100 research outputs found

    Techno-Economic Assessment in Communications: New Challenges

    Full text link
    This article shows a brief history of Techno-Economic Assessment (TEA) in Communications, a proposed redefinition of TEA as well as the new challenges derived from a dynamic context with cloud-native virtualized networks, the Helium Network & alike blockchain-based decentralized networks, the new network as a platform (NaaP) paradigm, carbon pricing, network sharing, and web3, metaverse and blockchain technologies. The authors formulate the research question and show the need to improve TEA models to integrate and manage all this increasing complexity. This paper also proposes the characteristics TEA models should have and their current degree of compliance for several use cases: 5G and beyond, software-defined wide area network (SD-WAN), secure access service edge (SASE), secure service edge (SSE), and cloud cybersecurity risk assessment. The authors also present TEA extensibility to request for proposals (RFP) processes and other industries, to conclude that there is an urgent need for agile and effective TEA in Comms that allows industrialization of agile decision-making for all market stakeholders to choose the optimal solution for any technology, scenario and use case.Comment: 18 pages, 1 figure, 2 table

    Assessment of socio-techno-economic factors affecting the market adoption and evolution of 5G networks: Evidence from the 5G-PPP CHARISMA project

    Get PDF
    5G networks are rapidly becoming the means to accommodate the complex demands of vertical sectors. The European project CHARISMA is aiming to develop a hierarchical, distributed-intelligence 5G architecture, offering low latency, security, and open access as features intrinsic to its design. Finding its place in such a complex landscape consisting of heterogeneous technologies and devices, requires the designers of the CHARISMA and other similar 5G architectures, as well as other related market actors to take into account the multiple technical, economic and social aspects that will affect the deployment and the rate of adoption of 5G networks by the general public. In this paper, a roadmapping activity identifying the key technological and socio-economic issues is performed, so as to help ensure a smooth transition from the legacy to future 5G networks. Based on the fuzzy Analytical Hierarchy Process (AHP) method, a survey of pairwise comparisons has been conducted within the CHARISMA project by 5G technology and deployment experts, with several critical aspects identified and prioritized. The conclusions drawn are expected to be a valuable tool for decision and policy makers as well as for stakeholders

    Network slicing cost allocation model

    Get PDF
    Within the upcoming fifth generation (5G) mobile networks, a lot of emerging technologies, such as Software Defined Network (SDN), Network Function Virtualization (NFV) and network slicing are proposed in order to leverage more flexibility, agility and cost-efficient deployment. These new networking paradigms are shaping not only the network architectures but will also affect the market structure and business case of the stakeholders involved. Due to its capability of splitting the physical network infrastructure into several isolated logical sub-networks, network slicing opens the network resources to vertical segments aiming at providing customized and more efficient end-to-end (E2E) services. While many standardization efforts within the 3GPP body have been made regarding the system architectural and functional features for the implementation of network slicing in 5G networks, techno-economic analysis of this concept is still at a very incipient stage. This paper initiates this techno-economic work by proposing a model that allocates the network cost to the different deployed slices, which can then later be used to price the different E2E services. This allocation is made from a network infrastructure provider perspective. To feed the proposed model with the required inputs, a resource allocation algorithm together with a 5G network function (NF) dimensioning model are also proposed. Results of the different models as well as the cost saving on the core network part resulting from the use of NFV are discussed as well

    Economic Viability of Software Defined Networking (SDN)

    Get PDF
    Economical and operational facets of networks drive the necessity for significant changes towards fundamentals of networking architectures. Recently, the momentum of programmable networking attempts illustrates the significance of economic aspects of network technologies. Software Defined Networking (SDN) has got the attention of researchers from both academia and industry as a means to decrease network costs and generate revenue for service providers due to features it promises in networking. In this article, we investigate how programmable network architectures, i.e. SDN technology, affect the network economics compared to traditional network architectures, i.e. MPLS technology. We define two metrics, Unit Service Cost Scalability and Cost-to-Service, to evaluate how SDN architecture performs compared to MPLS architecture. Also, we present mathematical models to calculate certain cost parts of a network. In addition, we compare different popular SDN control plane models, Centralized Control Plane (CCP), Distributed Control Plane (DCP), and Hierarchical Control Plane (HCP), to understand the economic impact of them with regards to the defined metrics. We use video traffic with different patterns for the comparison. This work aims at being a useful primer to providing insights regarding which technology and control plane model are appropriate for a specific service, i.e. video, for network owners to plan their investments

    The Potential Short- and Long-Term Disruptions and Transformative Impacts of 5G and Beyond Wireless Networks: Lessons Learnt from the Development of a 5G Testbed Environment

    Get PDF
    The capacity and coverage requirements for 5 th generation (5G) and beyond wireless connectivity will be significantly different from the predecessor networks. To meet these requirements, the anticipated deployment cost in the United Kingdom (UK) is predicted to be between ÂŁ30bn and ÂŁ50bn, whereas the current annual capital expenditure (CapEX) of the mobile network operators (MNOs) is ÂŁ2.5bn. This prospect has vastly impacted and has become one of the major delaying factors for building the 5G physical infrastructure, whereas other areas of 5G are progressing at their speed. Due to the expensive and complicated nature of the network infrastructure and spectrum, the second-tier operators, widely known as mobile virtual network operators (MVNO), are entirely dependent on the MNOs. In this paper, an extensive study is conducted to explore the possibilities of reducing the 5G deployment cost and developing viable business models. In this regard, the potential of infrastructure, data, and spectrum sharing is thoroughly investigated. It is established that the use of existing public infrastructure (e.g., streetlights, telephone poles, etc.) has a potential to reduce the anticipated cost by about 40% to 60%. This paper also reviews the recent Ofcom initiatives to release location-based licenses of the 5G-compatible radio spectrum. Our study suggests that simplification of infrastructure and spectrum will encourage the exponential growth of scenario-specific cellular networks (e.g., private networks, community networks, micro-operators) and will potentially disrupt the current business models of telecommunication business stakeholders - specifically MNOs and TowerCos. Furthermore, the anticipated dense device connectivity in 5G will increase the resolution of traditional and non-traditional data availability significantly. This will encourage extensive data harvesting as a business opportunity and function within small and medium-sized enterprises (SMEs) as well as large social networks. Consequently, the rise of new infrastructures and spectrum stakeholders is anticipated. This will fuel the development of a 5G data exchange ecosystem where data transactions are deemed to be high-value business commodities. The privacy and security of such data, as well as definitions of the associated revenue models and ownership, are challenging areas - and these have yet to emerge and mature fully. In this direction, this paper proposes the development of a unified data hub with layered structured privacy and security along with blockchain and encrypted off-chain based ownership/royalty tracking. Also, a data economy-oriented business model is proposed. The study found that with the potential commodification of data and data transactions along with the low-cost physical infrastructure and spectrum, the 5G network will introduce significant disruption in the Telco business ecosystem

    NLP Powered Intent Based Network Management for Private 5G Networks

    Get PDF
    Intent driven networking holds the promise of simplifying network operations by allowing operators to use declarative, instead of imperative, interfaces. Adoption of this technology for 5G and beyond networks is however still in its infancy, where the required architectures, platforms, interfaces and algorithms are still being discussed. In this work, we present the design and implementation of a novel intent based platform for private 5G networks powered by a Natural Language Processing (NLP) interface. We demonstrate how our platform simplifies network operations in three relevant private network use cases, including: i) an intent based slice provisioning use case, ii) an intent based positioning use case, and iii) an intent based service deployment use case. Finally, all use cases are benchmarked in terms of intent provisioning time.European Commission’s Horizon 2020 871428, 5G-CLARIT

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A

    Ecosystemic Evolution Feeded by Smart Systems

    Get PDF
    Information Society is advancing along a route of ecosystemic evolution. ICT and Internet advancements, together with the progression of the systemic approach for enhancement and application of Smart Systems, are grounding such an evolution. The needed approach is therefore expected to evolve by increasingly fitting into the basic requirements of a significant general enhancement of human and social well-being, within all spheres of life (public, private, professional). This implies enhancing and exploiting the net-living virtual space, to make it a virtuous beneficial integration of the real-life space. Meanwhile, contextual evolution of smart cities is aiming at strongly empowering that ecosystemic approach by enhancing and diffusing net-living benefits over our own lived territory, while also incisively targeting a new stable socio-economic local development, according to social, ecological, and economic sustainability requirements. This territorial focus matches with a new glocal vision, which enables a more effective diffusion of benefits in terms of well-being, thus moderating the current global vision primarily fed by a global-scale market development view. Basic technological advancements have thus to be pursued at the system-level. They include system architecting for virtualization of functions, data integration and sharing, flexible basic service composition, and end-service personalization viability, for the operation and interoperation of smart systems, supporting effective net-living advancements in all application fields. Increasing and basically mandatory importance must also be increasingly reserved for human–technical and social–technical factors, as well as to the associated need of empowering the cross-disciplinary approach for related research and innovation. The prospected eco-systemic impact also implies a social pro-active participation, as well as coping with possible negative effects of net-living in terms of social exclusion and isolation, which require incisive actions for a conformal socio-cultural development. In this concern, speed, continuity, and expected long-term duration of innovation processes, pushed by basic technological advancements, make ecosystemic requirements stricter. This evolution requires also a new approach, targeting development of the needed basic and vocational education for net-living, which is to be considered as an engine for the development of the related ‘new living know-how’, as well as of the conformal ‘new making know-how’
    • 

    corecore