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2D/3D CMR tissue tracking versus CMR
tagging in the assessment of spontaneous
T2DM rhesus monkeys with isolated
diastolic dysfunction
Tong Zhu1, Wen Zeng2, Yushu Chen1, Yu Zhang1, Jiayu Sun1, Zhigang Liang2, Zunyuan Yang2, Wei Cheng1,
Lei Wang1, Bin Song1, Bing Wu1, Fangtong Wang2, Yinan Liang2, Li Gong2, Jie Zheng3 and Fabao Gao1,2*

Abstract

Background: Spontaneous T2DM in rhesus monkeys manifests as isolated diastolic dysfunction in the early stage of
diabetic cardiomyopathy, similar to humans. Myocardial deformation measurements have emerged as a superior
way to measure left ventricular (LV) function in the early stage of cardiac dysfunction, making it possible to further
evaluate early-stage LV dysfunction in spontaneous T2DM rhesus monkeys.

Methods: Spontaneous T2DM rhesus monkeys with isolated diastolic dysfunction (T2DM-DD, n = 10) and corresponding
nondiabetic healthy animals (ND, n = 9) were prospectively scanned for a CMR study. Circumferential and longitudinal
peak systolic strain (Ecc, Ell), time to peak strain (tEcc, tEll) and peak diastolic strain rate (CSR, LSR) obtained from 2D/3D
CMR-TT were compared with those obtained from CMR tagging separately. In addition, all CMR imaging protocols were
performed twice in 9 ND animals to assess test-retest reproducibility.

Results: Compared with the ND group, the T2DM-DD monkeys demonstrated significantly impaired LV Ecc (− 10.63 ± 3.
23 vs − 14.18 ± 3.19, p < 0.05), CSR (65.50 ± 14.48 vs 65.50 ± 14.48, p < 0.01), Ell (− 9.11 ± 2.59 vs − 14.17 ± 1.68, p < 0.05),
and LSR (59.43 ± 19.17 vs 108.46 ± 22.33, p < 0.01) with the tagging. Only Ecc (− 13.10 ± 2.47 vs − 19.03 ± 3.69, p < 0.01)
and CSR (148.90 ± 31.27 vs 202.00 ± 51.88, p < 0.01) were significantly reduced with 2D CMR-TT, and only Ecc (− 13.77 ± 1.
98 vs − 17.26 ± 3.78, p < 0.05) was significantly reduced with 3D CMR-TT. Moreover, 2D/3D CMR-TT-derived Ecc and CSR
correlated with the corresponding tagging values collectively, with a statistically significant ICC value (p < 0.05). Test-retest
repeatability analysis showed that most tagging-derived biomarkers had acceptable repeatability (p < 0.01). In addition,
2D CMR-TT-derived indicators were poorer than those derived from the tagging method but better than those obtained
using the 3D method, with larger ICCs except for tEcc (p < 0.05).

Conclusions: LV systolic and diastolic deformations were impaired in spontaneous T2DM rhesus monkeys previously
diagnosed with isolated diastolic dysfunction by echocardiography. The 2D CMR-TT-derived Ecc and CSR were effective
in the evaluation of the myocardial systolic and diastolic functions of early-diabetic cardiomyopathy, with relatively higher
test-retest reproducibility and acceptable correlation with the tagging method compared with the 3D CMR-TT method.
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Background
Diabetic cardiomyopathy (DCM) is a clinical condition
of ventricular dysfunction that occurs in the absence of
coronary atherosclerosis and hypertension in patients
with diabetes mellitus [1]. It significantly increases the
prevalence of heart failure and is associated with consid-
erably worse clinical outcomes [2]. Sufficiently sensitive
diagnostic approaches in the early stage of DCM and
novel strategies to reduce the risk of heart failure in dia-
betes patients are needed [3].
Such approaches and strategies require the use of ap-

propriate animals for preclinical and translational investi-
gations. As the closest phylogenetic relatives to humans,
nonhuman primates (NHPs) play an indispensable role in
biomedical research and can serve as a critical transla-
tional bridge between basic studies performed in rodent
models and clinical studies in humans [4]. In our previous
work, several rhesus monkeys with spontaneous type 2
diabetes mellitus (T2DM) were screened and found within
our colony, and their T2DM-related parameters were
similar to those of humans [5]. We previously demon-
strated cardiomyopathy in spontaneous T2DM rhesus
monkeys. The changes in conventional echocardiography
and cine magnetic resonance imaging (MRI) in spontan-
eous T2DM rhesus monkeys are similar to those found in
humans with T2DM. These findings indicate an early
stage of DCM characterized by diastolic dysfunction with
preserved left ventricular ejection fraction (LVEF) [6].
Therefore, these spontaneous T2DM rhesus monkeys can
be useful for preclinical and translational investigations in
T2DM [7].
DCM is usually asymptomatic in the early stages of

its evolution [8]. Early detection and intervention of
asymptomatic DCM could improve the quality of life of
patients and reduce both morbidity and mortality [9].
Imaging techniques, particularly cardiac MR (CMR),
are the mainstay methods to recognize asymptomatic
metabolic cardiomyopathy, as well as to further moni-
tor pathological alterations and potential responses to
therapy. Myocardial deformation measurements that
track intramyocardial features detected between the
epicardial and endocardial myocardial tissue boundaries
have emerged as superior parameters of LV function
and performance by reflecting both systolic and dia-
stolic LV functions in the early stage of DCM [10, 11].
CMR tagging is considered the gold standard for meas-
uring regional myocardial strain; it was developed to
successfully provide a comprehensive characterization
of rhesus monkey cardiac function in our previous
study [12]. Healthy rhesus monkeys also have similar
deformation characteristics to humans. However, the
tagging approach has limited clinical applicability be-
cause it requires additional tagging images and pro-
longed imaging times.

CMR tissue tracking (CMR-TT) is a method for the
noninvasive assessment of myocardial deformation ap-
plied to routine cine CMR acquisitions, with no additional
image acquisition and no increase in scan time [13]. This
technique shows sufficient agreement with CMR tagging
[14], as well as higher reproducibility and lower observer
variability than speckle-tracking echocardiography [15].
Recently, three-dimensional (3D) CMR-TT has been de-
veloped using long-axis (LA) and short-axis (SA) cine im-
ages [16]. Moreover, 3D analysis could theoretically
reduce artifacts in deformation such as those that may re-
sult from through-plane displacements of 3D structures
[17]. However, the performance of two-dimensional (2D)/
3D CMR-TT in the early stage of DCM is unknown.
In this study, we aimed to investigate the early cardiac

function changes and myocardial deformation character-
istics by using 2D/3D CMR-TT in a spontaneous T2DM
rhesus monkey model with early-stage DCM, compared
with CMR tagging. This study was expected to confirm
the value of spontaneous T2DM rhesus monkeys in
research on diabetic cardiomyopathy and establish an ef-
fective noninvasive CMR method to evaluate cardiac
function.

Methods
Animals
Ten spontaneous T2DM rhesus monkeys with isolated
diastolic dysfunction (DD) and 9 age-matched nondia-
betic (ND) normal monkeys screened from 300 rhesus
monkeys were recruited in this study. The animals had
ad libitum access to a standard monkey diet (calories
provided from protein, 17%; from fat, 30%; and from
carbohydrates, 53%). Methods for determination of fast-
ing plasma glucose (FPG) and other blood biochemical
indicators were employed as previously described [5].
The inclusion criteria used for the T2DM rhesus mon-
key selection [5, 6, 18] and the ultrasonography diagnos-
tic criteria for diastolic dysfunction were determined
based on a previous study. The main indicators were a
peak velocity of the mitral annulus during rapid ven-
tricular filling (e, cm/s) < 8 and a ratio of early transmit-
tal velocity to tissue Doppler mitral annular early
diastolic velocity (e/e’) > 10 [19]. The exclusion criteria
for systolic dysfunction were an ejection fraction (EF) <
65% and shortening fraction (FS) < 35% [20]. Meanwhile,
both T2DM-DD and ND monkeys met the criteria of
systolic blood pressure ≤ 140 mmHg and diastolic blood
pressure ≤ 80 mmHg to exclude hypertension.

Animal experiments
Gravimetry and metabolic profiles of all enrolled monkeys
were obtained during a 4-week acclimation period. FPG
levels were determined semimonthly 2 times. Total chol-
esterol (TC), triglycerides (TG), low-density lipoprotein
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cholesterol (LDL-c), high-density lipoprotein cholesterol
(HDL-c), and other metabolic profiles were determined at
the end of the acclimation period. Body weight was mea-
sured after the last blood collection. Echocardiography
was performed on all monkeys within 48 h after the last
final blood collection. MRI was conducted a week after
echocardiography. All monkeys fasted approximately 12 h
prior to image examination. Blood pressure was measured
immediately before each image examination. Animals
were sedated with ketamine hydrochloride (100 mg/mL,
Bioniche Teoranta, Inverin Co, Galway, Ireland) at a dos-
age of 10 mg/kg intramuscularly immediately before the
echocardiography imaging session. The animals were
anesthetized with ketamine hydrochloride (10 mg/kg,
given intramuscularly) and propofol (4 to 10 mg/kg, given
intravenously; United States Pharmacopeia grade 100%;
RWD Life Science, San Diego, CA, USA), followed by tra-
cheal intubation with artificial ventilation to control res-
piration (tidal volume, 150 to 200 mL/min; respiratory
rate, 15–20 breaths/min; isoflurane dosage, 0.2 to 0.3 mL/
kg) before and during each CMR imaging session. The
breath-holds were enforced by taking the animal tempor-
arily off the ventilator for an average of 30–35 s. The
CMR imaging protocol was performed twice (test and re-
test scans) in 9 ND animals 1 week apart by two inde-
pendent scanners. The animal was pulled completely out
of the scanner, the coils were repositioned, and the animal
was re-landmarked to the magnet isocenter prior to the
retest scan. At the end of the experiment, all rhesus mon-
keys were kept alive.

Cardiovascular magnetic resonance imaging
MR studies were performed with the monkeys in the su-
pine position using a 3.0-T clinical MRI system (MAG-
NETOM Trio, Siemens Medical Solutions, Erlangen,
Germany) with a 32-channel cardiac surface coil (Sie-
mens). Sterile drapes were used to separate the monkeys
from the examination bed, and a dedicated quilt was
used to keep the monkeys warm during scanning.
CMR cine sequences were performed to obtain two-

chamber, four-chamber and short-axis (SA) views that
included the entirety of both ventricles (10–14 slices)
via a steady-state free precession with retrospective
electrocardiogram triggering. The cine steady-state free
precession sequence parameters were as follows: echo
time/repetition time = 1.41 ms/26.48 ms; field of view =
160 × 160 mm; number of excitations = 2; matrix =
256 × 256; flip angle = 50°; slice thickness = 5.0 mm;
slice gap = 2 mm; bandwidth = 888 Hz/Px; and 25
phases per cardiac cycle.
Three SA images selected at the LV basal (mitral

valve), middle (papillary muscle), and apical levels, as
well as long-axis (LA) images in two- and four-chamber
views selected in advance were acquired for tagging

images using a gated, multiphase, segmented gradient
echo pulse sequence with a 1–2-1 spatial modulation of
the magnetization tagging preparation sequence [21, 22].
Two sets of tagging datasets with orthogonal in-plane tag-
ging modulations were acquired for each of the three SA
slices and the two- and four-chamber LA slices. The se-
lected imaging parameters were as follows: field of view =
200 × 200 mm; slice thickness = 5 mm; flip angle = 8°; im-
aging pixel matrix = 208 × 208; segments = 4; echo spacing
= 6 ms; repetition time/echo time = 23.84 ms/2.82 ms;
bandwidth = 511 Hz/Px; tag separation = 5 mm; and tem-
poral resolution = 12.72 ms. No parallel imaging was used.
All tagging data were obtained during ventilator-induced
breath-holds, which were an average of 35 s long, to elim-
inate breathing-related motion artifacts.

Image analysis
All tagged imaging datasets were analyzed using har-
monic phase methodology [23, 24] in dedicated software,
which was previously developed and modified in-house
in the MATLAB environment (Math Works, Natick,
MA, USA), as we described previously [12]. For each SA
slice, a user-defined mesh with three layers (endocar-
dium, mid-wall and epicardium) and four (apical) to six
(mid and basal) segments was superimposed on the
myocardium at the first timeframe. For each LA slice,
the 2D displacement path lines of all voxels in the myo-
cardium were tracked. Average regional circumferential
strain was computed from the SA-tagged slices, and re-
gional longitudinal strain was computed from the LA
slices. Regions defined on the SA and LA slices were in
accordance with the American Heart Association stan-
dardized cardiac segmentation guidelines [25]. Numer-
ical data were outputted for further postprocessing to
quantify peak systolic circumferential strain (Ecc, %),
time to peak systolic circumferential strain (tEcc, s),
peak diastolic circumferential strain rate (CSR, %/s),
peak systolic longitudinal strain (Ell, %), time to peak
systolic longitudinal strain (tEll, s) and peak diastolic
longitudinal strain rate (LSR, %/s) for LV global.
CMR-TT analyses were performed using dedicated soft-

ware (cvi42, Circle Cardiovascular Imaging Inc., Calgary,
Alberta, Canada), a commercially available product com-
monly used to analyze CMR images. SA cine CMR images
and the corresponding LV two- and four-chamber LA im-
ages with cross-referencing locations were uploaded into
the software, which reconstructs 2D and 3D models that
are used for analyses of 2D and 3D circumferential and
longitudinal deformation parameters. In this model, the
most apical section showing the LV cavity at end-systole
was considered the 0% LV location. The most basal sec-
tion, including the complete circumference of the myocar-
dium at end-systole, was considered the 100% LV location.
The endocardial and epicardial borders on the end-
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diastolic frame of each slice were manually delineated and
corrected and automatically propagated; they were visually
assessed and selected at the largest phase (end-diastolic).
A 2D incompressible deformable model of the myocar-
dium with individual image slices (e.g., LA or SA acquisi-
tions) over the cardiac cycle and a 3D deformable model
of the myocardium in between the endo and epi surfaces
generated by interpolating the tracked boundaries from
the 2D algorithm were both used to obtain 2D and 3D de-
formation quantities. Ecc (%), tEcc (s), CSR (%/s), Ell (%),
tEll (s) and LSR (%/s) were derived in both 2D and 3D.

Statistical analysis
All global deformation biomarkers obtained using the tag-
ging and CMR-TT methods were compared by paired-
samples t-test, intraclass correlation coefficient (ICC) and
Bland-Altman analysis [26] after the data were tested for
normal distribution. The test-retest repeatability was
assessed using the ICC, and Bland-Altman analysis was
used to quantify test-retest reliability. ICC estimates and
their 95% confidence intervals were calculated based on a
single-measurement, absolute-agreement, 2-way mixed-ef-
fects model. The parameters defined above were com-
pared between the T2DM-DD and ND groups using the
independent-samples t-test. The correlations were evalu-
ated using Pearson’s correlation coefficient (r). Statistical
tests were performed with SPSS software version 22.0
(SPSS Inc., Chicago, IL, USA), GraphPad software version
6.00 (GraphPad Software, La Jolla, California, USA) and
Medcalc software version 15.2.2 (MedCalc Software bvba,
Ostend, West Flanders, Belgium). A p value < 0.05 was
considered statistically significant.

Results
Characteristics and metabolic profile
Complete data were available for all 19 monkeys in our
study (10 T2DM-DD, 9 ND; Table 1). No difference was
found with regard to age, body mass index or blood
pressure. T2DM-DD monkeys had higher FPG values
(4.71 ± 0.66 vs 4.10 ± 0.38 mmol/L, p < 0.05). Higher
HDL-c (2.29 ± 0.69 vs 1.53 ± 0.32 mmol/L, p < 0.01)
levels were observed in the T2DM-DD group. No differ-
ence was found with regard to age (13.10 ± 1.52 vs 12.22
± 1.72 cm/s, p < 0.01). However, e/e’ was found to be sig-
nificantly higher in the T2DM-DD group than in the ND
group (13.47 ± 2.80 vs 8.07 ± 1.41, p < 0.01). No signifi-
cant difference was noted in the conventional parame-
ters of systolic function, including LVEF and FS (75.38 ±
6.65 vs 75.28 ± 2.75%, p > 0.05 for LVEF; 42.93 ± 6.60 vs
42.25 ± 2.51%, p > 0.05 for FS).

Global deformation analysis of DCM
A summary of the comparison of T2DM-DD monkeys
versus ND monkeys for all deformation parameters from

2D/3D CMR-TT and tagging is presented in Figure 1.
Radial strain was not adopted due to its large ranges be-
tween studies and segmental strain variability. Global
values were adopted because these are more robust and
reproducible than regional values and have been more
widely applied for diseases associated with diffuse and
homogeneous abnormalities. The absolute value repre-
sents strain amplitude and strain rate magnitude. The
symbol represents the direction of strain and strain rate.

Tagging
CMR tagging imaging revealed that both systolic and
diastolic deformation functions were impaired in
T2DM-DD monkeys. The related parameters were all
statistically significant in the ND group. During diastole,
the absolute values of CSR and LSR were much lower in
the T2DM-DD group than in the ND group (65.50 ±
14.48 vs 65.50 ± 14.48%/s, p < 0.01 for CSR; 59.43 ± 19.17
vs 108.46 ± 22.33%/s, p < 0.01 for LSR). Meanwhile, the
absolute values of Ecc and Ell were lower in the
T2DM-DD group than in the ND group during systole
(− 10.63 ± 3.23 vs − 14.18 ± 3.19%, p < 0.05 for Ecc; −
9.11 ± 2.59 vs − 14.17 ± 1.68%, p < 0.01 for Ell). This find-
ing indicates that the cardiac function in both cardiac
phases was impaired (Figure 2). No significant difference

Table 1 Comparison of clinicopathological characteristics
between groups of rhesus monkeys

Variable T2DM-DD
monkeys
(n = 10)

ND monkeys
(n = 9)

p value

Age, years 13.10 ± 1.52 12.22 ± 1.72 0.25

BMI, kg/m2 31.00 ± 10.26 26.20 ± 7.04 0.26

Systolic blood pressure,
mm Hg

136.57 ± 19.03 119.67 ± 14.36 0.07

Diastolic blood pressure,
mm Hg

65.40 ± 7.56 64.38 ± 14.38 0.85

Echocardiography

EF, % 75.38 ± 6.65 75.28 ± 2.75 0.97

FS, % 42.93 ± 6.60 42.25 ± 2.51 0.78

e (cm/s) 6.05 ± 1.41 10.74 ± 1.49 0.00**

e/e’ 13.47 ± 2.80 8.07 ± 1.41 0.00**

Diabetic status

FPG, mmol/L 4.71 ± 0.66 4.10 ± 0.38 0.03*

Lipid status

TC, mmol/L 3.24 ± 0.67 2.76 ± 0.50 0.10

LDL, mmol/L 1.24 ± 0.23 1.42 ± 0.51 0.33

HDL, mmol/L 2.29 ± 0.69 1.53 ± 0.32 0.01**

TG, mmol/L 0.42 ± 0.12 0.40 ± 0.16 0.81

Results are expressed as the means±SD
**p < 0.01, *p < 0.05
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Fig. 1 Column graphs of deformations in the two groups. Peak systolic circumferential strain, Ecc (a); Peak diastolic circumferential strain rate, CSR
(b); Peak systolic longitudinal strain, Ell (c); Peak diastolic longitudinal strain rate, LSR (d).*p < 0.05 vs. ND group. Data are expressed as the means ± SD

Fig. 2 Representative CMR tagging circumferential strain color maps evolution over a cardiac cycle. Circumferential strain color maps in a T2DM-
DD monkey (b) and a ND monkey (a). Circumferential strain color maps with tag overlay in a mid-ventricular short-axis slice over the
entire cardiac cycle depicting systolic compression and diastolic relaxation. Systolic compression and diastolic relaxation were impaired in
the T2DM-DD monkeys
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was found in the time to peak strain between the two
groups in this study (0.26 ± 0.05 vs 0.25 ± 0.04 s, p > 0.05
for tEcc; 0.26 ± 0.04 vs 0.24 ± 0.05 s, p > 0.05 for tEll).

CMR-TT
Measures of 2D CMR-TT showed significant reductions
of Ecc and CSR (absolute value) in T2DM-DD monkeys
compared with ND monkeys (− 13.10 ± 2.47 vs − 19.03 ±
3.69%, p < 0.01 for Ecc; 148.90 ± 31.27 vs 202.00 ±
51.88%/s, p < 0.01 for CSR) (Figure 3). Only the absolute
value of global Ecc decreased significantly in T2DM-DD
monkeys in 3D CMR-TT (− 13.77 ± 1.98 vs − 17.26 ±
3.78%, p < 0.05).

Agreement between 2D/3D CMR-TT and CMR tagging
The absolute values of CMR-TT-derived Ecc (tagging vs
CMR-TT 2D/3D: -12.31 ± 3.61 vs − 15.91 ± 4.28/ -15.42
± 3.40%, p < 0.01) and CSR (tagging vs CMR-TT 2D/3D:
82.80 ± 30.73 vs 174.05 ± 49.27/165.37 ± 51.36%/s, p <
0.01) in both the T2DM-DD and ND groups were higher
than the corresponding tagging values. Both CMR-TT
2D- and 3D-derived Ecc and CSR correlated with the
corresponding tagging values, with statistically signifi-
cant ICC values (Ecc: 0.61 for 2D, 0.51 for 3D; CSR: 0.29
for 2D, 0.30 for 3D, p < 0.05) and a relatively narrow
limit of agreement and a concentrated distribution in

the Bland-Altman analysis (Figure 4). CMR-TT 2D,
3D-derived tEcc (tagging vs CMR-TT 2D/3D: 0.26 ± 0.05
vs 0.23 ± 0.03/0.23 ± 0.03, p < 0.05) and CMR-TT 2D-de-
rived tEll (0.25 ± 0.04 vs 0.23 ± 0.05, p < 0.01) were
higher than the corresponding tagging values. CMR-TT
3D-derived tEll correlated with the corresponding tag-
ging value, with a statistically significant ICC (0.75, p <
0.05). There were no significant correlations in the other
deformation parameters.

Test-retest reproducibility of 2D/3D CMR-TT and tagging
Results obtained from test-retest reprocibility analysis
are shown in Table 2 for all the systolic and diastolic de-
formation parameters. The test-retest reproducibility of
CMR-TT 2D-derived Ecc and CSR (0.77 for Ecc, 0.86 for
CSR, p < 0.01) was better than that of the 3D-derived
values (Figure 4b) but poorer than that of those derived
from tagging. In addition, the ICC values were accept-
able for CMR-TT 2D-derived Ell and LSR (0.90 for Ell,
0.87 for LSR, p < 0.01), which were better than those ob-
tained from the 3D-derived values and tagging. For 3D
CMR-TT, the test-retest repeatability was unacceptable
for Ecc, CSR, tEll and LSR (p > 0.05). CMR-TT 3D-de-
rived tEcc and Ell showed acceptable reproducibility
(0.84 for tEcc, 0.77 for Ell, p < 0.05), which were not bet-
ter than the values obtained from tagging.

Fig. 3 Representative 2D CMR-TT-derived Ecc and CSR in the two groups. The colored tissue-tracking 2D maps, 16-segment models and strain-
time curves in a cardiac cycle of Ecc showed that the systolic function was impaired in the T2DM-DD monkey (a). The colored tissue-tracking 2D
maps, 16-segment models and strain-time curves in a cardiac cycle of CSR showed that the diastolic function was impaired in the T2DM-DD
monkeys (b)
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Discussion
In this study, LV systolic and diastolic deformation func-
tions were impaired, as demonstrated by tagging and
CMR-TT in spontaneous T2DM-DD monkeys, similar to
the impairment found in diabetic patients. 2D CMR-TT-

derived Ecc and CSR were accurate and robust biomarkers
used to evaluate the myocardial systolic and diastolic func-
tions of the spontaneous T2DM rhesus monkeys.
From the present mechanistic point of view, DCM

seems to progress through an initial asymptomatic

Fig. 4 Plots depicting Bland-Altman repeatability (a) and consistency (b) analysis for 2D/3D CMR-TT-derived circumferential deformation parameters.
The x-axis represents the mean, and the y-axis represents the difference. The central horizontal line indicates the mean value of the difference. The
solid black lines at the two extremes represent the means ± 1.96 standard deviations of the difference
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period through diastolic heart failure with normal EF,
followed by systolic dysfunction accompanied by heart
failure with reduced EF [3]. In our previous echocardiog-
raphy study, diastolic dysfunction was the earliest func-
tional alteration in DCM, which led to contractile
abnormality in spontaneous T2DM rhesus monkeys [6].
Consistent with previous conclusions [11], T2DM mon-
keys with diastolic dysfunction but preserved EF (T2DM-
DD) by echocardiography were selected as the research
objects of early DCM in this study. Analysis of myocardial
deformation of those T2DM-DD monkeys showed that
tagging-derived systolic and diastolic deformation parame-
ters were all impaired, particularly LV Ecc, Ell, CSR and
LSR, with high test-retest reproducibility. This result is
supported by speckle-tracking echocardiography, which
demonstrated systolic tissue dysfunction, measured as a
decrease in LV longitudinal strain, in patients who were
assumed to have “isolated” diastolic dysfunction [27–30].
These findings indicate that systolic and diastolic dysfunc-
tions occur concomitantly with a range of severity in the
progression to DCM, and LVEF cannot be effectively used
to detect abnormal systolic function in the early stage of
DCM. A recent study reported that overweight and

obesity are associated with impaired LV systolic function
in both the T2DM and non-T2DM populations [31], and
metabolic abnormalities may facilitate this process [32].
These results indicate that weight and obesity, both inde-
pendent risk factors for T2DM, may induce subclinical
damage to myocardial systolic function in the early stage
of metabolic abnormality in diabetes.
In the tagging study by Fonseca et al., the absolute

values of systolic Ecc, Ell, and diastolic CSR and LSR
were lower in patients with T2DM, diastolic dysfunction,
and a normal EF [11], who exhibit similar deformation
characteristics to those of our T2DM monkeys. This
consistency between monkeys and humans may be re-
lated to the similarities in the metabolism and patho-
physiology of diabetes [33, 34] and close myocardial
fiber direction and structure [35]. However, Levelt et al.
reported that only mid-ventricular systolic circumferen-
tial and global longitudinal strains were impaired in pa-
tients with T2DM [36]. They analyzed the pEcc, Ell, CSR
and LSR data from a single slice in the mid-short-axis
and horizontal LA views only, which may lead to insuffi-
cient parameter stability due to limited raw data. In this
study, the spontaneous T2DM rhesus monkey cardiac
deformation characteristics closely resembled those of a
T2DM patient’s heart, which could be effective for the
investigation and preclinical testing of novel T2DM
therapeutic agents, with a high potential for translatabil-
ity to humans.
To date, few studies have reported whether CMR-TT

can be used as an easier, effective, consistent evaluation
technique for DCM. In this report, we evaluated the ef-
fectiveness of CMR-TT in DCM and its consistency with
tagging. The results show that there was significant injury
in 2D CMR-TT-derived Ecc and CSR in T2DM-DD mon-
keys. All 2D CMR-TT-derived circumferential and longi-
tudinal strains and strain rates showed good test-retest
reproducibility, which is in accordance with previously
published literature [37]. Compared with longitudinal de-
formation parameters, the 2D CMR-TT-derived circum-
ferential strain and strain rate were higher, acceptably
consistent with CMR tagging, in accordance with previous
reports [37–39]. Overall, 2D CMR-TT-derived Ecc and
CSR are powerful biomarkers for distinguishing the myo-
cardial systolic and diastolic functions of spontaneous
T2DM monkeys from those of non-T2DM monkeys, with
high test-retest reproducibility and acceptable agreement
with tagging.
The technology of tissue tracking refers to methods of

identifying a peculiar pattern of a set of control points.
In the 2D algorithm, the deformation of the model is as-
sumed to be completely determined by a set of control
points placed on the middle curve of the myocardial wall
to individual image slices (e.g., long- or short-axis acqui-
sitions). In the 3D algorithm, the deformation of the

Table 2 Test-retest reproducibility analysis of tagging and 2D/
3D CMR-TT

Total study
group (n = 19)

Intraclass
correlation
coefficient (95% CI)

Bland-Altman analysis

Mean bias (%) LOA

Tagging

Ecc (%) 0.83** (0.32/0.96) 1.30 −3.90/6.40

tEcc (s) 0.96** (0.82/0.99) 0.01 −0.03/0.05

CSR (%/s) 0.92** (0.64/0.98) −4.30 −48.70/40.00

Ell (%) 0.73* (−0.03/0.94) 1.10 −2.10/4.40

tEll (s) 0.93** (0.71/0.98) 0.01 −0.04/0.05

LSR (%/s) 0.66*(−0.20/0.92) −13.60 −61.10/33.80

2D CMR-TT

Ecc (%) 0.77* (−0.01/0.95) 1.70 −5.40/8.80

tEcc (s) 0.53 (−1.58/0.90) 0.00 −0.06/0.06

CSR (%/s) 0.86** (0.36/0.97) −21.70 −99.90/56.50

Ell (%) 0.90** (0.55/0.98) 1.60 −2.50/5.60

tEll (s) 0.31 (−2.07/0.84) 0.04 −0.12/0.19

LSR (%/s) 0.87** (0.43/0.97) −31.10 −88.60/26.40

3D CMR-TT

Ecc (%) 0.62 (−0.66/0.91) 1.30 −7.50/10.10

tEcc (s) 0.84** (0.27/0.97) 0.00 −0.04/0.05

CSR (%/s) 0.71 (−0.18/0.93) −20.20 − 133.00/92.50

Ell (%) 0.77* (0.05/0.95) 0.90 −4.50/6.30

tEll (s) −0.28 (−3.43/0.69) − 0.02 −0.08/0.05

LSR (%/s) 0.26 (−1.52/0.83) −22.90 − 118.6/72.80

**p < 0.01, *p < 0.05
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model is determined by a set of control points generated
by interpolating the tracked boundaries from the 2D al-
gorithm using both long- and short-axis image informa-
tion. In this study, we found that the 2D algorithm had
higher reproducibility than the 3D algorithm. Further-
more, 3D CMR-TT could only detect systolic dysfunc-
tion in T2DM-DD monkeys. In comparison, Liu et al.
considered that 3D CMR-TT offers superior reproduci-
bility compared with 2D CMR-TT [40]. The cause of the
difference may be attributed to their analyses of 2D
strain at the mid-left ventricle in the SA view and 3D
strain in all SA and LA slices. In the present study, 2D
and 3D deformations were analyzed at all SA and LA
slices. In addition, they only acquired 3D values in a nor-
mal population. Therefore, it is difficult to determine
whether 3D CMR-TT would provide incremental value
in disease cohorts. There is evidence from previous stud-
ies that the problem of through-plane motion can be
solved using 3D techniques compared with 2D algo-
rithms [41, 42]. Nevertheless, 3D images present a sub-
stantially (at least 3–4×) lower spatial and temporal
resolution than their 2D counterpart. This finding may
be related to the fact that experience with the 3D algo-
rithm is still limited. We infer that these findings may be
the reason why 3D results are less stable and effective.
Therefore, further theoretical and empirical studies are
required to confirm these findings.

Conclusions
To the best of our knowledge, this is the first study to
evaluate myocardial deformation in spontaneous T2DM
rhesus monkeys with the CMR-TT analysis method. We
have concluded that early cardiac function and myocardial
deformation characteristics of spontaneous T2DM rhesus
monkeys are similar to those found in human T2DM.
Meanwhile, CMR-TT may be used as an integral compo-
nent of CMR to more easily evaluate cardiac function in
DCM. 2D CMR-TT-derived Ecc and CSR have proven ap-
plication value due to their ability to detect early deform-
ation changes, their test-retest reliability, and their
correlation to tagging in the onset stage of DCM. Because
we used a rare nonhuman primate model of T2DM, the
current study included a small cohort (n = 9 for the
T2DM-DD group and n = 10 for the ND group), which
could have contributed to the lower reproducibility and
reliability in the quantified biomarkers. Therefore, a larger
sample size is required in future studies.
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