187 research outputs found

    Perfectly secure steganography: hiding information in the quantum noise of a photograph

    Full text link
    We show that the quantum nature of light can be used to hide a secret message within a photograph. Using this physical principle we achieve information-theoretic secure steganography, which had remained elusive until now. The protocol is such that the digital picture in which the secret message is embedded is perfectly undistinguishable from an ordinary photograph. This implies that, on a fundamental level, it is impossible to discriminate a private communication from an exchange of photographs.Comment: 5 pages, 3 figures + appendix : 5 pages, 6 figure

    Steganographer Identification

    Full text link
    Conventional steganalysis detects the presence of steganography within single objects. In the real-world, we may face a complex scenario that one or some of multiple users called actors are guilty of using steganography, which is typically defined as the Steganographer Identification Problem (SIP). One might use the conventional steganalysis algorithms to separate stego objects from cover objects and then identify the guilty actors. However, the guilty actors may be lost due to a number of false alarms. To deal with the SIP, most of the state-of-the-arts use unsupervised learning based approaches. In their solutions, each actor holds multiple digital objects, from which a set of feature vectors can be extracted. The well-defined distances between these feature sets are determined to measure the similarity between the corresponding actors. By applying clustering or outlier detection, the most suspicious actor(s) will be judged as the steganographer(s). Though the SIP needs further study, the existing works have good ability to identify the steganographer(s) when non-adaptive steganographic embedding was applied. In this chapter, we will present foundational concepts and review advanced methodologies in SIP. This chapter is self-contained and intended as a tutorial introducing the SIP in the context of media steganography.Comment: A tutorial with 30 page

    RABS: Rule-Based Adaptive Batch Steganography

    Get PDF

    Advances in Syndrome Coding based on Stochastic and Deterministic Matrices for Steganography

    Get PDF
    Steganographie ist die Kunst der vertraulichen Kommunikation. Anders als in der Kryptographie, wo der Austausch vertraulicher Daten für Dritte offensichtlich ist, werden die vertraulichen Daten in einem steganographischen System in andere, unauffällige Coverdaten (z.B. Bilder) eingebettet und so an den Empfänger übertragen. Ziel eines steganographischen Algorithmus ist es, die Coverdaten nur geringfügig zu ändern, um deren statistische Merkmale zu erhalten, und möglichst in unauffälligen Teilen des Covers einzubetten. Um dieses Ziel zu erreichen, werden verschiedene Ansätze der so genannten minimum-embedding-impact Steganographie basierend auf Syndromkodierung vorgestellt. Es wird dabei zwischen Ansätzen basierend auf stochastischen und auf deterministischen Matrizen unterschieden. Anschließend werden die Algorithmen bewertet, um Vorteile der Anwendung von Syndromkodierung herauszustellen

    Limits of Reliable Communication with Low Probability of Detection on AWGN Channels

    Full text link
    We present a square root limit on the amount of information transmitted reliably and with low probability of detection (LPD) over additive white Gaussian noise (AWGN) channels. Specifically, if the transmitter has AWGN channels to an intended receiver and a warden, both with non-zero noise power, we prove that o(n)o(\sqrt{n}) bits can be sent from the transmitter to the receiver in nn channel uses while lower-bounding α+β≥1−ϵ\alpha+\beta\geq1-\epsilon for any ϵ>0\epsilon>0, where α\alpha and β\beta respectively denote the warden's probabilities of a false alarm when the sender is not transmitting and a missed detection when the sender is transmitting. Moreover, in most practical scenarios, a lower bound on the noise power on the channel between the transmitter and the warden is known and O(n)O(\sqrt{n}) bits can be sent in nn LPD channel uses. Conversely, attempting to transmit more than O(n)O(\sqrt{n}) bits either results in detection by the warden with probability one or a non-zero probability of decoding error at the receiver as n→∞n\rightarrow\infty.Comment: Major revision in v2. Context, esp. the relationship to steganography updated. Also, added discussion on secret key length. Results are unchanged from previous version. Minor revision in v3. Major revision in v4, Clarified derivations (adding appendix), also context, esp. relationship to previous work in communication updated. Results are unchanged from previous revision

    Recent Advances in Steganography

    Get PDF
    Steganography is the art and science of communicating which hides the existence of the communication. Steganographic technologies are an important part of the future of Internet security and privacy on open systems such as the Internet. This book's focus is on a relatively new field of study in Steganography and it takes a look at this technology by introducing the readers various concepts of Steganography and Steganalysis. The book has a brief history of steganography and it surveys steganalysis methods considering their modeling techniques. Some new steganography techniques for hiding secret data in images are presented. Furthermore, steganography in speeches is reviewed, and a new approach for hiding data in speeches is introduced

    Hard Communication Channels for Steganography

    Get PDF
    This paper considers steganography - the concept of hiding the presence of secret messages in legal communications - in the computational setting and its relation to cryptography. Very recently the first (non-polynomial time) steganographic protocol has been shown which, for any communication channel, is provably secure, reliable, and has nearly optimal bandwidth. The security is unconditional, i.e. it does not rely on any unproven complexity-theoretic assumption. This disproves the claim that the existence of one-way functions and access to a communication channel oracle are both necessary and sufficient conditions for the existence of secure steganography in the sense that secure and reliable steganography exists independently of the existence of one-way functions. In this paper, we prove that this equivalence also does not hold in the more realistic setting, where the stegosystem is polynomial time bounded. We prove this by constructing (a) a channel for which secure steganography exists if and only if one-way functions exist and (b) another channel such that secure steganography implies that no one-way functions exist. We therefore show that security-preserving reductions between cryptography and steganography need to be treated very carefully

    Information-Theoretic Bounds for Steganography in Multimedia

    Full text link
    Steganography in multimedia aims to embed secret data into an innocent looking multimedia cover object. This embedding introduces some distortion to the cover object and produces a corresponding stego object. The embedding distortion is measured by a cost function that determines the detection probability of the existence of the embedded secret data. A cost function related to the maximum embedding rate is typically employed to evaluate a steganographic system. In addition, the distribution of multimedia sources follows the Gibbs distribution which is a complex statistical model that restricts analysis. Thus, previous multimedia steganographic approaches either assume a relaxed distribution or presume a proposition on the maximum embedding rate and then try to prove it is correct. Conversely, this paper introduces an analytic approach to determining the maximum embedding rate in multimedia cover objects through a constrained optimization problem concerning the relationship between the maximum embedding rate and the probability of detection by any steganographic detector. The KL-divergence between the distributions for the cover and stego objects is used as the cost function as it upper bounds the performance of the optimal steganographic detector. An equivalence between the Gibbs and correlated-multivariate-quantized-Gaussian distributions is established to solve this optimization problem. The solution provides an analytic form for the maximum embedding rate in terms of the WrightOmega function. Moreover, it is proven that the maximum embedding rate is in agreement with the commonly used Square Root Law (SRL) for steganography, but the solution presented here is more accurate. Finally, the theoretical results obtained are verified experimentally.Comment: arXiv admin note: substantial text overlap with arXiv:2111.0496
    • …
    corecore