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Abstract

The accurate segmentation and tracking of cells in microscopy image sequences is an

important task in biomedical research, e.g., for studying the development of tissues, organs

or entire organisms. However, the segmentation of touching cells in images with a low sig-

nal-to-noise-ratio is still a challenging problem. In this paper, we present a method for the

segmentation of touching cells in microscopy images. By using a novel representation of

cell borders, inspired by distance maps, our method is capable to utilize not only touching

cells but also close cells in the training process. Furthermore, this representation is notably

robust to annotation errors and shows promising results for the segmentation of microscopy

images containing in the training data underrepresented or not included cell types. For the

prediction of the proposed neighbor distances, an adapted U-Net convolutional neural net-

work (CNN) with two decoder paths is used. In addition, we adapt a graph-based cell track-

ing algorithm to evaluate our proposed method on the task of cell tracking. The adapted

tracking algorithm includes a movement estimation in the cost function to re-link tracks with

missing segmentation masks over a short sequence of frames. Our combined tracking by

detection method has proven its potential in the IEEE ISBI 2020 Cell Tracking Challenge

(http://celltrackingchallenge.net/) where we achieved as team KIT-Sch-GE multiple top

three rankings including two top performances using a single segmentation model for the

diverse data sets.

Introduction

State-of-the-art microscopy imaging techniques such as light-sheet fluorescence microscopy

imaging enable to investigate cell dynamics with single-cell resolution [1, 2]. This allows to

study cell migration and proliferation in tissue development and organ formation at early

embryonic stages. Establishing the required complete lineage of each cell, however, requires a

virtually error-free segmentation and tracking of individual cells over time [2, 3]. A manual

data analysis is unfeasible, due to the large amount of data acquired with modern imaging
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techniques. In addition, low-resolution objects are very difficult to detect even for human

experts. Deep learning-based cell segmentation methods have proven to outperform tradi-

tional methods even on very diverse 2D data sets [4]. However, state-of-the-art cell tracking

methods often still need a time-consuming manual cell track curation, e.g., using EmbryoMi-

ner [5] or the Massive Multi-view Tracker (MaMuT) [6]. Especially for low signal-to-noise

ratio and 3D data, further method development is required for both cell segmentation and cell

tracking [7].

Traditional segmentation methods, such as TWANG for the segmentation of roundish

objects [8], are often designed for a specific application. These methods commonly consist of

sophisticated combinations of pre-processing filters, e.g., Gaussian or median filters, and seg-

mentation operations, e.g., a region adaptive thresholding followed by a watershed transform

[9]. To reach a reasonable segmentation quality, such traditional methods need to be carefully

adapted to the cell type and imaging conditions. Therefore, expert knowledge is needed. In

contrast, deep learning-based segmentation methods shift the expert knowledge needed to the

model design and to the training process. Thus, less expert knowledge is needed for the appli-

cation of a trained model and to fine-tune the post-processing which is often kept very simple.

A review of cell segmentation methods is provided in [10].

To improve the generalization ability of a trained deep learning model, a preferably diverse

and large annotated data set is needed. This fact is especially problematic when dealing with

touching cells since this case is usually underrepresented in training data sets. Therefore, mod-

els for cell boundary or border prediction (see Fig 1) are often not able to handle touching cells

well. The result are merged cells, due to gaps in predicted cell boundaries and borders between

touching cells [11, 12]. To overcome this problem, several approaches have been proposed. In

[11], models are trained to predict adapted thicker borders and smaller cells, which can

decrease the amount of merged cells. [12] utilizes new gap and touching classes with J regulari-

zation. [13] combines distance transforms for single cell nuclei with discrete boundaries. A

center vector encoding which is aimed to be more robust to label inconsistencies is proposed

in [14], whereas in [15], horizontal and vertical gradient maps are used. To improve the gener-

alization ability of a model for cell types with only few or no annotated images, a generative

adversarial network-based image style transfer to generate augmented training samples of that

cell types has been used in [16]. An advantage of border-based approaches is that a deep learn-

ing model is enforced to focus on touching cells that are underrepresented in the training data.

However, border-based approaches still have the shortcoming that only touching cells can be

used to train the border prediction.

Although deep learning methods have been successfully applied to multi object tracking on

natural images [17, 18], there are only few deep learning approaches for cell tracking [19, 20].

In [19], cells are simultaneously segmented and tracked by combining a recurrent hourglass

network with a pixel-wise metric embedding learning. [20] proposes a particle-filter-based

motion model in combination with a CNN-based observation model. However, cell tracking is

still dominated by traditional tracking approaches [7, 21]. One reason is the lack of high qual-

ity annotations as provided in natural image tracking benchmarks [22–24]. Thus, training data

are often not available. Another aspect that complicates the task of cell tracking are cell death

and division events, which do not occur in natural image tracking data. Therefore, traditional

tracking algorithms with comparably few parameters and explicit modeling of cell division

events still dominate cell tracking benchmarks [7]. The comparison of cell tracking algorithms

in [7] shows that the majority of tracking approaches uses an adapted version of nearest neigh-

bors, a graph-based linking or multi hypothesis tracking. In [21], the Viterbi algorithm is

applied to track cells. A joint model for segmentation and tracking is proposed in [25] where

model parameters are learned based on Bayes risk minimization.
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In this paper, we propose a novel representation of cell borders, the neighbor distances, to

solve the challenging problem of segmenting touching cells of various types in the absence of

large training data sets. Thus far, problems of border prediction approaches are the sensitivity

to annotation inconsistencies, and that only touching cells provide border information in the

training. The neighbor distances are aimed to be less sensitive to annotation inconsistencies,

and enable to learn also from close cells. This additional information in the training process

results in a more robust border prediction. Similar to [13], we combine our border predictions

with cell distances to further prevent the erroneous merging of close cells. However, in contrast

to [13], we remove the bottlenecks of non-robust discrete boundaries and of the feature fusion

layers. This results in a simplified architecture and training process and in less merged cells.

For the cell tracking, we adapt a coupled minimum-cost flow algorithm to include an object

movement estimation. In addition, our formulation is able to link fragmented tracks due to

missing segmentation masks in a short sequence of frames. The remainder of this paper covers

the methodology we use to detect and segment cells and the subsequent cell tracking. In the

results section, we demonstrate the quality of our introduced method on data from the Cell

Tracking Challenge [7, 9].

Materials and methods

Cell segmentation using CNN-based distance predictions

For cell segmentation, we train a deep learning model to predict cells and cell borders, fol-

lowed by a post-processing with a seed extraction and a seed-based watershed segmentation. A

key for the successful application of supervised deep learning methods in the absence of large

training data sets is to introduce representations that allow to use as much information as pos-

sible. Thus, instead of discrete cell boundary (Fig 1c) and cell border representations (Fig 1d),

we combine cell distances (Fig 1e, [13]) with novel neighbor distances (Fig 1f). These represen-

tations allow incorporating the regional information not only from touching cells but also

from close cells resulting in more robust deep learning models. A segmentation network based

on the U-Net architecture [27], modified similar to [13], is utilized as the backbone of the

method. An overview of the proposed method provides Fig 2.

Cell distances and neighbor distances. The cell distances, as shown in Fig 1e, are gener-

ated from ground truth data by computing the Euclidean distance transform for each cell inde-

pendently. Adjacent cells are treated as background in this step and the distance transform is

normalized into the range [0, 1]. Thus, each pixel of a cell represents the normalized distance

to the nearest pixel not belonging to this cell. The cell distance prediction alone is sufficient to

obtain seeds for the post-processing. However, a precondition is that the CNN has learned to

Fig 1. Training data representations for the training of deep learning models. Image (a) and ground truth (b) show a crop of the simulated Cell Tracking Challenge

data set Fluo-N2DH-SIM+ [7, 9]. Generated boundaries (c) and borders (d) can be used to split touching cells. Many training data sets contain only few touching cells

resulting in few training samples for borders and boundaries between cells. The combination of cell distances (e) with neighbor distances (f) is aimed to solve this

problem since models can also learn from close cells.

https://doi.org/10.1371/journal.pone.0243219.g001
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deal with cell distances of touching cells. By combining cell distances with the novel neighbor

distances the erroneous merging of touching cells is prevented.

Fig 3 shows the generation of the neighbor distances in which each pixel of a cell represents

the inverse normalized distance to the nearest pixel of the closest neighboring cell. Therefore, a

background-foreground conversion step is applied for each cell independently (Fig 3b) and

the Euclidean distance transform (Fig 3c) is calculated. The distance transform is cut to the cell

size and normalized (Fig 3d) followed by an inversion (Fig 3e). The normalization to the range

[0, 1] is required to suppress neighbor distances for cells without close neighbors. To further

reduce the erroneously merging of cells, gaps between close cells are closed by applying a gray-

scale closing (Fig 3g). Finally, to get a steeper decline within cells, a scaling is applied by taking

the closed neighbor distances (Fig 3g) to the power of three (Fig 3h). This confines the neigh-

bor distances to the outer cell area and therefore eases the seed extraction in the post-process-

ing. An advantage of the neighbor distances is that they also provide information in the

training process when cells are close but do not touch. This can be seen in Fig 3h (bottom right

cell and bottom left cell) and is especially advantageous for training data sets with few touching

cells providing only little border information in the training process.

Fig 2. Overview of the proposed segmentation method using distance predictions (adapted from [13]). The CNN consists of a single encoder that is

connected to both decoder paths. The network is trained to predict cell distances and neighbor distances that are used for the watershed-based post-

processing. The input image shows a crop of the Cell Tracking Challenge data set Fluo-N2DH-GOWT1 [7, 9].

https://doi.org/10.1371/journal.pone.0243219.g002

Fig 3. Main steps of the neighbor distance creation. After the automated selection of a cell (a), indicated with red, the selected cell and the background are converted to

foreground (white in b) while the other cells are converted to background (black in b). Then, the distance transform is calculated (c), cut to the cell region and normalized

(d). After inversion (e), the steps are repeated for the remaining cells (f). Finally, the grayscale closed neighbor distances (g) are scaled (h). Shown is a crop of the Broad

Bioimage Benchmark Collection data set BBBC039v1 [26].

https://doi.org/10.1371/journal.pone.0243219.g003
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Robustness of neighbor distances to annotation inconsistencies. Fig 4 shows that the

neighbor distances are more robust to annotation inconsistencies than boundaries and bor-

ders, i.e., a cell was morphologically eroded and another cell dilated resulting in masks that

only differ in single pixels. The location of the discrete boundaries and borders change, mean-

ing that a prediction of the initial border is considered incorrect and penalized in the training.

This makes it difficult to train models well on small data sets. In contrast, the proposed contin-

uous neighbor distance shows a smooth change. Therefore, the influence of annotation incon-

sistencies on the training process is reduced resulting in a more robust training.

Architecture. The architecture is based on the U-Net architecture [27]. Instead of a single

decoder path, two parallel decoder paths are used allowing each path to focus on features

related to the desired output. In addition, the feature detection in the shared encoder branch

of the network is trained using backpropagated information from both decoder branches. The

maximum pooling layers are replaced with 2D convolutional layers with stride 2 and kernel

size 3. Additionally, batch normalization layers are added. The number of feature maps is dou-

bled from 64 feature maps to a maximum of 1024 in the encoder path and halved in each

decoder path correspondingly. To avoid the need of cropping before concatenation, zero pad-

ding is applied in the convolutional layers to keep the feature map size consistent. The rectified

linear unit activation function is used within the network and a linear activation for the output

layers. Fig 2 provides an overview of the architecture, i.e., convolutional and downsampling

layers are summarized into blocks. A more detailed description of the architecture is provided

in S1 Fig.

Fig 4. Robustness of training data representations to annotation inconsistencies. Small changes in the ground truth, simulated with morphological erosions and

dilations, result in different boundaries and borders (first and second row). The difference images between the first row and the second row show that the changes for

the distance labels are smoother. Shown is a crop of the Cell Tracking Challenge data set Fluo-N2DH-SIM+ [7, 9].

https://doi.org/10.1371/journal.pone.0243219.g004
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Watershed post-processing. Fig 5 shows the main steps of the post-processing. The cell

distance prediction Pcell and the neighbor distance prediction Pneighbor are smoothed to avoid

the erroneous splitting of cells in the seed extraction step:

P̂cell ¼ Pcell � GðsÞ ; ð1Þ

P̂neighbor ¼ Pneighbor � GðsÞ ; ð2Þ

with G(σ) representing a Gaussian kernel with standard deviation σ and � being the convolu-

tion operator. Then, the region to flood Pmask with a seed-based watershed is extracted from

the smoothed cell distance prediction by applying a threshold %mask:

Pmask ¼ P̂cell > %mask : ð3Þ

To obtain the seeds, the smoothed and squared neighbor distance prediction is subtracted

from the cell prediction and the threshold %seed is applied:

Pseeds ¼ ðP̂cell � P̂2
neighborÞ > %seed : ð4Þ

Depending on the cell size, the squaring can be omitted or replaced by an even steeper func-

tion to fine-tune the seed extraction. Seeds with an area smaller than 3px2 are removed. For

3D and 3D+t data, detected merged cells in z-direction can be split by increasing the seed

extraction threshold %seed till multiple seeds are found for the merged cells. For the detection

of merged cells, a priori knowledge about cell sizes or an outlier detection can be used.

Inspired by the Dual U-Net architecture [13], we first attempted to enforce the CNN to pre-

dict an additional seed output from the cell distances and the neighbor distances. However,

our traditional post-processing provided better results in tests and enables a fine-tuning to cell

Fig 5. Overview of the watershed post-processing for segmentation. The post-processing consists of a threshold-based seed extraction and mask

creation, and a watershed. The predictions show a 2D crop of the Cell Tracking Challenge data set Fluo-N3DL-TRIC [7, 9].

https://doi.org/10.1371/journal.pone.0243219.g005
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types not included in the training data. In addition, it simplifies the architecture and the train-

ing process.

Cell tracking

Cell tracking aims to reconstruct the lineage of cells, by linking related cells over time. This

linking task is trivial in case of low cell density, error-free segmentation, and high temporal

resolution resulting in negligible cell movements between adjacent frames. However, especially

for low signal-to-noise-ratio images with touching and dividing cells, fragmented tracks can

occur. To re-link fragmented tracks, we match tracks without assigned cells over a short

sequence of frames and add a coarse position estimation to the cost function. The proposed

algorithm is capable of tracking all segmented cells in an image sequence as well as tracking

only a subset, e.g., a selection of manually marked cells.

Initialization. The tracking algorithm traverses the image sequence I ¼ fIt j 0 � t � Tg
forwards, where It is the image at time point t and T the number of time points. A track is ini-

tialized for each segmented object in the first frame. For data sets with marked objects in the

first frame, tracks are only initialized for marked objects. It is assumed that the object move-

ment between successive frames is small compared to the overall image size. Therefore, for

each tracked object a rectangular region of interest (ROI) is defined as a search space for the

same object in the next frame. The initial center of each ROI is set to the median position cal-

culated from the first assigned segmentation mask of each track.

Movement estimation. The tracking step consists of a movement estimation followed by

a graph-based matching strategy. To estimate the movement of an object, the image frames It

and It+1 are cropped to the object ROI. Then, a phase correlation [28] is calculated between the

image crops to estimate a shift between those. The object movement is the shift between the

image crops which is given by the position of the maximum peak of the phase correlation.

Based on the estimated object movement, the ROI at time point t + 1 is adapted for each object

individually.

Graph-based matching strategy. All tracks with no successors and their last assigned seg-

mentation mask within time span {t − Δt, . . ., t} are considered active. Therefore, tracks with

missing segmentation masks over at most Δt time points can be re-linked. Next, for each active

track a set of potential matching candidates is selected based on its ROI at time point t + 1.

Active tracks and potential matching candidates are matched by using an adapted version of

the coupled minimum-cost flow algorithm proposed in [29]. The algorithm minimizes the

overall cost by selecting edges in the graph with minimal cost subject to a set of constraints.

The constraints model flow, appearance/disappearance of objects, and splitting/merging of

objects. For an in depth introduction please see [29].

Fig 6 shows our adapted graph structure of the coupled minimum-cost flow algorithm. The

following adaptations are applied: the appearance cost of objects is set to 0, as spurious tracks

will be filtered out by the subsequent post-processing. This appears to be advantageous in sce-

narios with the objective to track only a few selected objects. The disappearance cost is set to

the length of the largest edge of the ROI instead of using appearance-based features. Therefore,

tracks with missing segmentation masks can be assigned to the disappearance node as well.

The merging node proposed in [29] is removed, as it only models the merging of two objects

per time point. The matching cost cs,n between track s and potential matching candidate n is

adapted to:

cs;n ¼ k p̂s
tþ1
� pntþ1

k2; ð5Þ

where p̂s
tþ1

is the estimated position of the tracked object s at time point t + 1 and pntþ1
is the
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position of the potential matching candidate. The estimated position p̂s
tþ1

is given by:

p̂s
tþ1
¼ pst þ ds

t;tþ1
; ð6Þ

where ds
t;tþ1

is the estimated shift of the ROI of track s between time points t and t + 1. pst is the

position of the tracked object at time point t. The cost of split events are computed based on

the size and position of the tracked object s and its potential successor candidates n and k:

cs;ðn;kÞ ¼
k p̂s

tþ1
�

1

2
ðpntþ1

þ pktþ1
Þ k2 if Cs ¼ 1;

r else;

8
><

>:
ð7Þ

where cs,(n, k) are the split costs and Cs the split condition. In practice, we set ρ to ten times the

disappearance cost. The split condition Cs is given by:

Cs ¼
1 if

Vn
tþ1

Vk
tþ1

>a;
Vn

tþ1
þ Vk

tþ1

Vs
tlast

<b; k pntþ1
� pktþ1

k2<g;

0 else:

8
>><

>>:

ð8Þ

Vn
tþ1
;Vk

tþ1
and Vs

tlast
are the sizes of the segmentation masks of successor candidates n and k,

and of the last assigned object to the track s at time point tlast, respectively. The successor can-

didates are sorted so Vk
tþ1
� Vn

tþ1
holds. α, β and γ are hyper-parameters. A possible parametri-

zation of those hyper-parameters is provided in the results section. The split condition ensures

that successors are of similar size, have a combined size similar to the size of the predecessor

object, and should be reasonably close to each other.

Each active track is only linked to segmented objects overlapping with its ROI, reducing the

number of edges in the graph. As all active tracks are added to the graph and not only seg-

mented objects between successive time points, tracks with missing segmentation masks over

Fig 6. Graph construction steps exemplary for four segmented objects. Edges added in a construction step are

black, edges added in previous steps are gray. The gray nodes (O) correspond to segmented objects. The segmented

objects from {t − Δt, . . ., t} are the last matched objects of all active tracks, whereas the segmented objects of t + 1 are

not matched to tracks yet. The blue node models the appearance of objects (A), the red node the disappearance of

objects (D), and the green node split events (S). Split event nodes (S) are added for each pair of objects at t + 1.

Therefore, a split event node (S) has exactly two outgoing edges but can have several ingoing edges from object nodes

(O). Source (S−) and sink nodes (S+) are added for the formulation as coupled minimum cost flow problem.

https://doi.org/10.1371/journal.pone.0243219.g006
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a short sequence of frames can be linked. A solution of the matching problem is then found

using integer linear programming.

For data sets with the aim to track all segmented objects, each non-matched object at time

point t+ 1 is initialized as a new track.

Post-processing. In the post-processing step, missing segmentation masks are added by

placing masks at the linearly interpolated positions between tlast and t + 1. Furthermore, trajec-

tories of length one without any predecessor and successors are removed.

Results

Data set

We conduct our experiments with data from the Cell Tracking Challenge [7, 9]. For each cell

type, the provided data sets are split into two training sets with publicly available ground

truths, and two challenge sets (see Fig 7). For our experiments, we use selected data from one

training set to train models and evaluate on the other. The provided annotations consist of

gold truth (GT) instance segmentation masks, interlinked GT cell seeds for cell detection and

tracking, and computer-generated instance segmentation masks, referred to as silver truth

(ST). The ST annotations, computed from a majority vote of submitted algorithms of former

challenge participants, can include segmentation errors. The GT segmentation masks not nec-

essarily include all cells in a frame.

For four data sets, we manually selected segmentation GTs where all cells in a frame are

annotated, and STs that do not show obvious segmentation errors. 27 GTs of the data set

BF-C2DL-HSC (Mouse hematopoietic stem cells), 15 GTs of the data set BF-C2DL-MuSC

(Mouse muscle stem cells), 16 STs of the data set Fluo-N2DL-HeLa (HeLa cells), and 3 GT

slices of the 3D data set Fluo-N3DH-CE (C. elegans developing embryo) fulfilled our require-

ments. This heterogeneous data set will be referred to as CTC training set and consists of 268

crops of size 256px×256px including 52 crops for validation. A difficulty is that the CTC train-

ing set contains comparatively few touching cells, whereas in the evaluation the segmentation

of touching cells is important, especially for late time points after many cell divisions. Each cell

type is evaluated separately using all detection and segmentation GTs of the second set (see S2

Fig).

Evaluation criteria

For evaluation, we use the performance measures of the Cell Tracking Challenge. The normal-

ized acyclic oriented graph matching measure for detection DET is used to evaluate object

Fig 7. Cell tracking challenge data set structure. Since no ground truths are publicly available for the challenge sets,

the two provided training sets need to be split into a set used for training and a set for evaluation.

https://doi.org/10.1371/journal.pone.0243219.g007
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level segmentation errors [30]. Pixel level segmentation errors are evaluated with the Jaccard

similarity index based measure SEG. The normalized acyclic oriented graph matching measure

TRA is used to evaluate the tracking [30]. The overall performances for the Cell Segmentation

Benchmark (CSB) and Cell Tracking Benchmark (CTB) are calculated as follows:

OPCSB ¼ 0:5 � ðDETþ SEGÞ; ð9Þ

OPCTB ¼ 0:5 � ðSEGþ TRAÞ: ð10Þ

Parameter selection

The proposed segmentation method has three adjustable post-processing parameters: the

mask threshold %mask, the seed threshold %seed and the standard deviation σ of the Gaussian

smoothing. We fix them to: %mask = 0.09, %seed = 0.5, σ = (1.5, 1.5) for 2D/2D+t data, and σ =

(1.5, 1.5, 0.5) for 3D/3D+t data. In practice, a fine-tuning of these parameters is only needed if

cells are too small or too large (ρmask) and if multiple splits or merges occur (ρseed). For the

tracking, we computed cell division and movement statistics from tracking ground truth data

and chose the following parameters experimentally: Δt = 3 (dimensionless difference of

frames), α = 0.5, β = 1.2 and g ¼ 2 �
ffiffiffiffiffiffiffiffi
Vs

tlast
D
p

with the number of image dimensions D 2 {2, 3}.

The ROI is set to 150px × 150px for 2D data sets, and to (100px)3 for 3D data sets. For some

large 3D+t data sets, e.g., Fluo-N3DL-TRIC and Fluo-N3DL-TRIF of the Cell Tracking Chal-

lenge, the ROI is reduced to (60px)3. Due to the observed variety of the cell division and move-

ment statistics over the different data sets, we expect improved tracking results by fine-tuning

the tracking parameters to each data set individually.

Compared segmentation methods

The proposed segmentation method is compared with boundary and border prediction meth-

ods (Fig 1c and 1d), adapted borders [11], the Dual U-Net [13], and the J4 method proposed

in [12].

For the boundary and border prediction methods, we adapt our proposed architecture and

use a single decoder path with a three channel output: background, cell, and boundary/border.

Instead of the linear activation, the softmax activation is applied in the output layer.

For the adapted borders [11], we use our proposed network architecture with two decoder

paths. One decoder path is trained to predict binary cell masks (sigmoid activation), the other

to predict background, eroded cells and adapted borders (softmax activation).

The Dual U-Net method [13] uses a similar architecture compared to ours but max-pooling

layers and a feature fusion block. Intermediate predictions of discrete boundaries (sigmoid

activation) and cell distances (linear activation) are forwarded to the feature fusion block

which predicts the final segmentation map (sigmoid activation). We removed in our compari-

son the dropout layer since none of the other compared methods use dropout.

The last method in our comparison is the J4 method [12] which uses J regularization to

tackle the class imbalance problem. The J4 method predicts a four channel output: back-

ground, cell, touching, and gap. We use the same architecture with softmax activation in the

last layer as for the boundary and border method.

Detailed information about the post-processing of the compared methods is provided in S1

File. Similar to the proposed method, seeds with an area smaller than 3px2 are removed for all

methods. Table 1 shows the boundary and border information in the CTC training set. The
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proposed method can utilize more border information in the training process. For the bound-

ary method the most information is resulting from non-touching cells.

Training settings, inference and experimental environment

For each method, eleven models are trained. This allows to evaluate the robustness of the train-

ing. Models are trained with a batch size of 8 using the Adam optimizer [31] and the learning

rate is initialized with 8 × 10−4. After 12 subsequent epochs without validation loss improve-

ment, the learning rate is multiplied by 0.25 till a minimum learning rate of 6 × 10−5 is reached.

The training is stopped when 28 subsequent epochs without improvement occurred or 200

epochs are reached. To learn the cell distances and the neighbor distances, PyTorch’s Smooth-

L1Loss is used and both losses are added. The loss functions used to train the compared meth-

ods are provided in S1 File. During training the augmentations flipping (probability: 75%),

scaling (30%), rotation (30%), contrast changing (30%), blurring (30%), and noise (30%) are

applied randomly in this order, and the training images are min-max normalized into the

range [-1, 1].

For inference, each frame of a time series is min-max normalized independently into the

range [-1, 1], whereas the whole volume is normalized for 3D data. The normalized data are

processed frame-by-frame with 3D data being processed slice-wise. The CNN model inputs

are zero-padded if necessary.

We performed the experiments using a system with two NVIDIA TITAN RTX GPUs,

Ubuntu 18.04, and a Intel Core i9-9900K CPU with 64 GB RAM. The methods are imple-

mented in Python and PyTorch is used as deep learning framework. Implementations of the

proposed method and of the compared methods are available at https://bitbucket.org/t_

scherr/cell-segmentation-and-tracking/.

Segmentation results

BF-C2DL-HSC. The segmentation results of the Mouse hematopoietic stem cells in Fig 8

show that the proposed segmentation method provides the best cell detection. The SEG score,

which evaluates pixel level errors, is mainly limited due to the fact that the predicted cells in

the proposed method are slightly too large as indicated in Fig 8g. These results can be even fur-

ther improved by fine-tuning the mask threshold. Surprisingly, boundaries can be learned

almost as good as adapted borders and better than simple borders. A possible explanation is

the small amount of touching cells in the CTC training set which prevents from learning sim-

ple borders (Fig 8c). The Dual U-Net method suffers from some uncertain regions in the final

segmentation map prediction (Fig 8e top) resulting in false negatives and split cells. The limita-

tion of the J4 method is that the touching and the gap class are quite similar for this data set.

This results in an oversegmentation and imperfect cell shapes since the gap class is considered

to be background. The latter limits mainly the SEG score.

Table 1. Boundary and border information in the CTC training set.

Boundary Border Adapted Border J4 Proposed

Pixel fraction [‰] 10.51 0.11 0.33 0.56 / 0.96 1.51

Stated are the ratios of boundary/border pixels to all pixels. For the proposed neighbor distances only pixels with a value greater than 0.5 are counted in this comparison.

Nevertheless, pixels with smaller neighbor distance values can provide information in the training process as well. For the J4 method [12], ratios of the touching and of

the gap class are provided.

https://doi.org/10.1371/journal.pone.0243219.t001
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Fig 8. Segmentation results on the BF-C2DL-HSC test set. Shown are raw predictions and segmentations of a 140 px×140 px test image crop

(a-g, best OPCSB models). For multi-channel outputs, channels are color-coded (cell/seed class: white, boundary/border/touching class: red, gap

class: blue). The plot at the bottom shows the evaluation on the test set (h).

https://doi.org/10.1371/journal.pone.0243219.g008
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Fluo-N3DH-CE. For the segmentation of the 3D data set Fluo-N3DH-CE, we do not

apply the mentioned splitting of cells that are detected as merged. This enables a better com-

parison of the methods since the almost binary predictions of the other methods do not allow

such a simple splitting post-processing. In addition to the 3D nature of this data set, the low

signal-to-noise-ratio and the use of only 3 slices of that cell type in the training set makes the

segmentation difficult. Again, the proposed method shows the best results whereas boundaries

are often unsharp and not closed resulting in merged cells as shown in Fig 9. Borders and

adapted borders do not appear anymore and cannot be used to split cells. Especially in late

frames after many cell divisions, the boundary and border segmentation methods break down

and predict only a few very large objects. In contrast, the J4 method shows an improved split-

ting of touching cells. However, also the J4 method and the Dual U-Net method decrease in

segmentation performance in late frames whereas the proposed method still provides a reason-

able segmentation (see S3 Fig).

Fluo-N2DL-HeLa. HeLa cells provide the largest quantity of cells from a specific cell type

in the CTC training set resulting in the methods performing more similar, as shown in Fig 10.

For this cell type, the adapted border method shows its advantages over the boundary method

by predicting robust borders. The models trained with the J4 method learned to predict and

differentiate gap and touching class for this cell type very well resulting in the best performance

of all methods. However, the proposed method performs also well for this cell type. The Dual

U-Net method suffers from merged objects. This is probably due to non-closed boundaries

which induce the merging of cells in the feature fusion layer. Our approach with more robust

neighbor distances and a traditional post-processing avoids this. S1 Table shows that the

neighbor distances can prevent from the erroneous merging of cells.

BF-C2DL-MuSC. Mouse muscle stem cells are difficult to segment since they change

their shape from small roundish objects to elongated objects. Both cell states are shown in

Fig 11. The Dual U-Net method provides the best segmentation of elongated cells, however,

roundish cells are sometimes merged. Nevertheless, the better segmentation of the elongated

cells compensates this. The J4 method in contrast suffers from oversegmentation on this cell

type, resulting in lower scores. As for the data set BF-C2DL-HSC, the proposed method can

handle the small roundish cells well resulting in the second best method for this cell type. The

cell distance predictions of the elongated cells are sometimes uncertain and below the seed

threshold. This results in missing cells. In contrast, the feature fusion block of the Dual U-Net

is able to detect such cells, but has the drawback of merging cells. The segmentation problem

of the elongated cells can be solved using the training data of both BF-C2DL-MuSC training

data subsets. This is shown in the next section.

Cell tracking challenge

For our submission to the 5th IEEE ISBI 2020 Cell Tracking Challenge as team KIT-Sch-GE,

we combined our segmentation method with our adapted tracking approach. We selected a

training data set similarly to the CTC training set. The data set consists of 997 crops of size

256px×256px of carefully selected Cell Tracking Challenge data, CBIA HL60 cell line data [32],

BBBC038 drosophila images [4], and generated semi-synthetic data [33, 34]. A more detailed

description of the data set, data set specific segmentation and tracking parameters, and execu-

tables can be found on the challenge website. For our submission we manually selected a seg-

mentation model from three trained models. To avoid issues with the TRA measure, frames

without any tracked object are replaced by the tracking result of the temporally closest frame.

For the Fluo-N3DH-CE data set cells are split if their volume is bigger than 4

3
times the mean

object volume at that time point by iteratively increasing the seed extraction threshold %seed.
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Fig 9. Segmentation results on the Fluo-N3DH-CE test set. Shown are raw predictions and segmentations of a 140 px×140 px test image crop

(a-g, best OPCSB models). For multi-channel outputs, channels are color-coded (cell/seed class: white, boundary/border/touching class: red, gap

class: blue). The plot at the bottom shows the evaluation on the test set (h). Note: this is a 3D data set and the erroneous merging of cells can

result from any of the slices a cell appears.

https://doi.org/10.1371/journal.pone.0243219.g009
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Fig 10. Segmentation results on the Fluo-N2DL-HeLa test set. Shown are raw predictions and segmentations of a 140 px×140 px test image

crop (a-g, best OPCSB models). For multi-channel outputs, channels are color-coded (cell/seed class: white, boundary/border/touching class: red,

gap class: blue). The plot at the bottom shows the evaluation on the test set (h).

https://doi.org/10.1371/journal.pone.0243219.g010
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Fig 11. Segmentation results on the BF-C2DL-MuSC test set. Shown are raw predictions and segmentations of a 360 px×360 px test image

crop (a-g, best OPCSB models). For multi-channel outputs, channels are color-coded (cell/seed class: white, boundary/border/touching class:

red, gap class: blue). The plot at the bottom shows the evaluation on the test set (h).

https://doi.org/10.1371/journal.pone.0243219.g011
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Cell segmentation benchmark. In the Cell Segmentation Benchmark, we achieved eight

top three rankings, including two first places, and three fourth places, all of them with the

same model (see Table 2). The performances of the highlighted data sets with no or almost no

training data used imply a good utilization of training data and a good generalization ability of

our model. A comparison of the scores for the data set BF-C2DL-MuSC on the CSB bench-

mark and the previous experiment in Fig 11 shows an improved performance. We assume this

is due to the larger amount of elongated cells in the training data. Furthermore, the results

show that our proposed 2D segmentation with 3D post-processing approach performs well on

3D data. An exemplary segmentation result is shown in Fig 12.

Cell tracking benchmark. In the Cell Tracking Benchmark, we achieved nine top three

rankings, including two first places, and a fourth place (see Table 2). Exemplarily, some

Table 2. Cell tracking benchmark and cell segmentation benchmark results (5th edition). Top 3 rankings in the overall performances OPCSB and OPCTB are written in

bold. The corresponding Cell Tracking Benchmark and Cell Segmentation Benchmark leaderboards are available on the Cell Tracking Challenge website.

Data Set SEG DET TRA OPCSB OPCTB RankingOPCSB RankingOPCTB

BF-C2DL-HSC 0.750 0.974 0.929 0.862 0.840 2nd 3rd

BF-C2DL-MuSC 0.702 0.977 0.967 0.839 0.835 1st 1st

Fluo-C3DH-H157† 0.789 0.949 0.948 0.869 0.869 4th 4th

Fluo-C3DL-MDA231†† 0.616 0.851 0.820 0.733 0.718 3rd 3rd

Fluo-N2DH-GOWT1 0.828 0.950 0.949 0.889 0.889 14th 12th

Fluo-N2DL-HeLa 0.895 0.992 0.989 0.944 0.942 3rd 3rd

Fluo-N3DH-CE†† 0.729 0.930 0.886 0.830 0.808 1st 1st

Fluo-N3DH-CHO 0.871 0.945 0.948 0.908 0.909 3rd 3rd

Fluo-N3DL-DRO 0.562 0.761 - 0.661 - 4th -

Fluo-N3DL-TRIC† 0.821 / 0.766 � 0.961 0.809 0.891 0.787 2nd 2nd

Fluo-N3DL-TRIF† 0.601 / 0.573 � 0.926 0.788 0.763 0.680 3rd 3rd

Fluo-N2DH-SIM+ 0.800 0.949 0.945 0.875 0.873 9th 7th

Fluo-N3DH-SIM+ 0.668 0.937 0.933 0.802 0.800 4th 2nd

† No data of that cell type used to train the segmentation model.
††�5 slices of that cell type used to train the segmentation model.

� Two scores for each benchmark (CSB/CTB) due to a different treatment of additionally detected and segmented cells.

https://doi.org/10.1371/journal.pone.0243219.t002

Fig 12. Segmentation result of the Fluo-N3DH-CE challenge data. The maximum intensity projection of the raw

data (left) and of the segmentation (right) show that cells can be segmented well even on this challenging data set. S1

Video shows a video of a tracked developing embryo.

https://doi.org/10.1371/journal.pone.0243219.g012

PLOS ONE Cell segmentation and tracking using CNN-based distance predictions and a graph-based matching strategy

PLOS ONE | https://doi.org/10.1371/journal.pone.0243219 December 8, 2020 17 / 22

http://celltrackingchallenge.net/files/leaderboards/CTB/2020-04-03.png
http://celltrackingchallenge.net/files/leaderboards/CSB/2020-04-03.png
https://doi.org/10.1371/journal.pone.0243219.t002
https://doi.org/10.1371/journal.pone.0243219.g012
https://doi.org/10.1371/journal.pone.0243219


tracking results of our approach are shown in Fig 13. Some tracks show jumps, visible as long

straight lines, possibly due to some remaining linking errors in our adapted tracking approach.

However, none of the competing tracking approaches yields perfect tracking results for all

cells. The multiple top performances in the Cell Tracking Benchmark show that our tracking

approach, which combines a movement estimation and a graph-based matching strategy,

belongs to the best performing approaches.

Discussion

Trained on a data set with few touching samples, our proposed segmentation method outper-

forms all compared methods for at least three of the four cell types evaluated. This is due to the

fact that the neighbor distances enable our method to learn from close cells which results in

additional information in the training process (see Table 1) and the fact that this information

can be easily combined with the cell distances. The differences between the segmentation

results of both discrete border methods show how important the utilization of border informa-

tion is. We want to emphasize that for the proposed method the seed and the mask thresholds

can be adjusted for each cell type and for each trained model separately. This improves the seg-

mentation results shown in Figs 8–11. The other discrete methods do not allow to do so since

the needed sigmoid or softmax activation functions prevent a major fine-tuning of the post-

processing. However, to allow a better comparison, we fixed the post-processing parameters of

our proposed method in our experiments. The results of the J4 method on the HeLa data set

show that specialized loss functions work very well, at least for the dominating cell type in the

training set. So far, our approach only uses standard loss functions.

Our successful participation in the Cell Segmentation Benchmark and the Cell Tracking

Benchmark show that our proposed tracking by detection method yields excellent results in

cell segmentation and cell tracking. Especially the success on data sets with only little or very

Fig 13. Tracking results on the Fluo-N2DL-HeLa challenge data. The first raw image is overlaid with the tracks

starting in the first frame. For better visibility, tracks starting in later frames are excluded. S2 Video shows a video of

the tracked cells.

https://doi.org/10.1371/journal.pone.0243219.g013
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sparse annotated training data, i.e., data with only very few cells in a frame annotated, shows

the advantages of our method.

Conclusion

The segmentation and tracking of touching and dividing cells of different types is a challenging

task. In this work, a new cell segmentation method using a combination of cell distances and

neighbor distances is proposed. The segmentation method utilizes information from touching

and close cells in the training process. Therefore, it shows an improved generalization ability

for cell types underrepresented or absent in the training data set compared to border and

boundary prediction methods. This advantage enables to segment even cell types with no or

almost no annotated training data available. Our success in the Cell Segmentation Benchmark

emphasizes the strengths of our segmentation method. Our adapted tracking algorithm, which

uses a movement estimation with a graph-based matching strategy, can handle cell divisions

and missing segmentation masks over a short sequence of frames. The combination of the

tracking with our proposed segmentation method resulted in top performances at the Cell

Tracking Benchmark.

As future research, we plan to further improve the segmentation performance using a larger

and on ImageNet pre-trained encoder or mixed convolution blocks [35], test-time augmenta-

tion [36], and the synthetic generation of new training samples [16]. In addition, studies about

how cell features, e.g., size, shape and texture, influence the generalization ability to new cell

types are needed. A long-term goal is to develop a user-friendly-software for the segmentation

and tracking of a large variety of cell types using a well-trained segmentation model. Including

tunable post-processing parameters facilitates an adaptation of the cell and neighbor distances

to new data.

Supporting information

S1 Fig. CNN architecture and data flow for a 256px×256px test image.

(PDF)

S2 Fig. Training and test data set collection. The ground truths of the challenge sets from the

Cell Tracking Challenge are not publicly available. Thus, the two training data sets are split

into a training set and cell type specific test sets for our segmentation experiments. For the

training data set only fully annotated segmentation GTs and good quality STs can be used to

train models well. For evaluation, all segmentation and detection GTs can be used.

(PDF)

S3 Fig. Segmentation results on the Fluo-N3DH-CE test set (late frame). Only the proposed

method is able to prevent from merging close cells in late frames after many cell divisions.

Note: this is a low-resolution 3D data set and the erroneous merging of cells can result from

any of the slices a cell appears.

(PDF)

S1 File. Post-processing and loss functions of the compared methods.

(PDF)

S1 Table. Resolved merges due to the use of neighbor distances exemplary for the best pro-

posed OPCSB models. Especially for the HeLa cells less erroneously merged cells occur com-

pared to using only the predicted cell distance information. This enables the proposed method

to be a good generalist in our comparison.

(PDF)
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S1 Video. Tracking results on the Fluo-N3DH-CE challenge data.

(MP4)

S2 Video. Tracking results on the Fluo-N2DL-HeLa challenge data.

(MP4)
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Writing – review & editing: Tim Scherr, Katharina Löffler, Moritz Böhland, Ralf Mikut.
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1. Chhetri RK, Amat F, Wan Y, Höckendorf B, Lemon WC, Keller PJ. Whole-animal functional and devel-

opmental imaging with isotropic spatial resolution. Nat Methods. 2015; 12:1171–1178. https://doi.org/

10.1038/nmeth.3632
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7. Ulman V, Maška M, Magnusson KE, Ronneberger O, Haubold C, Harder N, et al. An objective compari-

son of cell-tracking algorithms. Nat Methods. 2017; 14:1141–1152. https://doi.org/10.1038/nmeth.4473

PMID: 29083403

8. Stegmaier J, Otte JC, Kobitski A, Bartschat A, Garcia A, Nienhaus GU, et al. Fast segmentation of

stained nuclei in terabyte-scale, time resolved 3d microscopy image stacks. PLOS ONE. 2014; 9(2):1–

11. https://doi.org/10.1371/journal.pone.0090036 PMID: 24587204

PLOS ONE Cell segmentation and tracking using CNN-based distance predictions and a graph-based matching strategy

PLOS ONE | https://doi.org/10.1371/journal.pone.0243219 December 8, 2020 20 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0243219.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0243219.s007
https://doi.org/10.1038/nmeth.3632
https://doi.org/10.1038/nmeth.3632
https://doi.org/10.1038/srep08601
http://www.ncbi.nlm.nih.gov/pubmed/25712513
https://doi.org/10.1002/dvg.20698
https://doi.org/10.1002/dvg.20698
https://doi.org/10.1038/s41592-019-0612-7
http://www.ncbi.nlm.nih.gov/pubmed/31636459
https://doi.org/10.1371/journal.pcbi.1006128
http://www.ncbi.nlm.nih.gov/pubmed/29672531
https://doi.org/10.7554/eLife.34410
http://www.ncbi.nlm.nih.gov/pubmed/29595475
https://doi.org/10.1038/nmeth.4473
http://www.ncbi.nlm.nih.gov/pubmed/29083403
https://doi.org/10.1371/journal.pone.0090036
http://www.ncbi.nlm.nih.gov/pubmed/24587204
https://doi.org/10.1371/journal.pone.0243219
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