. Authors usually propose better approximations involving a specific
knowledge of the surface [97, 114].

Level-set methods

Malladi et al [74] qualify as Fulerian dynamic the level-set evolution equations by op-
position to the Lagrangian dynamic of «classicaly deformable models. Let {S(u,t)}: be a
surface family evolving according to the partial differential equation:

as

E—I/n
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where n represents the surface normal and v the displacement speed. For instance, v = Hg
the surface mean curvature. Since ¥ is null on S:

T(S(t),t) = 0,V

Knowing that n = % and by differentiation, the previous equation leads to an the
Hamilton-Jacobi equation:
ov
— =v|VU 22
- =7vY (22

where 7 is a function of R* — IR which coincide with v on its definition domain. For
instance, 7(u,t) = Hy(u,t), the mean curvature of the level-set crossing u, that coincide
with v on S (Hy(u,0) = Hs(u)).

If function 7 is regular enough, ¥ does not show any singularity as it evolves and equa-
tion 22 can be solved by using finite differences (in space and time):

TS = W+ Atr5|Vige By (23)

Moreover, the surface geometrical attributes are determined by the analytical expressions:

VA AVAl4
= Y adH=V.
v =Y T

n

For image segmentation, the surface evolution speed v must make the front stop on
object contours. Depending on the properties of v, it may be difficult to completely stop
the propagation.

As the propagation speed may become discontinuous at points far away from the 0 level-
set, it is needed to periodically reinitialize ¥ as the distance function to the current surface
to ensure evenly spaced level-sets.

Equation 23 is computationally expensive since a 3 dimensional grid must be updated
to compute a surface evolution. The computation time might be reduced by computing ¥
value only on a narrow band around the surface {¥ = 0}. It is then required to periodically
reset the narrow band location in order to avoid collisions of the evolving surface with the
band borders.

4 Constraining deformations

A deformable surface evolving according to an evolution law such as equation 16 or 20 is
only constrained by the number of degrees of freedom (DOF) imposed by its geometric
representation. Some representations have few DOF such as superquadrics with only 6
parameters and may constrain the deformation process too much for a valid reconstruction
of complex structures. Conversely, a surface with too many degrees of freedom is more
sensitive to noise and outliers. Moreover, most minimization technics only lead to sub-
optimal solutions corresponding to energy local minima. The more DOF a surface has, the
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less convex its energy functional is, and the more it is likely to converge towards a local
minimum.

Therefore, several approaches have been proposed to restrict the model deformation
space. These deformation restrictions are often based on a coarse to fine strategy from a
highly constrained deformation space towards more local deformations as the model con-
verges towards its optimal shape.

4.1 Using global transformations

A model deformation may be driven by iteratively applying global transformations of the
space embedding the model instead of applying local deformations of the model inside space.
As discussed in section 2.1, this approach is referred to as registration opposed to model local
deformations. The registration framework restricts the model variation space depending on
the choice of global transformations.

Iterative Closest Point algorithm

The registration process described in Besl and McKay [12] and Zhang [131] is very close
to the iterative resolution of the deformable models dynamic equation. A model is iteratively
deformed by a global transformation 7' : IR®* — IR3. The transformation T is estimated by
minimizing the least square criterion:

d—

1
_ . N . 2
T =arg min Z% I7'(ps) — (Closest(p:))| (24)

with «Closest(p;)» a data point close to vertex i, and Tyez a given transformation group.
The authors refer to the Iterative Closest Point algorithm (ICP).

Rigid and affine registration

Widely used transformation groups for T estimation include rigid transformations (6
DOF), similarities (7 DOF) and affine transformations (12 DOF). For these three trans-
formation groups, there exists a closed form solution for solving equation 24 [92]. Rigid
registration is useful for aligning data coming from a common source. Similarity and affine
registrations are used to align different data in the same reference frame. However, in this
case, the small number of DOF usually does not allow the reconstruction of structures from
a model with a different prior shape.

Free-form deformations and B-spline transformations

Sederberg and Parry [100] and Coquillart [34] introduce free-form deformations (FFD)
where the embedding space is deformed according to a set of control points and interpolation
functions between those points such as Bernstein trivariate polynomials. Thus deformations
apply locally to each node point and the number of DOF is tuned through the number of
control points.

B-spline transformations are a particular case of FFD where the interpolation functions
are B-splines. A B-spline curve is defined in 1D as a piecewise polynomial curve. Let m

RR n° 3954



28 Montagnat, Delingette, Scapel, Ayache

and n be two integers and (tg,t1,- .-, tntm) be an ordered reals sequence representing the
transformation nodes. A n order B-spline function is defined recursively:

' B?():{l if t; <z <t
Vi € [0,n — 1], 0 else ) )

m T—1t; -1 i+m —T -

B*(z) = WﬁB:ﬂ (z) + mBﬁl (z).

A volume B-spline transformation is defined by a tensorial product of B-spline curves. Let
{c7*}ijr be the set of control points in R® and {B[%}:, {Bj";};, and {B7}x be 3 set of
1D B-spline functions on coordinates z, ¥ and z. The B-spline transformation of a point p
writes:

Mg — ny—1 nz—1l 15 m m m
T.(p) = 2.2 I i=0, k:oi C;?kBi,x(x)Bj,y(y)Bk,z(z)
T()={ T0) = X0 5% SIy ! B @B, (1) B ()
T.(p) = X2 Site Yonze ¢Z*BP(2)By,(y)Bi(2).

The resolution of equation 24 with B-spline transformations can be achieved iteratively by
a gradient descent.

Declerck et al [36] use B-spline transformations to warp space. Due to the amount
of deformations allowed by B-splines, he introduces an additive Tikhonov stabilizer whose
influence in the minimization process is weighted. Lotjonen et al [71, 70] and Bardinet et
al [10, 8] similarly need to add a regularizing term to FFD.

Superquadric extensions

Terzopoulos et al [117] introduce a model composed of a reference superquadric on which
an additional deformation term allows the definition of local surface deformations. Let Qg,
denote a superquadric with parameters q;. The model surface is defined by:

Sq(r,8) =c+R(Qq,(r,s) +d(r,s)),

where ¢ represents the Q superquadric inertial center, R is a rotation matrix, and d is a
vectorial displacement field from the superquadric surface. The authors define d as a linear
combination of basis functions: d = Sqq where S is the basis function matrix and qq is a
weight vector. If q. and gy denote the translation and the rotation parameters respectively,
the parameters vector is q = (qmqg,ql,qd)T. This representation leads to more shape
variability and can represent a wider set of surfaces than superquadrics.

Metaxas et al [81] still introduce more deformations on this model to represent physical
deformations of the surface (bending, pinch, twist...). The model surface is defined by :

Sq(r,8) =¢c + R(T'Qq,(r,s) +d(r,s)),

where T is a transformation. The surface parameter extends to q = (q., 99, q:, 44, qdT)-

Other globally constrained deformations
Feldmar and Ayache [50, 49] define locally affine transformations to increase the number
of DOF. They determine the «closest» point of a vertex p; by computing a distance function
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from the data points. Their distance include geometric position of points but also their
similarity in terms of normal orientation and principal curvature values. They estimate
several affine transformations by considering only a restricted set of vertices included in a
given neighborhood around each model vertex. They apply a piecewise affine transformation
and demonstrate some continuity results on the surface patches.

Montagnat and Delingette [84] regularize deformations through a modified deformation
scheme that combines local and global forces resulting from a global transformation estima-
tion. A global transformation in a given transformation group is first estimated using a least
square criterion. The «closest» point from a surface vertex is estimated using the external
force field. The global transformation results in a global force field that applies onto the
surface model. By weighting the global and the local forces, it is possible to continuously
evolve from a global registration process to a local deformation one.

4.2 Coarse-to-fine approaches
4.2.1 Energy Graduated Non-Convexity

The energy functional is usually non-convex making the deformation process very dependent
of the model initialization. The Graduated Non-Convexity algorithm (GNC) proposed by
Blake and Zisserman [15] makes the energy functional locally convex. The idea is to make
the (positive) second derivative of the energy regularizing term greater than the (negative)
second derivative of the energy data term to produce a convex approximation E' of the
energy functional E. E'’s minimum does not necessarily coincide with E’s global minimum.
An energy family {E"};c[o1 is built such as E' is convex and E® = E. By varying i from 1
to 0 and making the model iteratively evolve according to energy E*, it gets closer from the
local minimum of E. Blake and Zisserman demonstrate the validity of the GNC algorithm
in the particular case of their study but they state that it is not guaranteed to converge in
the general case.

Davatzikos and Prince [35] similarly build a functional family varying with a scalar
parameter to drive a thick line detector model. Cohen and Gorre [29] use the GNC algorithm
for deformable modelling in the case where the data term is a function of the distance from
a point p to the closest image boundary point.

4.2.2 Pyramidal approach

Reissman et al [96] model an image with a graph of cells describing the image regions. A
pyramid is build from the original graph by merging graph regions from one pyramid layer to
the above one. The cells are deformed accordingly with an energy function. The algorithm
proceeds to a coarse to fine deformation by deforming first the pyramid apex and then
propagating the computed deformations towards the base. Lotjonen et al [71] uses a similar
idea with deformable surfaces. They build a multi-resolution surface model by decimation
of an original mesh and the mesh is deformed in a corresponding image pyramid from the
apex towards the base.
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Szeliski [110] also proposes a hierarchical approach to minimize an energy functional. He
builds a multi-scale pyramid of basis functions. It is then possible to compute the discrete
energy at different precision levels. The energy minimization begins at a coarse scale which
is refined with the algorithm convergence.

4.3 Local regularization constraints extension

To enforce the regularizing behavior of the energy internal term, Feldmar and Ayache [50]
compute the internal term over a neighborhood with a variable size at each model point.
The computation neighborhood is geometrically defined at each mesh point by the set of
mesh points included in a sphere of radius r. The larger r is, the stronger the regularization
term is. Montagnat and Delingette [83] similarly use a topological neighborhood and show
the regularizing effect on surface model deformations.

4.4 Modal analysis
4.4.1 Surface vibration modes

Decomposition of a surface into a set of modes provides a coarse to fine representation by
tuning the number of modes used. The vibration modes, extracted by Fourier analysis for
example (see section 2.3 and [105]), give an incrementally detailed representation of surfaces.
Pentland et ol [93] similarly optimize the resolution of the model evolution 16 by decom-
posing the surface S on a vibration basis. Let S be a n dimensional vector and S = ®S
where ® is an orthogonal transformation matrix. Equation 16 rewrites:
- d*S  .dS .. -
Mdt2 +Cdt+KS_F, (25)
where M, C, K and f depend on M, C, K, f and &.
An optimal transformation matrix ® is the common eigenmodes matrix of M, K and C
such that components of equation of 25 are independent. ® is the solution to the double

eigenproblem:
K® = Q’°®M,
where ® = [¢1, P, ..., ¢3,] and Q = diag(wy,ws, . ..,ws,) are such that the eigenvectors
are M-orthonormal, which means that ®7K® = Q2 and #"M®&® = I. The eigenvector ¢;
is the ith shape vector and w; is the associated vibration frequency.
Finding the eigenmodes of the damping matrix C is possible if it is defined as a Caughey
sequence:

p—1
C=M)> a[M'KJ".
k=0
If p = 2 then C = agM + a1 K and equation 25 simplifies:
S . dS ., s .
— +C— + Q%S = @'f
e T ’
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where C = a,I+ a1 Q2. This equation system is made of 3n independent equations that can
be resolved by discretizing the time.

Nastar and Ayache [89] use Pentland and Sclaroff’s modal analysis to reduce the model
deformation space. Bookstein [16] similarly decomposes a thin-plate spline deformations
over the eigenmodes of the bending energy matrix. Cohen and Cohen [26] propose an
alternative approach with an hyperquadric based model. The model is defined as a sum
of an hyperquadric generating a convex envelop and a number of hyperquadric exponential
allowing local non-convex deformations. The model energy is controlled simultaneously by
the hyperquadric and the additional term parameters. By iteratively adding terms, they
produce a hierarchical deformation scheme.

4.4.2 Superquadric-based modal analysis

Starting from Terzopoulos et al superquadric extension [117], Vemuri and Radisavljevic [125]
propose a continuous transition between global deformations (only involving variations of
the superquadric parameters) and local deformations (involving the d displacement field).
They project qq on a wavelet orthogonal basis and set the number of meaningful deforma-
tion modes. The more deformation modes are used, the more local deformations apply on
the superquadric surface. By limiting the number of modes involved in the deformation
computation, they restrict the deformation space. They gradually increase the number of
modes as the model converges.

4.4.3 Principal Component Analysis

Cootes et al [32] use principal component analysis (PCA) (also known as Karhunen-Loeve
decomposition) to decompose the model in eigenmodes obtained from a shape training set.
The decomposition basis size depends on the training set number of shapes. Since only
shapes composed by a linear combination of the eigenmodes can be represented, PCA re-
stricts the shape variations of the model close to the known statistical shape variation.

PCA modelling
PCA only takes into account local deformations after training shapes have been registered
by translations, rotations and scale factors. A particular shape is defined by:

Si = T(Xi)
where x; is a parameter vector of dimension d that describes the surface S;. Vector x; may be
a set of d/3 vertices coordinates that represent a discrete model: x; = (z1,...,24)T [7, 33].
In that case, T is a similarity transformation. Vector x; may also be a parameter vector:
x; =q=(q,...,q4)" [113]. In that case, T is a transformation from the parameters space
to the shape deformation space. In both cases, let us consider a training set built from n
shape instances: (x1,...,X,). The mean shape is defined by:
1 n
X = ﬁ Zl X;
1=
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and the covariance matrix (positive definite) is:

By diagonalization of C, CU = UV where U is the matrix for which each column is an
eigenvector of C and V = diag(v,...,v,) is the diagonal matrix of associated eigenvalues.
The column vectors, u;, of matrix U correspond to «meaningfuly deformations according to
the training set. PCA is based on the hypothesis that data distribution is Gaussian which
leads to a linear representation. Vector x; varies inside an n dimensional hyperellipsoid.
The eigenvectors of C represent the hyperellipsoid axis directions while the eigenvalues are
the axis amplitudes.
A new shape instance is defined as a linear combination of the eigenmodes:

x =%+ Uq

where q is the parameter vector weighting the contribution of each deformation mode. It
is generally wanted to prevent the shape to vary too much from the mean shape. Each
component ¢; of q is thus restricted to an interval: —kv; < ¢; < kv;, with k € IV.

Usually, n is much lower than d and diagonalization of matrix C leads to n—1 eigenvectors
associated to n — 1 non zero eigenvalues. The number of usable modes depends on the size of
the training set. It must be large enough compared to the parameter vector size d to allow the
model to recover the 3D object. This approach requires as a preliminary the construction of
a training set. This implies to define on a set of n shape instances d matching points. Often
considered as a first manual stage, this task is fastidious and may become impracticable in
the 3D case. Indeed, to determine corresponding points on smooth surfaces is a difficult
task [23] for a human operator except for a few feature points such as curvature extrema.
Anyway, several methods to automatically match different shapes are proposed by Caunce
and Taylor [19].

PCA constrained deformations
If x is a model instance in the centered space (x = X + Pq), the surface is a function of

S=ERx+t,

where E = diag(e,e,...,e) is a scale factor matrix, R is a rotation matrix and t is a
translation vector.

Cootes et al [33] use a discrete model for which displacement dS are computed at each
iteration. A time ¢t + At a model instance x;4a; verifies:

Si +dS ~ By atRepaeXepar + tigae
leading to, with x;yA¢ = x¢ + dx:

dx = B[\ R A (St +dS — tipar) — xi.
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To estimate the displacement dx, the eigenmode parameters leading to a model of like
shape have to be estimated. In the general case, the eigenmode restrictions prevent from
reconstructing exactly x + dx. A least mean square approximation is obtained by:

x4+ dx ~%+P(q+dq) = dq=PTdx.

Vector dq is truncated according to the covariance matrix eigenvalues to prevent the
excessive deformation in a given mode direction (—kv; < ¢; + dg; < kv;), where k is a
positive constant.

PCA encountered a large success for segmentation [33], in particular segmentation of
anatomical structures [99, 57|, contour tracking [56, 62], and shape classification [90]. Some
non linear extensions have been proposed in [20, 104, 103].

5 Deformable models topology

Deformable models give prior information on the shape of the objects to recover. However, if
the prior model shape is too different from the data, the model might not be able to deform
correctly. Several authors propose topology adaptive models to face this problem.

The term topology change may include both change in the mesh structure (as illustrated
in top row of figure 6) or change of the surface genus (bottom row of figure 6) which
transforms the surface such as it is not homeomorphic to its previous configuration. In the
first case we shall refer to model adaptation while genus changes apply to variable topology
models.

5.1 Adaptive models

Model adaptation is needed to obtain a geometric representation with a detail level similar
to the data precision.

Explicit models adaptation

Parameterized models require a data adaptation if the parameter space discretization is
rough compared to the data detail level. McInerney and Terzopoulos [76] propose to resample
the finite element method nodes along time. This multi-scale approach allows a transition
from coarse to fine level. The model is first roughly discretized, and its surface is adapted as
it converges towards the data. This approach considerably reduces the computational task
at the beginning of the deformation process.

In the case of explicit models, regular sampling of the parameters space does not nec-
essarily lead to a regular sampling of the surface. Vemuri and Radisavljevic [126] propose
a transformation of parameter space solving the problem in their particular case. Székely
et al [113] search to keep constant the ratio between a surface triangle area and the curved
triangle area composed with the three same parameters on a unit sphere.

From a numerical point of view, parameterized models resampling necessarily lead to a
new computation of mass, damping and stiffness matrices. In the case of a semi-implicit
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Figure 6: Top row: adaptive topology. Bottom row: topology change.
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numerical scheme, these matrices have to be inverted. An adaptive scheme with too high a
frequency might thus become computationally expensive.

Discrete adaptive models

In the case of discrete models, adaptation is performed locally by adding new vertices.
Since the motion equations are local to each vertex, the surface adaptation has a reduced
effect on the evolution scheme. Bulpitt and Efford [18] propose a refinement algorithm
for regular triangulated surfaces (each vertex has six neighbors). Delingette [39] defines
adaptation laws preserving the simplex meshes geometry.

Subdivision surfaces allow a multi-scale representation of discrete meshes, regardless of
their structure. A subdivision surface is defined as a point set that can be enlarged to refine
the surface.

The most common approach is to consider the point set {p?}l as vertices of a mesh MO,
A mesh sequence is built (M°,..., M7, ...) which produces more and more detailed meshes
and converges towards a continuous surface. Thus, lim;_,, p; exists for any point ¢ and the

sequence {pi } ~ strongly converges.
J
A large number of subdivision surfaces refinement schemes have been proposed. They
attempt to preserve the surface properties:

e Interpolation. New vertices belong to the continuous surface.

o Locality. The neighborhood involved in a new vertex location computation should be
as small as possible.

o Symmetry. The subdivision scheme has the same symmetry as the local mesh topology.

o Globality. The scheme should apply to any discrete surface regardless its topology,
even in the presence of mesh borders.

e Smoothness. The produced surfaces should enforce a given continuity level.

It is difficult to optimize every criterion at the same time. Several surface subdivision
schemes are described in [132].

A second approach is to consider the points {p?}i as a control node set indirectly gen-
erating a surface. The surface is refined by adding control points.

Adapting the mode number

Decomposing a model on a vibration mode basis as described in [87, 88, 126, 93] leads
to an adaptive representation. A restricted set of low frequency modes give a rough surface
description. By adding modes, the surface representation is refined.

5.2 Adaptive topology

Several authors propose deformable models whose topology may change along the defor-
mation process to fit the data topology [64, 79, 65]. The model shape initialization may
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represent the data very roughly. The reconstruction process does not rely on the prior
model shape and benefits of a large number of degrees of freedom.

If the idea of an automatic topology adaptation is attractive in theory, it is difficult to
apply when considering noisy images. The deformable models initialization is very dependent
on its prior shape and location. To automatically determine topology changes in a noisy
image without prior shape information may be unstable.

Parameterized representations

When considering parameterized models, different topologies lead to different parame-
ter boundary conditions. Leitner and Cinquin [66] propose an algorithm to detect self-
intersections of surface models represented as a tensor product of B-splines. Surface self-
intersections are treated by refining the model, making holes around intersecting regions,
and connecting by reordering the control points defining the surface.

Implicit representation

Level-set may change their topology in a very natural way. As the function ¥ contin-
uously evolves, the isovalues define surfaces that may undergo fusions or splitting while ¥
remains a function.

Discrete representation

McInerney and Terzopoulos [77] propose deformable discrete contours (« T-snakesy) and
deformable discrete surfaces (« T-surfacesy) with an adaptive topology. Their approach is
based on a simplicial decomposition of space using a quasi regular tetrahedral grid. The
model is initially a triangulation whose vertices are located on the simplicial grid edges (see
figure 7 for an illustration in the 2D case). The algorithm alternatively performs deforma-
tions and resampling:

- Deform the model using a Lagrangian dynamic law on discrete meshes for a few steps.

- Approximate the deformed model by a T-surface by resampling the triangulation on
the simplicial grid.

While the surface is deforming, the vertices of the simplicial grid inside and outside the
surface are labelled. After the deformation stage, the surface is redefined as the interface
between the inner and the outer vertices. A new triangulation is resampled on the simplicial
grid that approximates the deformed model. If the model self intersects or if two models
intersect, one of the simplicial grid tetrahedron is shared by two different surface triangles.
Topology changes then occur and the colliding triangles merge.

This approach is efficient due to the cheap resampling procedure of the discrete model.
However, it requires the definition of the inside and the outside part of the surface. Thus it
is not possible to deal with open contours or surfaces with borders. The deformation process
brings the surface to inflate or to deflate everywhere. It may cause some problem unless the
surface is carefully initialized.

Lachaud and Montanvert [64] define topology adaptive triangulations based on the §-
snakes concept [6]. A length parameter (6 > 0) is used to control the triangulation sampling
and to detect model self-intersections from two elementary rules:
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Figure 7: Left : triangular simplicial decomposition of IR?2. Center : T-snake. Right :
simplicial cell of IR3.

- The distance between two neighbor vertices should lie between § and 2.56.

- The distance between two non neighbor vertices should be greater than 27%6.

The first constraint enforces a regular sampling of the surface while the second one set a
threshold above which the surface is considered to self intersect. If the first constraint fails,
a topological operator for creation, destruction or vertices swap is applied (see figure 8). If
the second constraint fails, an axial or an annular transformation is applied (see figure 9).

Figure 8: Eulerian topological transformations on triangulations.

This approach is relatively costly since it require the comparison of the distance between
each vertex pair. An octree structure is used to optimize the computations.

6 Simplex Meshes

Simplex meshes where designed to represent deformable contours and surfaces [39]. They
provide a simple and powerful framework to define regularization constraints. Simplex
meshes allow the representation of surfaces with any topology, closed or opened. We use
local forces with an explicit numerical scheme to efficiently compute model deformations.
Simplex meshes are used for anatomical structures modelling and 3D and 4D medical image
segmentation.
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' axial melting

annular constriction

Figure 9: Non Eulerian topological transformations on triangulations.

6.1 Definition

A simplex mesh M is defined by a set of vertices {p;}; and a specific connectivity function.
Each vertex of a k-simplex mesh is connected to exactly k+1 neighbors. A 1-simplex mesh is
a simple deformable contour composed of a polygonal line. A 2-simplex mesh is a deformable
surface for which each vertex is connected to exactly three neighbors as shown in figure 10.

Figure 10: Left: opened 1-simplex mesh. Right: closed 2-simplex mesh.

The connectivity functions define mesh edges. There is at most one edge between two
distinct vertices. A mesh face is composed by a an edge sequence over the mesh such as no
edge split a face into two smallest faces. A border of a k-simplex mesh is a (k — 1)-simplex
mesh that creates a hole in the mesh. A border of a 1-simplex mesh is an edge labelled
missing. Each border of a 2-simplex mesh is a face labelled missing (see figure 11). A
detailed description of simplex meshes is given in [42].

6.1.1 Geometry

Due to its specific connectivity, a 2-simplex mesh is topologically dual to a triangulation.
Figure 12 (left) shows a 2-simplex mesh example (solid line) and a dual triangulation (dashed
line).
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borders

Figure 11: 1- and 2-simplex mesh with a border.

n;

L
- pi_

Prgh, (i)

Figure 12: Right: 2-simplex mesh duality with triangulations. Left: Geometry and definition

of the regularizing force.
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The main features of simplex meshes lies in their simple geometric description. Figure 12
(right) shows a vertex p; of a 2-simplex mesh and its three neighbors, Pugh, (i)- Let P;
be the plane defined by p;’s three neighbors. We denote p;- the projection of p; on P;
and n; the unit normal vector of P,. We introduce the circumscribed circle to triangle
(pnghl(i),pnghz(i),pngha(i)) with center ¢; and radius r;, and the circumscribed sphere to
vertices (Pi, Pngh, (i)» Pngh,(i)> Pngh,(s)) With center o; and radius R;.

We call metric parameters the center of mass coordinates ¢}, ¢?, and 3 = 1 — ¢! —¢?
of pi with respect to p;’s neighbors. They control the relative position of p;- in P;. The
simplex angle ; € [—m, ] is defined by :

sin(yi) = 7sign((Pngn, (i) — Pi) - 0i)
cos(:) sign((c; — 0;) - n;).

— llei—oi
R;

It controls the elevation of vertex p; above P,. We define a vertex discrete mean curvature as
H, = R%_ = M Under some assumptions it can be shown [38] that the discrete curvature
of a mesh whose vertices lie on a continuous and sufficiently differentiable surface converges
towards the surface mean curvature.

The vertex position p; is uniquely defined by its three neighbors, its metric parameters
and its simplex angle :

3

pi = Z Egpnghj (%) + H(pnghj(i)v Egv <Pi>111"
Jj=1

where:
(r} — d?)tan(p:)

e/r? 4 (7 = djtan(pi)? + 1]

el
—1if |<p1| > 5

, di = |lpi"ci.

It can be shown [38] that a simplex mesh shape is defined up to a similarity transformation
by the set of its metric parameters and simplex angles {¢}, 7, ;};.
6.1.2 Law of motion

Each vertex is submitted to an internal force (fint) and an external force (fext). We use
a Newtonian law of motion (see equation 20). The explicit scheme discretization leads to
equation 21 which is rewritten:

Pt =Pl + (L= (Pi = Pi ) + ifine(P) + Bifext (PY),

where «; and 3; are force weights including the vertex mass and the time step, and +y is a
damping factor. The stability of this scheme is guaranteed if «;, 3;, and v range inside given
bounds.
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6.2 Regularization

Shape regularization is a key issue in deformable modelling. Regularization of the deforma-
tion process can be controlled at different scales.

6.2.1 Local regularization

Due to its discrete nature, the regularization of a simplex mesh is not based on the evaluation
of surface partial derivatives but on the relative position of a vertex with respect to its
neighbors, i.e. in terms of metric parameters and simplex angles. More precisely, each
vertex p; is attracted towards a point p; (see figure 12, right) on a smoother mesh. Let &7,
@; and P denote the metric parameters, the simplex angle and the projection of p; on P;
respectively. The internal force can be decomposed as the sum of a tangential and normal
component :

fine(Pe) = fig(Pi) + far(pi)
B —-piH)+ (H(pnghj(i)a‘537(pi) - H(Pnghj(i)fga@i))ni-

The tangential component of the internal force controls the vertex spacing over the
surface. To ensure uniformly spread vertices, metric parameters are all set equal : £} = &2 =
=3 = 1. The normal component constrains the mean curvature of the surface through the
simplex angle. The definition of ¢; depends on the level of geometric regularity that should
be enforced.

Let N (i) be the set of all vertices connected to vertex number 4 by an edges path whose
length is less than s edges. The scale parameter, s, defines the neighborhood size over which
the mesh is regularized and plays an important role. For medical image segmentation we
usually consider :

Mean curvature continuity
To ensure that the vertex discrete mean curvature converges towards the weighted
average mean curvature of its neighborhood, we set

- . sin(¢;) .
@ arcsin | r . E 4 e j Tj 1 ‘ E . (& j
JEN(4) JEN,(7)

This smoothness constraint is used when no anatomical shape information is available. The
shape is supposed to be smooth.

Shape constraint

[83]. Let {®?}; be the set of simplex angles defining the reference shape of an anatomical
structure. Setting @; = ¢ constrains the surface to converge towards the reference shape in
the absence of external forces. This constraint should be used when prior shape information
is available.
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6.2.2 From local to global regularization

Many approaches have been proposed to combine a global deformation procedure limiting
the model shape variations and a local deformation component to match small shape vari-
ations [117, 105, 113]. In [84], we introduce a computationally efficient scheme combining
a global transformation estimation (equation 24) and local deformations 20). The global
transformation T is converted to a global and regular force field : fgiobai(Pi) = T(P:i) — Ps-
The surface is submitted to internal, external and global forces. A locality parameter A
weighs the influence of each force:

pit' = pi+(1-y)(Pi-p/ ")+
)\(aifint(pﬁ) + ﬁifext(pﬁ)) + (1 - )‘)fglobal(pf)- (26)

From equation 26 it can be seen that when A\ = 0, the deformations are purely global, and
when A = 1, the deformations are only local. Any other value of A leads to an intermediate
behavior. This approach is efficient since external forces are computed only once for local
and global forces estimation. The global transformation is estimated using a closed form
solution.

This method leads to a coarse to fine approach similar to the Blake and Zisserman’s
Graduated Non-Convexity algorithm [15]. When A is 0, the deformation problem is rather
convex and the convergence is robust. As A increases, several local minima appear until the
original (local) equation is used. At each iteration, the current deformation optimum is used
as an initialization for the model.

6.3 Initialization

The initialization of deformable models has often been considered as the main limitation of
that approach. In some medical applications, it is possible to estimate a prior shape and
orientation of the anatomical structure of interest, knowing the patient orientation inside
the acquisition device. Global transformations may then be used to compensate for the
small orientation and scale variations between a rough initialization and the patient image.

Nevertheless, it may happen that the initial position and/or shape of the anatomical
structure is not known. We then propose an automatic procedure to build a simplex mesh
directly from the volumetric image [41]. First, the image needs to be binarized, using
thresholding and mathematical morphology operators, to reveal a rough approximation of
the structure of interest. A two stages algorithm is used to initialize the mesh from the
binary image. Figure 13 (left) shows an example on an MR Image of the hand.

- A surface tracking algorithm first extracts a surface from the object boundary voxels
(center). The resulting surface needs to be a discrete 2D manifold.

- A sampling algorithm preserving the surface topology then produces a mesh at a given
resolution. It propagates regions from randomly selected seeds over the surface. By
splitting regions when needed, a simplex mesh is created. The result is obtained by
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adapting the mesh topology to the desired level of detail and deforming the mesh in
the original image (right).

Figure 13: Simplex mesh automatic initialization in an MR Image of a hand.

6.4 Topology

Simplex meshes can represent surfaces with any topology. The topology of a surface simplex
mesh can evolve according to 4 elementary operations that preserve the mesh regularity [42].
We designed algorithms to perform both mesh resampling (Eulerian operations) and changes
in the surface genus (non-Eulerian operations).

6.4.1 Surface adaptation and refinement

Mesh sampling is key to control the model level of detail. Simplex mesh resampling is done
using T'0O; and T'O, topology operations illustrated in figure 14. T'O; removes a vertex
(respectively an edge) from a 1-simplex mesh (respectively a 2-simplex mesh). T'O- is the
dual operation that adds a vertex (respectively an edge) to a simplex mesh.

The mesh should also have good geometric and topological properties to give a usable
geometric representation of a surface. We use two criteria to measure a simplex mesh quality:

- The topological quality is defined as the regularity of the number of edges in every
mesh face. Figure 15 shows two different meshes representing the same sphere. The
left mesh has a great topological quality while the center mesh has very irregular faces.

- The geometric quality measures the regularity of the vertices spacing.
Topological optimization

By composing a T'O, and a T'O; topological operation, one obtain the topology swap
operation illustrated in figure 16. A swap operation conserve the number of mesh vertices,
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Figure 14: Eulerian topological operations on 1- (left) and 2- (right) simplex meshes.

Figure 15: Sphere simplex meshes. Left: good topological quality. Center: bad topological
quality. Right: topological quality restored from center mesh using swap operations.
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edges and faces. However it changes the number of edges of each face (faces fi and f2 loose
an edge while faces f3 and f, win an edge). It is used to optimize a mesh topological quality.

Figure 16: Topological swapping operation.

Let N(f;) denote the number of edges of face f;. For each mesh edge e;, the topological
criterion T(e;) = N(f1) + N(f2) — N(f3) — N(fs) is computed. If T'(e;) > 2 then the
edge is swapped. By repeating the procedure until no edge can be swapped, the mesh
topological quality is restored as can be seen on figure 15. The center mesh represent a poor
quality spherical surface. The right mesh is obtained from the center mesh by applying swap
operations.

Global refinement

In general, it is desired to minimize the size of the geometric representation (a com-
pact model) with sufficient details to represent the finest image structures. A multi-scale
approach is often used to reconstruct data [64]. A rough mesh is first deformed and the
surface is iteratively refined for faster convergence of the first deformation stages. We use
a simplex mesh refinement /decimation algorithm obtained from a classical triangulation re-
finement /decimation method by duality. Figure 17 shows a coarse mesh (dark line) and the
refined mesh (gray line). The left columns illustrate the refinement algorithm on a surface
simplex mesh while the right column represent the algorithm on a dual triangulation 7.

The 7 triangulation is refined to 7’ in the following in three steps:

- A vertex of 7' is created for each 7 vertex and each 7 triangle.
- An edge of 7' connects each vertex of 7 with the center of each neighbor triangle.
- An edge of 7' connects every centers of neighbor triangles of 7.

Let n,(7T), ne(T), nyg(7T) and ny(7) denote the number of triangulation vertices, edges,
faces of 7 and 7 genus respectively. 7’ owns one vertex for each vertex and each triangle
of 7T thus:

no(T') = no(T) + (7).
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Figure 17: Left: 2-simplex mesh refinement. Right: dual operation on a dual triangulation.

From the Euler relation (2n,(7) = ns(7) + 4(1 — n4(7))), the number of vertices of 7" is
approximatively three times bigger than n,(7):

no(T") = 3ny(T) — 4(1 = ng(T)).

Let M and M’ denote two simplex meshes dual to 7 and 7' respectively. By duality,
ng(M) = ny(T), ny(M) = ny(7T) and n.(M) = n.(7). Consequently, the refinement
operation approximatively multiplies the number of faces by 3:

ng(M') =3ns(M) = 4(1 = ng(M)).

The refinement operation decomposes in a succession of TO, and swap operations for
each mesh face as illustrated in figure 18. Let us consider one mesh face (a). Two T'O2
operations are applied on two edges of each vertex around the face (b) and at a topological
distance 1 of the face (c). A new triangular face is thus created for each vertex. Swap
operations are applied on edges indicated by arrows in figure (c¢) and (d). This results in
the refined face (f). The whole mesh is iteratively refined while avoiding to consider twice
the same vertex.

The refinement operation and the dual decimation operation keep the topological quality
of the mesh constant. The geometrical quality is preserved by creating new vertices such
that they remain evenly spaced.

Figure 19 and 20 show two examples of medical image segmentation using a coarse to
fine approach. Figure 19 shows a simplex mesh sphere composed of 500 vertices embedded
in a 3D angioscanner of the heart!. The model is deformed but due to its coarse sampling it
cannot represent, the vessels thin details. It is refined twice to produce a 1500 vertices and
a 4500 vertices mesh. The final model gives a detail representation of the endocardium and

Lcourtesy of the Mayo Clinic, http://www.mayo.edu
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Figure 18: Refinement of a 2-simplex mesh face.
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the main blood vessels but it shows a poor geometrical quality as vertices concentrate on
the center due to the model initialization.

Figure 19: Endocardium segmentation by a coarse to fine approach.

Figure 20 shows the segmentation of the cortex from an MR image?. The initial 500
vertices mesh is refined twice as previously. The initial model deformations guarantee that
new vertices are created close to their equilibrium position.

ot

e,

=

iy
=

D e S

o

Pt

z

Figure 20: Cortex segmentation by a coarse to fine approach.

Geometrical optimization

It may be desired to force every faces of a mesh to converge towards equal surface
polygons. This would avoid to degrade the mesh geometric quality such as illustrated in
figure 19. On the contrary, it may be desired to concentrate vertices in areas with a high
curvature while relatively flat areas do not require much vertices. This optimizes the number
of vertices needed to represent a given shape but it is likely to make the model sensible to
noise and outliers. The area and curvature optimization constraints are opposite and depend

2courtesy of the Brigham and Women’s Hospital, http://www.partners.org/bwh/home.html
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on the nature of the data and the desired result. Figure 21, left, shows the endocardium
surface reconstructed in figure 19 after it has been optimized for area. The right figure shows
a surface mesh optimized for curvature.

Figure 21: Left: endocardium with evenly spaced vertices. Right: face model with vertices
concentrated in high curvature areas.

The simplex mesh metric parameters control the vertices relative position. To enforce a
regular spacing of vertices, we compute metric parameters such as the area of every faces
equalises. Each vertex ¢ of a surface simplex mesh is surrounded by 3 faces frp,(:),J €
{1,2,3}. Let A(frp,(i)) denote the area of face frp, ;) and A; = 3, A(frp,(;))/3 the mean
surface of neighbor faces of i. By setting:

e 1 Az(] )
v]v Ei_3+’€ Ai ’

where & is a constant, the tangential component of the internal force make the p;- projection
point converge towards the point whose center of mass coordinates are &/ in p; neighbors
coordinate frame. Each vertex evolves until the its neighbor face’s area equalise and the
neighbor constraints propagate this behavior all over the mesh.

The mesh geometrical quality is also sensitive to the local refinement or decimation of
the mesh. It is possible to remove vertices in areas of high concentration or to add vertices
in areas where faces have a too large surface. Two geometrical criterions are used to control
vertices refinement and decimation:

- Area criterion. If a face area becomes to large (respectively too small) compared to
the mean faces area, the face is refined (respectively decimated). Let x be a constant,
fi a mesh face and A(f;) its area:

L« % = fusion of f; and the neighbor face with the smallest area
> k = splitting of f;.

b i
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- FElongation criterion. The elongation parameter of a face depends on the respective
length of its edges. Let {e;} be the set of face f edges. Then:

: maz;||e||

elongation(f) = ———————.
g (f) median;||e;|

If elongation(f) is greater than a constant ratio x then the face is split in its narrowest

area.

Figure 22 shows the effect of the metric parameter area equalisation constraint and the
geometrical constraints. Top row shows the initial surface with a local force applied on a
vertex (left) and the model deformation without any geometrical constraint. Bottom row,
left, shows the mesh deformed with the metric parameter area equalisation constraint. All
face keep the same area but some faces have a poor geometrical quality due to the surface
elongation. Bottom row, right, shows the deformation of the surface controlled by the
geometrical refinement criterion. The geometrical quality is better than in the previous case
but the faces area are not as regular. Those two constraints are complementary and can be
used simultaneously.

6.4.2 Topology changes

Non Eulerian primitive operations perform topology changes on simplex meshes [39]. In [44]
we describe an algorithm based on discretization of space on a regular grid that automatically
adapts a 1-simplex mesh topology to the image data. Figure 23 shows an example of
the automatic topology change algorithm for the segmentation of a vertebra in an X-ray
image. The closed contour deforms and split in two connected components to fit the vertebra
topology.

7 Medical images segmentation

7.1 Image geometry

Most medical images are sampled along a regular grid in Euclidean space. However, some
acquisition devices acquire volumetric images using different geometries. In particular, 3D
ultrasound probes often acquire a set of 2D planes that may not be parallel to each other.
Figure 24 shows a rotative ultrasound probe and the corresponding cylindrical sampling grid.
In these images, the data density decreases as a function of the distance to the symmetry
axis. In [85] we proposed an algorithm for filtering images with a non Euclidean geometry.
This is especially useful to extract gradient information which is the main feature used for
image segmentation.
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Figure 22: Deformable surface response to a local perturbation. From top to bottom, left
to right: local force applied; deformation without geometrical constraint; metric parameters
area equalisation; geometrical refinement criterion.
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Figure 23: Segmentation of a vertebra with change in topology of the original contour.
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Figure 24: A rotative ultrasound probe and the resulting cylindrical geometry image. This
image was acquired at the CHU Brabois by Dr Lethor for the Echocard3D project.

7.2 External forces

Although the use of global deformations improves the segmentation robustness, high segmen-
tation accuracy can be achieved by introducing some specific knowledge about the structures
of interest.

External forces are computed from an image I to push a deformable model towards
anatomical structure boundaries. In their seminal paper [60], Kass et al proposed to use the
gradient of the image gradient’s norm as the external force : fexy = V||VI||. The potential
field associated with this force tends to be fairly narrow around image edges. Moreover,
the model evolution might become unstable. Cohen [27] proposed a normalization to avoid
instabilities and adds a balloon force that causes the model inflation. The use of a function
of the distance from a model vertex to the edge points also avoids instabilities. Thus forces
computation often requires the extraction of main edges. A distance map is then computed
from the edges or a closest edge point is determined for each model vertex.

7.2.1 Gradient based forces

We use different external forces depending on the image quality and specificity. For most CT
and MR images, the contrast is high enough to extract boundaries using a gradient operator.
The model then tracks close boundaries at each pixel by scanning image voxels along the
normal direction at each vertex. The scan-line algorithm is illustrated for Euclidean and
cylindrical images in figure 25. Restricting the boundary search along the model normals
reduces the scanning time without limiting the deformation capabilities.

If the scan-line from a vertex intersects a voxel of high gradient norm, the external force is
computed as the displacement vector from the vertex position to the boundary voxel center.
To make the boundary detection more robust, several criteria can be taken into account :
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¢ Boundary voxel

Figure 25: Scan-line algorithm for different image geometries.

- Range. The scan-line algorithm scans voxels within a limited range to avoid reaching
outliers when gradient voxels are lacking. The range parameter is either dependent on
the image size or of the average structure size when it is known.

- Contrast. In fairly well contrasted images, a lower gradient intensity threshold can be
set to ignore voxels whose gradient’s norm is too low (weak contours or noise).

- Direction. If the segmented structure is brighter or darker than the image background,
the gradient vector is always pointing outside or inside that structure. A gradient voxel
found on a vertex normal line is rejected if its direction does not roughly match the
normal direction.

- Intensity. Finally, if the structures of interest intensity range is known, a gradient
voxel can be rejected when the corresponding intensity voxel does not fall within the
expected range.

7.2.2 Region based forces

In many cases, the gradient information may be lacking or the noise level may be too high to
detect proper boundaries using a gradient operator. Moreover, gradient information is not
necessarily relevant in some image acquisition systems, e.g. thick lines appear in ultrasound
images along organ interfaces. An information on the gray-level distribution is then more
appropriate.

We have developed an intensity region external force [85]. At each mesh vertex, an
intensity profile is acquired from the image in the vertex normal direction. The profile is
then smoothed using anisotropic diffusion to reduce noise without altering intensity discon-
tinuities. When an homogeneous region (i.e. a profile segment with its voxels belonging
to a given intensity range) having a minimum length is found, we search for voxels of high
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gradient in the vicinity of the region’s extremities. These voxels correspond to the region
boundary and are used to compute the external force.

Figure 26 shows the heart left ventricle segmentation from a time series of very noisy
3D ultrasound images with weak contours based on region-defined external forces. First
row shows a surface model initialized in the first image of the time sequence. The second
row shows the recovered left ventricle shape at 4 instants of the cardiac cycle. The three
last rows show three of the image planes at 4 different instants with the deformed models
intersection superimposed. The time sequence corresponds to the heart contraction and the
left ventricle volume variation curve computed from the model is displayed in figure’s first
row. Model based quantitative measurements are useful to determine relevant parameters
in terms of pathology diagnosis such as ejection fraction.

8 Conclusion

Deformable surfaces provide a powerful tool for data modelling and image segmentation.
They produce a geometric representation of complex structures suited to visualization,
quantitative measurements and simulation. Different surface representations lead to var-
ious modeling capabilities. The representation controls the number of degrees of freedom
let to the surface and has an effect on the possible deformations. The kind of regularizing
constraints also depends on the surface intrinsic parameters.

Deformable surface shape can evolve to represent complex structures without any re-
striction of topology. Although deformable models may be trapped by local minima of the
energy functional, their robustness is increased in many applications by the introduction of
prior information and constraints in the deformation process.

The application field of image segmentation based on deformable models can be ex-
tended. For instance, the segmentation of time series of medical images is of high impor-
tance for many medical procedures including cardiology. We are developing time-dependent
deformable models in order to obtain time-correlated image segmentation. Also, the re-
construction of vascular trees based on deformable models is challenging because of their
complex geometry and tubular symmetry.
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Figure 26: Segmentation of a 3D cardiac ultrasound images sequence.
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