388 research outputs found

    The Strong Perfect Graph Conjecture: 40 years of Attempts, and its Resolution

    Get PDF
    International audienceThe Strong Perfect Graph Conjecture (SPGC) was certainly one of the most challenging conjectures in graph theory. During more than four decades, numerous attempts were made to solve it, by combinatorial methods, by linear algebraic methods, or by polyhedral methods. The first of these three approaches yielded the first (and to date only) proof of the SPGC; the other two remain promising to consider in attempting an alternative proof. This paper is an unbalanced survey of the attempts to solve the SPGC; unbalanced, because (1) we devote a signicant part of it to the 'primitive graphs and structural faults' paradigm which led to the Strong Perfect Graph Theorem (SPGT); (2) we briefly present the other "direct" attempts, that is, the ones for which results exist showing one (possible) way to the proof; (3) we ignore entirely the "indirect" approaches whose aim was to get more information about the properties and structure of perfect graphs, without a direct impact on the SPGC. Our aim in this paper is to trace the path that led to the proof of the SPGT as completely as possible. Of course, this implies large overlaps with the recent book on perfect graphs [J.L. Ramirez-Alfonsin and B.A. Reed, eds., Perfect Graphs (Wiley & Sons, 2001).], but it also implies a deeper analysis (with additional results) and another viewpoint on the topic

    K-Stability for Fano Manifolds with Torus Action of Complexity One

    Full text link
    We consider Fano manifolds admitting an algebraic torus action with general orbit of codimension one. Using a recent result of Datar and Szekelyhidi, we effectively determine the existence of Kahler-Ricci solitons for those manifolds via the notion of equivariant K-stability. This allows us to give new examples of Kahler-Einstein Fano threefolds, and Fano threefolds admitting a non-trivial Kahler-Ricci soliton.Comment: 19 pages, 5 figures, changed to a more precise titl

    Polütoopide laienditega seotud ülesanded

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneLineaarplaneerimine on optimeerimine matemaatilise mudeliga, mille sihi¬funktsioon ja kitsendused on esitatud lineaarsete seostega. Paljusid igapäeva elu väljakutseid võime vaadelda lineaarplaneerimise vormis, näiteks miinimumhinna või maksimaalse tulu leidmist. Sisepunkti meetod saavutab häid tulemusi nii teoorias kui ka praktikas ning lahendite leidmise tööaeg ja lineaarsete seoste arv on polünomiaalses seoses. Sellest tulenevalt eksponentsiaalne arv lineaarseid seoseid väljendub ka ekponentsiaalses tööajas. Iga vajalik lineaarne seos vastab ühele polütoobi P tahule, mis omakorda tähistab lahendite hulka. Üks võimalus tööaja vähendamiseks on suurendada dimensiooni, mille tulemusel väheneks ka polütoobi tahkude arv. Saadud polütoopi Q nimeta¬takse polütoobi P laiendiks kõrgemas dimensioonis ning polütoobi Q minimaalset tahkude arvu nimetakakse polütoobi P laiendi keerukuseks, sellisel juhul optimaalsete lahendite hulk ei muutu. Tekib küsimus, millisel juhul on võimalik leida laiend Q, mille korral tahkude arv on polünomiaalne. Mittedeterministlik suhtluskeerukus mängib olulist rolli tõestamaks polütoopide laiendite keerukuse alampiiri. Polütoobile P vastava suhtluskeerukuse leidmine ning alamtõkke tõestamine väistavad võimalused leida laiend Q, mis ei oleks eksponentsiaalne. Käesolevas töös keskendume me juhuslikele Boole'i funktsioonidele f, mille tihedusfunktsioon on p = p(n). Me pakume välja vähima ülemtõkke ning suurima alamtõkke mittedeterministliku suhtluskeerukuse jaoks. Lisaks uurime me ka pedigree polütoobi graafi. Pedigree polütoop on rändkaupmehe ülesande polütoobi laiend, millel on kombinatoorne struktuur. Polütoobi graafi võib vaadelda kui abstraktset graafi ning see annab informatsiooni polütoobi omaduste kohta.The linear programming (LP for short) is a method for finding an optimal solution, such as minimum cost or maximum profit for a linear function subject to linear constraints. But having an exponential number of inequalities gives the exponential running time in solving linear program. A polytope, let's say P, represents the space of the feasible solution. One idea for decreasing the running time of the problem, is lifting the polytope P tho the higher dimensions with the goal of decresing the number of inequalities. The polytope in higher dimension, let's say Q, is the extension of the original polytope P and the minimum number of facets that Q can have is the extension complexity of P. Then the optimal solution of the problem over Q, gives the optimal solution over P. The natural question may raise is when is it possible to have an extension with a polynomial number of inequalities? Nondeterministic communication complexity is a powerful tool for proving lower bound on the extension complexity of a polytopes. Finding a suitable communication complexity problem corresponded to a polytope P and proving a linear lower bound for the nondeterministic communication complexity of it, will rule out all the attempts for finding sub-exponential size extension Q of P. In this thesis, we focus on the random Boolean functions f, with density p = p(n). We give tight upper and lower bounds for the nondeterministic communication complexity and parameters related to it. Also, we study the rank of fooling set matrix which is an important lower bound for nondeterministic communication complexity. Finally, we investigate the graph of the pedigree polytope. Pedigree polytope is an extension of TSP (traveling salesman problem; the most extensively studied problem in combinatorial optimization) polytopes with a nice combinatorial structure. The graph of a polytope can be regarded as an abstract graph and it reveals meaningful information about the properties of the polytope

    Coordination of Multirobot Teams and Groups in Constrained Environments: Models, Abstractions, and Control Policies

    Get PDF
    Robots can augment and even replace humans in dangerous environments, such as search and rescue and reconnaissance missions, yet robots used in these situations are largely tele-operated. In most cases, the robots\u27 performance depends on the operator\u27s ability to control and coordinate the robots, resulting in increased response time and poor situational awareness, and hindering multirobot cooperation. Many factors impede extended autonomy in these situations, including the unique nature of individual tasks, the number of robots needed, the complexity of coordinating heterogeneous robot teams, and the need to operate safely. These factors can be partly addressed by having many inexpensive robots and by control policies that provide guarantees on convergence and safety. In this thesis, we address the problem of synthesizing control policies for navigating teams of robots in constrained environments while providing guarantees on convergence and safety. The approach is as follows. We first model the configuration space of the group (a space in which the robots cannot violate the constraints) as a set of polytopes. For a group with a common goal configuration, we reduce complexity by constructing a configuration space for an abstracted group state. We then construct a discrete representation of the configuration space, on which we search for a path to the goal. Based on this path, we synthesize feedback controllers, decentralized affine controllers for kinematic systems and nonlinear feedback controllers for dynamical systems, on the polytopes, sequentially composing controllers to drive the system to the goal. We demonstrate the use of this method in urban environments and on groups of dynamical systems such as quadrotors. We reduce the complexity of multirobot coordination by using an informed graph search to simultaneously build the configuration space and find a path in its discrete representation to the goal. Furthermore, by using an abstraction on groups of robots we dissociate complexity from the number of robots in the group. Although the controllers are designed for navigation in known environments, they are indeed more versatile, as we demonstrate in a concluding simulation of six robots in a partially unknown environment with evolving communication links, object manipulation, and stigmergic interactions

    Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    No full text
    International audienceThe Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization started off as a series of workshops organized bi-annually by either Köln University or Twente University. As its importance grew over time, it re-centered its geographical focus by including northern Italy (CTW04 in Menaggio, on the lake Como and CTW08 in Gargnano, on the Garda lake). This year, CTW (in its eighth edition) will be staged in France for the first time: more precisely in the heart of Paris, at the Conservatoire National d’Arts et Métiers (CNAM), between 2nd and 4th June 2009, by a mixed organizing committee with members from LIX, Ecole Polytechnique and CEDRIC, CNAM

    Fixed cardinality stable sets

    Get PDF
    Given an undirected graph G=(V,E) and a positive integer k in {1, ..., |V|}, we initiate the combinatorial study of stable sets of cardinality exactly k in G. Our aim is to instigate the polyhedral investigation of the convex hull of fixed cardinality stable sets, inspired by the rich theory on the classical structure of stable sets. We introduce a large class of valid inequalities to the natural integer programming formulation of the problem. We also present simple combinatorial relaxations based on computing maximum weighted matchings, which yield dual bounds towards finding minimum-weight fixed cardinality stable sets, and particular cases which are solvable in polynomial time.publishedVersio

    Many projectively unique polytopes

    Full text link
    We construct an infinite family of 4-polytopes whose realization spaces have dimension smaller or equal to 96. This in particular settles a problem going back to Legendre and Steinitz: whether and how the dimension of the realization space of a polytope is determined/bounded by its f-vector. From this, we derive an infinite family of combinatorially distinct 69-dimensional polytopes whose realization is unique up to projective transformation. This answers a problem posed by Perles and Shephard in the sixties. Moreover, our methods naturally lead to several interesting classes of projectively unique polytopes, among them projectively unique polytopes inscribed to the sphere. The proofs rely on a novel construction technique for polytopes based on solving Cauchy problems for discrete conjugate nets in S^d, a new Alexandrov--van Heijenoort Theorem for manifolds with boundary and a generalization of Lawrence's extension technique for point configurations.Comment: 44 pages, 18 figures; to appear in Invent. mat
    corecore