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1. Introduction

1.1. Motivation

The aim of communicating confidentially has historic roots which date back to
ancient times. Generally, the scenario in steganography can be described as
two parties - sender and receiver - who want to exchange a confidential message
unobservably via a publicly observable channel.

Modern steganographic schemes are based on digital data. The sender hides the
confidential message into inconspicuously looking digital cover material, e. g., text
files or images. In contrast to cryptography, the existence of the message itself is
hidden by using the cover material as a covert channel adding an additional level
of confidentiality.

Today, advances in digital steganography are relevant for several reasons. First,
the existence of steganography is a strong argument against crypto-regulation,
a debate in Germany in the 1990s. This topic is still up to date considering
countries, like Russia. Koops gives a good overview on countries regulating the
application of crypto [72].

Furthermore, steganographic systems can be applied in military or economic
context, whenever the content of the communication as well as the communication
itself should remain confidential. Moreover, concepts and algorithms developed in
steganography form also interesting ingredients for new methods in digital right
protection systems as well as in digital forensic methods.

Generally, a steganographic scheme is considered broken, whenever the attacker
discovers the confidential communication, i. e., whenever he is able to distinguish
between cover and stego material with success better than random guessing.
Note that it is not required to actually extract the message, since the goal of
steganography is to hide the existence of the message itself.

Thus, the goal for the designer of a steganographic system is clear: cover and
stego should be undistinguishable. Therefore, the characteristic of the cover has
to be preserved during the embedding process, which equals the minimization of
artifacts introduced during embedding.

However, since cover data is mostly high dimensional empirical data, such as
digital images, modeling the covers’ characteristic is not trivial. Thus, heuris-
tic approaches for preserving the cover’s characteristic are applied in practical
schemes. Fridrich et al. distinguish between four heuristic principles reducing
the distortion introduced during embedding: Model-Preserving Steganography,

1



1. Introduction

Mimic Natural Processing, Steganalysis-Aware Steganography and Minimum-
Embedding-Impact Steganography [36].

Generally, it is a hard task to preserve a statistical model during embedding,
sometimes even additional artifacts are introduced (see, e. g., [30, 9]). Thus,
this thesis focusses on several algorithms related to Minimum-Embedding-Impact
Steganography, i. e., on embedding while minimizing the introduced distortion.
The main goal for the design of steganographic algorithms of this class is to take
into account the element-wise defined embedding impact. Thus, the sender tries

• to disturb the cover data as little as possible in order to prevent detectable
changes in the statistical properties, and

• to modify the cover data only in inconspicuous parts.

Note that the application of concepts from channel coding in steganography is
known to be advantageous in several scenarios. Considering, e. g., a transmission
over a lossy channel, either due to an attacker or due to JPEG compression,
channel codes are needed to retrieve the embedded message (e. g., [97, 10]). Fur-
thermore, coding is required for the adjustment of distributions, e. g., in Mimic
Functions (e. g. [32]).

This thesis focusses on the application of channel coding, more specifically syn-
drome coding, to reduce distortion introduced during embedding and to exclude
parts of the cover from embedding.

1.2. Contribution of this Thesis

This work deals with syndrome coding as a well known concept in steganography
for embedding a confidential message. In the past, several algorithms have been
proposed in this field. A first solution for minimizing the introduced distortion
was proposed by Crandall [16] and is well known as Matrix Embedding (ME). Wet
Paper Codes as an approach for modifying only inconspicuous data parts, where
the selection rule does not have to be shared with the receiver, was proposed
first by Fridrich et al. in [44]. Furthermore, several approaches addressing both
objects have been developed, e. g., based on BCH Codes as proposed by Schönfeld
and Winkler [85, 86, 87].

The huge amount of algorithms for embedding based on syndrome coding pro-
posed within the last years have never been comprehensively described. Thus,
this work aims at describing state-of-the-art algorithms on a consistent basis in
order to make them comparable to each other. Note that two of the algorithms
presented within this thesis are developed at the chair of privacy and data secu-
rity at the Technische Universität Dresden in collaboration of Dagmar Schönfeld
and the author of this thesis. Furthermore, this thesis compares the different

2



1.3. Notation

approaches according to several properties in order to determine advantages and
disadvantages for each class of algorithms.

The thesis is organized as follows: Part I gives an introduction into steganogra-
phy motivating the application of syndrome-coding based steganography. After
the basic description of steganographic schemes, fundamental design parameters
of steganographic schemes such as security, complexity, capacity and embedding
success are described.

Note that the algorithms discussed in this thesis are only a component of
the embedding algorithm rather than a complete embedding scheme. Thus, we
present an advanced sender model in order to clarify the function of the algorithms
discussed in this thesis.

Furthermore, the basic concept for embedding based on syndrome coding is
given. Generally, it is possible to separate the multitude of algorithms into sev-
eral classes. In this thesis, we separate between approaches based on a deter-
ministic parity-check matrix and approaches based on stochastic matrices. For
both classes, we describe the basic algorithms for binary embedding. Note that
applied schemes such as ZZW (Zhang Zhang Wang approach) [105] are not in
the focus of this work.

Furthermore, we separate between concepts for a small code word length, de-
scribed in Part II and concepts for a large code word length (Part III). For small
code word lengths, approaches based on exhaustive search are applicable in order
to determine the stego sequence with minimal distortion. This is not possible for
large code word lengths and specific solutions are necessary.

After describing the algorithms on a consistent basis, we compare them ac-
cording to:

• the security in terms of embedding efficiency,

• the capacity,

• the success of embedding,

• the complexity.

1.3. Notation

In this thesis, vectors and matrices are denoted in boldface with indices following
the symbol in square brackets. The ith element of vector x is denoted as x[i].
Furthermore, the ith row of matrix X is denoted as X[i, .] and the jth column as
X[., j]. The transpose of a matrix is denoted as XT and the transpose of vector x

as xT . Note that sequences of vectors or matrices will be indexed with a subscript.
Furthermore, the length of vector x is denoted as |x| and the concatenation of
strings is denoted as [x y].

3



1. Introduction

Sets are denoted in this work in calligraphic font, with |X | denoting the car-
dinality of X . Furthermore, a polynomial p(x) is defined as p(x) = ukx

k +
uk−1x

k−1 + ... + u1x + u0, where the sequence of its coefficients can be seen as a
binary vector p = (ukuk−1...u1u0) and is denoted in boldface symbols.

In this thesis, operations are based on eXclusive OR operation on bits which
we denote as ⊕. Furthermore, the binary representation of i is denoted as [i]2
and the denary representation as [i]10, respectively.

The Kronecker Product is denoted as ⊗. Furthermore, we reserve ⌊x⌋, ⌈x⌉
for rounding down and up, respectively. An overview on symbols and functions
employed in this work is given at the end of this document.
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2. General Concept of

Steganography

Within this chapter, we describe the model of a steganographic scheme in gen-
eral and how to parametrize this scheme in a scenario where the steganographic
algorithm is publicly known. Furthermore, we give a short overview of parame-
ters describing the properties of a steganographic scheme such as security. Based
on these considerations, practical implications for the design of a steganographic
scheme are then summarized.

Since this work deals with syndrome coding as a tool to improve steganogra-
phy by minimizing the distortion introduced during embedding, the goal is not
to design a whole steganographic scheme. We rather introduce and compare
concepts so as to improve the security of a steganographic scheme by means of
syndrome coding. Therefore, we present an advanced model for describing the
steganographic scheme and describe the underlying concept of this work in detail.

2.1. A Brief Description of the Steganographic

Scheme

Generally, steganography and cryptography are similar in that both are used for
communicating a secret message. In the case of cryptography, the presence of
the message itself is obvious; only the content is protected by a secret k. The
goal of steganographic schemes is different. The secret message is embedded into
inconspicuously looking cover material, e. g., text files or images. Consequently,
the existence of the message itself is hidden by using the cover material as a
covert channel, which should be slightly modified in an imperceptible way. The
resulting stego object is now transmitted over a public channel to the receiver.

Thus, steganography is considered broken whenever the attacker discovers the
secret communication. Note the contrast to cryptography, where the attacker is
successful if he breaks the cipher. Consequently, the most important feature of a
steganographic scheme is undetectability, i. e., it should not be possible to decide
whether steganography has been used better than random guessing.
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2. General Concept of Steganography

2.1.1. Schematic Description of the Steganographic
Scheme

The concept of steganography can be formalized using the prisoners’ problem in-
troduced by Simmons [90]. In this scheme, it is assumed that two prisoners, Alice
and Bob, are imprisoned in separate cells and want to exchange an escape plan.
Since they are separated from each other in different cells, they can communicate
only by sending messages through the warden Wendy, i. e., their messages are
observed by Wendy. Wendy can be seen as a passive warden, whose goal is to
exchange each message, as long as she does not find it suspicious. Otherwise
Wendy will not provide the message at all.

This scenario can be compared to the scenario of a steganographic scheme,
where two parties would like to communicate confidentially as many bits as pos-
sible without introducing detectable artifacts. However, the channel they are
using is publicly known and thus can also be observed by outside third parties.

Generally, there are three different approaches as to how to embed a secret
message into a cover: By cover selection, the sender simply selects an appropriate
cover that already contains the secret message, i. e., cover and stego are identical.
Another, more artificial way of embedding a message is cover synthesis, where
the sender has to create appropriate data containing the message. Beside these
two rather theoretical approaches, cover modification is the most frequently used
case in practical applications.

In this approach, the sender selects an arbitrary cover from a large source of
covers and embeds the secret message by modifying the cover. The underlying
scheme for this approach as it is used in this thesis follows [80] and is depicted in
Figure 2.1.

Embedding
process
Emb()

Extraction
process
Extr()

cover
object

secret
message

key

secret
message

key

Sender ReceiverChannel

stego object

χ
(m)

χ
(0)

m

m

k k

Figure 2.1.: Schematic Diagram of a Steganographic Scheme Including Sender,
Receiver and the Communication Channel Following [80].
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2.1. A Brief Description of the Steganographic Scheme

The scheme includes the two parties of sender and receiver and their trusted
domains (depicted as dashed boxes), as well as the publicly known communication
channel. Note that the channel is neither within the trusted domain of the sender
nor in the trusted domain of the receiver. Therefore, both have to be aware of an
attacker who is able to eavesdrop on their communications, just like the warden
Wendy in Simmons’ scenario.

In the scenario depicted in Figure 2.1, sender and receiver would like to commu-
nicate a secret message m ∈ M via the public communication channel. Therefore,
the sender hides the secret message m in inconspicuous-looking cover material
χ

(0) ∈ X depending on a secret key k ∈ K, where M is the space of possible
messages, X the space of possible cover objects and K the key space. Thus, the
embedding process can be seen as a function Emb() : X ×M×K → X .

The output of the embedding process, called stego object χ
(m) ∈ X , is then

transmitted over the channel to the receiver, who must be able to extract the
message from the stego data. Therefore, the receiver uses the secret key k to
retrieve the secret message m. Note that for him it is not necessary to reconstruct
the cover data itself. Thus, the extraction step can be seen as a function Extr() :
X × K → M, such that Extr(Emb(χ(0),m)) = m ∀m ∈ M, ∀k ∈ K and
∀χ ∈ X . Consequently, a steganographic algorithm can be described as a 5-tuple
(X ,M,K, Emb(), Extr()).

2.1.2. Parametrization of the Steganographic Scheme

We assume, just as in cryptography, that the steganographic algorithm applied by
sender and receiver is publicly available. Therefore, the steganographic algorithm
is generally also known to an attacker. This principle is known as Kerckhoff’s
principle [67].

Based on this assumption, it is necessary to parametrize the steganographic
scheme in order to complicate breaking the scheme by an attacker.

2.1.2.1. Encrypting the Message

Usually, the secret message itself is encrypted before embedding. Therefore, in
this work we assume the secret message m as a random bit string.

Generally, there are two different approaches. The first approach, called Secret
Key Steganography (SKS), is based on symmetric keys. Sender and receiver both
use the same key to encrypt and decrypt the message. It is thus assumed that
both sender and receiver share a secret key. In this case, the message can be
recovered only by a person who possesses the secret key.

However, this implies that both must have had the possibility of communicating
securely beforehand in order to exchange this key. This assumption implies the
suspicion of a mandatory one-time confidential communication sometime. In
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2. General Concept of Steganography

order to overcome this key distribution problem, Public Key Steganography (PKS)
was invented [1].

In a PKS scheme, the receiver generates two keys, a public and a private one.
He shares his public key with everyone. This means that the warden can obtain
the key as well. The communication model can be described as follows. The
sender takes the public key from the receiver, which can be provided by a phone
book or something similar. He uses this key for encrypting the secret message
before embedding it into the cover. After transmitting the stego data via the
channel, the receiver extracts the encrypted message. Only the receiver is able
to decrypt the secret message by using his private key.

However, if only the secret message is encrypted, an attacker still knows the
steganographic algorithm. Therefore, he can extract the embedded message and
mount an attack. Note that the steganographic scheme is considered insecure if
an attacker is able to decide whether a secret message is hidden. Thus, even if he
is not able to recover the message content itself (where he would have to break
the underlying crypto scheme), the steganographic scheme is considered broken.

2.1.2.2. Parametrizing the Embedding Process

Thus, in order to keep the communication secret, we have to use a key to
parametrize the steganographic algorithm, which is shared between sender and
receiver and kept secret.

One possibility for parametrizing the steganographic algorithm is to build a
steganographic scheme based on a selection channel, e. g., to select parts of the
cover that should be used for embedding. Therefore, the key shared between
sender and receiver can, e. g., be used to generate a pseudo-random path (Path).
The message is embedded along this path. Thus, for an attacker who does not
know the key to generate Path, extracting the correct message and by this the
separation between steganographycally used and unused elements will be a hard
task.

Generally, a pseudo-random path, as proposed by Crandall in [16], does not
take into account the properties of the cover object. For an attacker it may
be easier to discover embedding when homogeneous regions are used for em-
bedding the secret message. Therefore, a method to improve the security of the
steganographic scheme is embedding in adaptively selected parts of the cover, e. g.,
texture-rich or noisy image parts (e. g. [31, 32]).

Adaptivity in steganography means that the embedding process also considers
the position where each embedding change will appear. Generally, the stegano-
graphic algorithm is designed so as to avoid changes in certain areas of the cover
data and the selection channel is designed accordingly.

The main problem of an adaptive selection channel is being able to reconstruct
the positions where message bits are embedded. The selection of the elements
is influenced by some side information known to the sender, but not necessarily
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known to the receiver. Therefore, the receiver does not always know from which
positions he should extract the message.

It is generally in the interest of sender and receiver to reveal as little information
as possible about the selection channel, as this knowledge can be explored by an
attacker. If the knowledge of the selection channel is available to the sender but
not to the receiver, this scheme is called non-shared selection channel.

Fridrich et al. explained non-shared selection channels using the metaphor
"writing on wet paper" [44]: The cover image was exposed to rain and some pixels
became wet. The sender can use only dry pixels to embed the secret message.
However, during transmission the stego images dries out and the receiver has no
information about the positions used for embedding. A solution to this problem
is embedding based on syndrome coding, a principle of coding theory considered
in this thesis. This approach is also referred to as Wet Paper Steganography in
literature.

2.1.3. Properties of a Steganographic Scheme

A good overview on basic properties describing steganographic schemes, is given,
e. g., by Böhme in [8]. There are three basic properties which can be used to
describe steganographic schemes: their security, their capacity and their robust-
ness. Note that the three dimensions are not independent. They should rather
be considered as competing goals, which have to be balanced when designing a
steganographic scheme.

Even if there is wide consensus regarding the properties, the metrics by which
they are measured are not commonly defined. In this thesis, we will adhere to
the definitions given by Böhme [8].

The purpose of steganographic communication is to hide the existence of a
secret message. Therefore, the security of a steganographic scheme is judged
on the basis of the impossibility of detecting the communication. There are
different approaches to describe the security, e. g., in a general way, by means of
information-theoretic or complexity-theoretic aspects.

Moreover, we can define steganographic security in a more heuristic way as the
ability to resist steganalytical investigations. Generally, the steganalysis problem
can be seen as a decision problem, e. g., finding an answer to the question as to
whether observed data contains a hidden message or not. Further information
on the definition of security is given in Section 2.2.

Furthermore, Böhme defines the capacity of a steganographic scheme as the
maximum length of a secret message (in bit) divided by the number of bits
required to store the stego object. Note that the capacity depends on the function
chosen for embedding as well as on the properties of the cover. Moreover, the
capacity of a steganographic scheme is bounded by the entropy of the cover [15].

Often, the measure Bit Per Pixel (bpp) is used, in order to express the relative
message length α = |m|

N
, i. e., the ratio between the maximum length of a secret
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message (in bit) and the number of elements of the cover sequence1. In this thesis,
we also refer to the relative message length.

Note that capacity and relative message length are related to the security
of a steganographic scheme. Since embedding longer messages requires more
changes due to embedding, it is statistically easier to detect. Filler and Ker also
investigated the connection between relative message length and security [66, 26,
22]. They state that the cover size indeed plays an important role. Even if it is
common to report the capacity as the rate of bpp, the rates are not compatible.
Filler and Ker found that hiding in small covers is less detectable than data hiding
by the same rate in larger covers. They state that the secure relative message
length of practical stego systems grows only with the square root of the cover
size, i. e., the secure capacity is proportional only to

√
N . This phenomenon is

denoted as Square Root Law and has been experimentally confirmed.
Another property of steganographic schemes is its robustness, which refers to

the difficulty of removing hidden information from a stego object. This property is
important only when the communication channel is disordered by random errors
or by systematic interference with the aim of preventing the use of steganography.
Since this assumption is not true in most steganographic schemes, robustness has
not received much attention so far in steganography.

Consequently, we take into account the properties of security and capacity in
this thesis. Moreover, some additional measures such as the embedding complexity
and the success rate, i. e., the probability that a given message can be embedded
in a particular cover, are considered.

In this thesis, we consider time complexity as well as memory complexity.
Whereas time complexity is expressed, e. g., by the number of XOR-operations
needed for embedding, memory complexity is given as the number of bits that
have to be stored.

To summarize, we find the following important parameters which should be
considered when designing a steganographic algorithm:

• the security,

• the capacity,

• the success rate, and

• the embedding complexity.

Generally, the designer of a steganographic algorithm aims at maximizing the
capacity as well as the security of his algorithm. Moreover, he tries to minimize
the embedding complexity while maximizing the success rate. However, since
these are competing goals, it is possible only to balance those four properties.

1Since N is defined as the number of discrete cover elements, this definition of α does not
include embedding in multiple bit planes.
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In the following, we will take a more detailed look at definitions of stegano-
graphic security.

2.2. A Security View on Steganography

Generally, the security of a steganographic scheme is judged by the impossibility
of detecting the confidential communication. Therefore, the problem of an at-
tacker can be seen as a decision problem, i. e., finding an answer to the question
as to whether observed data contains a hidden message or not. Thus, decision-
theoretic measures qualify as measures of steganographic security.

However, formalization of the Simmons model is not easy. The warden Wendy
has access to everything except for the key, according to Kerckhoff’s principle.
Thus, she has complete knowledge of the steganographic algorithm and, therefore,
also of the source of cover objects. However, since, e. g., digital images are high
dimensional objects, it is not feasible to obtain even a rough approximation of
its distribution [8].

Thus, only a set of statistical quantities derived from the cover can be used to
describe the cover. The attacker can calculate these statistics and define signifi-
cant deviations from the expected values as evidence for the presence of stegano-
graphic modifications. This quantitative view of security permits a mathematical
formulation as well as statistical investigations.

Generally, the problem of steganography can be formulated as finding embed-
ding and extraction algorithms for a given cover source that enable communica-
tion of reasonable large messages without introducing any embedding artifacts
that could be detected by the warden. In other words, the goal is to embed secret
messages in an undetectable manner.

Within this section, we first examine formal definitions of steganographic secu-
rity. Afterwards, we give a short introduction to steganalytical approaches. An
overview on this topic can also be found in [36].

2.2.1. Information-Theoretic Approach

Based on the definition of information-theoretic security, it should be impossible
for an attacker to design a steganalytical method for a truly secure steganographic
scheme that can distinguish between cover and stego objects.

Generally, the distribution of covers is denoted as Pc and the distribution of
stego objects with Ps. Consequently, the goal in steganography can be reformu-
lated as constructing a steganographic scheme that assures Ps to be as close as
possible to Pc. Therefore, it would be hard for an attacker to decide whether the
observed data was generated by the steganographic scheme or not. Note that
according to Kerckhoff’s principle, the attacker has access to the steganographic
scheme.
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To summarize, if an attacker is not able to determine whether observed data is
drawn from Pc or drawn from Ps, we will call the system information-theoretically
secure or perfectly secure.

Therefore, the distance between Pc and Ps is related to the ability of an at-
tacker to distinguish between cover and stego. Consequently, this distance can
be taken as a measurement of steganographic security [13]. In this publication,
the attacker’s decision problem is described as a hypothesis testing problem.

2.2.1.1. Hypothesis

The basic idea of Cachin’s work [13] can be formulated as follows: Based on an
observed object χ, an attacker must decide between the two hypotheses:

• H0: χ is drawn from the distribution Pc and does not contain any hidden
message.

• H1: χ is drawn from Ps and contains a hidden message.

Assuming the attacker can observe the communication channel (Kerckhoff’s
principle) and thus the distributions Pc and Ps, the steganographic security can
be expressed by means of their Kullback-Leibler divergence (KL divergence), also
called KL distance or relative entropy:

DKL(Pc||Ps) =
∑

χ∈X

Pc(χ) ld
Pc(χ)

Ps(χ)
. (2.1)

The Kullback-Leibler divergence can be seen as a measure of the difference
between the two probability mass functions Pc, Ps. Whenever both distributions
are equal, the KL divergence is zero. The more different both distributions are,
the larger is their KL divergence, i. e., DKL(Pc||Ps) ≥ 0.

2.2.1.2. Definition of Security

In his work, Cachin defines a steganographic scheme as perfectly secure, if and only
if DKL(Pc||Ps) = 0 [13]. In this case, the stego and cover objects are identically
distributed. Consequently, it is impossible for an attacker to distinguish between
them.

Whenever we find DKL(Pc||Ps) ≤ ǫ, the steganographic scheme is called ǫ-
secure. Note that the smaller ǫ or the closer both distributions are, the lower
the probability of being detected. Thus, by minimizing the KL divergence of
cover and stego distribution, the security of the steganographic scheme can be
increased.
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2.2.1.3. Two Types of Error

As mentioned before, the attacker’s problem can be seen as a decision problem,
i. e., an attacker has to decide, whether a given object contains a secret message
or not. Thus, his objective is to perform binary hypothesis testing and assume
hypothesis H0 if the observed data is a cover. Whenever the observed data seems
to be suspicious, he assumes H1.

Generally, decision-theoretic-based metrics can be used as a measure of stegano-
graphic security. Note that a measure of steganographic security can also be seen
as a measure of steganalytic performance, i. e., the quality of an attack.

Given that the detector’s response is binary, i. e., the output is a decision (cover
or stego), two kinds of errors occur when applying hypothesis testing in practice
(see Table 2.1). An error of the first kind occurs when the attacker decides for
hypothesis H1 when H0 is true instead. This kind of error is also denoted as false
positive or False Alarm (FA) since it occurs whenever the steganalyst misclassifies
a plain cover as stego object.

The second type of error occurs whenever the steganalyst fails to detect a stego
object, i. e., H0 is accepted while H1 is true instead. This kind of error is called
Missed Detection (MD) or false negative. Note that the probability of false alarms
(Type I error) is denoted as PFA and the probability of missed detection (Type
II error) is denoted as PMD.

Table 2.1.: Two Types of Error.
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Cover Type I Error:
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Stego Type II Error
False Negative

→ PMD

In general, the higher the error probabilities PFA and PMD, the better the
security of a steganographic scheme, i. e., the worse the decisions made by a
steganalyst. However, it is not possible to minimize both errors.
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2.2.1.4. Problem Discussion

The adequacy of the information-theoretic model of steganographic security for
real-world steganography depends on the assumption that there is a probabilistic
model of the cover. However, since the cover data is high-dimensional and the
attacker has access only to a limited number of observations, it is still not clear
how to estimate and describe Pc and Ps in practice [8].

As mentioned previously, steganographic covers are high dimensional objects
which can be modeled as random variables. Nevertheless, the sender, as well as
the attacker, has access only to a limited set of statistical quantities derived from
some cover or stego objects. Thus, the attacker has to deal with simplified models
describing only some statistical properties of the observed data. Furthermore,
because he is observing empirical data, it will never be possible to completely
describe the cover source.

Note that the embedding distortion can be arbitrary considering this approach
as long as Ps is as close as possible to Pc. Consequently, perfectly secure stegano-
graphic schemes are based on the approach of cover synthesis and cover selection.

However, a cover is mainly selected from a source of covers and is afterwards
modified to embed the secret message. Thus, the distortion introduced during
embedding by cover modification has to be kept as small as possible in order to
maintain Ps as close as possible to Pc and thus to get DKL(Pc||Ps) to be as close
as possible to zero.

Note that perfect security is only possible for artificial covers as in cover
synthesis or cover selection [22]. For a perfectly secure stego scheme, we find
DKL(Pc||Ps) = 0. In this case, no detector does exist and the secure capacity is
linear. For imperfect schemes, however, we find DKL(Pc||Ps) = ǫ and a detector
does exist. As mentioned before, the secure capacity of such a scheme is related
to the root rate [66, 26, 22].

2.2.2. Complexity-Theoretic Approach

Generally, the information-theoretic definition of security [13] is based on two
rather strong assumptions. Firstly, it is assumed that covers can be described
by a probability distribution Pc. However, as mentioned above, cover data in
real scenarios is high dimensional. Therefore, descriptions can be based only on
simplified models describing only some statistical properties of the observed data.

Secondly, the approach completely ignores complexity issues. It addresses only
the possibility of constructing an attack rather than its practical realization.
Since the security of a scheme depends on parameters such as key length, the
designer of a steganographic scheme should make sure those parameters are large
enough when choosing them. However, the computational complexity grows ex-
ponentially with the key length. Thus, an attacker with polynomial bounds in
his resources will not be able to realize a theoretically possible attack.
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The basic idea of defining steganographic security based on complexity-theoretic
principles takes theses facts into account and defines a steganographic scheme as
secure if the stego object is computationally indistinguishable from the cover ob-
ject [63, 65]. Therefore, these models of steganographic security take into account
the limited computational power of the attacker.

Within this section, we give a short overview of two basic approaches based
on complexity-theoretic principles [63, 65]. Note that the complexity-theoretic
definitions of steganographic security of Hopper et al. [63] and Katzenbeisser
et al. [65] were independently proposed in 2002 and share some basic ideas.

In contrast to the information-theoretic approach, the assumption that an at-
tacker knows the distribution Pc is replaced with the weaker assumption of the
existence of an oracle O. This oracle simply samples from the set of covers ac-
cording to their distribution.

Furthermore, instead of employing hypothesis testing, the security of the ste-
ganographic scheme is modeled as a probabilistic game between a judge and a
warden. In preparation for the game, the warden draws samples of the oracle O.
Furthermore, an embedding oracle is implemented as a black box seeded with an
unknown stego key.

The game is formulated as follows: Based on the output of the two oracles (O
and the embedding oracle), the warden has to distinguish between both of them.
The advantage of the warden is defined as the probability of correct decision minus
0.5 (probability of a correct guess). The steganographic scheme is considered
secure if the warden’s advantage is negligible.

2.2.2.1. Complexity-Theoretic Approach According to Hopper et al. [63]

In their approach, Hopper et al. consider the communication channel in a rather
general way. They describe it as the distribution over sequences of timestamped
bits, "timestamped" because the model also considers steganographic methods
that use timing between individual bits for message hiding.

In this model, the oracle O is allowed to make partial draws from the channel.
Therefore, it samples the channel distribution based on the channel history. Con-
sequently, the oracle Oh,o is able to provide the next h timestamped bits based
on the previous o bits.

Furthermore, Hopper et al. model the steganographic scheme as a pair of proba-
bilistic algorithms PEmb(), PExtr() rather than as mapping functions Emb() and
Extr() as so far.

Based on the input of a stego key k, a secret message m, the history of h
timestamped bits and the oracle Oh,o, the output of the embedding algorithm is
a sequence of l blocks of o timestamped stego bits.

Furthermore, the warden has access to Oh,o. He is allowed to make as many
queries as he wishes. Based on these assumptions, the security of the system is
modeled on the following game:
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A judge prepares two oracles. The first oracle, called embedding oracle, is
seeded with a fixed stego key and is implemented as a black box PEmb(h,k,m).
Furthermore, the judge prepares a second oracle, which also has two inputs de-
fined as O(h,m).

Now the judge randomly selects one of the oracles and gives it to the attacker.
The attacker has to make a decision as to whether he is observing the output of
the embedding oracle or the cover oracle O. Hopper et al. define the advantage
against a steganographic scheme and ǫ-insecurity on the basis of the attacker’s
ability to correctly identify the oracle using polynomial-complexity calculations.

2.2.2.2. Complexity-Theoretic Approach According to Katzenbeisser
et al. [65]

In the approach of Katzenbeisser et al. [65], the judge prepares in a first step the
so-called structure evaluation oracle PEmb(χ(0),k,m) (embedding oracle), where
k is a randomly chosen stego key. Note that the embedding oracle is implemented
as a black box. As a result, the oracle returns a stego object containing the hidden
message m in cover χ

(0) using key k for embedding.

In a second step, the judge gives the attacker both the embedding oracle and
the cover oracle O. The attacker is now allowed to query O an arbitrary but
finite number of times and thus is allowed to obtain a number of covers. Based
on these covers, he is able to describe the distribution of covers he has observed.

Furthermore, he can also query the embedding oracle with arbitrary messages
and covers and thus obtain several stego objects. Generally, the attacker is not
limited in the number of queries, but he performs only polynomial-complex cal-
culations.

The probabilistic game itself is described as follows: The cover oracle O is
queried twice, receiving χ1 and χ2. Now, the judge selects a random message m

and determines PEmb(χ2,k,m). Afterwards, the judge flips a coin in order to
decide whether to give the cover χ1 or the stego object PEmb(χ2,k,m) to the
attacker.

Now, the attacker performs a probabilistic test in order to decide whether he
has observed a cover or a stego object. If the attacker has some systematic
advantage in distinguishing between both objects, the steganographic scheme
obviously leaks information. The advantage of the attacker can be expressed by
the probability of a correct decision minus 0.5 (probability of a correct guess).
According to Katzenbeisser et al., the steganographic scheme is considered secure
for oracle O if the attacker’s advantage is negligible.
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2.2.3. A Brief Introduction to Steganalysis

In practical scenarios, such definitions of steganographic security play only a
minor role. Generally, a steganographic scheme is considered broken whenever
an attacker is able to distinguish between cover and stego with probability better
than random guessing. Note that it is not necessary to gain access to the hidden
content itself.

Consequently, steganalysis can be seen as the complement to steganography.
Whereas the goal of steganography is to achieve a high embedding capacity while
maintaining a high security, the goal of steganalysis is to detect the presence of
the hidden message.

Therefore, in practice, the security of a steganographic scheme is defined by its
power to defeat detection, i. e., to resist steganalytical investigations. An attack
is considered successful if the steganalyst’s decision problem can be solved with
higher probability than random guessing.

Generally, there are two types of steganalysis attacks: targeted and blind at-
tacks. Both types of attacks try to distinguish between cover and stego data
based on some statistical quantities extracted from the observed data.

For targeted steganalysis, these quantities are usually designed by analyzing
specific traces of embedding, i. e., they are chosen based on the knowledge of the
embedding algorithm and are thus targeted at a specific embedding operation.
Thus, in order to find appropriate features for the steganalytical investigation,
an attacker has to find quantities that will be changed during embedding.

Examples for targeted attacks are, e. g., the histogram attack by Westfeld [98]
or the Sample Pair Analysis by Fridrich et al. [39]. These attacks aim to detect
LSB embedding-based schemes. Furthermore, targeted attacks based on calibra-
tion are known such as, e. g., the attack on Outguess [40] and F5 [41].

On the contrary, features for blind steganalytical attacks must be designed in
a way so as to be able to detect every possible steganographic scheme, including
future schemes. Therefore, these features have to be designed in a heuristic
manner in order to be sensitive to typical steganographic changes. Examples for
blind steganalyzers can be found, e. g., in [33, 68, 91].

Just as with the decision problem in Cachin’s hypothesis testing (see Section
2.2.1), the attacker must be aware of the two kinds of errors (see Table 2.1),
namely the misclassification of a cover as a stego object (also denoted as False
Alarm or False Positive) and the missed classification, i. e., when he falsely clas-
sifies a stego object as cover (also denoted as False Negative).

Since we find in general that the higher the error probabilities, the better the
security of a steganographic scheme, the performance of a steganalytical method
can be described based on the probabilities of these two errors. A common way
to visualize the characteristic relation between the two error rates is the so-called
Receiver Operating Characteristics (ROC) curve.

It allows comparisons of the security of alternative steganographic schemes for
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a fixed detector, or conversely, comparisons of detector performance for a fixed
steganographic scheme. An example for an ROC curve is shown in Figure 2.2.
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Figure 2.2.: Example of a ROC Curve.

Generally, a curve on the diagonal line would signal perfect security, i. e., the
detector’s results are no better than random guessing. In order to be able to
compare different steganalytical methods, different metrics based on the ROC
curve are calculated. Firstly, as the most frequently used metric, the Area Under
the Curve (AUC) describes the detector’s reliability as the area under the curve
minus the triangle below the 45 degree line scaled to the interval [0, 1]. A value
of 1 stands for a perfectly detectable steganographic scheme, whereas a value of
0 signifies the undetectability of the steganographic method under investigation.
Note that this means only the undetectability of the scheme considering the
investigated steganalytical method, not undetectability in general.

Other metrics for comparing different steganalytical approaches include, e. g.,
the False Positive rate at 50 percent detection rate (FP50) and the Equal Error
Rate (EER), i. e., the rate where PMD = PFA.

Among the list of ROC-based metrics, there is no unique best option [8]. Each
metric suffers from specific weaknesses. For instance, AUC aggregates over prac-
tically irrelevant intervals of the curve, and EER and FP50 reflect the error rates
for a single arbitrary value. For more details see, e. g., [8, 36].
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2.2.4. Conclusion

To summarize the considerations about defining the security of steganographic
schemes, we would like to recall that the information-theoretic approach is based
on the assumption that the cover source distribution is known by an attacker.
Since an attacker has access only to some statistical properties of a finite number
of covers, it is not possible to comprehensively describe the cover source.

Generally, describing the cover using a simplified model, we obtain a concept of
describing security with respect to a model. Thus, the steganographic scheme is
considered secure within the model. This consideration also applies for practical
steganalysis tools.

Consequently, the information-theoretic definition of security in steganography
is the most widely accepted approach describing the security of steganographic
schemes and is also the basis of this work. Note that in this approach the distor-
tion introduced by cover modification during embedding has to be kept as small
as possible in order to maintain Ps as close as possible to Pc and thus, achieving
DKL(Pc||Ps) as close to zero as possible.

2.3. Implications for the Practical Design of

Steganographic Schemes

Based on the definition of steganographic security, the goal for constructing good
steganographic schemes is clear - to preserve the statistical distribution of the
cover. Since a digital image contains high dimensional empirical data, an accurate
description based on statistical models is not possible. It is, however, possible
to use the model of steganographic security based on the information-theoretic
approach, to introduce a general approach for improving the security of known
steganographic schemes.

According to Fridrich et al. [51], the security2 is mainly influenced by several
degrees of freedom that are interdependent but are mostly studied in an isolated
manner:

• the type of cover media, whose properties are known to the attacker accord-
ing to Kerckhoff’s principle,

• the method for selecting the positions that might be modified,

• the embedding operation that is applied to the individual cover elements to
embed a message, and

• the number of embedding changes.

2In practice, security is often understood as the inability to practically construct a reliable
detector.
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2. General Concept of Steganography

Even if all four aspects are implicitly a part of the steganographic scheme, in
this thesis we focus on the last point, the number of embedding changes. This
is motivated by results based on steganalytical investigations [50, 71]. These
investigations show that it is advantageous to modify as little as possible and
only in inconspicuous parts of the cover. It is assumed that the security of a
steganographic scheme is proportional to 1/dρ(cover, stego), where dρ() is a
measure to express the distortion introduced during embedding.

Consequently, the security of a steganographic scheme also depends on the
relative message length α, i. e., the more bits have been embedded the more
distortion is on average assumed. Thus, in order to increase the steganographic
security, it seems reasonable to minimize the number of changed elements.

In the literature, we find different design principles or strategies for the design
of steganographic schemes, e. g., [29, 8, 36]. In this thesis, we will adhere to the
design principles of Fridrich, which shall be outlined in the following section.

2.3.1. Design Principles According to Fridrich

Within their work, Fridrich et al. propose four different heuristic principles that
can be applied to decrease the KL divergence between cover and stego thus
increasing steganographic security [36]: model-preserving steganography, mak-
ing embedding mimic natural processing, steganalysis-aware steganography and
Minimum-Embedding-Impact Steganography. Note that these principles are al-
ready mentioned in [71].

2.3.1.1. Model-Preserving Steganography

The basic idea of model-preserving steganography is to preserve the statistics of
the cover. This principle follows directly from the definition of steganographic
security. However, since cover objects are high dimensional, a simplified model of
covers is formulated and the embedding process is designed to preserve this model.
Steganographic systems preserving the simplified cover statistics are undetectable
within the model. Nonetheless, such systems can be easily attacked by identifying
a statistical quantity that is not preserved.

Within this approach, there are two main directions: statistical restoration and
model-based steganography. A statistical restoration approach consists of a two
pass procedure. Look, for example, at Outguess [81]. Within this approach, a
message is embedded into a Joint Photographic Experts Group (JPEG) image
by slightly modifying the quantized Discrete Cosine Transformation (DCT) coef-
ficients. In order to preserve the histogram of all DCT coefficients, the stegano-
graphic algorithm is a two pass procedure. Embedding takes place in the first
pass. In the second pass, corrections are made in order to match the histogram
of the stego with the histogram of the cover.

22



2.3. Implications for the Practical Design of Steganographic Schemes

Contrary to this two step approach, model-based steganography [84] fits a
parametric model by means of the given sample data and tries to preserve this
model during embedding. Thus, there is no need for a correction step.

One main disadvantage of this approach is that an attacker simply has to find
a statistical quantity that is not preserved during embedding, i. e., one which is
disturbed. Note that the additional changes of the restoration phase often cause
artifacts to make steganalysis even simpler [9]. Then again, preserving a more
complex model is in general not a solution to this problem.

2.3.1.2. Mimic Natural Processing

To overcome the problems of the approach mentioned above, mimic natural pro-
cessing seems reasonable, i. e., to masquerade the embedding as a natural process,
such as noise superposition during image acquisition. Therefore, the effect of em-
bedding is indistinguishable from natural processing and the stego images should
stay compatible with the distribution of cover images [38, 32].

An example of this class of steganographic algorithms is stochastic modulation
[38], which tries to mimic the image acquisition process. The basic assumption of
this approach is that the process of image acquisition is affected by multiple noise
sources. The message is thus embedded by superimposing quantized independent
and identically distributed (iid) noise with a given distribution.

A more precise model of an image acquisition process is proposed by Franz
et al. in [32]. This approach describes the noise introduced during the scanning
process and models the embedding process accordingly.

2.3.1.3. Steganalysis-Aware Steganography

A completely different approach is steganalysis-aware steganography, in which
the designer of a stegosystem focuses on making the impact of embedding unde-
tectable using existing steganalysis schemes. He is thus using known steganalysis
tools as guidance for the design of a steganographic scheme.

Examples of this approach include, e. g., ±1 embedding, also called LSB match-
ing and was designed to overcome the weakness of LSB embedding [39, 17]. An-
other example is the steganographic algorithm F5 by Westfeld [96], which was
originally designed to overcome the histogram attack [98]. This algorithm tries
to preserve the shape of the histogram, which, after embedding, looks similar to
the histogram of an image compressed using a lower quality factor.

2.3.1.4. Minimum-Embedding-Impact Steganography

The fourth class of steganographic algorithms, according to Fridrich [36], is
Minimum-Embedding-Impact Steganography. The designer of such a stegano-
graphic scheme attempts to embed by minimizing the total embedding distortion.
Therefore, the sender first assigns the cost of making an embedding change to
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2. General Concept of Steganography

each element of the cover and then embeds the secret message while minimizing
the total costs of embedding.

Contrary to the first three approaches where the sender aims at preserving
a chosen model of the cover, the sender embeds by minimizing a heuristically
defined embedding distortion within this approach. Whereas undetectability with
respect to the chosen model can be assumed for the first three approaches, this
is not possible for Minimum-Embedding-Impact Steganography.

Although the relationship between distortion and security is far from clear
[25], embedding while minimizing a distortion function is easier to solve than
embedding with constraints. Moreover, as stated in the literature, minimizing
the distortion seems to lead to more secure stego systems [50, 71]. Note that the
approaches become similar when minimizing is defined as norm between features
as in [79].

Seeing that only selected parts of the cover were used for embedding, this
approach can be seen as a non-shared selection channel. Thus, the receiver does
not have access to the selection rule and has to find a way to extract the hidden
message.

As a solution to this problem, channel coding techniques, namely syndrome
coding, were introduced in the embedding process, e. g., [16, 44]. By means of
these techniques, the sender is free to choose embedding positions arbitrarily
without the need to share the selected positions with the recipient.

2.4. An Advanced Model of the Steganographic

Scheme

This thesis focuses on the design principle of Minimum-Embedding-Impact Ste-
ganography [36]. The overall goal thereby is to reduce the detectability of em-
bedding. Intuitively, we can see that the security of a steganographic scheme
depends on the relative message length α. For a small relative message length α,
we need less changes, hence less statistically detectable artifacts are introduced.

Therefore, concepts of coding theory, e. g., syndrome coding as a technique to
improve steganographic security by minimizing the overall embedding distortion
introduced during embedding are investigated in this thesis.

The goal, however, is not to design a whole steganographic scheme (see Fig-
ure 2.1), i. e., a complete embedding process. Instead, the specific part of the
embedding algorithm will be more closely examined where the stego bit string
B is chosen. Therefore, we introduce an advanced model of the steganographic
scheme in order to clarify the basic concept of this thesis.
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2.4.1. The Sender

Generally, the challenge for the sender is to modify the cover χ
(0) in such a way

that the receiver is able to extract the hidden message from the resulting stego
data χ

(m).

In this thesis, the embedding process Emb() is modeled in a more specific way
compared to the general model of a steganographic scheme as given in Figure
2.1. In this model, following Günther [58], the embedding process is divided into
3 steps (see Figure 2.3): the pre-processing step Π, the embedding step Θ and
the cover-modification step Γ:

• In the pre-processing step Π, a cover object χ
(0) is processed to extract a

bit sequence A of length N ,

• In the embedding step Θ, this sequence A is modified to embed the message
m, resulting in sequence B, and

• In the cover-modification step Γ, the modifications on the bit string are
translated to the cover to obtain the stego object χ

(m).

Π Γ

Θ

cover
object

stego
object

secret
message

key

χ
(0)

cover object

χ
(0)

χ
(m)

m stego bit
string

B

profile of
embedding
impact

ρ[1], . . . , ρ[N ]

cover bit
string

A

k

Figure 2.3.: Schematic Diagram of the Sender, Including the Pre-Processing Step
Π, the Embedding Step Θ and the Cover-Modification Step Γ Ac-
cording to [58].

25



2. General Concept of Steganography

This thesis focuses on the second step, the embedding step Θ, i. e., how to
reasonably extract an appropriate bit string A from the cover data is not con-
sidered. This is indeed an important point, the answers to which go far beyond
the scope of this thesis. However, since the embedding step Θ is influenced by
the output of the pre-processing step Π, a short description of this step will also
be given. The last step, the cover-modification step Γ, does not form a part of
this focus either. This step, of course, is closely connected to the pre-processing
step. The goal of this last step of the embedding process is to apply the necessary
modifications to the cover data in order to achieve the stego data which will be
transmitted via the channel.

2.4.1.1. Pre-Processing Step Π

The cover object can be data of various formats, e. g., Bitmap Image (BMP),
JPEG, MPEG-1 Audio Layer 3 (MP3) or Moving Picture Experts Group (MPEG),
and can be seen as a sequence of N discrete symbols. In the pre-processing step
Π, a bit string A is selected from these discrete symbols by means of a symbol as-
signment function. Generally, the pre-processing step can be seen as an interface
between the cover object and the embedding step.

To give a naive example of such a bit selection function, it is assumed that the
cover is given in a format that can be further sub-classified. For images such as
BMP, pixels come to mind, or DCT coefficients for JPEG images. Audio files
can be further sub-classified in samples. Consequently, each element of the cover
(pixel, DCT coefficient, or audio sample) can be represented by t bits.

A popular approach for a bit selection function π(x) is the selection of the
Least Significant Bit (LSB)s of the cover χ

(0). Consequently, the selected bit
string consists of binary digits:

A[i] = χ
(0)[i] mod 2. (2.2)

Even if the approach of selecting the least significant bits of all cover elements
is popular, it might be advantageous to incorporate knowledge of the statistical
properties of the cover into the bit selection. Note that when speaking of cover
and stego, this thesis refers to the bit strings A ∈ F2

N and B ∈ F2
N of length N ,

i. e., cover properties are not considered directly.
Generally, when embedding a message m ∈ F2

|m|, the sequence A is changed
into a sequence B. In order to determine which position should be changed and
which should remain untouched, a function that determines the embedding impact
is needed.

The impact of an embedding change in the i-th element of the cover (either
pixel, DCT coefficient, or audio sample) is measured by a non-negative number
ρ[i]. This value should express how strong a modification of this particular po-
sition of the cover would influence the probability of an attacker detecting the
embedding.
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2.4. An Advanced Model of the Steganographic Scheme

Consequently, the embedding impact should be designed to correlate with the
statistical detectability of the embedding changes. Doing this for each element
of the cover, the profile of embedding impact ρ[1], . . . , ρ[N ] is achieved.

In general, the impact for each element may depend on different parameters.
For example, in images, the local texture may be taken into account to reflect
the fact that embedding changes in textured or noisy areas are more difficult to
detect than changes in smooth regions of the cover. More information about the
profile of embedding impact can be found in Section 2.5.

2.4.1.2. Embedding Step Θ

Within the embedding step Θ, the sender has to determine the stego bit string
B containing the secret message m to be communicated.

Typically, embedding operations function on individual elements A[i] in the
bit string A. The simplest and probably the oldest embedding operation in
digital steganography is the LSB replacement also called LSB embedding. This
operation is based on the (incorrect) assumption that the least significant, i. e.,
the right-most bit in digitized signals is purely random. Thus, it can easily be
replaced by the secret message:

B[i] = m[i]. (2.3)

However, this embedding operation is weak, since LSBs are generally not purely
random. Many steganalytical investigations using this effect have been proposed,
e. g., the histogram attack of Westfeld [98].

Almost as simple as LSB replacement - though much more difficult to detect
- is LSB matching. This embedding operation, also called ±1 embedding, was
introduced by Sharp [89]. In contrast to simply replacing the least significant
bit, this embedding operation applies incrementing or decrementing with equal
probability, whenever the message bit m[i] is not equal to A[i]:

B[i] =

{

A[i] for A[i] = m[i]

A[i] ± 1 otherwise.
(2.4)

The random sign of the embedding change (incrementing and decrementing
with equal probability) avoids structural dependencies. Many steganographic
algorithms are based on this embedding operation.

This embedding operation, however, does not take into account the impact of
embedding changes. Remember that by means of the profile of the embedding
impact, the sender is able to determine the overall embedding impact when mod-
ifying sequence A into B in order to embed the message m. Usually, there are
different possibilities for choosing a sequence B, including the secret message.
Therefore, the sender has the possibility to choose one out of several possible
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sequences in the embedding step Θ according to a given profile of the embedding
impact ρ[1], . . . , ρ[N ].

Generally, the goal within Minimum-Embedding-Impact Steganography is to
minimize the overall embedding impact defined as:

dρ(A,B) =
N∑

i=1

ρ[i]|A[i] − B[i]|. (2.5)

Note that this distortion measure is a strength measure of embedding changes.
The definition of the overall embedding impact given here, implicitly assumes
that the embedding impact of neighboring elements is independent. It is defined
as the sum of measures at individual elements of the cover, i. e., no dependencies
are considered. This is a simplification since the embedding modifications can
usually interact among themselves. For example, making two changes to adjacent
elements might be more detectable than making the same changes to two elements
far apart from each other.

In general, ρ[i] may depend on the neighborhood of a cover element or some
side-information, such as the quantization error. Alternatively, ρ[i] may be de-
rived from theoretical considerations as ρ ∝ −ln p[i] [37], where p[i] is the prob-
ability with which A[i] should be changed; p[i] derived from a cover model that
minimizes the root rate [22], see Section 2.1.3. Thus, ρ may be highly non-
uniform [24]. A steganographic approach considering such a model is HUGO
[79], working with an additive approximation and applying a model-correction
step.

For the sake of simplification, in this thesis it is assumed that the density
of embedding changes is low. In this case, the assumption of independence is
plausible, because the distance between modified cover elements will usually be
large. Consequently, the embedding changes will not interfere much.

2.4.1.3. Cover-Modification Step Γ

In the cover-modification step Γ, the last step of the embedding process, the
cover-modification must be applied. Based on the necessary embedding changes
determined in the embedding step, i. e., based on B, the sender has to translate
the modifications to the cover χ

(0) in order to achieve χ
(m) containing the secret

message m. Of course, this cover modification requires knowledge of the pre-
processing step.

At this point, the simple bit selection function presented in Section 2.4.1.1, in
which the LSBs of the cover χ

(0) were selected to obtain the cover bit string A:
A[i] = χ

(0)[i] mod 2 should be brought to mind. Based on this selection function,
the sender has to apply the following operation within the cover-modification step:

χ
(m)[i] =

[[

2

⌊
χ

(0)[i]

2

⌋ ]

2

⊕B[i]

]

10

. (2.6)
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2.4.2. The Receiver

The scheme for the receiver following Günther [58] can be seen in Figure 2.4. The
challenge for the receiver is to extract the secret message from the stego data.
Therefore, two processing steps are required: the pre-processing step Π and the
extraction step Λ. Like the sender, the receiver also has to extract the bit string
B from of the stego object χ

(m). Afterwards, the extraction step Λ can be applied
to obtain the embedded secret message. It is not necessary for the receiver to
reconstruct the cover data itself.

Π Λ
stego
object

secret
message

key

stego bitstring

Bχ
(m)

m

k

Figure 2.4.: Schematic Diagram of the Receiver, Including the Pre-Processing
Step Π and the Extraction Step Λ According to [58].

2.5. Profile of Embedding Impact

Steganography by cover modification introduces some embedding changes into the
cover which may have a different impact on the statistical detectability depending
on, e. g., the local context - the properties of the cover element being modified.

For the most part, the impact of embedding is related to the detectability of
an embedding change at that particular position of the cover, i.e., the embedding
impact is influenced by to the costs of making an embedding change at this posi-
tion. Assuming that there are no interactions between the costs of different cover
elements, e. g., the costs are additive and independent, the overall embedding
impact can be seen as a sum of costs for the different positions that have been
changed during embedding (see Equation (2.5)).

It can be distinguished between two different profiles of embedding impact
ρ[1], . . . , ρ[N ]: the uniform profile and the general profile. If a uniform profile is
defined, i. e., ρ[i] is a constant, the embedding distortion can be measured as the
number of changes necessary to embed the secret message.
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In a more general profile, where ρ[i] is defined for each cover element indepen-
dently, the severity of changes influences the embedding distortion. The terms
uniform vs. general profile are based on Filler [19], who distinguishes between
different profiles of embedding impact. The separation, however, can also be
based on the different distortion measures resulting from different profiles of the
embedding impact as introduced in [8]. Böhme uses the terms number of changes
and severity of changes instead.

It is necessary to recall the principle of minimal embedding impact [36], where
the security of the steganographic scheme should be increased by minimizing the
Kullback-Leibler divergence between the distributions of cover and stego objects.
Note that both profiles require different strategies to minimize the embedding
distortion during embedding.

2.5.1. Uniform Profile

Whenever the profile of embedding impact is defined as ρ[i] = const ∀i =
1, . . . , N , the embedding distortion linearly increases with the increasing number
of embedding changes. Therefore, the more B differs from A, the higher the
embedding distortion. Consequently, the overall embedding distortion can be
determined by simply counting the number of embedding changes:

dρ(A,B) =

N∑

i=1

ρ[i] |A[i] − B[i]|

∝ w(A ⊕ B).

(2.7)

The embedding distortion is thus simply defined as the Hamming distance
between cover and stego. Therefore, minimizing the embedding impact means
minimizing the number of embedding changes considering a uniform profile.

Note that considering typical embedding operations like LSB replacement or
LSB matching [89] and ρ[i] = 1, an average embedding distortion of:

dρ(A,B) =
α

2
× N =

|m|
2

, (2.8)

is obtained depending on the relative message length α = |m|
N

. The average
embedding distortion dρ(A,B) is calculated from all possible messages and covers
for a given steganographic scheme.

2.5.2. General Profile

Besides a uniform profile, where only the number of embedding changes should
be minimized during embedding, the severity of changes as a distortion measure,
i. e., general profile, could also be considered.
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Based on such a general profile, it is possible to apply an adaptive embedding
rule, taking into account additional side information. Whenever ρ[i] is highly
non-uniform, the sender restricts the changes to a selection channel formed by
those elements with appropriate values ρ[i].

Within this approach, a fundamental problem occurs: Since the values ρ[i] are
computed from the cover image or some side-information not available to the
receiver, the receiver is generally unable to determine the same selection channel.
This problem is known as a non-shared selection channel. A solution to this
problem is embedding based on syndrome coding, a principle of coding theory
considered in this thesis.

In general, the detectability measure should be compatible with results ob-
tained by blind steganalyzers. Thus, the statistical impact of embedding at a
given position depends on many factors [37], e. g.,

• the character of the embedding modifications,

• their amplitude, and

• the local pixel neighborhood.

Most frequently used measures are related to the distortion introduced during
embedding, i. e., the distance between cover and stego. However, this may be a
poor indicator for steganographic security. It is well known that LSB replacement
is an operation with the smallest possible distortion3. It is still easily detectable.
For most other embedding operations, however, the embedding distortion based
on the distance between cover and stego is strongly positively correlated with
the detectability of the scheme. This claim is supported by the results of ±k
embedding in the spatial domain [53, 62] and attacks by blind steganalyzers
[33, 68, 91].

2.5.3. Modeling the Profile of Embedding Impact

In practical steganographic schemes, modeling the profile of embedding impact
is mostly done in a heuristic manner. For example, F5 applies syndrome coding
based on Hamming Codes with ρ[i] = 1 [96]. Moreover, Perturbed Quantization
(PQ) use a method to minimize the distortion proportional to the quantization
error [44]. Note that Fridrich et. al. state that even a simple distortion model
counting the number of changes correlates well with the statistical detectability
[50].

Now, an outline on how to model a profile of embedding impact based on [37]
will follow. In accordance with the assumption in this thesis, Fridrich et al. state
that a bit selection function is applied to select a binary bit string A from the

3Note that the difference between cover and stego is 1 at most.
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cover χ
0. Furthermore, it is assumed that each modification of A into B directly

results in a modification of the associated position in the cover.
Fridrich et al. state that ρ[i] should depend on the local texture. Since changes

in textured or noisy areas are less likely to introduce detectable artifacts, they
propose to capture this by introducing weights ω[i]. The impact ρ[i] of such a
modification is thus modeled as follows:

ρ[i] = ω[i] |A[i] −B[i]|ν , (2.9)

with a non-negative parameter ν and weight factors ω[i] ≥ 0.

2.5.3.1. Modeling a Uniform Profile

Fridrich et al. propose in [37] two different strategies as how to model a uniform
profile which is outlined here.

Number of Changes
It is possible to realize different distance measures by means of ν: Whenever

ω[i] = 1 ∀i and ν = 1, |A[i] − B[i]| is found to be at most 1. Thus, the impact
of embedding is directly proportional to the Hamming distance between A and
B, i. e., the higher the distance the higher the embedding impact.

Therefore, the distortion measure dρ(A,B) is equivalent to the total number of
embedding changes. In this case the goal of the sender is to minimize the number
of embedding changes.

Energy of Changes
Another example is ω[i] = 1 ∀i and ν = 2, where dρ(A,B) is equivalent to the

energy of the modifications in this case. Consequently, the goal for the sender is
to keep the energy of the embedding modifications low.

2.5.3.2. Modeling a General Profile

In general, the weighting factors ω[i] may depend on the local environment,
reflecting the fact that embedding changes in noisy regions are more difficult to
detect. Thus, the factors can be used to price the individual cover elements.

Therefore, Fridrich et al. introduced the concept of Wet Paper Steganography
in [44], where each element of the cover is either wet or dry (Section 2.1.2.2),
based on the severity of a change concerning the perceptibility or detectability.
Within this scenario, it is found that ω[i] = 1 for i ∈ |Dry| for some index set
Dry and ω[i] = 0 otherwise4. The goal of the sender is to embed the message
without altering any wet element.

4Note that it might be feasible to define ω[i] ∈ [0, 1] instead, in order to distinguish between
more than two classes of elements.
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Usually, the embedding impact ρ[i] may also depend on some side-information
about the i-th element available to the sender as in, e. g., Perturbed Quantization
(PQ) [44, 48]. In this approach, information about rounding errors influence the
embedding distortion ρ[i].

An example application for this approach is embedding while downsampling.
The cover is, e. g., a 16 bit per channel TIFF image (48 bit per pixel) and the
sender embeds while decreasing the color depth to 8 bit per channel. His goal is
to minimize the combined quantization and embedding distortion.

For this scenario, Fridrich et al. derive a profile of embedding impact in [37].
The 16 bit color value is given with z[i] and Q = 28 denotes the quantization
step for the color reduction. The quantization error at the i-th pixel can be
determined as:

err[i] = Q

∣
∣
∣
∣

z[i]

Q
−
⌈
z[i]

Q

⌉∣
∣
∣
∣

with 0 ≤ err[i] ≤ Q

2
. (2.10)

In order to embed the message as the LSB of the pixel under investigation,
the sender will, in half of the cases, need to round z[i] to the opposite direction,
resulting in an increased quantization error Q − err[i].

The embedding impact can now be captured with:

ρ[i] = Q − 2 err[i]. (2.11)

Thus, ρ[i] expresses the difference between the two rounding errors, i. e., the
difference between the increased quantization error and the quantization error.

Therefore, it would be advantageous for the sender to select those pixels with
the smallest ρ[i] for embedding, i. e., the pixels whose values are close to the
middle of the quantization intervals, i. e., err[i] ≈ Q

2
.

2.5.4. Embedding Strategy

When designing a steganographic scheme, the question is, whether it is better to
make fewer embedding changes with larger embedding impact or more changes
with a smaller impact. The answer depends, according to Fridrich et al., on the
profile of the embedding impact [34].

Each time the distortion sharply increases when more than |m| elements are
used, the best strategy might be to embed the message only within the |m| bits
with low ρ, so, not using syndrome coding at all.

Whenever considering a uniform profile, the best approach is to use all ele-
ments thus applying syndrome coding in order to minimize the total number of
embedding changes [34].

In case of Perturbed Quantization (PQ), it is always advantageous to use more
elements for embedding than the message length, i. e., to apply syndrome coding.
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2. General Concept of Steganography

It has been shown that using 25% more elements than message length is advan-
tageous. In this case, the embedding impact can be decreased by one quarter
compared to using only the best α elements [34].

Ideally, the sender should make use of all N pixels and select them with prob-
abilities determined by their embedding impact. This would lead to the optimal
embedding strategy [37]. These schemes, however, are most likely not able to
reach the maximal possible embedding efficiency e, defined as number of embed-
ded bits per introduced distortion.

Another interesting question is whether it is advantageous to allow fewer but
more intense changes. Fridrich et al. therefore analyzed q-ary embedding in the
spatial domain. As a result, they found that ternary embedding is the optimal
choice for steganography if the goal is to minimize the embedding distortion [49].
The expected distortion per pixel was determined for a wide range of relative
message lengths. It can be seen that the minimal distortion is obtained for q = 3.

Nonetheless, Filler stated that ternary coding is less effective for a smaller
relative message length α as the differences between the embedding efficiency for
ternary coding e3 and binary coding e2 decreases with decreasing α [20].

Moreover, note that larger values of q allow embedding using a fewer number
of embedding changes at the expense of increasing their amplitude. These two
trends are working against each other. A general result of Fridrich et al. can be
formulated as follows: It is not beneficial to increase the amplitude of embedding
changes in exchange for their smaller number.

2.6. Conclusion

As mentioned before, this thesis deals with steganographic schemes based on
the design principle of Minimum-Embedding-Impact Steganography. Therefore,
described and compared are different algorithms based on binary syndrome cod-
ing as a technique to improve steganographic security by minimizing the overall
embedding distortion introduced during embedding5. The overall goal of these
approaches is to reduce the detectability of embedding by minimizing the intro-
duced distortion.

However, the goal is not to design a whole steganographic scheme, i. e., a com-
plete embedding process including the pre-processing step Π, the embedding step
Θ and the modification step Γ. Instead, the algorithms focus on the embedding
step Θ. Thus, the cover bit string A, the message m and a profile of embedding
impact ρ[1], . . . , ρ[N ] are considered as given. Note that the algorithms described
in this work are mainly designed for a general profile of embedding impact based
on the concept of Wet Paper Steganography. Within this scenario, wet elements

5Note that choosing embedding positions is possible for the sender only if the length of the
secret message |m| is smaller than the number of elements of the cover sequence N . In this
case, the sender is able to select the elements to be changed in order to embed m.
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are excluded from the embedding process, i. e., only dry elements are modified
in order to embed the confidential message. Based on this assumption, the total
number of embedding changes is suited as a measure for dρ(A,B).

Besides minimizing the introduced distortion, and thereby maximizing the se-
curity, the aim is to minimize the embedding complexity while maximizing the
success rate and the embedding capacity. Since these are competing goals, how-
ever, there is an attempt to find a tradeoff between those four properties.
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3. Basic Principle of Embedding

Within this chapter, we introduce the principle of syndrome coding which has its
origin in Error Correcting Codes (ECC). We use the concept of syndrome cod-
ing as a tool to improve steganography by minimizing the distortion introduced
during embedding.

In general, syndrome coding is based on a parity-check matrix Hk×n, whereas
we introduce three different classes of matrices: parity-check matrices built accord-
ing to deterministic rules, parity-check matrices based on stochastic design rules
and parity-check matrices based on stochastic design rules with constraints. For
the first class, i. e., matrices built on deterministic design rules, we furthermore
outline the basics for the underlying codes.

Moreover, we introduce the concept of partitioning the vector space in cosets
and define parameters describing the performance of a code suited for steganog-
raphy, such as the covering radius R, the average number of embedding changes
Ra and the embedding efficiency e. We summarize this section with the concept
of this work.

3.1. Basic Principle of Embedding with

Syndrome Coding

The concept of syndrome coding in general can be described as follows: In coding
theory it is assumed that a codeword c is transformed during transmission due
to a random error pattern f into a sequence b = c ⊕ f .

Note that Hk×nc
T = 0 ∀c ∈ C, where C is the code described by the parity-

check matrix Hk×n, n describes the length of any codeword, and k gives the
number of parity bits6. Thus, we can use the result of:

s = Hk×nb
T = Hk×nf

T (3.1)

for error detection, where s is the so-called syndrome. If s equals 0, we assume
a correct transmission of the codeword c, and in this way, b = c. Note that this
result is also possible if the superposing error pattern f is a codeword. Because
of linearity, in this case b = c⊕ f is also a codeword, but b 6= c. Such errors are
not detectable at all.

6More information about this coherence can be found in Section 3.2.3.
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3. Basic Principle of Embedding

Whenever s 6= 0, the goal for ECC codes is to modify the received sequence
b in a way that Hk×nb

T
corr = 0. For more details on error correction algorithms

see, e. g., [100, 11, 76, 70].

However, the goal in steganography is different. While for ECC the syndrome
s = Hk×nb

T of length k is used for error detection, in steganographic schemes,
syndrome coding is used to embed a secret message of length k: The receiver
should be able to extract the confidential message simply by calculating emb =
Hk×nb

T .

Therefore, the cover sequence A is divided into parts a of length n and the
message m into parts emb of length k. Usually, the syndrome derived by Hk×na

T

is not equal to the message we would like to embed, i. e., s 6= emb. Thus, we
have to deliberately modify the cover part a in a way that the resulting stego
part b fulfills s = emb:

s = Hk×n(a⊕ f)T = Hk×nb
T = emb. (3.2)

Consequently, when embedding a message part emb into the cover part a, we
have to make modifications. Therefore, embedding by means of syndrome coding
forms part of the principle of embedding with cover modifications. However, the
impact of modifications varies for each sequence b, fulfilling Equation (3.2).

3.2. Determining Parity-Check Matrices

As described in the previous section, the concept of syndrome coding is based on
a parity-check matrix Hk×n. Within this section, we would like to take a closer
look at the parity-check matrix Hk×n. Generally, there are different possibilities
for handling this matrix, which must be known to sender and receiver of the
steganographic system. Generating Hk×n adaptively, i. e., depending on the cover
is complicated since the cover is modified during embedding.

Another, more promising approach is to use the matrix Hk×n as a secret stego
key, i. e., as a parameter to parametrize the steganographic system. However,
we believe that using publicly known matrices for syndrome coding might be
more suitable in practice. In this case, no matrices or generating algorithms
have to be shared. The security of the system can be improved by using a key-
based pseudo-random interleaver to pre-process the cover. In this case, only the
sender and the receiver, who have knowledge of the key, are able to reproduce
the pre-processing and thus, to reproduce the data used for embedding. Another
advantage is that sender and receiver can agree on a publicly known and well
investigated parity-check matrix Hk×n, whose properties are known. It is thus
possible, when choosing the parity-check matrix Hk×n, to make it dependent on
the channel used for communication as well as on the properties of the cover data
used for embedding.
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3.2. Determining Parity-Check Matrices

However, the question still remains as to how to design such a parity-check
matrix Hk×n. Generally, there are different approaches: The design may depend
on stochastic or on deterministic rules or on some mixture of both. In the fol-
lowing, we will examine in more detail the different approaches for the design of
the parity-check matrix Hk×n. Note that the codes mentioned within this section
differ only in their description, extracting the message is always done by Equation
(3.2).

3.2.1. Parity-Check Matrices Based on Stochastic Design
Rules

This section covers matrices built wholly according to stochastic rules. In the
literature, these matrices are often called random matrix. One example of the
usage of these matrices for syndrome-based embedding within a steganographic
system can be found in [44]. Within this scenario, the sender and the receiver
agree on a secret stego key that is used to generate a pseudo-random binary ma-
trix Hk×n. The probability of 0 and 1 in Hk×n is the same, i. e., P (0) ≈ P (1) ≈ 1

2
.

An example of such a matrix is given below:

H3×7 =





0 0 1 0 1 0 1
1 1 0 1 0 1 0
1 0 1 0 1 0 1



.

The system of equations used for syndrome coding (see Equation (3.1)) has a
solution for arbitrary messages emb of length k as long as rank(Hk×n) = k, i. e.,
as long as Hk×n consists of k linearly independent rows. For stochastic matrices
this is not always true. The probability for a stochastic binary matrix with equal
probability for 0 and 1 being of rank s with s ≤ k can be expressed according to
[12] by:

Pk,n(s) = 2s(k+n−s)−kn
s−1∏

i=0

(1 − 2i−k)(1 − 2i−n)

(1 − 2i−s)
. (3.3)

Thus, the probability that a binary stochastic matrix Hk×n can be used for
embedding k bits is:

Pk,n(k) = 2k(k+n−k)−kn
k−1∏

i=0

(1 − 2i−k)(1 − 2i−n)

(1 − 2i−k)

=
k−1∏

i=0

(1 − 2i−n).

(3.4)
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3. Basic Principle of Embedding

3.2.2. Parity-Check Matrices Based on Constrained
Stochastic Design Rules

Another class of matrices are stochastic matrices with constraints, i. e., these
matrices are not completely random, they also fulfill some boundary conditions.
One example of such matrices are sparse matrices, where P (1) = δ = 1 − P (0)
with δ < 0.5. Note that the Hamming weight of these matrices w(Hk×n) grows
linearly instead of exponentially depending on the codeword length.

Again, the system of equations used for syndrome coding (see Equation (3.1))
has a solution for arbitrary messages emb as long as rank(Hk×n) = k. Otherwise
it is not possible to embed k message bits. With decreasing density, the proba-
bility of the matrix Hk×n being of rank k decreases. However, the rank remains
approximately k until the density reaches a critical bound. Afterwards, it quickly
falls to 0. According to Fridrich et al. [42], the critical density is close to ldk/k.

An example of the usage of this class of matrices for syndrome-coding based
embedding can be found in [43]. In this paper, Fridrich et al. used sparse matrices
combined with Luby Transform (LT) Codes [77]. LT codes were introduced as
an example of codes with low encoding and decoding complexity. They are based
on graphs of logarithmic density.

Fridrich et al. exploit within their work the fact that the LT process provides a
method for the fast solution of an over-determined system of equations AxT = y

as long as the weights of columns in Hk×n follow the Robust Soliton Distribution
(RSD). Thus, they use the encoding process of LT codes to fasten the solving of
the system of linear equations (Equation (3.1)). This process is called Matrix LT
Process. The matrix and, thereby, the graph are generated randomly in such a
way that the degrees of encoding nodes follow the so-called RSD [43].

3.2.3. Parity-Check Matrices According to Deterministic
Design Rules

This section gives a brief introduction to linear codes, the basis for matrices built
according to deterministic design rules. Generally, a linear code can be defined
as follows:

A q-ary linear7 (n, l) code can be seen as a linear subspace C ⊂ Fq
n including

all possible codewords c ∈ C. The number of codewords of the code alphabet C
depends on the parameter l, we find |C| = ql. In this thesis, we consider q = 2,
i. e., binary codes.

Note that a code is generally characterized by several parameters: the code
rate β = l

n
and its performance. The parameter n describes the length of any

7A code is denoted as linear if Fq is a finite field and C is a vector subspace of Fq
n. A subspace

is a subset closed with respect to algebraic operations such as addition by an element of the
finite field, i. e., ∀x,y ∈ C, x + y ∈ C.
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3.2. Determining Parity-Check Matrices

codeword, and l gives the dimension of the code. The parameter l also gives the
number of information symbols, whereas k = n − l gives the number of parity
bits and is also denoted as co-dimension of the code.

Generally, the challenge in coding theory is to design codes that are able to
correct the initial sequence corrupted during transmission. These linear codes,
also called ECC, are based on the principle of adding redundancy to the infor-
mation that has to be transmitted in order to enable the receiver to correct the
corrupted sequence.

The minimum Hamming distance dmin is an important parameter to describe
the error detection and error correction performance of a code. The minimum
Hamming distance is defined as the minimum distance among all possible distinct
pairs of codewords in C:

dmin = min
x,y∈C,x 6=y

dH(x,y), (3.5)

where dH(x,y) is the Hamming distance. The Hamming distance between two
vectors x and y of equal length is determined as the number of coordinates for
which the corresponding symbols are different:

dH(x,y) = |{i : x[i] 6= y[i]}|
= w(x ⊕ y),

(3.6)

where the Hamming weight w(x) of a binary vector x is defined as the total
number of elements x[i] = 1, i. e.,

w(x) = dH(x, 0). (3.7)

Considering only error correction, the maximum number of correctable errors
can be calculated with fk = ⌊dmin−1

2
⌋. Of course, a high performance fk requires a

high amount of parity bits k. Consequently, we find the distance dmin indicating
the suitability of a code for error correction, since a preferably large distance
between the codewords is required.

Because of the relevance of a transmission over noisy channels in practice, e. g.,
mobile phone techniques, most codes have been designed for error correction. In
this case, the number of correctable errors is of primary interest.

According to the manner in which redundancy is added to the information, lin-
ear codes can be divided into two cases as depicted in Figure 3.1: block codes and
convolutional codes [76]. In contrast to convolutional codes, block codes process
the information on a block-by-block basis, treating each block of information bits
independently from others. Thus, block coding is a memoryless operation.

In this thesis, we consider different kinds of linear codes, whereas each class
of codes can be described by means of a matrix Hk×n. In this chapter, how-
ever, we give only a brief description of group codes and cyclic codes in order to

41



3. Basic Principle of Embedding

Linear Codes

Block Codes Convolutional Codes

Group Codes Cyclic Codes

Figure 3.1.: Classification of Linear Codes.

demonstrate the underlying concepts of BCH Codes investigated by us. Note that
convolutional codes also fulfill the definitions mentioned for block codes when-
ever we fix n to a constant number. For more details about codes, coding and
decoding principles, we suggest [70, 11, 92, 78, 76, 14].

3.2.3.1. Group Codes

Group codes are a class of block codes fulfilling the algebraic properties of a
group8. Generally, there are two different ways of describing the membership of
any element of F2

n to a group code.
All codewords c ∈ C can be generated by a multiplication of elements c∗ ∈ F2

l,
called source sequence or information word, with the generator matrix Gl×n ∈

F2
l×n, whereas the matrix Gl×n =






g1
...
gl




 is formed using l linearly independent

basis vectors gi and generates or spans the (n, l) linear code, i. e., Gl×n has to be
of rank l.

Thus, a first approach to describe the set of codewords is based on the generator
matrix:

C = {c ∈ F2
n | c = c∗Gl×n, c∗ ∈ F2

l}. (3.8)

Note that for any matrix Gl×n there exist a matrix Hk×n, such that:

Gl×nHk×n
T = (Hk×nGl×n

T )T = 0l×k. (3.9)

Note that the dot product between an arbitrary row in Gl×n and any row
in Hk×n is zero. Consequently, when multiplying a sequence c ∈ C with the
parity-check matrix Hk×n, we get the zero-vector of length k:

8A group is an algebraic structure, i. e., a subset closed with respect to an algebraic oper-
ation such as addition. Thus, combining any two of its elements forms a third element.
Furthermore, the subset and the operation must satisfy the group axioms, namely closure,
associativity, identity and invertibility.
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Hk×nc
T
1×n = Hk×n(c

∗
1×lGl×n)T

= Hk×nGl×n
Tc∗1×l

T

= (c∗1×l(Hk×nGl×n
T )T )T

= (c∗1×l0l×k)
T

= (01×k)
T = 0k×1.

(3.10)

Hence, the second approach to describe the (n, l) group code C is based on
the parity-check matrix Hk×n: An n-tuple z, z ∈ F2

n is a codeword of the code C
generated by Gl×n if and only if Hk×nz

T = 0:

C = {z ∈ F2
n |Hk×nz

T = 0}. (3.11)

To ensure that Equation (3.11) is not satisfied for elements z ∈ F2
n with z /∈ C,

Hk×n has to be of rank n− l. Consequently, we assume n = l+k in the following
considerations.

Examples of this class of codes are, e. g., the Hamming Code (HC) and the
Simplex Codes (SC).

Example: (7, 4, fk = 1) HC

The Hamming Code is a special linear code. For each integer k ≥ 2, there exists
a code with k parity bits and n = 2k − 1.

The parity-check matrix Hk×n of a Hamming Code is constructed by listing
all columns of length k that are pairwise independent. In the binary case consid-
ered here, Hk×n consists of the concatenation of column vectors giving the dual
numbers from 1 to n.

The parity-check matrix of the (7, 4, fk = 1) HC is given with:

H3×7 =





1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1



.

�

Note that Hamming Codes are an example of perfect codes, i. e., codes that
exactly match the following inequality:

2k ≥
fk∑

i=0

(
n

i

)

. (3.12)

For instance, for the (7, 4, fk = 1) HC, we obtain 23 =
(
7
0

)
+
(
7
1

)
= 8. Ev-

ery syndrome, excluding the syndrome with weight zero, is mapped to an error
pattern f with w(f) = fk = 1.

43



3. Basic Principle of Embedding

3.2.3.2. Cyclic Codes

An example of this class of codes fulfilling the properties of a finite field9 are Bose-
Chaudhuri-Hocquenghem (BCH) Codes. Since cyclic shifting of any codeword
leads to another codeword, this family of codes is called cyclic. The application
of these codes for syndrome coding in steganography was investigated, e. g., by
Schönfeld and Winkler in [86, 87]. Note that Hamming Codes, known from
Matrix Embedding [16], can also be treated as special BCH Codes.

Generally, a BCH Code, as with any cyclic code, is fully defined by its generator
polynomial g(x). With the help of g(x), it is possible to describe a (n, l) BCH
Code, where k can be determined with k = degree(g(x)).

In order to generate g(x), we first have to find a modular polynomial M(x).
M(x) has to be irreducible (or primitive), whereas the code parameter n is influ-
enced by this property. Whenever M(x) is primitive, we find n with n = 2k1 − 1,
where k1 = degree(M(x)). A code constructed based on a primitive polynomial
M(x) is called primitive BCH Code. If M(x) is only irreducible, we find n with
n|(2k1 − 1). In this case, M(x) can be used to construct a non-primitive BCH
Code.

In general, it is possible to construct g(x) for arbitrary values of fk. Therefore,
the polynomial M(x) is used to build a finite extension field GF (2k1), related to
GF (2) (Galois Field (GF)). Moreover, for each element ri of GF (2k1) there exists
an irreducible polynomial mi(x), (i = 0, 1, . . . , (2k1 − 2)), with m1(x) = M(x).

The element ri is the root of the polynomial mi(x). Moreover, we find, accord-
ing to the fundamental theorem of algebra, t roots ri, r2i, r22i, . . . , r2t−1i of mi(x)
with t ≤ k1 and thus,

mi(x) = (x − ri)(x − r2i)(x − r22i) . . . (x − r2t−1i). (3.13)

Since dmin is realized by means of a consecutive sequence of roots in GF (2k1),
the generator polynomial g(x) is a product of irreducible polynomials mi(x).
The number of irreducible polynomials that have to be multiplied depends on
the desired properties of the code:

g(x) = LCM {mµ(x), mµ+1(x), . . . , mµ+dmin−2(x)}, (3.14)

where µ is set either to 0 or to 1 in practice. Note that according to Equation
(3.13), mi = m2i = m22i = . . . = m2t−1i. For more details about mathematical
coherences used for constructing g(x), see [70, 92].

Beside the description based on g(x), it is also possible to describe cyclic codes
by means of the parity-check matrix Hk×n. Again, we find Hk×nc

T = 0 ∀c ∈ C.
The parity-check matrix Hk×n is generated by means of g(x), whereas there are

several ways to calculate Hk×n. One approach is to calculate Hk×n with xi mod

9These codes C can be seen as a vector subspace of F2
n closed with respect to addition and

multiplication by an element of the finite field.
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g(x), (i = 0, 1, . . . , (n − 1)), as used in [85]. Another possibility is to determine
Hk×n by means of:

g(x)h(x) = f(x), (3.15)

where h(x) is the check polynomial and f(x) the main polynomial, with f(x) =
xn +1. The check polynomial h(x) can be used to derive Hk×n, by simply shifting
the coefficients of h(x) k times and writing the results as a matrix.

Example: (7, 4, fk = 1) Cyclic HC

M(x) = x3 + x + 1, µ = 1

Since M(x) is primitive, we calculate n with n = 23 − 1 = 7.

With dmin = 3, we find g(x) = LCM {m1(x), m2(x)} = m1(x) = x3 + x + 1,

and determine h(x) = f(x)
g(x)

= x7+1
x3+x+1

= x4 + x2 + x + 1.

Cyclical shifting of the coefficients of h(x) with h1×n = (0010111) leads to

H3×7 =





0 0 1 0 1 1 1
0 1 0 1 1 1 0
1 0 1 1 1 0 0



.

�

3.3. Partitioning the Vector Space of Linear

Codes in Cosets

Partitioning the vector space in cosets can be used to reduce the complexity of
embedding. Therefore, we introduce the concept of cosets within this Section.

For any linear (n, l) code C with generator matrix Gl×n and parity-check matrix
Hk×n we can define: Multiplying any vector z ∈ F2

n with the parity-check matrix
Hk×n leads to a vector s ∈ F2

k, called the syndrome related to z. Generally,
each vector of F2

n can be assigned to a set C(si) ⊂ F2
n, called coset of si with

i = 1, 2, . . . , 2k. The coset C(si) of the syndrome si denotes all vectors z leading
to the syndrome si when multiplied with the parity-check matrix Hk×n:

C(si) = {z | si = Hk×n zT , si ∈ F2
k, z ∈ F2

n}. (3.16)

Consequently, the code C can be seen as the coset of the syndrome si = 0:
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C(0) =
{
c | Hk×n cT = 0

}
= C. (3.17)

The partitioning of the vector space in cosets is solely determined by the code.
Generally, there are different parity-check matrices related to a code C. Note
that the partitioning of the code into cosets is not influenced by the selection of
Hk×n, just the assignment of the cosets to the syndromes. Hence, the following
properties can be formulated [58]:

1. Cosets are disjoint

C(si) ∩ C(sj) = ∅ ∀si, sj ∈ F
k
2, si 6= sj .

2. The union of all cosets form the vector space F
n
2

⋃

si∈F
k
2

C(si) = F
n
2 .

Another important property concerns the summation of elements. Adding two
elements zi ∈ C(si) and zj ∈ C(sj) leads to an element of coset C(si ⊕ sj) since

Hk×n(zi ⊕ zj)
T = Hk×nz

T
i ⊕Hk×nz

T
j = si ⊕ sj. (3.18)

A special case of this occurs when adding an element zj ∈ C. In this case, the
resulting element is member of the same coset as zi. Thus, we find:

3. Each coset can be expressed as

C(si) = zi ⊕ C, zi ∈ C(si).

Generally, there are 2n possible sequences of length n. Furthermore, the mes-
sage emb that should be embedded and, thereby, the related syndrome is of
length k. Thus, there are 2k different syndromes s.

Since cosets associated with different syndromes are disjoint, we find for linear
codes that there are 2n−l = 2k disjoint sets. Thus, the number of elements of
each coset can be determined with:

2n

2k
=

2l+k

2k
=

2l2k

2k
= 2l, (3.19)

i. e., each the vector space can be partitioned into 2k cosets, each consisting of 2l

sequences. As coset leader cL we denote the member of the coset C() with the
smallest Hamming weight w.

In order to minimize the distortion introduced during embedding, it is advan-
tageous to have as many sequences as possible within each coset. Thus, it is
possible to find for each cover sequence a an appropriate sequence f that maps
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a to a stego sequence b, where dρ(a,b) is minimal. Additionally, it must be
possible to derive all 2k possible syndromes, i. e., to embed all possible messages
emb.

In error correction coding scenarios, this is not important at all10. However, in
steganography based on syndrome coding this is an essential requirement since
it has to be possible to embed all 2k feasible syndromes emb. Therefore, the
2n sequences of length n should be distinguishable into 2k cosets, one for each
syndrome, containing 2l sequences each.

The question arises as to whether there are any codes that do not fulfill this
requirement. First of all, codes built according to deterministic rules always fulfill
this requirement and are therefore suited for steganographic systems.

However, there exits at least one code whose parity-check matrix is built accord-
ing to stochastic rules that do not fulfill the partitioning requirement [86]: Gal-
lager [56] describes a regular (20, 5, dmin = 6) Low-Density-Parity-Check (LDPC)
Code. Each row of the parity-check matrix H15×20 has a weight of 6, and each
column a weight of 3. Based on this parity-check matrix it is not possible to
achieve all feasible syndromes and thereby some combinations of emb could not
be embedded.

Only 2k−2 = 213 syndromes, out of 2k = 215 possible syndromes are covered by
this code. Consequently, there are 2n

2k−2 = 2l+2 = 27 sequences, that lead to one
and the same syndrome. Writing all possible syndromes as integer values, Table
3.1 gives the number of sequences leading to each syndrome:

int(s) 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .
|C(s)| 128 0 0 0 0 128 0 0 0 128 0 0 128 . . .

Table 3.1.: Number of Coset Members for Each Syndrome for the Regular
(20, 5, dmin = 6) LDPC Code in Extracts According to [86].

Because of the “missing” syndromes, this code is not suited for embedding at
all. The question arises as to whether there are other codes that might not be
used in steganography.

10For ECC, only error patterns f with weight w(f) ≤ fk are analyzed. In most cases, this
number is less than 2k.
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3.4. Performance of a Code Suited for

Steganography

Generally, there are two main problems that can be solved using coding theory:
packing and covering. While packing is fundamental in ECC, covering codes are
used for, e. g., data compression [14].

The differences between the packing and the covering problem are clarified by
[14]:

• Packing: Given n and R, what is the maximum number of non-intersecting
spheres of radius R, that can be placed in the n-dimensional space?

• Covering: Given n and R, what is the smallest number of Hamming spheres
of radius R that can be placed in such a way that every vector in the space
is contained in at least one of them? Thus, we are looking for the smallest
R where the spheres cover the whole space.

The parameters for describing the performance of a code suited for channel
coding techniques, dmin or fk are not suited for describing the performance of a
code suited for steganography. While for ECC, the number of correctable errors
fk = ⌊dmin−1

2
⌋ is of primary interest, for the design of a steganographic scheme,

the covering property R of a code is most important. Instead of a large distance
between the codewords, good covering properties are required. Therefore, it
is preferable that the codewords should cover the space F2

n in a way that any
sequence z ∈ F2

n is close to a codeword c ∈ C.

3.4.1. Covering Radius R

According to [14, Definition 2.1.3], the covering radius of a code C ⊆ F2
n is the

smallest integer R such that every vector z ∈ F2
n is R-covered by at least one

codeword of C, i. e.,

R = max
z∈F

n
2

dH(z, C)

= max
z∈F

n
2

min
c∈C

dH(z, c).
(3.20)

Thus, the covering radius is a measure of the distance between the code and
the farthest-off vectors in space, i. e., the Hamming weight of any coset member
is at most R.

The covering radius also gives the smallest integer R such that the union of
the Hamming spheres of radius R centered at the codewords is the whole space.
For a linear (n, n − k) code, the covering radius is R ≤ n

2
.
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3.4. Performance of a Code Suited for Steganography

3.4.2. Average Number of Embedding Changes Ra

Another important parameter describing the performance of a code suited for
steganography is the average distance to code Ra, which expresses the expected
value of dH(x, C) over randomly uniform distributed x ∈ F2

n, i. e.,

Ra =
1

2n

∑

x∈Fn
2

dH(x, C). (3.21)

In [51] it is shown that the expected number of embedding changes is also equal
to the average weight of the coset leaders with:

Ra =
1

2n

∑

x∈F
n
2

dH(x, C)

=
1

2n

∑

s∈F
k
2

∑

x∈C(s)

dH(x, C(s))

=
1

2n

2k
∑

i=1

2lw(cL(s))

=
1

2k

2k
∑

i=1

w(cL(s)).

(3.22)

Note that given a coset C(s), for any x ∈ C(s), the distance dH(x, C) is equal
to the weight of the coset leader w(cL(s)) [52].

Therefore, the expected number of embedding changes Ra for any syndrome-
coding based embedding scheme is equal to the average weight of all coset leaders
for randomly chosen messages and uniformly distributed covers. Note that the
messages are drawn uniformly at random from F2

k, since they will be typically
encrypted before embedding. If all cover sequences a and all message bit strings
emb occur with equal probability, all possible syndromes also occur with equal
probability.

Generally, R and Ra can be seen as important properties of a code concerning
syndrome coding. While Ra gives the average number of embedding changes, the
covering radius R is related to the worst case and can be seen as the maximum
weight of all coset members [14, Theorem 2.1.11]. This means that R changes
are necessary to embed in the worst case, i. e., for the most disadvantageous
combination of a and emb. With increasing length of the code and fixed α, we
also find that Ra → R [47].

It is important to mention that the embedding distortion, i. e., the overall
embedding impact (Equation 2.5) is low, if the average number of embedding
changes Ra is low11.

11When assuming a general profile, the algorithms discussed in this thesis exclude so-called wet

49



3. Basic Principle of Embedding

3.4.3. Embedding Efficiency e

The embedding efficiency e gives the number of message bits embedded depending
on the distortion introduced during embedding. It can be determined with:

e =
|m|

dρ(A,B)
=

k

dρ(a,b)
. (3.23)

Note that the complexity of computing e depends on the steganographic scheme,
on its inner mechanism and on the cover source. For simple embedding schemes,
such as LSB or ±1 embedding, the embedding efficiency can easily be derived
analytically. However, whenever the distortion is rather complex to determine,
the embedding efficiency e has to be determined experimentally. Note that e
depends on the embedding impact dρ.

The embedding efficiency is often referred to as a measure of the quality of
the embedding. A maximized embedding efficiency is related to a minimized
embedding distortion, which seems to be preferable when considering an improved
security of the steganographic scheme.

In fact, schemes with higher embedding efficiency, i. e., a higher number of
message bits embedded per embedding change, are less likely to be successfully
attacked than schemes with lower embedding efficiency [45].

3.4.3.1. Boundary on Embedding Efficiency

Assuming a uniform profile of embedding impact, or a general profile based on
Wet Paper Steganography, the embedding distortion is measured by the number
of embedding changes. Generally, the embedding distortion is low, if the average
number of embedding changes Ra is low.

Since the impact of embedding is captured by a distortion metric taking into
account the number of embedding changes, i. e., in terms of the Hamming distance
between the corresponding cover and stego bit vectors, the embedding efficiency
of a specific code can be calculated with:

e =
k

Ra
. (3.24)

Embedding is therefore efficient if Ra is low. To derive an upper boundary on
the embedding efficiency, Fridrich et al. state [47] that every syndrome can be
generated by adding at most R columns of Hk×n. Thus, there exist

R∑

i=0

(
n

i

)

(q − 1)i (3.25)

elements. Thus, even for this profile, we assume the average number of embedding changes
Ra as a measure related to the embedding impact.
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3.4. Performance of a Code Suited for Steganography

ways in which one can make at most R changes in n elements [51]. While this
earlier publication considers only the binary case, i. e., for q = 2, a later version
of this derivation is more general for arbitrary values of q (emphasized in blue
[49]).

Consequently, the maximum number of bits that can be embedded in n bits is:

k = ld |M| ≤ ld

R∑

i=0

(
n

i

)

(q − 1)i = ld Vq(n, R), (3.26)

where Vq(n, R) is the volume of a ball of radius R in F
n
q . For the binary case, we

find:

V (n, R) =

R∑

i=0

(
n

i

)

. (3.27)

According to the sphere-covering boundary, a frequently used boundary in
coding theory that can be found, e. g., in the book of Cohen et al. [14, Lemma
2.4.2], we find that

ld Vq(n, R) ≤ nHq

(
R

n

)

, (3.28)

and thus, k ≤ nHq(
R
n
), where Hq is the entropy function defined as:

Hq = −xldx − (1 − x)ld(1 − x)+xld(q − 1). (3.29)

By transposing the previous equation, we obtain:

H−1
q (α) ≤ R

n
, (3.30)

where α = k
n

is defined as the relative message length and H−1() is the inverse of
the entropy function H()12.

Based on this coherence, Fridrich et al. derive an upper boundary on the lower
embedding efficiency e [51, 49], where e can be seen as the number of embedded
bits per embedding change in the worst case:

e =
k

R
= α

n

R
≤ α

H−1
q (α)

. (3.31)

Fridrich et al. also state that this is an asymptotic boundary on the embedding
efficiency e:

e .
α

H−1
q (α)

, (3.32)

12Note that it is not possible to analytically determine the inverse to H(). The use of a Look-up
Table is required.
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3. Basic Principle of Embedding

which holds for almost all (n, l) codes, since the relative covering radius φ = R
n

and the relative distance to code φa = Ra

n
converge with n → ∞. More precisely,

Fridrich et al. state and prove [51, Theorem 2]: For any 0 < α < 1 and any ǫ > 0,
the fraction of all binary (n, l) codes for which |φ−φa| ≤ ǫ tends to 1 as n → ∞.

To summarize: the highest lower embedding efficiency e can be achieved using
a (n, l) code with a small covering radius. Knowing the performance boundary,
the problem faced by a steganographer is to find codes that could reach this
theoretical boundary in practice with low computational complexity.

According to Fridrich et al., this boundary is tight and asymptotically achiev-
able using linear codes [51]. Note that the relative codimension (n−l)/n of almost
all random (n, l) codes asymptotically achieves H(R/n) for a fixed change rate
R/n < 1/2 and n → ∞ [14, Theorem 12.3.5]. Therefore, there exist embed-
ding schemes based on linear codes whose embedding efficiency is asymptotically
optimal.

3.5. Embedding with Syndrome Coding by

Minimizing the Embedding Impact

The general concept of syndrome coding for steganography was introduced in
Section 3.1. Within this section, we expand the basic principle in order to include
approaches that minimize the embedding impact introduced during embedding
and thus, increase the embedding efficiency. We describe the basic principles for
finding the stego sequence b in order to make clear how the algorithms described
in the following chapters work.

Recall the basic principle of syndrome coding, where the syndrome derived by
multiplying the parity-check matrix Hk×n and the stego sequence b should be
equal to the confidential message part emb (see Equation (3.2)):

s = Hk×n(a⊕ f)T = Hk×nb
T = emb. (3.33)

In order to achieve this goal, the cover sequence a has to be modified. Whenever
the overall goal is to minimize the embedding impact, a sequence f , fulfilling
Equation (3.33) has to be determined, that minimizes the introduced distortion:

f = argmin
f∈F

n
2

dρ(a, a⊕ f). (3.34)

This approach however, requires an exhaustive search within the whole vector
space. Based on the partitioning of the vector space in cosets as described in
Section 3.3, it is possible to reduce the search space by searching only within the
cosets.

Each coset C(s) is stored in a Look-up Table. For this approach, there are two
different ways for finding an appropriate stego sequence.
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First, the search for an appropriate sequence b can be carried out within
C(emb). Note that all elements of coset C(emb) can be considered for em-
bedding. However, to minimize the embedding impact, we look for sequence b

according to:

b = argmin
b∈C(emb)

dρ(a,b). (3.35)

The second possibility for finding an appropriate stego sequence is to stick to
the flipping pattern f : Note that the cover sequence a is related to a syndrome
s ∈ C(Hk×na

T ). The resulting stego sequence b after embedding, however, should
lead to a syndrome s ∈ C(emb). Thus, the sequence f , which will be added to a

in order to achieve b has to be a sequence of coset C(Hk×na
T ⊕ emb) (according

to Equation (3.18) in Section 3.3). In order to minimize the embedding impact,
the sequence f out of all 2l sequences in coset C(Hk×na

T ⊕emb) has to be chosen
according to:

f = argmin
f∈C(Hk×naT⊕emb)

dρ(a, a ⊕ f). (3.36)

In this case, f = cL(Hk×na
T ⊕emb) is called a coset leader of coset C(Hk×na

T ⊕
emb).

A coset leader of coset C(s) is defined as the optimal flipping pattern f to map
the cover sequence a to a stego sequence b. Consequently, a coset leader can be
seen as the sequence f that minimizes the overall embedding impact dρ(a, a⊕ f).
Generally, it is possible to find different sequences f ∈ C(s) as coset leaders, i. e.,
more than one sequence that minimizes the embedding impact.

For a distortion measure considering the number of changes, i. e., a uniform
profile, the goal is to minimize the difference between a and b. Thus, a coset
leader cL(s), added to a in order to obtain b, is simply the sequence with mini-
mum Hamming weight. Note that w(cL(s)) ≤ R.

Considering the severity of changes, i. e., a general profile instead, requires
to find a sequence that minimizes dρ(a, a ⊕ f) based on the underlying profile
of embedding impact ρ[1], ..., ρ[n]. A coset leader is therefore defined as a se-
quence that minimizes the embedding impact. When assuming a general profile,
the algorithms discussed in this thesis are based on Wet Paper Steganography.
Therefore, they exclude so-called wet elements from the embedding process. The
dry elements are used for embedding, i. e., we assume ρ[Dry] = const. Thus, even
for this profile, we find the sequence with minimum Hamming weight as coset
leader.

Based on Equation (3.36), Galand and Kabatiansky [54] specified a stegano-
graphic scheme: An (n, l) code C with covering radius R can be used to construct
an embedding scheme which is able to communicate n − l bits using at most R
changes:
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3. Basic Principle of Embedding

Emb(a, emb) = a ⊕ cL(Hk×na
T ⊕ emb) = b,

Extr(b) = Hk×nb
T , with

Extr(Emb(a, emb)) = Hk×n bT

= Hk×n aT ⊕ Hk×n cL(Hk×n aT ⊕ emb)T

= Hk×n aT ⊕ Hk×n aT ⊕ emb = emb.

(3.37)

Embedding by minimizing the embedding impact as described so far, includes
an exhaustive search within cosets. In order to propose approaches to speed up
the search for an appropriate flipping pattern f and thus, for an appropriate stego
sequence b, Fridrich et al. states that embedding can be seen as a binary quan-
tization problem [37]. This is true since the search for an appropriate sequence
f can also be reformulated as the search of the closest codeword. Note that the
search for the closest codeword, i. e., binary quantization, is a well known problem
for which several solutions have been proposed.

The embedding process can be reformulated as follows. Given an arbitrary
coset member fm ∈ C(emb), it is possible to define the coset C(emb) based on
the code C:

C(emb) = {fm ⊕ c, c ∈ C}
= fm ⊕ C(0).

(3.38)

The coset indeed includes all 2l sequences leading to syndrome emb, since
adding 2l different codewords to fm will lead to 2l different sequences associated
with syndrome s = emb:

Hk×n (fm ⊕ c)T = Hk×n fm
T ⊕Hk×n cT = emb ⊕ 0 = emb. (3.39)

This coherence can also be used to determine the optimal sequence for embed-
ding. In order to minimize the embedding impact, a member b of coset C(emb)
has to be chosen, that is closest to a in metric dρ:

b = argmin
b∈C(emb)

dρ(a,b) (3.40)

According to Equation (3.38), we can express b as fm ⊕ c with c ∈ C.

Thus, we have to determine the closest codeword [19], i. e., the codeword cemb

that minimizes the distortion between a ⊕ fm and C:

cemb = argmin
c∈C

dρ(a, fm ⊕ c)

= argmin
c∈C

dρ(a ⊕ fm, c).
(3.41)
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The stego sequence b can now be determined with b = fm ⊕ cemb, where fm
is a coset member of C(emb) and cemb ∈ C. This sequence is indeed a valid
steganogram for emb since we find:

Hk×n(fm ⊕ cemb)T = Hk×n fm
T ⊕ Hk×n cemb

T = emb ⊕ 0 = emb. (3.42)

a

b

a ⊕ fm

cemb

C(emb)

C(0)

fm

Figure 3.2.: Schematic Interpretation of the Embedding Process According to
[19].

A schematic interpretation of the embedding process according to [19] can be
found in Figure 3.2. The sender needs to find cemb that is closest to a⊕ fm. The
embedding process can be interpreted as follows:

1. Shift the cover sequence a using an arbitrary coset member fm,

2. Find the closest codeword to a ⊕ fm denoted as cemb,13 and

3. Shift cemb back into the coset C(emb).

13Note that in the binary case, i. e., in GF (2), a subtraction is equivalent to an addition modulo
2 (⊕).
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The resulting stego sequence b ∈ C(emb) is closest to the cover sequence a.
While the coset member can be easily determined by searching for a sequence
fm ∈ C(emb), the search for the closest codeword is equivalent to finding the
coset leader, i. e., an NP-complete problem [4].

3.6. Roadmap of This Thesis

Several approaches for Minimum-Embedding-Impact Steganography have been
proposed in the past, like embedding based on Wet Paper Codes by Fridrich et al.
[44] as well as embedding based on BCH Codes by Schönfeld and Winkler [86].
Note that these approaches share the basic idea of syndrome coding. Therefore,
embedding should be done in a way which enables the receiver to simply calculate
emb = Hk×nb

T in order to read the confidential message. The sender however,
has to find a solution to this system of linear equations in such a way that dρ(a,b)
is minimized.

The first contribution of this work is a consistent description of algorithms
based on binary syndrome coding. Note that two of the algorithms presented
within this thesis, embedding based on BCH Codes [85, 86, 87] and based on
LDGM Codes with Belief Propagation [58, 60, 59], are developed at the chair of
privacy and data security at the Technische Universität Dresden in collaboration
of Dagmar Schönfeld and the author of this thesis.

In order to make the algorithms comparable to each other, we propose a classifi-
cation and distinguish between algorithms based on a deterministic parity-check
matrix and algorithms based on stochastic matrices. Furthermore, we distin-
guish between concepts for small blocks and therefore a small codeword length
and concepts for big blocks and therefore a large codeword length. While for
a small codeword length it is possible to determine the optimal solution, i. e.,
the solution that minimizes dρ, by exhaustive search, a large codeword length
often requires iterative search strategies such as Belief Propagation (BP)/Survey
Propagation (SP).

We describe different approaches for embedding, whereas each approach is
based on the concept of syndrome coding, i. e., based on a parity-check matrix
Hk×n:

• Concepts for Embedding Based on a Small Code Word Length

– Parity-check matrices based on stochastic design rules

∗ Block Minimal Method (also denoted as Meet-the-Middle) [45, 47,
48]

∗ Matrix Embedding for Large Payload [52, 51]

– Parity-check matrix built according to deterministic rules

∗ Hamming Codes [16]
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∗ BCH Codes [85, 86, 87, 3, 101, 83]

∗ Simplex Codes and Augmented Simplex Codes [52, 51]

• Concepts for Embedding Based on a Large Codeword Length

– Wet Paper Codes

∗ Wet Paper Codes [44, 42, 43, 46, 45, 47]

∗ Wet Paper Codes combined with Gaussian Elimination [44, 42]

∗ Wet Paper Codes combined with Lanczos and Wiedemann solver
[44]

∗ Wet Paper Codes combined with Structured Gaussian Elimination
[42]

∗ Wet Paper Codes for sparse matrices combined with the Matrix
LT Process [43, 46, 45, 47]

– LDGM Codes

∗ LDGM Codes combined with Survey Propagation [19, 37, 21]

∗ LDGM Codes combined with Belief Propagation [58, 60, 59]

– Convolutional Codes

∗ Syndrom Trellis Codes [24, 25]

Based on this consistent description, this thesis provides a comparison of the
algorithms according to the properties of a steganographic scheme: security, ca-
pacity, success rate and complexity (see Section 2.1.3). Considering only the
embedding step Θ, we assume the embedding efficiency e as a feasible parameter
describing the security of the algorithms. Recall that the embedding efficiency
gives the number of embedded bits dependent on the introduced distortion.

Beside minimizing the introduced distortion, and thereby maximizing the se-
curity, the algorithms under investigation aim at minimizing the embedding com-
plexity while maximizing the success rate and the embedding capacity. However,
as these are competing goals, only a tradeoff between all four properties is possi-
ble. Generally, we would like to point out advantages of applying principles from
channel coding, such as deterministic matrices and decoding principles.
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In this part, we will give an overview on algorithms for embedding based on syn-
drome coding for a small code word length. The advantage of such matrices Hk×n

with small code parameters is the possibility to determine the coset leader, i. e.,
the optimal solution to emb = Hk×nb

T that minimizes the distortion dρ(a,b),
directly by exhaustive search.

Within the following chapters, we describe the functionality of the algorithms
(Chapter 4 and 5) and evaluate the algorithms according to the properties of a
steganographic scheme (Chapter 6). Note that we describe only the embedding
step Θ, i. e., the input of the algorithms are a cover bit string A, the message m

and a profile of embedding impact ρ[1], . . . , ρ[N ].
One general guideline principle for the design of a steganographic scheme is

the principle of minimizing the embedding impact (Section 2.3.1.4). Thus, the
embedding process should be designed in a way to embed only in inconspicuous
parts of the cover and to reduce the overall embedding impact of the changes
introduced during embedding. Algorithms from coding theory help to achieve
both objects.

Whenever a message shorter than the cover data itself is embedded, the im-
pact of changes required for embedding a confidential message into the cover can
be reduced. Crandall has first introduced a solution to this problem [16]. He
proposed the concept of syndrome coding in steganography, often called Matrix
Embedding in literature, based on structured Hamming Codes. Later, this con-
cept was independently re-discovered by Willems [93], Schönfeld [85] and Galand
[54]. Moreover, this approach has been used in practical systems [95, 96].

In more theoretical investigations, Bierbrauer [5, 6] and Galand [54, 55], work-
ing independently from each other, discovered that the concept of embedding
efficiency e is closely related to the covering radius R of codes: a linear code can
be used to construct an embedding scheme whose embedding capacity is the code
redundancy k, while the covering radius corresponds to the maximal number of
embedding changes necessary for embedding.

The first concept for excluding conspicuous parts of the cover, i. e., for trans-
mitting a message using a channel where access to its symbols is constrained, was
proposed by Anderson and is called the Selection Channel [2]. This embedding
scheme can be seen as parity coding based on a checksum over n elements of
the cover. Moreover, it can be seen as embedding with an informed sender, as it
does not require the sender to share any knowledge of the constraints with the
recipient.

In Anderson’s scheme, the sender is able to choose one element out of a block
of n elements (parity block) in order to make the necessary embedding change.
Thereby, the sender has the possibility to modify the most inconspicuous element
of each block. However, a disadvantage of this approach is clearly that most of
the elements are not used for embedding. Thus, embedding capacity decreases
with increasing block length. Consequently, in practical cases only a fraction of
the embedding capacity is used.
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Later, Fridrich et al. propose the Wet Paper Codes [44] in order to deal with
excluded parts of the cover. This approach is applied on the whole cover and
does not even sacrifice embedding capacity - however, at the cost of increased
embedding complexity.

Recent research has combined both aforementioned objectives, i. e., excluding
conspicuous parts of the cover while minimizing the impact of the introduced
changes. Therefore, linear codes such as the BCH Code were investigated by
Schönfeld and Winkler [85, 86, 87]. Moreover the Golay Code [93, 27, 28], Simplex
Codes [52] and random codes of small dimension [51] are investigated as further
approaches considering small blocks.
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Stochastic Parity-Check

Matrices

Within this chapter, we introduce state-of-the-art algorithms for syndrome coding
based on stochastic parity-check matrices. We give a description as well as some
specifics of the algorithms.

The concept of Wet Paper Codes, i. e., simple variable rate stochastic codes
based on a stochastic parity-check matrix was proposed by Fridrich et al. in the
context of Wet Paper Steganography (Section 2.1.2.2).

Since the sender would like to modify only the changeable elements, the system
of linear equations (Equation (3.33)) has to be adapted as follows. The parity-
check Hk×n is separated into Hk×n =

[
Hk×|Wet| Hk×|Dry|

]
with n = |Wet|+ |Dry|

depending on the positions of excluded elements14. Thereby, Hk×|Wet| is a sub-
matrix of Hk×n corresponding to the wet elements Wet, and Hk×|Dry| is a sub-
matrix of Hk×n corresponding to the dry elements Dry.

Based on the positions of wet elements, we find the flipping pattern f with
f [i] = 0 for wet elements, i. e., for positions where a[i] should remain unchanged.
Furthermore, we reformulate Equation (3.33) according to b = a ⊕ f :

Hk×n fT = emb ⊕ Hk×n aT . (4.1)

The concept of embedding, i. e., for finding a solution to Equation (4.1) can be
summarized with:

1. Eliminate positions with f [i] = 0 from f ⇒ f|Dry|

2. Eliminate the corresponding columns from Hk×n ⇒ Hk×|Dry|

3. Reformulate Equation (4.1) to

Hk×|Dry| (f|Dry|)
T = emb ⊕ Hk×na

T (4.2)

4. Determine a solution for f|Dry|

14Within the approach of Wet Paper Steganography, the sender denotes elements as wet whose
embedding impact ρ[i] is above a chosen threshold. These elements are excluded from the
embedding process.
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5. Determine the flipping pattern f related to f|Dry|

6. Determine the stego sequence b = a⊕ f

Note that the approach described in [44] considers the whole cover at once,
i. e., n = N . Thus, it is not feasible to determine the coset leader by means
of exhaustive search. To realize stochastic matrices with maximized embedding
efficiency, Fridrich et al. propose block-based approaches, which will be presented
in this chapter in more detail.

Within a first approach, called Block Minimal Method, exhaustive search is
applied in order to determine the coset leader, i. e., the sequence f that minimizes
the introduced distortion. This approach is applied to small blocks instead of the
whole cover. A related approach, called Matrix Embedding for Large Payloads,
additionally impose some structure on Hk×n making exhaustive search possible
whenever the code dimension l is small.

4.1. Block Minimal Method

The basic assumption of the Block Minimal Method, first described by Fridrich
et al. in [45] and also denoted as Meet-in-the-Middle Algorithm [47] is that there
will be more than one solution for Equation (3.33) whenever |m| is smaller than
|Dry|. In this case, the sender is able to select the stego sequence b with minimal
distance dρ(a,b). Thus, the embedding impact will be minimized and by this the
embedding efficiency maximized.

The algorithm itself is applied to small blocks, since finding the coset leader is
an NP complete problem and can be solved for a small block length by exhaustive
search. Thus, in this block-based scheme, sender and receiver divide the cover
bit string A into nB = |m|/k disjoint pseudo-random blocks. Note that there are
k message bits embedded in each block containing n = N/nB cover elements.

Embedding is done based on stochastic codes with a parity-check matrix Hk×n,
where the probability of 0 and 1 are equal to 1/2. Note that the sub-matrix
Hk×|Dry| can be different for each block. Generally, the sender aims at generating
the matrix Hk×n in a way that its columns are non-zero and mutually different
in order to avoid duplicates and zero columns. However, this structure does not
directly affect the sub-matrix Hk×|Dry|.

Finding a sequence that minimizes dρ(a,b) in Step 4 of the embedding algo-
rithm is carried out by searching within cosets as proposed in Section 3.5. Note
that for stochastic matrices the cosets are not as regular as for deterministic
matrices, i. e., the 2k cosets does not contain 2l sequences each.

Fridrich et al. propose an algorithm for finding the coset leader in Step 4 as
follows [48]: In preparation, the sender forms the subsets Ui, where Ui can be seen
as the set of syndromes that can be obtained by adding i columns of Hk×|Dry|.
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Fridrich et al. define U1 ⊂ F2
k as the set of all columns of Hk×|Dry|. Furthermore,

they define Ui+1 = U1+Ui\(U1∪. . .∪Ui)\{0} for i = 1, . . . , k and Ui = ∅ for i > R.
Note that the sum of two sets is defined as Ui +Uj = {ui⊕uj | ui ∈ Ui, uj ∈ Uj}.

The sender tries to find the coset leader by generating U1,U2, . . . and stop
once (emb ⊕ Hk×na

T ) ∈ Ur. Note that the cardinality of these sets increases
exponentially.

Based on the coherence given in Equation (4.3):

emb ⊕ Hk×na
T = Hk×|Dry|[., j1] ⊕ . . . ⊕Hk×|Dry|[., jr], (4.3)

the algorithm substituting Step 4 can be summarized as follows according to [47]:

4.1 If ((emb ⊕ Hk×na
T ) ∈ U1),

( The solution is one of the original columns

f [j1] = 1 //because (emb ⊕Hk×na
T ) = Hk×|Dry|[., j1] for some j1

for all j 6= j1 set f [j] = 0 ),

Otherwise set t = 1, r = 1

4.2 While ((emb ⊕ Hk×na
T ) + Ut) ∩ Ur = ∅,

( If t = r:

r = r + 1

If (Ur not generated) construct Ur

If t 6= r:

t = t + 1

If (Ut not generated) construct Ut )

4.3 Any element of the intersection ((emb⊕Hk×na
T )+Ut)∩Ur is a coset leader

of weight t + r.

Note that Fridrich et al. propose k to be publicly known. Moreover, the receiver
knows N as well. Thus, only the message length, i. e., |m| has to be communicated
to the receiver.

In a practical scheme, it is also necessary to communicate to the receiver, which
blocks failed to hold all k bits. An example of the algorithm is given below:

Example:

Given is a stochastic code with n = 5. The sender would like to embed the
message emb = (110)T into the cover sequence a = (10111), the elements a[2]
and a[5] are wet. Thus, we find f = b ⊕ a = (f [1]0f [3]f [4]0) and k = 3 since
k = n − l.

Within this example, the parity-check matrix is given with:
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4. Embedding Based on Stochastic Parity-Check Matrices

H3×5 =





1 0 1 1 0
0 1 1 0 1
1 0 0 0 0



.

The sender embeds the message according the following scheme:

2. and 3. Eliminate positions with f [i] = 0 and the corresponding columns
in Hk×n

4. Hk×|Dry|(f|Dry|)
T = emb ⊕ Hk×na

T





1 1 1
0 1 0
1 0 0









f [1]
f [3]
f [4]



 =





1
1
0



⊕





1 0 1 1 0
0 1 1 0 1
1 0 0 0 0













1
0
1
1
1









=





0
1
1





4.1 Is ((emb ⊕Hk×na
T ) ∈ U1)? No

U1 is the set of all columns of Hk×|Dry|

U1 = {(101), (110), (100)}
(011) not in this set: t = 1, r = 1

4.2 Is ((emb ⊕Hk×na
T ) + U1) ∩ U1 = ∅? No

{(110), (101), (111)} ∩ {(101), (110), (100)} = {(110), (101)}

4.3 Any element i of the intersection ((emb⊕Hk×na
T )+Ut)∩Ur is a coset

leader of weight t + r

i1 = (110)

Find emb ⊕ Hk×na
T = i1 ⊕ Hk×|Dry|[., j] according to Equation (4.3)

emb ⊕Hk×na
T = i1 ⊕ Hk×|Dry|[., j]





0
1
1



 =





1
1
0



⊕Hk×|Dry|[., j]

Hk×|Dry|[., j1] =





1
0
1



, corresponds to Hk×|Dry|[., 1]

Furthermore, i1 corresponds to Hk×|Dry|[., j2] = Hk×|Dry|[., 2]
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emb ⊕Hk×na
T = Hk×|Dry|[., j1] ⊕ Hk×|Dry|[., j2]

f|Dry| = (110) ⇒ f = (10100)

5. Change the first and the third element in order to embed the message

b = a ⊕ f = (10111) ⊕ (10100) = (00011).

The receiver extracts the message with emb = Hk×nb
T :





1
1
0



 =





1 0 1 1 0
0 1 1 0 1
1 0 0 0 0













0
0
0
1
1









.

�

4.2. Matrix Embedding for Large Payloads

Matrix Embedding for Large Payloads also enables the sender to minimize the
embedding impact introduced during embedding [52]. The basic idea of Matrix
Embedding for Large Payloads is to use stochastic codes of small dimension for
syndrome coding. An advantage is that for a large k, the dimension l is small
enough to enable exhaustive search in order to find the coset leader.

Therefore, Hk×n is generated randomly but in a systematic form. Fridrich et al.
define Hk×n with Hk×n = [Ik Rk×l], where Ik is a unity matrix and Rk×l is a
stochastic matrix with P (0) ≈ P (1).

The embedding algorithm itself operates on small blocks. Whenever the di-
mension of the code is small, a solution to Equation (3.33) can be quickly found
by exhaustive search or using Look-up Tables (Section 3.5). The embedding
algorithm can be summarized as follows according to [52].

1. Find an arbitrary coset member fm of coset C(emb ⊕ Hk×n aT ), i. e. find
an arbitrary flipping pattern f fulfilling Equation (3.33)

2. Find the flipping pattern with minimum weight according to
femb = fm ⊕ argminc∈C w(fm ⊕ c)15

3. Determine the stego sequence b = a⊕ femb.

15Recall the possibility to utilize the coherence denoted in Equation (3.38) for determining
coset C(emb⊕ Hk×n aT ).
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4. Embedding Based on Stochastic Parity-Check Matrices

Since Hk×n is systematic, finding fm is easy. We find, e. g., fm = [emb ⊕
Hk×n aT 0], where 0 ∈ {0}l. Thus, the most time consuming part is finding the
flipping pattern with minimum weight femb. Note that lk can be publicly known.
However, n has to be communicated.

An example of the algorithm is given below:

Example:

The (6, 3) stochastic matrix is given by means of its parity-check matrix with

H3×6 =





1 0 0 1 1 0
0 1 0 0 1 0
0 0 1 1 0 1



 = [I3 R3×3].

The sender would like to embed the confidential message emb = (010) into the
cover sequence a = (100101) = [ak al] with l = 3, k = 3. The embedding process
is carried out as follows:

1. Find an arbitrary coset member fm
16

fm = [emb ⊕Hk×n aT 0l]

= [(010) ⊕ (000) 000]

= (010000)

2. Find the flipping pattern with minimum weight according to
femb = fm ⊕ argminc∈C w(fm ⊕ c)

femb = (010000) ⊕ (000000) = (010000)

3. Determine the stego sequence b = a⊕ femb

b = (100101) ⊕ (010000) = (110101).

The receiver extracts the message with emb = Hk×nb
T :





0
1
0



 =





1 0 0 1 1 0
0 1 0 0 1 0
0 0 1 1 0 1















1
1
0
1
0
1











.

�

16Note that it is also possible to chose fm as [emb 0l] as described in [58].
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5. Embedding Based on

Deterministic Parity-Check

Matrices

Within this chapter, we give a description of algorithms for syndrome coding
based on deterministic parity-check matrices. We describe the basic algorithms
for embedding based on a uniform profile of embedding impact. Moreover, we
outline the concept of embedding based on a general profile, i. e., suited for Wet
Paper Steganography, exemplarily for BCH Codes.

5.1. Embedding Based on Hamming Codes

This approach for minimizing the number of embedding changes has been ad-
dressed first by Crandall [16], and has become well known as Matrix Embedding.
Within his paper, Crandall proposes different techniques for lower rate embed-
ding. As an example, he proposes the use of a (3, 1, fk = 1) Hamming Code [61]
in order to embed two message bits within three cover bits by making at most
one embedding change [16].

Generally, Hamming Codes (HC) can be described for a couple of parameters.
By means of applying Hamming Codes for syndrome coding, the sender embed
k bits in 2k − 1 cover bits by at most one embedding change, where k > 1.
Therefore, sender and receiver share a k × (2k − 1) binary matrix Hk×n that
contains all non-zero binary vectors of length k as its columns.

Note that codes like Hamming Codes and the non-primitive Golay Code are
called perfect codes. They fulfill the Hamming bound 2k ≥∑fk

i=0

(
n
i

)
with equal-

ity. For instance for the (7, 4, fk = 1) Hamming Code, we obtain 23 =
(
7
0

)
+
(
7
1

)
=

8. Every syndrome, excluding the syndrome with weight zero, is mapped to an
error pattern f with w(f) = fk = 1.

For the application in steganography, this property ensures the possibility to
embed by making at most one embedding change. For Hamming Codes it is
possible to simply analyze the syndrome derived from s = Hk×na

T ⊕emb, where
s is related to a position in Hk×n. This position has to be flipped in a in order
to embed. In this case, the weight of sequence f is at most 1. The algorithm for
embedding is given below:
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5. Embedding Based on Deterministic Parity-Check Matrices

1. Determine s = Hk×na
T

2. Whenever s 6= emb, flip the element corresponding to column s ⊕ emb in
a.

Generally, Hamming Codes are easy to implement with low computational
complexity. Thus, these codes have been used in the steganographic community
[96]. An example for the Hamming Code is given below.

Example:

The parity-check matrix of the (7, 4, fk = 1) HC is given with:

H3×7 =





1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1



.

The sender would like to embed the confidential message emb = (100) into the
cover sequence a = (0101111). The embedding process is carried out as follows:

1. Determine s = Hk×na
T





0
1
0



 =





1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1

















0
1
0
1
1
1
1













2. Determine s ⊕ emb




0
1
0



⊕





1
0
0



 =





1
1
0



 and

flip the element of the corresponding column in a:

b = a ⊕ f = (0101111) ⊕ (0100000) = (0001111).

The receiver extracts the message with emb = Hk×nb
T :





1
0
0



 =





1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1

















0
0
0
1
1
1
1













.

�
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5.2. Embedding Based on BCH Codes

Within this section, we present different approaches for syndrome coding based
on BCH Codes following the description given in Section 3.1. First, we give some
approaches considering a uniform profile of embedding impact in Section 5.2.1.
Afterwards, we describe how to adapt these approaches to a general profile in
Section 5.2.2.

5.2.1. Embedding Based on a Uniform Profile of
Embedding Impact

In this section, we describe algorithms based on a uniform profile of embedding
impact (see Section 2.5.1). In order to minimize the impact of embedding and by
so doing maximize the embedding efficiency, the number of embedding changes
has to be reduced. Note that no elements of the cover are excluded from the
embedding process.

Generally, there are two different approaches for calculating a syndrome: one
based on the parity-check matrix Hk×n and another based on the generator
polynomial g(x). Within this section, we focus on algorithms based on the
parity-check matrix Hk×n. Therefore, we describe several approaches proposed
by Schönfeld and Winkler [85, 86, 87] as well as the approach by Zhang et al.
for Fast BCH Syndrome Coding for fk = 2 [101]. For more information about
approaches based on g(x), we refer to Appendix A and [86, 87].

5.2.1.1. Classical Approach

As already mentioned in Section 3.5, finding a coset leader is an NP complete
problem that requires exhaustive search. By means of Look-up Tables, it is pos-
sible to speed up the process of finding the optimal solution. For every coset (see
Section 3.3), the 2l sequences leading to one sequence emb are stored. This will
reduce the complexity, since we have to consider only 2l sequences for exhaustive
search.

For the Classical Approach, proposed by Schönfeld and Winkler in [86], the goal
is to achieve s = Hk×n (a ⊕ f)T = Hk×n bT = emb with dρ(a,b) being minimal.
Embedding is done by means of exhaustive search according to Equation (3.36):

1. Determine f = argminf∈C(Hk×naT⊕emb) dρ(a, a ⊕ f)

2. Determine b = a⊕ f .

An example is given below.
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5. Embedding Based on Deterministic Parity-Check Matrices

Example:

The (15, 7, fk = 2) BCH Code is given with its generator polynomial g(x) =

x8 + x7 + x6 + x4 + 1. We find h(x) = f(x)
g(x)

= x15+1
x8+x7+x6+x4+1

= x7 + x6 + x4 + 1.

Cyclical shifting of the coefficients of h(x) with h = (000000011010001) leads
to

H8×15 =















0 0 0 0 0 0 0 1 1 0 1 0 0 0 1
0 0 0 0 0 0 1 1 0 1 0 0 0 1 0
0 0 0 0 0 1 1 0 1 0 0 0 1 0 0
0 0 0 0 1 1 0 1 0 0 0 1 0 0 0
0 0 0 1 1 0 1 0 0 0 1 0 0 0 0
0 0 1 1 0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 1 0 0 0 1 0 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0 0 0 0 0 0















.

The sender would like to embed the confidential message emb = (01011010)
into the cover sequence a = (001101010001010).

Therefore, he determines f = argminf∈C(Hk×naT⊕emb) dρ(a, a⊕f), i. e., he searches
for the flipping pattern with minimum weight within coset
C((10111110)⊕ (01011010)) = C(11100100) according to:

1. Determine the flipping pattern f : Based on an exhaustive search within
coset C(11100100), we find a coset leader f = (000000000100101), i. e., a
flipping pattern with minimum weight (see Appendix B). Note that there
are 2k = 28 different cosets, whereas each coset consists of 2l = 27 elements
(Section 3.3).

2. Determine the stego sequence

b = a⊕f = (001101010001010)⊕(000000000100101) = (001101010101111).
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The receiver extracts the message with emb = Hk×nb
T :















0
1
0
1
1
0
1
0















=















0 0 0 0 0 0 0 1 1 0 1 0 0 0 1
0 0 0 0 0 0 1 1 0 1 0 0 0 1 0
0 0 0 0 0 1 1 0 1 0 0 0 1 0 0
0 0 0 0 1 1 0 1 0 0 0 1 0 0 0
0 0 0 1 1 0 1 0 0 0 1 0 0 0 0
0 0 1 1 0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 1 0 0 0 1 0 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0 0 0 0 0 0











































0
0
1
1
0
1
0
1
0
1
0
1
1
1
1





























.
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Of course, the approach based on Look-up Tables is limited by storage since
2l sequences have to be stored within 2k tables. Consequently, embedding based
on the classic approach is really complex and therefore time consuming. Thus,
we would like to outline more efficient embedding strategies as presented in [85,
86, 87, 101].

5.2.1.2. Fast BCH Syndrome Coding for fk = 2

This approach, proposed by Zhang et al., is based on the (n, l, fk = 2) BCH Code
and can hide the same amount of data as the algorithms described in the previous
section with less computational time [101]. The authors describe a method for
easily finding the multiple solutions for data hiding based on an advanced way
to find roots over Galois Fields.

Within their approach, only applicable for fk = 2, the parity-check matrix is
described as:

H =

(
1 r r2 . . . rn−1

1 (r3) (r3)r2 . . . (r3)n−1

)

, (5.1)

where r is the primitive element in GF (2m).
Moreover, the cover sequence a as well as the stego sequence b, are represented

as polynomials a(x) = a0 + a1x + a2x
2 + a3x

3 + . . . + an−1x
n−1 and b(x) =

b0 + b1x + b2x
2 + b3x

3 + . . . + bn−1x
n−1, respectively.

The algorithm itself is again based on syndrome coding. Thus, the sender again
has to determine a solution to:
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5. Embedding Based on Deterministic Parity-Check Matrices

emb = HbT , (5.2)

in order to embed.
As described in Section 3.5, the goal is to minimize the distortion introduced

during embedding. Within this approach, the difference f = a⊕b is represented
by the polynomial f(x) = xu1 + xu2 + xu3 + . . . + xul, where u gives the positions
of the elements in a that have to be flipped in order to obtain b.

Based on this coherence and Equation (5.2), we find:

emb = H (a⊕ f)T (5.3)

HfT = emb ⊕ HaT , (5.4)

and formulate a system of linear equations:

s = [s1 s2]
T = HfT . (5.5)

The goal from the steganographic point of view is to find the minimal number
of flips for f(x) satisfying Equation (5.5). As already mentioned, Equation (5.5)
has 2l possible solutions which form a coset, where the solution with the smallest
number of flips is called coset leader cL.

The proposed algorithm is based on finding the multiple solutions easily based
on an advanced way to find roots r over Galois Fields. Therefore, the system of
linear equations is written as:

s1 = ru1 + ru2 + ru3 + . . . + rul (5.6)

s2 = (r3)u1 + (r3)u2 + (r3)u3 + . . . + (r3)ul, (5.7)

where ru1, . . . , rul are unknown values. Note that the powers of the roots refer to
the indexes of the coefficients to be modified in vector f(x).

The authors propose to utilize the method of Zhao et al. based on fast Look-up
Tables for finding roots for quadratic and cubic polynomials [108]. Since the roots
are calculated before embedding and are stored in Look-up Tables, the method
does not require exhaustive search to find roots.

A brief description on the coherences used to build the tables q and c, contain-
ing the roots of the quadratic and cubic polynomial, respectively, can be found
in Appendix C. Furthermore, a table tab denotes entries that have 3 roots. For
more information about the mathematical background, we refer to [101].

The proposed data hiding scheme for s 6= 0 can be summarized as follows:

1. One flip is required: s2 + s3
1 = 0

• Root is β1 = s1, the flip location is u1 = log(β1), flip pattern is
f(x) = xu1
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5.2. Embedding Based on BCH Codes

2. More flips: s2 + s3
1 6= 0

• Determine o =
s2+s31

s31
as index of the quadratic look-up table q

• Basic root y1 = q(o) is obtained from q in row o

• Two flips: y1 6= −1

– Roots of the flip location polynomial are β1 = s1y1 and β2 =
s1y1 + s1

– Flip locations are u1 = log(β1) and u1 = log(β2)

– Flip pattern is f(x) = xu1 + xu2

• Three flips: y1 = −1

– There are at most D flip patterns f(x)

– For each Di with i = 1, 2, . . . , D, find o = tab(d), where o is the
index of the Look-up Table cubic

– Get 3 basic roots: y1 = cubic(o, 1), y2 = cubic(o, 2) and y3 =
cubic(o, 3)

– Roots are β1 = py1 + s1, β2 = py2 + s1 and β3 = py3 + s1 with

p = (
s31+s2

o
)1/3

– Flip locations are ui = log(βi) with i = 1, 2, 3

– Flip pattern is f(x) = xu1 + xu2 + xu3

3. Determine the stego sequence b(x) = a(x) + f(x)

A practical embedding algorithm applying this approach can be found in [83].

5.2.1.3. Systematic Parity-Check Matrix

Note that embedding by finding a coset leader is extremely complex if the code
parameters increase. Moreover, the approach presented in Section 5.2.1.2 is ap-
plicable only for fk = 2.

For more powerful BCH Codes, we can speed up the process of finding a solution
using a parity-check matrix in systematic form, similar to the approach in Section
4.2. Thus, we are able to embed faster and with lower complexity.

An approach proposed by Schönfeld in [85] is based on a parity-check matrix
Hk×n, whose columns are determined with mod(xi, g(x)), (i = 0, 1, ..., (n − 1)).
In this case, the parity-check matrix has a special structure. We find Hk×n =
[C∗ Ik] = [Rk×l Ik], whereas C∗ is the basis of the code. Thus, Hk×n corresponds
to a systematic code, where Rk×l covers the l information bits and Ik is an identity
matrix covering the k parity bits17.

17Note that within paper [85] also the approach based on G = [Il C
∗] and thus, H =

[

C∗T Ik

]

was investigated.
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Within [85], Schönfeld describes different approaches for embedding based on
a systematic parity-check matrix. An interesting approach can be described as
follows: In order to accelerate the process of finding a solution to Equation (3.36),
Schönfeld considers a pre-flipping approach. For that purpose, a is divided ac-
cording to the systematic structure of Hk×n in a = [al ak],

18.
Within the first step of the algorithm, Schönfeld propose to pre-flip within the

l information bits. The goal is to find a sequence f l of length l (see Section 3.5)
with:

f l = argmin
f l∈F2

l

(w(fl) + w(Hk×n([al ⊕ fl ak])
T ⊕ emb)

︸ ︷︷ ︸

fk

). (5.8)

In a second step, the combination of s and emb gives the positions of the
additional bits that have to be flipped within the remaining k bits ak related to
the identity matrix Ik, i. e., fk. As a result, b fulfills emb = Hk×n bT . Note that
for this approach, the search area is reduced to 2l, i. e., the complexity is reduced
to the task of finding an optimal sequence f l. For more details, we refer to [85].

The algorithm based on a systematic parity-check matrix Hk×n = [Rk×l Ik] can
be summarized as follows:

1. Divide a in [al ak]

2. Find a sequence f l = argminf l∈F2
l(w(fl) + w(Hk×n([al ⊕ fl ak])

T ⊕ emb))

3. Combine s and emb to get the positions of the additional bits that have to
be flipped within the remaining k bits

4. Determine the stego sequence b = [al ⊕ fl ak ⊕ (sT ⊕ emb)
︸ ︷︷ ︸

fk

]

Note that it is not necessary to investigate all 2l pre-flipping pattern f l within
this approach: Starting with flipping pattern with weight 1, it is feasible to stop
whenever finding a sequence f l fulfilling Equation (5.8). More details are given
in [85].

An example of the algorithm is given below:

Example:

The (7, 4, 1) BCH Code is given by means of its parity-check matrix with
mod(xi, g(x)), (i = 0, 1, ..., (n − 1)) and g(x) = x3 + x + 1 = (1011)

H3×7 =





1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1



 = [Rk×l Ik].

18We translate the structure of Hk×n into the structure of a, i. e., the first l positions in a are
information bits, the remaining k positions are parity bits.
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The sender would like to embed the confidential message emb = (001) into
the cover sequence a = (1011101) = [al ak] with l = 4, k = 3. The embedding
process is carried out as follows:

2. Find a sequence f l = argminf l∈F2
l(w(fl) + w(Hk×n([al ⊕ fl ak])

T ⊕ emb))

f l = (0010)

3. Determine the additional positions that have to be flipped

sT ⊕ emb = (001) ⊕ (001) = (000)

4. Determine the stego sequence b = [al ⊕ f ak ⊕ (sT ⊕ emb)]

b = [al ⊕ fl ak ⊕ (sT ⊕ emb)]

= [(1011) ⊕ (0010) (101) ⊕ (000)]

= (1001101)

The receiver extracts the message with emb = Hk×n bT :





0
0
1



 =





1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

















1
0
0
1
1
0
1













.
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5.2.1.4. Working with C(0)

Since embedding by means of the classic approach as described in Section 5.2.1.1
requires a lot of storage to store the Look-up Tables, we describe the adaption of
the embedding algorithm according to Section 3.5.

This approach, proposed by Schönfeld and Winkler in [87], utilizes the coher-
ences described in Equation (3.38) where each coset can easily be determined
by means of C(0). Thus, only one Look-up Table containing all codewords, i. e.,
C(0) = C is required for embedding.

The embedding process, can be summarized as follows:

1. Find an arbitrary coset member fm of coset C(emb ⊕ Hk×n aT ), i. e. find
an arbitrary flipping pattern f fulfilling Equation (3.33)
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2. Find the flipping pattern with minimum weight according to
femb = fm ⊕ argminc∈C w(fm ⊕ c)

3. Determine the stego sequence b = a⊕ femb.

Note that the embedding process is similar to those described in Section 4.2.
However, the parity-check matrix does not have to be systematic. Consequently,
the search for an arbitrary coset member fm is not as simple, i. e., the coset
member has to be determined by a search within the 2n sequences of length n.

5.2.1.5. Working with the reduced C(0)red

Working with C(0), as described in the previous section, reduces the memory
requirements considerably. However, for large code parameters, especially a high
number of information bits l, not only a lot of time for the exhaustive search
in C(0) but also a lot of storage is required for a Look-up Table containing all
2l codewords. Because of this, an approach to further reduce time and memory
complexity by reducing C(0) was discussed by Schönfeld and Winkler in [87].

Our first investigations were motivated by the symmetrical distribution of the
weight of the codewords of a linear code. For example the code alphabet of
the (15, 7, 2) BCH Code contains |C| = 2l = 128 codewords distributed as fol-
lows: w(C) = (1, 0, 0, 0, 0, 18, 30, 15, 15, 30, 18, 0, 0, 0, 0, 1), where we find, e. g.,
one codeword with weight 0 and 18 codewords with weight 5.

Thus, the question is how does a reduction of C influence the result of the
embedding process. Is it sufficient to store only 2l−1 codewords with weight
w(c) ≤ ⌊n

2
⌋ or maybe even less in the Look-up Table?

Investigations have shown that reducing the searching area to 2l−1 sequences
with:

C(0)red =
{

c | w(c) ≤
⌊n

2

⌋}

(5.9)

will result in a slightly higher average number of embedding changes Ra compared
to the classical approach (Ra,classic).

To give some examples [87]:

• For the (15, 7, 2) BCH Code this approach achieves Ra = 2.508, while
Ra,classic = 2.461, and

• For the (23, 12, 3) Golay Code Ra = 2.864 can be achieved, while Ra,classic =
2.853.

Nevertheless, the embedding complexity in terms of time and memory can be
reduced considerably. Note that the deviation of Ra is caused by the reduced
C(0)red. Each coset member fm leads to different reduced cosets:
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5.2. Embedding Based on BCH Codes

C(emb)red = fm ⊕ C(0)red. (5.10)

Of course, each of these reduced cosets is only part of C(emb) = fm ⊕ C(0).
As a result, it is not always possible to find the coset leader.

In order to minimize the differences between Ra,classic and Ra, it seems reason-
able to find different sequences fm and thus to evaluate different reduced cosets.
Of course, this approach is more time consuming since the time complexity in-
creases by the number num of evaluated sequences fm and thus by the number of
different reduced cosets. However, this additional time complexity is negligible,
as long as num2l ≪ 2n and num ≪ 2k respectively.

Table 5.1.: Influence of num Sequences fm when Working with the Reduced Coset
C(0)red According to [87].

(n, l, fk) Ra,classic |Cred| Ra,1fm Ra,5fm Ra,10fm

(15,7,2) 2.461 26 2.508 2.461 2.461
(15,11,1) 0.938 210 0.938 0.938 0.938
(23,12,3) 2.852 211 2.864 2.853 2.853

Table 5.1 summarizes some of our results. The results confirm that evaluating
different sequences fm, and thereby different reduced cosets C(emb)red, indeed
results in an improved Ra. As can be seen, e. g., for the (15, 7, 2) BCH Code,
considering 5 different sequences fm in the embedding process leads to Ra,classic.

We also investigated a further reduction of the alphabet. Therefore, it is in-
deed important to use only those codewords with the lowest weight. Table 5.2
summarizes the results of our investigations [87].

Table 5.2.: Influence of num Evaluated Sequences fm when Further Reducing
C(0)red According to [87].

(n, l, fk) Ra,classic |Cred| Ra,1fm Ra,5fm Ra,10fm Ra,15fm

(31,21,2) 2.482 30443, w(c) < k 2.490 2.482 2.482 2.482
(31,21,2) 2.482 11533, w(c) < k − 1 2.531 2.482 2.482 2.482
(31,21,2) 2.482 3628, w(c) < k − 2 2.757 2.486 2.483 2.482

In this example, the alphabet C = C(0) of the (31, 21, 2) BCH Code was reduced
from 221 down to ≈ 212 sequences. Nevertheless, we are able to achieve Ra,classic

evaluating up to 15 different reduced cosets.

The embedding process working with a reduced coset is carried out as described
in the previous section.
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5. Embedding Based on Deterministic Parity-Check Matrices

5.2.1.6. Generalizing the Approach

Even if we discussed this approach for linear codes like BCH Codes, it is not
limited to this class of codes. It is also possible to generalize the approach of
working with C(0) as well as the approach working with C(0)red [87].

Whenever it is possible to bring Hk×n (e. g., through permuting columns) into
a systematic form according to Hk×n = [Hk×l Hk×k], where Hk×k is non-singular,
all codewords c ∈ C can be easily determined since they are arranged systemat-
ically. Based on the 2l source sequences c∗ of length l, the c ∈ C is determined
by:

c = [cl ck] (5.11)

= [c∗ H−1
k×kHk×lc

∗T ]. (5.12)

The resulting codewords c ∈ C are stored in a Look-up Table. Of course a
reduction of this Look-up Table is also possible.

5.2.2. Embedding Based on a General Profile of
Embedding Impact

Since most practical steganographic applications have to deal with so-called wet
elements distributed randomly over the cover, it is necessary to adapt the algo-
rithms described so far for syndrome coding based on deterministic parity-check
matrices. Note that we simply exclude the wet elements from embedding, the dry
elements have a uniform profile of embedding impact. Consequently, the average
number of embedding changes Ra is still an adequate measure for the embedding
impacts introduced during embedding.

5.2.2.1. Description of the Basic Approach

In this section, we will describe the adaption of syndrome coding based on BCH
Codes to a scenario where conspicuous parts of the cover are excluded as proposed
by Schönfeld and Winkler in [86]. Since the sender would like to modify only the
changeable elements, the system of linear equations has to be adapted.

In a first step, we divide Hk×n into Hk×n =
[
Hk×|Wet| Hk×|Dry|

]
with n =

|Wet| + |Dry| depending on the positions of wet elements. Thereby, Hk×|Wet| is
a submatrix of Hk×n corresponding to wet elements, and Hk×|Dry| is a submatrix
of Hk×n corresponding to dry elements.

Moreover, we separate the cover sequence in two parts a = [a|Wet| a|Dry|]. Thus,
to embed a confidential message, a sequence f|Dry| has to be determined in a way
that fulfills:
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5.2. Embedding Based on BCH Codes

s = Hk×|Wet| a
T
|Wet|

︸ ︷︷ ︸
s|Wet|

⊕Hk×|Dry| (a|Dry| ⊕ f|Dry|)
T

︸ ︷︷ ︸
s|Dry|

= emb. (5.13)

Since s|Dry| = (s|Wet| ⊕ emb) is invariant, the simplification of the embedding
process is similar to the concept of embedding with Wet Paper Codes (Section
4).19 The embedding algorithm itself can be described as follows:

1. Define the parity-check matrix as Hk×n =
[
Hk×|Wet| Hk×|Dry|

]

2. Define the cover sequence as a = [a|Wet| a|Dry|]

3. Reformulate Equation (3.33) to

Hk×|Wet| a
T
|Wet|

︸ ︷︷ ︸
s|Wet|

⊕Hk×|Dry| (a|Dry| ⊕ f|Dry|)
T

︸ ︷︷ ︸
s|Dry|

= emb

4. Determine the flipping pattern f|Dry| according to

f|Dry| = argmin
f|Dry|∈F2

|Dry|

(Hn×|Dry|(a|Dry| ⊕ f|Dry|)
T = s|Dry|) (5.14)

5. Determine the stego sequence b = [a|Wet| a|Dry| ⊕ f|Dry|]

Note that the positions of wet elements are distributed randomly, i. e., the
number of wet elements and their positions varies from block to block.

Investigations have shown that the cardinality of the cosets for linear codes
determined with 2n

2k = 2l (see Equation (5.13)) is also true if wet positions are
considered, of course reduced by the number of wet elements |Wet| [86]:

2n−|Wet|

2k
≈ 2l−|Wet| (|Wet| = 0, 1, ..., l). (5.15)

As it can be seen in Equation (5.15), the number of wet elements is limited
by l. However, this equation holds up only to a certain bound with equality.
With increasing number of wet elements, there exist no longer exactly 2l−|Wet|

sequences f|Dry| for each syndrome. Discarding the message length |emb| would
solve the problem.

19Note that both concepts are proposed independently. Similar to the concept of em-
bedding with Wet Paper Codes, we propose to separate the parity-check matrix into
Hk×n =

[
Hk×|Wet| Hk×|Dry|

]
. However, we also propose to separate the cover sequence

in two parts a = [a|Wet| a|Dry|] and calculate partial syndromes s|Dry| and s|Wet|.
Furthermore, the search for the flipping pattern f|Dry| is realized in a different way. Due

to the evenly distributed coset members considering a deterministic matrix (2l elements
within each coset), the Look-up Tables can be determined beforehand.
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5. Embedding Based on Deterministic Parity-Check Matrices

5.2.2.2. Description of the Improved Approach

The basic algorithm described above, can also be improved in terms of stepping
up the process of solving Equation (5.14). Again, it is possible to work with a
Look-up Table containing all codewords as described by Schönfeld and Winkler
in [87]. However, it is necessary to consider the fact that the positions of wet
elements are distributed randomly, i. e., the number of wet elements and their
positions varies from block to block.

Thus, in a first step, it is necessary to reduce the sequences within the Look-up
Table by the wet positions for each block a of length n: C(0)|Dry| = C|Dry|.

The embedding process can be described as follows:

1. Find an arbitrary coset member fm,|Dry| fulfilling (5.13)

2. Find the flipping pattern with minimum weight based on C(0)|Dry| with
femb ∈ C(emb)|Dry|

femb = fm,|Dry| ⊕ argmin
c|Dry|∈C|Dry|

w(fm,|Dry| ⊕ c|Dry|) (5.16)

3. Determine the stego sequence b =
[
a|Dry| ⊕ femb a|Wet|

]

Again, it is possible to reduce the alphabet C and therefore to reduce the num-
ber of sequences that have to be considered by exhaustive search. This reduction
will also result in different reduced cosets for different sequences fm,|Dry|. Thus,
it is again advantageous to evaluate several sequences fm,|Dry| and consequently
different reduced cosets in order to achieve a maximized embedding efficiency.

5.3. Embedding Based on Simplex Codes

Another class of codes investigated as basis for syndrome coding are Simplex
Codes [11]. The application of these matrices was proposed by Fridrich et al. in
[52].

Generally, (2k − 1, k) Simplex Codes are a class of structured codes. More
exactly, they are the dual code of the Hamming Code, i. e., their generator matrix
is equal to the parity-check matrix of the Hamming Code. Since all non-zero
codewords have the same weight 2k−1, Simplex Codes are called constant-weight
codes. This weight is also the distance between any two codewords.

The proposed algorithm for syndrome coding using Simplex Codes is given as
follows [52]:

1. Find an arbitrary coset member fm of coset C(emb ⊕ Hk×n aT ), i. e., find
an arbitrary flipping pattern f fulfilling Equation (3.33)
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5.3. Embedding Based on Simplex Codes

2. Find the flipping pattern with minimum weight according to femb = fm ⊕
cemb

cemb = argminc∈C w(fm⊕c) can be solved using the Fast Hadamard Trans-
form20.

3. Determine the stego sequence with b = a⊕ femb

Note that Fridrich et al. propose to use the Fast Hadamard Transform to find
the closest codeword [52]. Thus, this approach is based on quantization, i. e.,
finding the quantized sequences related to fm. Based on this quantized vector,
the closest codeword cemb is determined. A short overview on the Hadamard
Transformation is given with:

• Form f̂m = (0, fm[1], . . . , fm[2k − 1])T

• Determine F = (F[1], . . . ,F[2k]) = F(k)

F(0) = (1 − 2f̂m)T

F(i) = F(i−1)M
(i)

2k for i = (1, . . . , k)

• Find the largest number Fi0 among F[1], . . . ,F[2k]

• u = [i0 − 1]2

• Determine cemb =
∑k

i=1 u[i]G[i, .]T

Note that H2k is defined as H2k = M
(1)

2k M
(2)

2k . . .M
(k)

2k , where M
(i)

2k = I2k−i ⊗
H2⊗I2i−1 with H2 =

(
1 1
1 − 1

)

. Furthermore, ⊗ stands for the Kronecker prod-

uct.

An example for embedding is given below.

Example: The generator matrix of the (7, 3, dmin = 4) Simplex Code is given
with:

G3×7 =





1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1



.

Note that this generator matrix is equivalent to the parity-check matrix of the
(7, 4, fk = 1) Hamming Code.

20We give only a short overview on the functionality of the Fast Hadamard Transform. For
more information, we refer to [52].
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5. Embedding Based on Deterministic Parity-Check Matrices

The related parity-check matrix can be obtained according to the following
coherence: Gl×n Hk×n

T = 0. This can be easily done in the case of a systematic
form of Gl×n with Gl×n

‘ = [Il Rl×k]. In this case, we find Hk×n = [RT
l×k Ik].

Thus, we find:

G‘
3×7 =





1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 1 1 1 0



 = [I3 R3×4]

H4×7 =







1 1 1 1 0 0 0
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 0 0 0 0 1







= [RT
3×4 I4].

(5.17)

The sender would like to embed the confidential message emb = (1100) into
the cover sequence a = (1011101). The embedding process is carried out as
follows:

1. Find an arbitrary coset member fm of coset C(emb ⊕Hk×n aT )

Find fm, e. g., with fm = [000 emb ⊕Hk×n aT ]

emb ⊕Hk×n aT = (1100) ⊕ (1000) = (0100)

fm = (0000100)

2. Find the flipping pattern with minimum weight according to femb = fm ⊕
cemb

cemb = argminc∈C w(fm ⊕ c) = (0000000)

femb = fm ⊕ cemb = (0000100)

3. Determine the stego sequence with b = a⊕ femb

b = (1011101) ⊕ (0000100) = (1011001).

The receiver extracts the message with emb = Hk×nb
T :







1
1
0
0







=







1 1 1 1 0 0 0
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 0 0 0 0 1



















1
0
1
1
0
0
1













.

�
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5.4. Embedding Based on Augmented Simplex Codes

5.4. Embedding Based on Augmented Simplex

Codes

Furthermore, Fridrich et al. propose to apply Augmented Simplex Codes to syn-
drome coding based on a parity-check matrix [52]. Augmenting a code means
adding a codeword to the generator matrix. Fridrich et al. propose to augment
with an all 1 vector. The resulting (2k−1, k+1) code coincides with the punctured
first-order Reed-Muller Code [11].

This approach also gives a good performance and can be decoded using a
simple modification of the decoding algorithm for Simplex Codes (Section 5.3).
It is necessary to modify the 2nd step as follows:

• Run Step 2 with f̂m0 and f̂m1, i. e., prepending both a zero and a one

• Obtain two vectors cemb0 and cemb1 as result of the

• Choose the vector closer to fm as output of the Fast Hadamard Transform.
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6. Evaluation of the Algorithms

for a Small Code Word Length

Beside a description of the algorithms on a consistent basis, this thesis aims
at making the state-of-the-art algorithms comparable to each other. Therefore,
we would like to compare the approaches for syndrome coding described in the
previous chapters. Recall the following important parameters which should be
considered when designing a steganographic algorithm (see Section 2.1.3):

• the security,

• the capacity,

• the success of embedding, and

• the embedding complexity.

Generally, these different parameters should be optimized. The designer of a
steganographic algorithm aims at maximizing the capacity as well as the security
of the algorithm. Moreover, he tries to minimize the embedding complexity while
maximizing the success rate. However, since these are competing goals, it is only
possible to balance those four properties dependent on the application.

Note that we do not search for a scalar metric aggregating all these proper-
ties. Instead, we evaluate and compare the algorithms described in the previous
chapters according to the parameters given above:

• Embedding Based on Stochastic Parity-Check Matrices

– Block Minimal Method

– Matrix Embedding for Large Payloads

• Embedding Based on Deterministic Parity-Check Matrices

– Hamming Codes

– BCH Codes

– Simplex Codes

– Augmented Simplex Codes.
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6. Evaluation of the Algorithms for a Small Code Word Length

6.1. Evaluation Concerning the Security

Note that steganographic security is mostly influenced by the type of cover me-
dia, the method for the selection of places that might be modified, the type of
embedding operation and the number of embedding changes. If a scheme fixes
the first three influences, the scheme that introduces fewer embedding changes
will be less detectable [51].

Thus, we measure the security of a steganographic scheme by means of its
achieved embedding efficiency e = k/dρ(a,b) in this thesis. As also mentioned in
[51], a higher embedding efficiency translates into better steganographic security.
Since we consider either a uniform profile or a general profile, where parts of the
cover are denoted as wet and skipped during embedding, dρ(a,b) can be easily
measured by means of the average number of embedding changes Ra.

Note that all approaches presented for a small codeword length fulfill the de-
sired property of minimizing the introduced distortion. Thus, they are able to
achieve a maximized embedding efficiency. The absolute value of e depends on
the code’s properties. In the following, we’ll give some detailed results of the
algorithms presented in the previous chapters as well as a comparison between
them (see Figure 6.3).

6.1.1. Block Minimal Method

This approach, proposed by Fridrich et al. and described in Section 4.1, is a
block-based scheme embedding small message parts in each block. Therefore,
random codes of codimension k are used. The separation into blocks depend on
k and the total message length |m| since the cover is divided into nB = |m|/k
pseudo-random blocks of length n.

The embedding efficiency was investigated by Fridrich et al. for different values
k with k = 4, . . . , 18 and N = 106. The results were achieved for 5 · 104 dry
elements by averaging 100 trials for embedding random messages into the same
cover image [45].

Note that Fridrich defines the inverse relative message length α−1 as α−1
Dry =

|Dry|/|m| within this approach, i. e., as the number of dry elements related to
the number of embedded bits. Several values for αDry−1 were considered, e. g.,
αDry−1 = 1.5, 2, . . . , 12 [45].

Given N = 106 and |Dry| = 5 · 104, we find for α−1
Dry = 2 a message length

of |m| = 25000 and thus, for k = 18 the number of blocks with nB = |m|/k =
1388. As a result, the embedding process is based on a stochastic matrix with
parameters (n, l) = (720, 702). Generally, we find for this example, n = 20 k

α
.

Table 6.1 summarizes some typical parameters for n for different parameters k.
Furthermore, we give a link between α−1

Dry and α−1.
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Table 6.1.: Block Length n for the Block Minimal Method Considering N = 106

and |Dry| = 50000 for Different Values k.

α−1
Dry α α−1 k = 4 k = 10 k = 18

1.5 0.033 30 120 300 540
1.75 0.029 35 140 350 630
2 0.025 40 160 400 720

2.5 0.02 50 200 500 900
3 0.017 60 240 600 1080

3.5 0.014 70 280 700 1260
4 0.013 80 320 800 1440

Generally, the embedding efficiency of this approach depends on the code’s
properties. The results for k = 18 are presented in Figure 6.1 according to [45],
depicting the embedding efficiency e based on the inverse relative message length
α−1

Dry. Within this figure, also the upper boundary for the embedding efficiency is
given. Note that the more bits of the cover are used for embedding, the smaller
the inverse relative message length. Furthermore, a high embedding efficiency is
related to a higher security of the steganographic scheme.

The results presented in Figure 6.1 confirm that e increases with growing inverse
relative message length α−1

Dry. However, the results for k = 18 are still far away
from the upper boundary. Once the number of dry elements in each block exceeds
2k, e starts saturating at k/(1−2−k) [36]. Note that it is possible to design codes
for arbitrary values n and l, denoted with the dotted line.

Moreover, Fridrich et al. report that for a fixed α−1
Dry that e increases in an

interesting non-monotone manner (see e. g. [47], Figure 3) with increasing k.

6.1.2. Matrix Embedding for Large Payloads

Within this approach, described in Section 4.2, Fridrich et al. utilize the fact that
for a low inverse relative message length α−1 = n/k → 1, the co-dimension k of
the code will be close to the codeword length n. Thus the dimension will be small
enough, enabling a fast determining of the coset leader. Generally, for a fixed
code dimension l, the inverse relative message length α−1 reaches 1 as n → ∞.

Fridrich et al. investigated 200 different randomly generated codes for a fixed
codeword length n ≤ 165 and l = 14, 10. They observed that for a low inverse
relative message length α−1, the curve is closer to the upper bound [36]. Note
that this approach is limited to low inverse relative message lengths.
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Figure 6.1.: Embedding Efficiency e Dependent on the Inverse Relative Message
Length for Embedding Based on the Block Minimal Method (N =
106, |Dry| = 50000, k = 18) According to [36].

6.1.3. Hamming Codes

The embedding efficiency for Hamming Codes, as described in Section 5.1, de-
pending on the parameter k is presented in Table 6.2 (see, e. g.,[36]). Note that
for Hamming Codes, we find e = k/(1 − 2−k).

Table 6.2.: Embedding Efficiency for Hamming Codes.

k Inverse Relative Message Length α−1 = n/k Embedding Efficiency e
2 1.5 2.667
3 2.333 3.429
4 3.75 4.267
5 6.2 5.161
6 10.5 6.093
7 18.143 7.055
8 31.875 8.031
9 56.778 9.018

As it can be found in Table 6.2, Hamming Codes do not improve the embedding
efficiency for messages whose inverse relative message length is above 1.5. We find
for k = 1 the embedding efficiency with e = 2 equivalent to embedding without
syndrome coding.

However, it is possible to use Hamming Codes for a higher message length using
a construction called direct sum. Within this approach, the message is divided
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6.1. Evaluation Concerning the Security

into two or more segments, which are embedded into disjoint parts of the cover
using Hamming Codes with different parameters. More information regarding
this approach can be found in [14, 36].

6.1.4. BCH Codes

Embedding based on BCH Codes as described in Section 5.2, was investigated
by Schönfeld and Winkler in [85, 86, 87, 3]. Schönfeld and Winkler investigated
several BCH Codes covering a wide range of parameters.

Furthermore, several embedding approaches for embedding based on BCH
Codes were proposed, such as the Classic Approach (Section 5.2.1.1), embedding
based on a systematic parity-check matrix (Section 5.2.1.3), embedding based on
Coset C(0) (Section 5.2.1.4) as well as embedding based on a reduced coset (Sec-
tion 5.2.1.5). Furthermore, Zhang et al. proposed a method for fast embedding
based on BCH Codes with fk = 2 (Section 5.2.1.2).

Figure 6.2 compares the results of e for several BCH Codes dependent on the
inverse relative message length α−1. Again, the more bits of the cover are used
for embedding, the smaller the inverse relative message length. Note that all
investigated codes achieve the same results for e, independently of the applied
embedding approach21.
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Figure 6.2.: Embedding Efficiency e Dependent on the Inverse Relative Message
Length For Several BCH Codes According to [3].

Additionally, Figure 6.2 shows the influence of the generator polynomial - used

21Note that a reduced embedding efficiency is possible for the approach based on a reduced
coset (Section 5.2.1.5) whenever to few sequences fm are evaluated.
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for constructing the parity-check matrix Hk×n - on the achievable embedding ef-
ficiency according to Bellmann [3]. In her thesis, Bellmann investigated several
strategies for constructing g(x) depending on the choice of the minimal polyno-
mials mi(x) (see Section 3.2.3.2). Examples of the codes investigated within [3]
are given in Appendix D.

Within Figure 6.2, solid symbols stand for primitive BCH Codes with n = nmax.
Non-primitive codes with n < nmax are denoted with non-solid symbols. The
different colors refer to the different number of minimal polynomials mi(x) used
for the construction of g(x) as basis of the parity-check matrix Hk×n. Note that
an increasing number of minimal polynomials mi(x) results in a bigger block
length n as well as in a higher embedding complexity.

Within her thesis, Bellmann found, e. g., that when choosing 2 minimal poly-
nomials for the construction of g(x), it is always advantageous to determine g(x)
as g(x) = m1(x)m3(x). Moreover, for the construction of g(x) considering 3 min-
imal polynomials, it is never advantageous to chose m1(x), m3(x) and m5(x) as
it is common for channel coding.

As can be seen in Figure 6.2, choosing 4 or 5 minimal polynomials for the
construction of g(x) is advantageous considering the embedding efficiency. The
results for the investigated BCH Codes are noticeably better than those for the
Hamming Code. Note that the codes with g(x) = m1(x) in case of a primitive
BCH Code are equivalent to those of the Hamming Code. Furthermore, the
results for Fast BCH are equivalent to those for 2 mi(x), like g(x) = m1(x)m3(x).

Even if it is possible to cover a wide range of parameters, the approach based
on deterministic matrices itself is somehow limited. Remember that it is possible
to construct BCH Codes for arbitrary values of fk. However, it is not possible
to achieve arbitrary combinations of n and k. One solution to this problem is to
reduce the code parameters22, whereas the results for the embedding efficiency
are even worse.

6.1.5. Simplex Codes and Augmented Simplex Codes

Within this approach, described in Section 5.3, k bits are embedded in 2k−1 − 1
elements, leading to an inverse relative message length α−1 = 2k−1−1

k
. Fridrich

et al. investigated Simplex Codes for k = 3, . . . , 11.

Evaluating the embedding efficiency, Fridrich et al. state that the performance
is not as good as for stochastic codes since Simplex Codes do not cover the range
of relative message length as densely as random codes. However, they easily
reach into the range of α−1 < 1.25 with a low computational complexity. Thus,
they can be seen as examples for structured codes suited to embed large relative
message lengths [52, 51].

22In coding theory, it is possible to reduce the number of information bits l, and thereby the
codeword of length n. The parameter k has to be constant.
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Generally, Augmented Simplex Codes, as described in Section 5.4, achieve a
better performance than Simplex Codes, but again not as good as for the random
linear codes. However, they populate the range for α−1 more sparsely.

6.1.6. Comparing the Approaches

The results comparing the algorithms in terms of embedding efficiency are pre-
sented in Figure 6.3. We depict the embedding efficiency depending on the inverse
relative message length α−1 = n

k
. The upper theoretical bound on embedding ef-

ficiency is given as well (see Section 3.4.3.1). Note that the more bits of the
cover are used for embedding, the smaller the inverse relative message length.
We find, e. g., α−1 = 1 for LSB embedding where all cover elements are used for
embedding. Furthermore, note that schemes with a high embedding efficiency e
are less likely to be detected.

Note that all investigated codes achieve better results than the Hamming
Codes. However, since the complexity for embedding based on Hamming Codes
is low, these codes are often used in practical steganographic schemes (e. g. [96]).

As visualized in Figure 6.3, we find the best results for Matrix Embedding
for Large Payloads, Simplex Codes and Augmented Simplex Codes considering a
low inverse relative message length α−1. These approaches achieve results close
to the bound for a inverse relative message length ≈ 1. Whenever the inverse
relative message length gets higher, the results for Simplex Codes and Augmented
Simplex Codes, as examples for deterministic matrices, get worse compared to
those of the approach Matrix Embedding for Large Payloads.

Note that Matrix Embedding for Large Payloads as well as Simplex Codes are
applicable only for a small inverse relative message length α−1. For a inverse
relative message length of 1.5 and higher, BCH Codes achieve better results in
terms of the embedding efficiency. Thus, Matrix Embedding for Large Payloads
and Simplex Codes are only reasonable for α−1 < 1.5.

Generally, the investigated BCH Codes achieve good results in terms of the
embedding efficiency23. We can use the algorithm proposed by Schönfeld and
Winkler in [86] and described in Appendix E in order to find appropriate code
parameters suitable to achieve a high embedding efficiency. Note that it is not
possible to design codes based on deterministic matrices for arbitrary values n
and l.

The results reported for the Block Minimal Method are not directly comparable
to the other approaches at a first impression. Note that the reported results for
e are related to α−1

Dry = |Dry|
|m|

instead of α−1 = n
k
.

23Note that the results visualized within Figure 6.3 do not consider wet elements, i. e., elements
that should be excluded during embedding. In this case, the results for the embedding
efficiency are slightly worse due to an increased average number of embedding changes Ra

(see also Figure 6.6).
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However, considering the Block Minimal Method for embedding, the matrix
is divided into two sub-matrices, where Hk×|Dry| is used for embedding. While
Hk×n is a matrix of dimension k × n, Hk×|Dry| is a matrix containing k rows and
on average k/α columns [47]. Thus, the dimension of Hk×|Dry| is independent of
the actual number of wet elements. Based on the parameters presented in Table
6.1, we summarize the related code parameters of Hk×|Dry| in Table 6.3.

Table 6.3.: Number of Columns of Hk×|Dry| for Different Values k.

α−1
Dry k = 4 k = 10 k = 18

1.5 6 15 27
1.75 7 18 32
2 8 20 36

2.5 10 25 45
3 12 30 54

3.5 14 35 63
4 16 40 72

Based on this fact, we actually can compare the results reported for the Block
Minimal Method directly to the other approaches, whenever |Dry| = n. In this
case, visualized in Figure 6.3, we find α−1 = α−1

Dry. Whenever |Dry| < n, i. e.,
whenever wet elements are considered, the results concerning the embedding
efficiency are getting worse similar to those for embedding based on BCH Codes24.

Generally, we find that the Block Minimal Method is comparable to the ap-
proach of embedding based on BCH Codes since both approaches cover a wide
range of inverse relative message length α−1. Note that the results considering
the embedding efficiency are not as good as the results achievable for BCH Codes.
However, it is possible to design codes for arbitrary values n and l. Thus, codes
related to the Block Minimal Method are able to cover the range of α−1 more
densely.

To summarize, it seems reasonable to apply schemes with a higher inverse
relative message length α−1 whenever the security of the scheme is of interest.
Thus, the application of embedding based on BCH Codes as well as based on the
Block Minimal Method seems advantageous. However, none of the algorithms
investigated so far is able to reach the upper boundary of embedding efficiency.

24Contrary to the BCH Codes, where the curve of the embedding efficiency will be on a lower
level of e (a downside shift), the curve of the embedding efficiency for the Block Minimal
Method will be shifted to the right hand side.
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6. Evaluation of the Algorithms for a Small Code Word Length

6.2. Evaluation Concerning the Capacity

The capacity of a steganographic scheme is defined as the maximum length of a
secret message (in bit) divided by the number of bits required to store the stego
object (see Section 2.1.3). For approaches working on a block-based manner, we
find the inverse relative message length α−1 = n

k
. Thus, the maximum length of

the embeddable message depends on the parameter k and the block length n.
However, for embedding based on a stochastic parity-check matrix, the maxi-

mum achievable capacity is |emb| ≤ k (see Table 6.4). Due to the non-negligible
probability of a stochastic matrix of not being of rank k, the capacity for ap-
proaches based on a stochastic parity-check matrix is reduced. First, these ap-
proaches require the sender to store the actual achievable message length requiring
a segment of the cover not usable for embedding. Second, a coding loss has to
be considered since the message length is reduced within each embedding trial in
case of non-solvability.

Table 6.4.: Achievable Message Length for the Different Approaches.

Algorithm Message Length
Block Minimal Method |emb| ≤ k

Matrix Embedding for Large Payloads |emb| ≤ k
Hamming Code |emb| = k

BCH Codes |emb| = k
Simplex Codes |emb| = k

Augmented Simplex Codes |emb| = k

The decrease of the embedding capacity due to non-solvability is given in Table
6.5 for the Block Minimal Method according to [45]. Beside α−1

Dry = |Dry|
Nα

, i. e.,
the maximal inverse relative message length, Table 6.5 gives the actual reachable
inverse relative message length α′−1

Dry. Furthermore, we give the block length n

according to n = 20 k
α

similar to Table 6.1.

Table 6.5.: Capacity Loss for N = 106, |Dry| = 50000, k = 18 According to [45].

n 1200 900 720 600 514 450 400
αDry 0.3 0.4 0.5 0.6 0.7 0.8 0.9
α−1

Dry 3.333 2.5 2 1.667 1.429 1.25 1.111

α′−1
Dry 3.333 2.5 2 1.692 1.515 1.437 1.433
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Figure 6.4.: Achievable Inverse Relative Message Length α′−1 Dependent on the
Maximal Inverse Relative Message Length α−1.

Note that the loss becomes negligible for α−1
Dry > 1.667, i. e., in the case where

less than 60% of the dry elements are used for embedding the confidential message
(α < 0.6). For a message length larger than ≈ 70% of the cover, it is not feasible
to apply this embedding approach.

In order to visualize the coding loss, we give the achievable inverse relative
message length α′−1 depending on the maximal inverse relative message length
α−1 in Figure 6.4. Additionally, Figure 6.4 visualizes how dense the codes cover
the range of the relative message length. Note that a high inverse relative message
length is linked to a higher security of the scheme.

As it can be seen in Figure 6.4, there is indeed a coding loss for the Block
Minimal Method considering an inverse relative message length α−1 < 1.667.
Note that even if Hamming Codes do not improve the embedding efficiency for
messages whose inverse relative message length is below 1.5, they cover the range
for a high inverse relative message length (α−1 > 5) more densely. Moreover, as
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6. Evaluation of the Algorithms for a Small Code Word Length

stated in [52], Simplex Codes can easily reach into the range of α−1 ≈ 1. Note
that Augmented Simplex Codes populate the range for α−1 more sparsely. Also
Matrix Embedding for Large Payloads is applicable only for a low inverse relative
message length.

Generally, the Block Minimal Method as well as BCH Codes cover the range
of α−1. While the Block Minimal Method is able to cover continuously, the BCH
Codes are not able to achieve matrices for arbitrary values of α−1. However,
they do not cause coding loss. The property of coding loss, i. e., the success of
embedding will be discussed in more detail in the next section.

6.3. Evaluation Concerning the Success Rate

Within this section, we describe the success of embedding within a block of length
n as well as within the whole cover considering a general profile, i. e., embedding
while excluding conspicuous cover parts (Wet Paper Steganography).

Note that considering a deterministic parity-check matrix and a uniform profile
of embedding impact, it is always possible to embed arbitrary messages, i. e., the
success rate is 100%. For embedding based on a stochastic parity-check matrix
instead, a coding loss has to be accepted since the probability of finding a solution
to the system of linear equations is less than 100%. This coding loss results in
a reduced capacity as well as in an increased complexity since in case of non-
solvability the sender has to start the embedding process again with a reduced
parameter k. This is true even for a uniform profile of embedding impact.

Note that considering the exclusion of cover parts (Wet Paper Steganography),
also codes based on a deterministic parity-check matrix have to deal with non-
solvability. This will be considered in more detail within the next section.

6.3.1. Success of Embedding Considering Single Blocks

Within this section, we describe the success of embedding within a block of length
n considering a general profile. In the following, the solvability is referred to as
pso. The embedding process is successful, i. e. pso = 1, whenever emb = Hk×nb

T

has a solution for arbitrary messages emb. Thus, rank(Hk×n) has to be k.
As an example for embedding based on stochastic parity-check matrices, we dis-

cuss properties of the Block Minimal Method. Embedding based on BCH Codes
should be investigated as an example for syndrome coding with deterministic
matrices.
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6.3.1.1. Block Minimal Method

The probability of a stochastic binary matrix with equal probability for 0 and 1
being of rank s with s ≤ k is given in Equation (3.3) with:

Pk,n(s) = 2s(k+n−s)−kn
s−1∏

i=0

(1 − 2i−k)(1 − 2i−n)

(1 − 2i−s)
. (6.1)

Thus, the probability of a stochastic binary matrix being of full rank and by
this the solvability can be determined with:

pso =
k−1∏

i=0

(1 − 2i−n). (6.2)

As already stated by Fridrich, pso quickly approaches 1 with decreasing message
length |m| or increasing k for a fixed number of changeable elements and a fixed
message length [48]. However, for any |Dry| ≈ |m|, i. e., a low inverse relative
message length α−1, the probability of rank(Hk×n) < k may become large enough
to encounter a failure to embed all k bits in some blocks. Thus, we have to denote
a capacity loss [47].

The fact that the number of columns in Hk×|Dry| varies from block to block
also contributes to failures. Fridrich et al. propose that failures be dealt with by
communicating to the receiver which blocks failed.

In Figure 6.5, we depict the solvability pso depending on the inverse relative
message length α−1

Dry, i. e., depending on the percentage of dry elements used for
embedding. Note that pso was determined according to Equation (6.2) and based
on Table 6.1.

Within this figure, we give the general properties of the Block Minimal Method
dependent on k and the inverse relative message length, independently of the
actual number of wet cover elements. Note that a high inverse relative message
length is related to a higher security of the scheme.

As it can be seen in Figure 6.5, pso depends on both, the inverse relative message
length as well as the parameter k. While for a small parameter k with k = 4 the
solvability quickly decreases for α−1

Dry < 3, the results for larger parameters k are

better. However, even for k = 18, we find a decrease in pso for α−1
Dry < 1.5.

To summarize, we find that the fewer bits are embedded within a block, the
better the solvability. Consequently, the application of the Block Minimal Method
is only feasible, whenever the percentage of dry elements used for embedding is
low.

The results presented in Figure 6.5 confirm the results presented by Fridrich
et al. in [48]. Moreover, we state that these results are true, independently of the
actual number of dry elements since the dimension of the sub-matrix Hk×|Dry|

used for embedding depends only on k and α−1
Dry (see Table 6.3).
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Figure 6.5.: Solvability Dependent on the Inverse Relative Message Length α−1
Dry

for the Block Minimal Method.

6.3.1.2. BCH Codes

Based on experimental investigations of different BCH Codes by Schönfeld and
Winkler [86, 87], we derived a general bound for the maximum number of arbi-
trarily distributed wet elements within a block of length n.

We achieve pso = 1.0 for

|Wet| ≤
⌈ l

2

⌉

, (6.3)

and pso ≥ 0.9 for

⌈ l

2

⌉

< |Wet| ≤ (l − 1). (6.4)

Thus, even if there are up to ⌈ l
2
⌉ arbitrarily distributed wet elements within

a block of length n, embedding based on BCH Codes always has a solution for
arbitrary messages emb. Whenever we accept a little lower probability pso, we
can exclude up to (l − 1) arbitrary positions within a. The results presented in
Figure 6.6 according to [86] illustrate these bounds.

The diagrams on the left-hand side illustrate the probability of finding a so-
lution depending on the number of wet elements for the (17, 9, 2) non-primitive
BCH Code and also for the (15, 11, 1) Hamming Code and the (23, 12, 3) Go-
lay Code. Again, all results for pso with |Wet| = (0, 1, ..., l) were determined
experimentally. For given sequences a, we evaluated the results for all possible
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Figure 6.6.: Ra and Solvability Dependent on the Number of Wet Elements for
Several BCH Codes [86]. The Bounds According to Equation (6.3)
and (6.4) are High-lighted.
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sequences emb. Within the diagrams, the bounds according to (6.3) and (6.4)
are highlighted.

The diagrams on the right-hand side of Figure 6.6 show the average number
of embedding changes Ra. All results for Ra were determined experimentally
by means of exhaustive search. As expected, the average number of embedding
changes Ra for one block increases with a rising number of wet elements.

6.3.1.3. Choosing an Appropriate BCH Code

Whenever choosing a code out of different possible codes, we should have a look
at its performance concerning the number of wet elements and the number of
elements k that can be embedded within a block of length n. Of course, we
cannot maximize both.

If the solvability for arbitrary blocks of length n should be pso = 1.0, we find
for BCH Codes, e. g.,

pWet =
⌈ l

2
⌉

n
, (6.5)

where pWet describes the percentage of wet elements.
If we choose pso ≥ 0.9, we find:

pWet =
l − 1

n
. (6.6)

Considering a (17, 9, 2) non-primitive BCH Code, we find: whenever the solv-
ability for arbitrary blocks of length n = 17 should be pso = 1.0, we determine
pWet = 0.294, i. e., 29.4% out of n elements in each block can be excluded arbitrar-
ily while we are able to embed arbitrary sequences emb. If we accept pso = 0.9,
we can exclude up to 47.1% of the n elements of each block arbitrarily.

Generally, codes with a good performance fk and with it a small code rate
always have a relatively low number of information bits l, resulting in a relatively
low maximum number of realizable wet elements |Wet|. However, they provide a
low complexity since the code alphabet containing 2l elements is small. Moreover,
they are suited for a low inverse relative message length, since the number of
embeddable bits per block k is high.

In practice, we have to find a compromise between l and k, depending on the
actual cover and its percentage of randomly distributed wet elements on the one
hand and the inverse relative message length on the other hand.

6.3.1.4. Comparing Stochastic and Deterministic Matrices

Within this section, we would like to compare the success of embedding within a
block for the two approaches, i. e., a matrix based on deterministic design rules
and a stochastic parity-check matrix. Therefore, we compare BCH Codes to the
Block Minimal Method.
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Considering, e. g., the (17, 9, 2) non-primitive BCH Code. Applying this code

for embedding, we are able to exclude up to
⌈

l
2

⌉

= 5 arbitrarily distributed

elements while pso = 1 (Equation (6.3)). Thus, 5/17, i. e., 29.4% of the cover can
be wet. Note that we find k = 8 for this code and thus, |m| = 470584 for a cover
of length N = 106 containing of nB = 58823 blocks.

For a comparable code based on a stochastic matrix, we want to embed again
|m| = 470584 elements within a cover of length N = 106. We find nB = |m|/k =
58823 and thus, k = 8. The number of dry elements can be determined as 70.6%
of the cover elements, i. e. |Dry| = 706000. Thus, we find α−1

Dry = |Dry|/|m| = 1.5.

Consequently, the Block Minimal Method is applied with a pseudo-random
parity-check matrix H8×17. However, as mentioned before, the dimension of
Hk×|Dry| is dependent only on α−1

Dry. We find Hk×|Dry| as a matrix of dimen-
sion 8× 12 since 5 out of 17 elements are considered wet. The probability of this
matrix being of full rank is P (8) = 0.939 (see Equation (3.3)).

In this example, the considered BCH Code is clearly better than a comparable
stochastic matrix. We find a difference for the solvability of 0.061 between both
approaches.

Another example is the (63, 39, 4) BCH Code, which enables to exclude 20
elements while embedding k = 24 elements into each block of length 63. Thus,
we find that 31.746% of the cover can be wet. For a cover of length N = 106, we
find nB = 15873 and thus, |m| = 380952.

Embedding |m| = 380952 elements within the same cover based on a stochastic
parity-check matrix, we find |Dry| = 682540 and thus, α−1

Dry = |Dry|/|m| = 1.792.
Consequently, embedding will be based on a pseudo-random parity-check matrix
H of dimension 24 × 63. Considering α−1

Dry, we find Hk×|Dry| as a sub-matrix of
dimension 24×43 since 20 out of 63 elements are considered wet. The probability
of this matrix being of full rank is P (24) = 0.999998.

For this example, we find that the Block Minimal Method is almost as powerful
as a comparable BCH Code. This is true, whenever we have either a high α−1

Dry

or a large k. In this case, the solvability of the Block Minimal Method is not
that crucial. However, there is still a small possibility of failure, resulting in a
reduction of the message length as well as in an increased complexity due to the
additional embedding trial. In this case, less than k bits can be embedded within
a block of length n. This is not an issue at all for BCH Codes.

Of course, these considerations behold only the probability of finding a solution
for an individual block of length n, i. e., the performance of a code.

6.3.2. Success of Embedding Considering the Whole Cover

So far, the considerations only take into account the (n, l) code itself, i. e., we
studied the performance of individual code blocks. Within this section, we gen-
eralize the analysis to an entire cover consisting of

⌊
N
n

⌋
blocks.
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As an example for embedding based on stochastic parity-check matrices, we dis-
cuss properties of the Block Minimal Method. Embedding based on BCH Codes
should be investigated as an example for syndrome coding with deterministic
matrices.

In order to calculate the probability of being able to embed a message within a
cover, we also have to take into account the percentage of wet elements within the
entire cover. Therefore, we have to combine the probability of finding a solution
within an individual block and the number of wet elements within this block.
Of course, this consideration influences the choice of an appropriate code and
thereby the possible message length.

Depending on the percentage of wet elements, denoted as pWet, the actual
number of wet elements |Wet| within an arbitrary block of length n follows the
binomial distribution P (Wet):

P (x = Wet) =

(
n

x

)

px
Wet(1 − pWet)

n−x (Wet = 1, 2, ..., n). (6.7)

Consequently, the success of embedding depends not only on the solvability
pso within each block but also on the distribution of wet elements. We find the
probability for success of embedding psu within an arbitrary block of length n as
a combination of pso and P (|Wet|):

psu =

l∑

Wet=1

P (Wet) pso. (6.8)

6.3.2.1. Block Minimal Method

In order to determine the success of embedding within the entire cover, we first
have to determine the probability for success of embedding psu within an arbitrary
block of length n.

For the first example given in the previous section, we find N = 106 and thus,
nB = 58823 blocks of length 17 (see Section B). Furthermore, we find Hk×|Dry|

as a matrix of dimension 8×12. The probability of this matrix being of full rank
is P (8) = 0.939 (see Equation (3.3)). Note that it is possible to exclude up to 5
arbitrarily distributed elements within each block.

Considering pWet = 0.294, we find
∑5

Wet=1 P (|Wet|) = 0.615, i. e., only 61.5%
of the blocks contain 5 or less wet elements. For the remaining blocks, we have
to exclude more elements.

Whenever we exclude 6 elements, we find Hk×|Dry| as matrix of dimension
8 × 11. The parameters of the matrix, the corresponding pso (see Equation (3.3))
and P (|Wet|) (see Equation (6.7)) are given in Table 6.6.

Note that
∑9

Wet=1 P (|Wet|) = 0.986, i. e., only 98.6% of the blocks contain 9
or less wet elements. The remaining blocks cannot be used for embedding at all.
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Table 6.6.: Dimension of Hk×|Dry|, pso and P (|Wet|) for the Block Minimal
Method and H8×17.

|Wet| Dimension of Hk×|Dry| pso P (|Wet|)
6 8 × 11 0.881 0.174
7 8 × 10 0.771 0.114
8 8 × 9 0.579 0.0591
9 8 × 8 0.290 0.025

Based on the results given in Table 6.6, we find ssu as

psu =

l∑

Wet=1

P (Wet) pso

= 0.615 · 0.939 + 0.174 · 0.881 + 0.114 · 0.771 + 0.059 · 0.579 + 0.025 · 0.290

= 0.860.

Thus, for the solvability within an arbitrary block of length n containing wet
elements distributed according to P (Wet), we find psu = 0.860.

In order to determine the success of embedding within the whole cover, we have
to calculate the product of psu, effective for one block, over all blocks. Considering
nB = 58823 blocks within the whole cover, the success of embedding within the
whole cover will be psu = 0.86058823 = 0.00, i. e., the success of embedding the
complete message of length |m| = 470584 will be less than 1%.

For the second example, considering N = 106, nB = 15873, n = 63 and
|m| = 380952, we find Hk×|Dry| as a matrix of dimension 24 × 43 since 20 out of
63 elements are considered wet. The probability of matrix Hk×|Dry| being of full
rank is P (24) = 0.999998. In this example, 31.746% of the cover can be wet, i. e.,
pWet = 0.317.

For this code, we find
∑20

Wet=1 P (|Wet|) = 0.563, i. e., only 56% of the blocks
contain 20 or less wet elements. For the remaining blocks, we have to exclude
more elements.

Whenever we exclude 21 elements, we find Hk×|Dry| as matrix of dimension
24 × 42. The parameters of the matrix, the corresponding pso and P (|Wet|) are
given in Table 6.7.

Note that
∑39

Wet=1 P (|Wet|) = 0.9999998. The remaining blocks contain 40 wet
elements and cannot be used for embedding. Based on the results given in Table
6.7, we find psu according to
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Table 6.7.: Dimension of Hk×|Dry|, pso and P (|Wet|) for the Block Minimal
Method and H24×63.

|Wet| Dimension of Hk×|Dry| pso P (|Wet|)
21 24 × 42 0.99999 10.212 · 10−2

22 24 × 41 0.99999 9.049 · 10−2

23 24 × 40 0.9999 7.487 · 10−2

24 24 × 39 0.9999 5.791 · 10−2

25 24 × 38 0.9999 4.193 · 10−2

26 24 × 37 0.999 2.844 · 10−2

27 24 × 36 0.999 1.809 · 10−2

28 24 × 35 0.999 1.079 · 10−2

29 24 × 34 0.999 0.605 · 10−2

30 24 × 33 0.998 0.318 · 10−2

31 24 × 32 0.996 0.157 · 10−2

32 24 × 31 0.992 0.073 · 10−2

33 24 × 30 0.984 0.032 · 10−2

34 24 × 29 0.969 0.013 · 10−2

35 24 × 28 0.939 5.009 · 10−5

36 24 × 27 0.880 1.808 · 10−5

37 24 × 26 0.770 6.124 · 10−6

38 24 × 25 0.578 1.945 · 10−6

39 24 × 24 0.289 5.786 · 10−7
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psu =
l∑

Wet=1

P (Wet) pso

= 0.563 · 0.999998 + 10.212 · 10−2 · 0.99999 + 9.049 · 10−2 · 0.99999

+ 7.487 · 10−2 · 0.9999 + 5.791 · 10−2 · 0.9999 + 4.193 · 10−2 · 0.9999

+ 2.844 · 10−2 · 0.999 + 1.809 · 10−2 · 0.999 + 1.0796 · 10−2 · 0.999

+ 0.605 · 10−2 · 0.999 + 0.318 · 10−2 · 0.998 + 0.157 · 10−2 · 0.996

+ 0.073 · 10−2 · 0.992 + 0.032 · 10−2 · 0.984 + 0.013 · 10−2 · 0.969

+ 5.009 · 10−5 · 0.939 + 1.808 · 10−5 · 0.880 + 6.124 · 10−6 · 0.770

+ 1.945 · 10−6 · 0.578 + 5.786 · 10−7 · 0.289

= 0.9995834.

In order to determine the success of embedding within the whole cover, we have
to calculate the product of psu, effective for one block, over all blocks. Considering
nB = 15873 blocks within the whole cover, the success of embedding within the
whole cover will be psu = 0.999583415873 = 0.001, i. e., the success of embedding
the complete message will be less than 1%.

6.3.2.2. BCH Codes

For the examples given in Section 6.3.1.4, e. g. the (17, 9, 2) BCH Code, we find
pso = 1, considering |Wet| ≤ 5 (Equation (6.3)).

However, considering the distribution of wet elements related to pWet = 0.294,
we find

∑5
Wet=1 P (|Wet|) = 0.615 (Equation (6.7)). Thus, only 61.5% of all

blocks contain 5 or less wet elements. For the remaining blocks, we are not able
to achieve pso = 1 since we have to exclude additional elements. Note that the
distribution of P (Wet) is similar to those given in Table 6.6. Within Figure 6.7,
we depict pso depending on the number of wet elements within one block of length
n. These results are determined experimentally by Schönfeld and Winkler in [86].

Again, we find
∑9

Wet=1 P (|Wet|) = 0.986, i. e., only 98.6% of the blocks contain
9 or less wet elements. The remaining blocks cannot be used for embedding.
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Figure 6.7.: Solvability Dependent on the Number of Wet Elements for the
(17, 9, 2) Non-Primitive BCH Code According to [86].

For this example, we find ssu as

psu =

l∑

Wet=1

P (Wet) pso

= 0.615 · 1 + 0.174 · 0.999 + 0.114 · 0.990 + 0.059 · 0.910 + 0.025 · 0.730

= 0.974.

Thus, for the solvability within an arbitrary block of length n containing wet
elements distributed according to P (Wet), we find psu = 0.974.

In order to determine the success of embedding within the whole cover, we have
to calculate the product of psu, effective for one block, over all blocks. Considering
nB = 58823 blocks within the whole cover, the success of embedding within the
whole cover will be psu = 0.97458823 = 0.00, i. e., the success of embedding the
complete message of length |m| = 470584 will be less than 1%. This result is of
course not acceptable, the (17, 9, 2) non-primitive BCH Code is not suited in this
case.

The results confirm that neither the approach based on the stochastic matrix as
applied in the Block Minimal Method nor embedding based on the deterministic
matrix applied for BCH Codes are able to embed the whole message. However,
the BCH Code is able to achieve a higher solvability per block pso.
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6.3.2.3. Choosing an Appropriate BCH Code

In order to find an appropriate code suited for steganographic systems, we have
to find code parameters for which psu = 1.0. Note that in theory, psu = 1.0 is
only true if there are only ⌈ l

2
⌉ wet elements within the entire cover. Otherwise,

there is a small chance that additional wet elements occur in one block.

Therefore, the goal is to determine a lower bound for the code parameter l for
a given block length n and a given percentage of wet elements pWet within the
cover. Whenever we are not able to find an appropriate code according to l, we
have to choose a larger block length n.

We illustrate this process for deterministic matrices based on BCH Codes [86].
As realized in the previous section, the distribution of wet elements within the
cover blocks follow the binomial distribution P (Wet).
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Figure 6.8.: Distribution of Wet Elements for n = 17 and pWet = 0.3 [86].

In Figure 6.8, we visualized the distribution of wet elements for n = 17 and
pWet = 0.3. As mentioned in the previous section, the (17, 9, 2) non-primitive
BCH Code is not suited for embedding since we are able to exclude only up to 5
elements considering this code (Equation (6.3)).

A solution will be the application of codes with a larger codeword length n.
In Figure 6.9 we find for p = 0.3 and n = 31 that l has to be at least 21 for
pso = 0.9. Thus, it is possible to choose, e. g., the (31, 26, 1) or the (31, 21, 2)
primitive BCH Code. For n = 63, l has to be at least 35, which allows us to use
more powerful codes like the (63, 39, 4) primitive BCH Code [86].

However, even for these codes the probability of failure is not zero. The
(31, 26, 1) BCH Code, e. g., is able to exclude only 13 arbitrarily distributed
elements within a block of length 31 (Equation (6.3)). As Figure 6.9 shows, there
are several blocks containing a higher number of wet elements and thus, a reduced
pso.
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Figure 6.9.: Distribution of Wet Elements for n = 31 and n = 63 and pWet = 0.3
[86].

A solution to this problem would be the reduction of k. Whenever the embed-
ding process is not able to embed k bits within a block of length n, we have to
reduce k and thereby the dimension of Hk×n and try again. This approach is simi-
lar to the one applied for the Block Minimal Method. However, the solvability per
block pso is higher for BCH Codes resulting in less cases of failure. Consequently,
it is possible to embed more bits on average with a lower complexity.

Generally, we find that whenever the percentage of wet elements pWet is high,
codes with a higher codimension l are more suited, i. e., the number of embeddable
message bits is reduced. Thus, the smaller the given percentage pWet, the more
can be embedded within the cover, resulting in a low inverse relative message
length. Nevertheless, we also have to keep in mind the embedding efficiency,
whereas our goal has to be to find an appropriate tradeoff.

6.4. Evaluation Concerning the Embedding

Complexity

Within this section, we investigate the complexity of embedding for the algo-
rithms presented and discussed in this work. Complexity is considered in terms
of time and memory complexity.

6.4.1. Time Complexity

Note that a requirement for a steganographic algorithm is the possibility to embed
in an acceptable time. Which time is acceptable depends on the application.
While it seems relatively uncritical for offline approaches, steganography in live-
time environments is more crucial.
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6.4.1.1. Block Minimal Method

This block-based approach determines the coset leader in order to maximize the
embedding efficiency (see Section 4.1). To avoid the search within 2|Dry| se-
quences, Fridrich et al. propose a step-wise calculation of the cosets.

The most time-consuming part of the embedding algorithm is the computation
of the sets Ui. Note that it is necessary to generate U1 + Ui for i = 1, . . . , ⌈R/2⌉
in the worst case, where the cardinality of Ui increases exponentially [36]. Ac-
cording to Fridrich et al., the computational complexity for one embedding trial

is bounded by O(kα−1
Dry × R/2 ×

(kα−1
Dry

R/2

)
), considering α−1

Dry = |Dry|
|m|

. This term

increases exponentially with increasing k [36]. Thus, Fridrich et al. find k ≈ 18
realistic for embedding.

Fridrich et al. investigated the embedding time in seconds for N = 106 and
50000 changeable elements for different parameters k = 16, . . . , 20 [45]. They
found that with increasing message length, the embedding time increases too.
Furthermore, the embedding time increases with increasing k [47]. Fridrich et al.
found for k = 17, e. g., an embedding time for finding the coset leader in the range
of 0.73 seconds up to 2.24 seconds, dependent on the relative message length
(α = 0.1, . . . , 0.5). For k = 20, they found an embedding time in the range of
15.74 seconds up to 18.68 seconds. For these investigations, a PC equipped with a
3.4MHz Intel Pentium IV processor was used. Note that for stochastic matrices,
we have to take into account several trials for embedding, whenever the matrix
has no full rank. This will result in an increased complexity.

6.4.1.2. Matrix Embedding for Large Payloads

Fridrich et al. investigated the embedding time for several parameters l with
l = 10, 12, 14 for embedding into a 1280 × 1024 cover image divided in blocks of
length n = 100 [52]. They found for l = 10 an embedding time of 0.82 seconds,
2.42 seconds for l = 12 and 8.65 seconds for l = 14.

Thus, the complexity of embedding is O(n2n(1−α)) for one embedding trial.
Again, we have to consider several trials for embedding since this approach is
based on stochastic matrices.

6.4.1.3. BCH Code

As described in Section 5.2, we investigated several approaches for embedding
based on BCH Codes. Table 6.8 gives the number of XOR operations needed to
embed the message part emb of length k within n bits according to Schönfeld
and Winkler [87].

The classic approach is based on evaluating 2n sequences in order to determine
the sequence that minimizes the introduced distortion. Thus, it is the most
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Table 6.8.: Complexity of Embedding for Several Approaches of Embedding
Based on BCH Codes According to [87].

Approach Complexity Example: (15, 7, 2)
Classic Approach O(((kn) n + k) 2n) 59244544
Hk×n = [RIk] O(((kl) l + k) 2l) 51200
C(0) O(n2l) 1920

complex approach. Note that applying a systematic matrix can considerably
reduce the complexity.

However, the complexity of embedding can further be reduced by syndrome
coding based on Hk×n combined with Look-up Tables. Embedding based on
coset C(0) reduces time complexity dramatically compared to the classic approach
based on exhaustive search.

After determining a coset member fm, the exhaustive search can be reduced to
coset C(0). Thus, instead of 2n only 2l sequences have to be considered. The time
needed for finding a coset member fm is negligible. Note that it is still possible
to determine the coset leader.

Note that the time complexity for Fast BCH is almost negligible and constant
for any n [101]. The method has to access the Look-up Table 3 times and makes
simple mathematical operations. Consequently, it is easy to extend this method
to large n, while embedding based on coset C(0) is still too complex to be used
in real-time applications when n is large.

However, the approach Fast BCH is not applicable for codes with fk > 2. Thus,
the embedding efficiency is rather low as visualized in Figure 6.2 (see results for
2 mi(x)). We find for fk = 2 an embedding efficiency worse that those for the
Block Minimal Method.

6.4.1.4. Simplex Codes

Fridrich et al. determine the complexity of embedding in terms of the code length
with O(k2k) since evaluating the Hadamard Transform takes O(k2k) operations.
Note that this is better than a direct implementation with O(22k) [52, 51].

6.4.1.5. Comparing the Algorithms

While there are fast solutions for calculating the stego sequence that minimizes
the introduced distortion for Hamming Codes, Simplex Codes, Augmented Sim-
plex Codes and BCH Codes with fk = 2, no such strategy is known for approaches
based on stochastic matrices or BCH Codes with fk > 2. Thus, this is a clear ad-
vantage of codes based on deterministic parity-check matrices. Furthermore, we
have to consider additional embedding trials for embedding based on stochastic
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matrices due to non-solvability. This also results in a higher embedding complex-
ity.

Note that Matrix Embedding for Large Payloads is less complex than the Block
Minimal Method. Due to the small co-dimension l with l = 10, 14, the exhaustive
search for the coset leader has to take into account only a small set of codewords.
However, this class of codes is limited to a low inverse relative message length.

For the BCH Codes with fk > 2, an approach for embedding with lower com-
plexity is based on a reduced coset C(0). By means of this approach, it is possible
to embed with a reduced complexity.

6.4.2. Memory Complexity

Within this Section, we compare the approaches concerning their memory re-
quirements. Note that the memory is limited by the physical properties of the
computer used for determining the stego sequence.

6.4.2.1. Block Minimal Method

As already mentioned, the most time-consuming part of the embedding algorithm
is the computation of the sets Ui. Note that it is necessary to generate U1 + Ui

for i = 1, . . . , ⌈R/2⌉ in the worst case, where the cardinality of Ui increases
exponentially [36]. According to Fridrich, we find |Ui| ≤ (kα−1

i
) on average, the

total memory requirement is O(R/2 × (
(

kα−1

R/2

)
)) for this approach.

6.4.2.2. Matrix Embedding for Large Payloads

For embedding based on this approach, it is necessary to keep in memory all 2l

codewords which requires n2l bits. Note that finding the coset leader requires
O(n2l) operations. Consequently, the code dimension l should be small, i. e.,
l ≤ 14. For these codes with low inverse relative message length α−1 = n

k
≈ 1,

there is a small number of codewords. As a result, coset leaders can be found
efficiently using Look-up Tables.

6.4.2.3. BCH Codes

The proposed strategy for embedding based on coset C(0) dramatically reduces
the storage requirements. In this case, only 2l sequences have to be stored, which
requires n2l bits. However, when dealing with large code parameters, especially
large parameters l, this storage space might be unacceptable. Therefore, ap-
proaches further reducing the cardinality of C(0) were investigated (see Section
5.2.1.5).

Thus, the storage space can be reduced dramatically, i. e., for the (31, 21, 2)
BCH Code, e. g., only 0.0002% (212 instead of 231 sequences) of the original
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search area has to be considered in our approach. However, this result does not
affect e.

Note that for the approach Fast BCH Codes the storage complexity is linear
while that of the other methods is exponential with n. The Look-up Table size for
the quadratic polynomial is n×1 and the Look-up Table size for cubic polynomial
is n × 3. However, this approach is limited to codes with fk = 2.

6.4.2.4. Comparing the Algorithms

For the approaches based on Hamming Codes and Simplex Codes, no memory
is required. However, when applying Simplex Codes with the Fast Hadamard
Transform, matrices have to be stored in order to speed up the calculation.

Note that the matrices needed to be stored for the Fast Hadamard Transform
are sparse with only two non-zero elements in each row and column. This drasti-
cally reduced the memory requirements. Thus, we need only a space of (O(k2k))
for storing all matrices.

The approaches based on Matrix Embedding for Large Payloads and based on
BCH Codes both require a storage of n2l bits. We found for Matrix Embedding
for Large Payloads n = 100 and l = 14 and thus, 1638400 bits of storage space
required.

For the (31, 21, 2) BCH Code, we find a storage requirement of 65011712 bits.
However, when applying BCH Codes based on a reduced coset, the number of
sequences that have to be stored can be reduced to 3628 (see Section 5.2.1.5).
Thus, the total storage requirement for this approach is 112468 bits, which is
considerably less than for the approach Matrix Embedding for Large Payloads.

6.5. Summary

The evaluation of the algorithms for syndrome coding based on matrices with
a small code dimension was carried out according to the parameters security,
capacity, success of embedding and complexity.

Whenever choosing a syndrome coding based embedding scheme for a stegano-
graphic algorithm, we have to address the goal of the scheme in a first step. First
of all, we can achieve either a high security by means of a high inverse rela-
tive message length α−1 = n/k or a high capacity (low inverse relative message
length). In a second step, we can evaluate appropriate algorithms concerning the
success of embedding and the complexity of embedding. The results are summa-
rized in Table 6.9 (see also Figure 6.3). Note that the security of the algorithms
is considered in terms of the embedding efficiency e

• If the goal is to achieve a high capacity and by this a low inverse relative
message length α−1, the best results are achieved for Matrix Embedding
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Table 6.9.: Evaluation of Embedding Algorithms Based on a Small Code Word
Length - A Comparison.

security capacity success of embedding complexity
Block Minimal Method + − − −
ME for Large Payload − + − −

Hamming Codes − − + +
BCH Codes + − + −

Simplex Codes − + + +

for Large Payloads, Simplex Codes and Augmented Simplex Codes.

Whenever the inverse relative message length gets higher, the results of
e for Simplex Codes and Augmented Simplex Codes, as examples for de-
terministic matrices, get worse compared to those of the approach Matrix
Embedding for Large Payloads.

• Even if the security of these schemes is rather low, they enable to embed
in selected parts of the cover without the need of sharing the selection rule
with the receiver, in contrast to LSB embedding.

Note that the positive impact of syndrome coding on security is bigger
for a lower inverse relative message lengths since a high inverse relative
message length is less detectable anyway [36]. However, considering a low
inverse relative message length, we find |m| ≈ N . Consequently, these
schemes achieve an embedding efficiency of e ≈ 2. Thus, the improvements
compared to LSB embedding are only marginal. This is visualized by the
upper boundary of embedding efficiency. Moreover, we find that - according
to the square root law of capacity [66] - embedding a low inverse relative
message length is rather insecure. Thus, for a practical scheme a lower
capacity is preferable.

• Note that for Simplex Codes and Augmented Simplex Codes, the sender
is able to calculate the solution while for Matrix Embedding for Large
Payloads he has to apply exhaustive search resulting in higher complex-
ity. Moreover, a major advantage for embedding based on codes described
by means of a deterministic parity-check matrix is a high solvability even
in a scenario with wet elements. A high success of embedding is indeed
important considering applications with a fixed message length or applica-
tions with real-time requirements. In this case, several embedding trials are
unacceptable.
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• According to the square root law of capacity [66], the application of a higher
inverse relative message length α−1 is preferable whenever the security of
the embedding schemes is of prior interest.

• As algorithms covering a wide range of α, the BCH Codes as well as the
Block Minimal Method achieve good results in terms of the embedding
efficiency. We found both approaches to be comparable. Nevertheless, since
it is not possible to determine BCH Codes for arbitrary code parameters,
the Block Minimal Method covers the range of α−1 more densely.

• However, as the investigations confirmed, matrices built according to stochas-
tic processes have to deal with a coding loss. Contrary to the BCH Codes
built according to deterministic rules, they are not able to embed k bits
within each block. This is true due to the non-zero probability of matrix
Hk×n of being of rank < k.

This non-solvability results in a reduced capacity as well as in an increased
complexity. In case of failure, the sender has to start the embedding process
again with a reduced parameter k. Due to this fact, we find that the
Block Minimal Method is not feasible for embedding whenever the relative
message length αDry is higher than 70%.

Considering a uniform profile, we find that deterministic matrices always
provide a solvability pso = 1. However, considering a general profile, i. e.,
a scenario where wet elements are excluded during the embedding process,
we find for both approaches cases of failure. This is true, whenever blocks
contain a higher number of wet elements than the code can process. How-
ever, since we find a better solvability pso within a block for deterministic
matrices, the success of embedding within the whole cover is also better.
Moreover, we find a lower complexity for embedding due to the lower per-
centage of failure.

• Note that considering the security in terms of the embedding efficiency of
the algorithms, we find that the Hamming Codes achieve the worst results.
However, since these codes are easy to implement with low complexity, they
are often used in practical systems (e. g., [96]).

• Generally, we find that codes with a good performance fk always have a
relatively low number of information bits l, resulting in a relatively low
maximum number of wet elements |Wet|. However, they are suited for a
low inverse relative message length, since the number of embeddable bits
per block k is high. In practice, we have to find a compromise between l and
k, dependent on the actual cover and its percentage of randomly distributed
wet elements pWet on the one hand and the relative message length on the
other hand.
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6.6. Problem Discussion

Note that the codes investigated so far are not able to achieve results close to
the upper boundary of embedding efficiency. However, it is known from Cohen
et al. [14, Theorem 12.3.5], that the upper boundary on embedding efficiency is
asymptotically achievable using (n, l) linear codes with n → ∞. Thus, for codes
with a large codeword length, the upper boundary is theoretically reachable.

However, for this kind of codes it is hard to determine the coset leader, i. e., it
is hard to minimize the embedding impact. Generally, finding the coset leader,
i. e., the sequence that minimizes the embedding distortion, is an NP-complete
problem [4] since the size of a coset increases exponentially with l.

Thus, an exhaustive search is technically feasible as long as the parameter
l remains small. However, with increasing codeword length n and constant l,
the inverse relative message length α−1 decreases. Consequently, the embedding
efficiency decreases. In the worst case, i. e., for n → ∞ and constant l, α−1 → 1.
Thus, the embedding efficiency is limited to e = 2.

Fridrich et al. investigate in their approach Matrix Embedding for Large Pay-
loads this effect for l = 10, 12, 14 and different values for the inverse relative
message length α−1. However, even for l = 10 and α−1 = 1.11, the maximum
achievable block length is n = 100 [52]. Thus, moderate embedding rates are not
feasible for codes with a large codeword length. However, some codes built ac-
cording to deterministic rules, can be seen as quantizers. For this class of codes,
no exhaustive search is required, the coset leader can be calculated directly.

For Hamming Codes (HC) with fk = 1, for example, it is possible to simply
analyze the syndrome derived from s = Hk×na

T ⊕ emb, where s is related to a
position in Hk×n. This position has to be flipped in a, in order to embed while
minimizing the embedding impact. Every syndrome, excluding the syndrome
with weight zero, is mapped to a sequence f with w(f) = 1, i. e., the weight of
each coset leader is at maximum 1.

However, comparing the embedding efficiency for Hamming Codes with differ-
ent parameters k with the upper boundary on embedding efficiency, we find that
there is indeed still a huge gap.

Another code with practical and fast decoders that are quantizers, are Simplex
Codes, the dual codes to Hamming Codes. However, also this class of codes,
investigated by Fridrich et al. in [52] is not close to the upper boundary. Note
that exhaustive search is necessary for structured codes (aside from Hamming
Codes and Simplex Codes), since these codes do not allow us to directly calculate
the coset leader.
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6.6. Problem Discussion

In this part, we introduce algorithms for syndrome coding based on constrained
stochastic parity-check matrices designed for a large codeword length with n = N .
We give a description and some specifics of state-of-the-art algorithms. Recall
that we focus on the embedding step Θ.

As a measure for the performance of an embedding algorithm, the embedding
efficiency e plays an important role. It represents the average number of embed-
dable bits per embedding change and is limited by a theoretically determined up-
per bound (Section 3.4.3.1). In practical investigations, the reachable embedding
efficiency depends on both, the code used for embedding as well as the embedding
algorithm itself. Note that we have to minimize the distortion between cover and
stego sequence introduced during embedding in order to maximize e.

The codes investigated so far are limited to a relatively small codeword length.
However, as [14, Theorem 12.3.5] indicates, the use of large codeword length is
advantageous to reach the upper bound for e.

The first approach proposed for a large codeword length are the so-called Wet
Paper Codes, i. e., simple variable rate stochastic codes [44]. However, these
codes are not designed to maximize the embedding efficiency since they simply
determine one solution to the system of linear equations (Equation (3.33)). This
solution does not necessarily have to minimize the distance between the cover
sequence a and the stego sequence b and thus not necessarily maximize the
embedding efficiency e.

Generally, it seems to be reasonable to investigate sparse matrices in order
to handle a large codeword length. Lately, independent investigations in Low-
Density-Generator-Matrix (LDGM) Codes combined with SP by Fridrich et al.
and BP by Günther et al. have reached a remarkable embedding efficiency and
thus seem to be promising [37, 60].

Another approach, based on convolutional codes was proposed by Filler et al.
as Syndrome Trellis Codes (STC) [24]. This approach is able to minimize the
embedding impact and also to handle arbitrary profiles of embedding impact.
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Paper Codes

Generally, Embedding considering Wet Paper Codes (WPC) is realized with
syndrome coding based on a pseudo-random parity-check matrix Hk×n. The
probability of 0 and 1 in Hk×n is the same. Thus, the weight of the matrix is
w(Hk×n) ≈ kn

2
.

Generally, Wet Paper Codes were introduced in the context of the concept
"writing on wet paper", introduced in Section 2.1.2.2, which can be seen as a
non-shared selection channel [44]. Since the selection rule is known only to the
sender, the receiver has no information about the positions used for embedding.

This problem is known in information theory as writing in memory with de-
fective cells [73]: A computer memory contains n cells out of which n − k cells
are permanently stuck. The task is now to write as many bits as possible in the
memory considering the fact that only the writing device knows the location and
status of the stuck cells. Of course, the reading device should be able to correctly
read the data.

It follows from the Gel´fand-Pinsker theorem for channels with random pa-
rameters known to the sender [57], that it is possible to write all k bits into the
memory as n → ∞. Thus, the capacity of this channel is k.

Fridrich et al. pointed out that the problem of writing in memory with defective
cells is similar to the problem of writing on wet paper, where l bits are wet and
should not be modified, while the remaining k = n − l bits can be used for
embedding25. Again, the receiver does not know the dry set.

However, there are three main differences between coding for defective memory
and Wet Paper Steganography [45]: First, the number of wet pixels can be quite
large in natural covers, e. g., n = N = 106 and l = 104. Second, the number of wet
pixels varies from cover to cover, i. e., depending on the selection channel, different
amounts of cover elements are considered wet. Beside these two disadvantages
of Wet Paper Steganography, the last difference can be seen as an advantage:
The steganographic approach is not that time critical since often no real time
performance is required.

25Thus, this approach can be applied for a general profile of embedding impact. However, since
the approach excludes wet elements and all dry elements can be used for embedding, the
average number of embedding changes Ra is again an appropriate measure for the introduced
distortion.
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Generally, Wet Paper Steganography can also be seen as a generalization of the
selection channel of Anderson [2], where the message bit is encoded as parity of
a group of elements. Note that neither the Selection Channel [2] nor Wet Paper
Steganography [44] require the sender to share any knowledge of the constraints
with the recipient, whereas the latter approach does not even sacrifice embedding
capacity – however at the cost of increased embedding complexity.

7.1. Description of the Basic Approach

Since the receiver will extract the message by solving emb = Hk×n bT , the sender
needs to solve a system of linear equations. The algorithm is equivalent to the
one described in Section 4 and can be summarized as follows [44]:

1. Eliminate positions with f [i] = 0 from f ⇒ f|Dry|

2. Eliminate the corresponding columns from Hk×n ⇒ Hk×|Dry|

3. Recall Equation (4.2)

Hk×|Dry| (f|Dry|)
T = emb ⊕ Hk×na

T

4. Determine a solution for f|Dry|

5. Determine the flipping pattern f related to f|Dry|

6. Determine the stego sequence b = a⊕ f

Contrary to the approaches described in Section 4, the algorithm is applied
to the whole cover instead to small blocks as for the Block Minimal Method.
Furthermore, there is no search for a coset leader, i. e., a flipping pattern that
minimizes the introduced distortion in Step 4. Instead, simply the system of
linear equations is solved.

As mentioned before, emb = Hk×n bT has a solution as long as Hk×n has full
rank. Thus, ideally rank(Hk×n) = k bits can be embedded by means of syndrome
coding, i. e. |emb| = k. However, given that stochastic matrices will have no full
rank with high probability (see Section 3.2.1), the sender is able to communicate
only q bits with q <= k with this scheme, i. e. |emb| <= k.

Whenever it is impossible to solve the system of linear equations, i. e., the
matrix’ rank is < k, the sender needs either to discard the cover or to shorten
the message, i. e., to reduce k and try again to find a solution. Of course this
iterative procedure is time consuming.

Because of the variable message length q <= k, the sender needs to commu-
nicate this parameter to the receiver. Therefore, he encodes the message length
q within a fixed section of the cover. By doing so, the receiver is able to extract
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the message length q and build the pseudo-random binary q×n matrix H needed
for extracting the message.

A simple example for the Wet Paper Code is given below.

Example:

A stochastic code with block length n = N = 5 is given. The sender would
like to embed the message emb = (100)T into the cover sequence a = (10111),
the elements a[2] and a[5] are wet.

In this example, the parity-check matrix is given with:

H3×5 =





1 0 1 1 0
0 1 1 0 1
1 0 0 0 0



.

After defining f = b ⊕ a = (f [1]0f [3]f [4]0), the sender embeds the message
according the following scheme:

1. Eliminate positions with f [i] = 0 from f ⇒ f|Dry| = (f [1]f [3]f [4])

2. Eliminate the corresponding columns from Hk×n ⇒ Hk×|Dry| =





1 1 1
0 1 0
1 0 0





3. Recall Equation (4.2) with Hk×|Dry|(f|Dry|)
T = emb ⊕ Hk×na

T

4. Determine a solution to f|Dry|





1 1 1
0 1 0
1 0 0









f [1]
f [3]
f [4]



 =





1
0
0



⊕





1 0 1 1 0
0 1 1 0 1
1 0 0 0 0













1
0
1
1
1













f [1] ⊕ f [3] ⊕ f [4]
f [3]
f [1]



 =





1
0
0



⊕





1
0
1



 =





0
0
1









f [1] ⊕ f [3] ⊕ f [4]
f [3]
f [1]



 =





0
0
1









f [1]
f [3]
f [4]



 =





1
0
1





5. Determine the flipping pattern f related to f|Dry|
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f|Dry| = (101) ⇒ f = (10010)

6. Determine the stego sequence
b = a ⊕ f = (10111) ⊕ (10010) = (00101)

The receiver extracts the message with: emb = HbT





1
0
0



 =





1 0 1 1 0
0 1 1 0 1
1 0 0 0 0













0
0
1
0
1









.

�

Note that the complexity of the communication lies on the sender’s side, be-
cause he has to solve q <= k linear equations with q unknown parameters.
Contrary to the approaches described in Section 4, the algorithm is applied to
the whole cover. Furthermore, the system of linear equations is solved and no
search for the coset leader is applied. Consequently, the embedding process based
on this approach is not able to minimize the introduced embedding distortion.

In order to reduce the complexity of embedding, several approaches have been
proposed, e. g., the application of Structured Gaussian Elimination or the ap-
plication of sparse matrices. These approaches for finding a faster solution, are
summarized in the next sections.

7.2. Wet Paper Codes Combined with

Structured Gaussian Elimination

Since solving the system of linear equations (Equation (3.33)) is quite complex
applying the approach presented in Section 7.1, several approaches were proposed
reducing the computational complexity.

One approach to accelerate the process of finding a solution to the system
of linear equations was proposed in [44, 42]. In order to speed up the process
of solving (Equation (3.33)), the algorithm described in Section 7.1 is applied to
small blocks. Note that this algorithm can also be considered as an approach for a
small codeword length. However, similar to the approach described in Section 7.1,
this approach is not able to minimize the distortion introduced during embedding.
Instead of searching the coset leader, simply a solution to the system of linear
equations is determined. Thus, we consider this approach as a possibility to
fasten the process of solving the system of linear equations.

The algorithm itself can be summarized as follows: The cover is divided into
nB = |m|/250 pseudo-random disjoint subsets with n = N/nB. For each block ≈

126



7.3. Wet Paper Codes Based on Sparse Matrices

250 changeable elements are required in order to keep the complexity controllable.
Note that the actual number of changeable elements varies from subset to subset
following a hyper-geometrical distribution with mean k/nB [42]. Note also that
the subsets should be of the same size and sender and receiver need to obtain the
same blocks.

After dividing the cover into blocks, Structured Gaussian Elimination is applied
on each subset. Dividing the cover into blocks will reduce the complexity of
Gaussian Elimination dramatically. While the complexity is reduced by factor
n3

B, the number of solvings increases nB-times. Thus, the total performance is
increased by factor n2

B.
A disadvantage of this approach is the need to communicate the message length

embedded in each subset, resulting in a slight loss in capacity. Since the sender
tries to embed as many bits as possible in each subset, the message length cannot
be encoded in the header at the beginning of each block. As a solution, Fridrich
et al. proposed to encode the message length for each block within the last block.
Consequently, the receiver has to read this block first.

Note that this algorithm is still not able to maximize the embedding efficiency
by minimizing the introduced distortion. However, we believe that this approach
was the first step forward to the Block Minimal Method described in Section 4.1.

7.3. Wet Paper Codes Based on Sparse Matrices

Instead of a block-wise application of the algorithm described in Section 7.1,
different approaches try to make the process of solving Equation (3.33) faster by
substituting the process of solving the system of linear equations in Step 4.

Therefore, the basic idea of Wet Paper Codes based on sparse matrices is to
increase the velocity of the process of solving by introducing some structure into
the pseudo-random parity-check matrix Hk×n and thereby into the sub-matrix
Hk×|Dry| used for embedding.

Contrary to Wet Paper Codes, where matrices of weight ≈ nk
2

where used,
Fridrich et al. propose the usage of sparse matrices to reduce the complexity [42].
Therefore, the parity-check matrix is based on a constrained stochastic process
(see Section 3.2.2). Thus, we find P (1) = δ with δ < 0, 5. Consequently, w(Hk×n)
grows only linearly with increasing block length.

Remember that Hk×n is a matrix independent of the cover. However, since the
positions of wet elements vary from block to block, also the sub-matrix Hk×|Dry|

derived from Hk×n varies from block to block. Thus, the sender has no option
to control or influence the sub-matrix Hk×|Dry| directly. However, imposing some
structure to the columns of Hk×n will inherit the columns of Hk×|Dry| too, because
it is a sub-matrix obtained by removing some columns.

Note that the sparser the matrices, the faster Gaussian Elimination in Step 4
can be carried out. However, with decreasing density w(Hk×n), the probability
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7. Embedding Based on Wet Paper Codes

of the matrix of being of rank k decreases. The rank remains approximately k
until the density reaches the critical density ldk

k
. In order to be able to embed,

the matrix must guarantee that in each subset the density does not fall below
the critical density [42].

Beside Gaussian Elimination, solving the system of linear equations in Step
4 can be carried out using significantly faster methods such as the probabilistic
algorithms of Lanczos [74] and Wiedemann [99] for sparse matrices.

However, since in this application, the matrix Hk×n is rectangular and may
be singular, the application of both methods is complicated, i. e., the design
of the matrix slows down the solver. Consequently, Fridrich et al. found in a
comparison between Gaussian Elimination and the algorithms of Wiedemann and
Lanczos that Gaussian Elimination is best for k = {250, 500, 1000, 2000, 5000}
and Wiedemann is best only for a large message length such as k = {10000, 20000}
[42]. Furthermore, Fridrich et al. mention within their work that imposing some
structure on Hk×|Dry| may lead to codes with suboptimal performance.

7.4. Wet Paper Codes Combined with the

Matrix LT Process

Another approach for the simplification of Step 4 (see Section 7.1) is the appli-
cation of principles from Luby Transform (LT) Codes in order to speed up the
process of solving Equation (3.33).

Luby Transform Codes (LT Codes) are universal erasure codes with low en-
coding and decoding complexity [77]. They provide a method for a fast solution
of an overdetermined system of equations as long as the number of ones in each
row follows the robust soliton distribution (RSD). This distribution ensures at
least one row with weight 1. For this class of matrices, fast methods for solving
the system of linear equations based on the bipartite graph exist.

However, LT Codes cannot be applied directly to Equation (3.33) because this
system of linear equations is under-determined. Instead, LT can be used to bring
Hk×n quickly in the upper triangular form by swapping of rows and columns.

The basic idea described in [43, 46, 45, 47], can be formulated as follows: make
Hk×n and thus Hk×|Dry| sparse. In this case, it can be put into upper-diagonal
form with high probability simply by permuting its rows and columns. Conse-
quently, Equation (3.33) can be efficiently solved in Step 4 using the standard
back-substitution as in Gaussian Elimination.

This permutation procedure is called Matrix LT Process because it was origi-
nally invented for LT Codes. The algorithm substituting Step 4 can be described
as follows:

4.1 Find a column in Hk×|Dry| that has exactly one 1 in the i1th row

– Swap this column with the first column
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– Swap the first row and the i1th row

– 1 is in the upper left corner, i. e., Hk×|Dry|[1, 1] = 1 and Hk×|Dry|[i, 1] =
0 for i > 1

4.2 Apply the same step ignoring the first column and row

– Column with one 1 in the i2th row

– Swap column with second column of Hk×|Dry|

– Swap second and i2th row

– Hk×|Dry|[1, 1] = 1,Hk×|Dry|[i, 1] = 0 for i > 1

– Hk×|Dry|[2, 2] = 1,Hk×|Dry|[i, 2] = 0 for i > 2

4.3 Continue this process ignoring the first two columns and rows

4.4 Find Hk×|Dry| in the upper triangular form with

Hk×|Dry|[j, j] = 1, j = (1, ..., k) and Hk×|Dry|[i, j] = 0 for i > j

4.5 Use back-substitution to determine the solution to f ′|Dry|

4.6 Apply the transpositions to f ′|Dry| in reverse order to achieve f|Dry|

The resulting sequence f|Dry| is the solution to the system Hk×|Dry|(f|Dry|)
T =

emb ⊕ Hk×na
T . Afterwards, Step 5 and Step 6 (see Section 7.1) have to be

applied.
Note that the sender applies the transpositions in reverse order in the last step.

Thus, only the sender needs to rearrange the matrix Hk×|Dry|, the receiver does
not have to care about this. He extracts by simply calculating emb = Hk×nb

T .
However, whenever the permutation process is not able to find a column with

exactly one 1, the Matrix LT Process fails. Since this algorithm is based on
stochastic matrices with constraints, i. e., the weight of columns of Hk×n follows
the RSD, this failure cannot be excluded.

The procedure in the case of failure can be described as follows: Since discard-
ing rows as proposed so far is not a solution in this case,26 Fridrich et al. propose
to make Hk×n dependent on the message length k = |emb|, e. g., as input for
the Pseudo Random Number Generator (PRNG) [36]. In the case of a failure,
Fridrich et al. propose to append a dummy bit to the message and try again with
seed k + 1.

Note that in practice, the receiver has to know the message length |emb|.
Since the RSD depends on the message length, it must be communicated to the
receiver.

26Discarding rows has no influence on the distribution of ones per row. Thus, only discarding
columns would be a solution (but, a rather impractical one).
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7.5. Summary

Wet Paper Codes were proposed as an approach to communicate in a non-shared
selection channel scenario. The goal was to communicate without the necessity of
informing the receiver about the selection rule, i. e., about the parts of the cover
used for embedding the confidential message. Therefore, Fridrich et al. proposed
simple variable rate stochastic codes [44].

However, these codes suffer from two problems. First, since they consider the
cover at once, finding a solution to the system of linear equations (Equation
(3.33)) is really complex. Second, these codes are not designed to maximize the
embedding efficiency since they simply determine one solution to the system of
linear equations (Equation (3.33)). This solution does not necessarily have to
minimize the distance between the cover sequence a and the stego sequence b

and thus not necessarily maximize the embedding efficiency e.
To overcome the first problem concerning complexity, several approaches have

been proposed in literature in order to speed up the process of solving Equation
(3.33). Within the previous sections, we summarized the basic ideas of state-of-
the-art methods based on sparse matrices as well as on small blocks.

However, in order to maximize the embedding efficiency, algorithms based on
small blocks were introduced in literature such as embedding based on stochas-
tic matrices (Block Minimal Method, see Section 4.1) or based on deterministic
matrices (BCH Codes, see Section 5.2).

Yet, due to the inability of these codes to reach the upper bound on embedding
efficiency (Section 6.6), further investigations were based on different approaches
for large block length. Within the next sections, we will introduce embedding
based on Low-Density-Generator-Matrix (LDGM) Codes [37, 60] and also based
on Syndrome Trellis Codes [24].
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Codes

So far, the approaches based on random matrices were not able to minimize
the distortion introduced during embedding. The approaches described in the
previous section determine only one solution - to the system of linear equations
(Equation (3.33)) - which does not have to minimize the introduced distortion.

Instead of a stochastic parity-check matrix, it is also possible to generate the
parity-check matrix used for embedding based on a linear code. However, it is not
feasible to search for a coset leader by means of exhaustive search in the case of
a large block length since the complexity increases exponentially with increasing
n (see Section 6.5).

Instead, stochastic matrices with constrained rules were investigated, more
precisely, sparse matrices. For this class of matrices, the weight of the matrix
increases linearly instead of quadratically with increasing block length n. In this
case, iterative search strategies for the coset leader become applicable.

Consequently, the application of codes based on sparse matrices, i. e., Low-
Density-Codes, reduce the complexity of embedding and thus, make the applica-
tion of a large codeword length in Minimum-Embedding-Impact Steganography
feasible.

Based on this assumption, it seemed to be reasonable to investigate Low-
Density-Parity-Check (LDPC) Codes combined with the iterative message pass-
ing algorithm Belief Propagation (BP). In this case, embedding is based on a
low density matrix Hk×n. Furthermore, existing decoding algorithms for LDPC
Codes based on BP can be applied in order to determine the closest codeword.

However, as our investigations have shown, it is not possible to apply the iter-
ative decoding of LDPC Codes in steganography when the confidential message
emb and the cover bit string a are selected randomly [58]. The decoder fails,
since the average Hamming distance between the cover sequence a and the near-
est codeword is mostly large. This is not a problem in channel coding where the
distance to a codeword is usually small.

Instead, Low-Density-Generator-Matrix (LDGM) Codes were considered, the
dual codes of LDPC Codes, i. e., an approach based on a low density generator
matrix Gl×n. For LDGM Codes, the decoder, and thus embedding, does not fail
even for larger distances to the next codeword. This is true since this approach
is based on compression. The cover bit string a is compressed to c∗. The desired
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codeword c is then achieved through a multiplication of c∗ with the generator
matrix G.

In this section, we would like to give a description of the approach of applying
LDGM Codes to syndrome-based embedding in steganography. The application
of such LDGM Codes in steganography was independently proposed by Fridrich
and Filler based on Survey Propagation (SP) [19, 37] and Günther, Schönfeld
and Winkler based on Belief Propagation (BP) [58, 59, 60].

Note that the BP algorithm is known as a considerably less complex special
case of the SP algorithm introduced in [94]. Furthermore, additional approxima-
tions are known in the context of LDPC Codes, to further reduce the decoding
complexity of BP. Thus, in this thesis, we adapted principles from LDPC de-
coding such as the BP algorithm combined with approximations resulting in a
reduced embedding complexity compared to [37].

Note that the approach based on LDGM Codes presented in this section tries
to maximize the embedding efficiency. However, since the algorithm is based on
an iterative approximation of the coset leader, the maximum possible embedding
efficiency cannot be achieved in all cases. However, the iterative approach enables
the application of a large codeword length and thus more powerful codes.

8.1. Basic Considerations

LDGM Codes are linear block codes with a low-density generator matrix Gl×n,
i. e., w(Gl×n) grows only linearly with growing n. Generally, linear codes can be
described based on a parity-check matrix Hk×n or on a generator matrix Gl×n,
where l stands for the number of information bits with n = l + k (see Section
3.2.3). Note that it is possible to determine the parity-check matrix Hk×n related
to Gl×n according to the following coherence: Gl×n Hk×n

T = 0.
In this approach, the extraction of the secret message at the receiver’s side is

again based on a parity-check matrix Hk×n which has to be derived from Gl×n.
The confidential message can be found with emb = Hk×n bT .

The special characteristic of LDGM Codes is the iterative application of the de-
coding algorithm with linear complexity in n in order to find the closest codeword.
Thus, the embedding process itself is based on the concept of reformulating the
search for an appropriate flipping pattern f as the search of the closest codeword
(see Section 3.5):

1. Find a coset member fm ∈ C(emb)

2. Determine the closest codeword using an iterative message passing algo-
rithm according to Equation (3.41)

cemb = argmin
c∈C

dρ(a⊕ fm, c) (8.1)
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3. Determine the flipping pattern f = a⊕ fm ⊕ cemb

4. Determine the stego sequence b = fm ⊕ cemb = a ⊕ f .

Note that it is always possible to derive a systematic parity-check matrix Hk×n

of the form Hk×n =
[
Ik Rk×l

]
, e. g., by Gaussian elimination as described in

[58]. In this case, an arbitrary member of C(emb) can easily be found with
fm =

[
emb 0l

]
∈ C(emb)27.

Considering an LDGM Code, iterative approximations with linear complexity
in n can be used for the search in Equation (8.1). This enables us to choose codes
with a large codeword length, implying a high probability to achieve an embed-
ding efficiency close to the upper bound e ≤ α/H−1(α) (see Section 3.4.3.1).

Note that the message passing part of the iterative algorithm can be carried
out according to several approaches: Survey Propagation as described by Fridrich
and Filler [94, 37] and Belief Propagation as described by Günther, Schönfeld and
Winkler in [60] can be applied. Note that Belief Propagation can also be carried
out in the logarithmic domain resulting in a considerably low complexity [60].

In the following, we describe our approach for finding the closest codeword
based on Belief Propagation. More details are given in the next section, where
a ⊕ fm is denoted as y.

8.2. Embedding with Belief Propagation

In order to find cemb according to Equation (8.1), we apply the BP algorithm to
iteratively converge to the closest codeword. Therefore, we first have to determine
the vector c∗ ∈ F

l
2, which minimizes the number of unsatisfied equations in the

overdetermined equation system:

c∗ Gl×n = yT . (8.2)

To solve Equation (8.2) with the BP algorithm, we need to describe the system
as an undirected bipartite Graph G = (V, E) with nodes V and edges E, denoted
as Tanner Graph (see Figure 8.1). Therefore, matrix Gl×n is interpreted as the
incidence matrix of the graph. Every variable in c∗ and y is represented by a
variable node.

Furthermore, the graph contains n functional nodes {f1, . . . , fn}, one for each
equation c∗ Gl×n[., j] = y[., j], with Gl×n[., j] denoting the jth column of Gl×n.
The functional node fj is connected to the variable node c∗i by an edge e ∈ E,
if c∗i occurs in the equation. Thus, the graph contains a total of (l + 2n) nodes
V = {c∗1, . . . , c∗l , y1, . . . , yn, f1, . . . , fn}. The notation E(node) denotes the set of
edges connected to a node, where et is the tth element. Figure 8.1 visualizes the
translation of the matrix Gl×n into a Tanner Graph.

27Note that it is also possible to chose fm as [emb⊕ Hk×n aT 0l] as described in Section 4.2.
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Gl×n =

f1 f2 f3 f4 f5 f6 f7

1 1 0 1 0 1 0 c∗1
1 1 1 0 1 0 0 c∗2
1 0 1 1 0 1 1 c∗3
0 0 0 1 1 0 1 c∗4

=⇒

c∗1

c∗2

c∗3

c∗4

f1

f2

f3

f4

f5

f6

f7

y1

y2

y3

y4

y5

y6

y7

E(c∗1)

E(f7)

Figure 8.1.: Translation of the Matrix Gl×n with n = 7 and l = 4 into a Tanner
Graph According to [60].

The iterative algorithm for finding the closest codeword itself is divided into
two parts: message passing and variable decimation.

Every iteration starts with the update of the variable nodes and the delivery
of messages from these nodes to their functional neighbors. In the second step,
the functional nodes are updated. Based on the messages they received, new
messages are computed and delivered to their variable neighbors. Since Gl×n is
sparse, the number of neighbors and thus the required effort for updating is quite
low.

After several iterations T , the algorithm provides evidence for each element in
c∗ which value to assign. Now, elements with high evidence are fixed and BP is
restarted with the reduced system [94]. This iterative procedure as applied by
Günther, Schönfeld and Winkler in [60] is visualized in Figure 8.2. Note that
c can be achieved according to c∗ Gl×n. As it can be seen in this figure, this
iterative approach is not always able to find the optimum, i. e., the coset leader
that minimizes the introduced distortion.

In the next section, we describe the individual steps of the BP algorithm in
order to give a survey according to [60]. For more details, we refer to [58].
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Search for argminc∗∈F2
l dρ(c

∗Gl×n ⊕ y)
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Figure 8.2.: Visualization of the Iterative Search for the Closest Codeword Ac-
cording to [60].

8.2.1. Updating Variable Nodes

In order to solve Equation (8.2), we have to find an assignment for each c∗i ∈
c∗. Our main concern is to decide for every variable c∗i in c∗ which value from
F2 = {0, 1} to assign to it. With Pi(0) we denote an estimation or “belief” for
the probability that all equations involving c∗i are satisfied for c∗i = 0. The same
applies for Pi(1). In order to decide whether c∗i = 0 or c∗i = 1, we try to maximize
the probability of satisfying all equations that are related to c∗i :

c∗i =

{

0 for Pi(0) ≥ Pi(1)

1 for Pi(0) < Pi(1).
(8.3)

In each step, the node c∗i receives two messages Pt→i(0) and Pt→i(1) from each
of the t connected functional nodes.

Note that in the case of Survey Propagation, the matrix is also interpreted
as Tanner Graph. However, the code is additionally extended to generalized
codewords: Each variable in F2 can additionally be set to ∗, i. e, can be assigned
to a value not related to 0 nor 1. Instead of two messages as for BP, in the case
of SP 5 messages have to be exchanged between the nodes.

The two messages in case of BP are estimates for the probabilities of the
assignments c∗i = 0 and c∗i = 1 respectively, satisfying the equation connected
to the edge et. The probability that all equations connected to c∗i are satisfied
equals the product of the probabilities for satisfying each equation independently:
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Pi(0) =

∏

et∈E(c∗i ) Pt→i(0)
∏

et∈E(c∗i ) Pt→i(0) +
∏

et∈E(c∗i ) Pt→i(1)
(8.4)

Pi(1) = 1 − Pi(0).

The product is normalized in order to fulfill the constraint Pi(0) + Pi(1) = 1.
This information needs to be propagated to the t connected functional nodes

with the messages Pi→t(0) and Pi→t(1). One important principle of the BP algo-
rithm is that only extrinsic information is forwarded, i. e., information previously
received from node t needs to be eliminated from Equation (8.4):

Pi→t(0) =
Pi(0)/Pt→i(0)

Pi(0)/Pt→i(0) + Pi(1)/Pt→i(1)

Pi→t(1) = 1 − Pi→t(0).

The variable nodes y1, . . . , yn do not need to be updated, since they send the
same messages in every iteration:

Pj→t1(0) =
(1 − yj)e

γj + yje
−γj

eγj + e−γj

Pj→t1(1) = 1 − Pj→t1(0).

The parameter γj reflects how strongly the algorithm should try to preserve
the value of yj. We found appropriate values based on simulations (see Section
10.1.2).

8.2.2. Updating Functional Nodes

Each functional node fj receives two messages Pt→j(0) and Pt→j(1) from each
of the t connected variable node c∗i . These messages are used to calculate the
messages Pj→t(0) and Pj→t(1), which are sent back to every connected variable
node:

Pj→t(0) =
1

2



1 +
∏

et′∈E(fj)\{et}

(1 − 2Pt′→j(1))



 (8.5)

Pj→t(1) = 1 − Pj→t(0). (8.6)

The messages Pj→t(0) and Pj→t(1) represent the “belief” that the equation
c∗ Gl×n[., j] = y[., j] is satisfied, if the variable connected to et equals 0 and 1,
respectively.
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8.2. Embedding with Belief Propagation

8.2.3. Survey Inspired Decimation (SID)

After several iterations T , the BP algorithm provides evidence for each element
in c∗ which value to assign.

In [37] and [94], it was proposed to select a percentage of at least rmin and
at most rmax variables for assignment and decimation. In order to choose the
variables for decimation, we have to calculate βi for each variable as:

βi = |Pi(0) − Pi(1)| .
For decimation, the rmaxl variables with the highest values βi are selected.

Based on this selection, all variables fulfilling βi > βth but at least rminl variables
are assigned according to Equation (8.3). The threshold βth ∈ (0, 1) needs to be
adjusted experimentally to rmax in order to obtain good results (see [58]).

Due to the decimation of c∗i , the Tanner graph needs to be reduced and the
constraints y have to be adapted according to yT = yT⊕c∗i G[i, .]. The alternating
execution of BP and decimation terminates, when all variables in c∗ have been
assigned.

8.2.4. Log Likelihood Relations and Approximations

The BP algorithm described so far has one major drawback: it involves multipli-
cations. As it is commonly known, multiplications are more complex than, e. g.,
an addition, a comparison, or a shift-operation. To avoid this problem, Günther,
Schönfeld and Winkler proposed the application of Log Likelihood Ratios (LLR)
[58]. Within this approach, the two messages passed through each edge and the
probabilities Pi(0) and Pi(1) are replaced by the logarithm of their ratios.

Applying this adaption to the variable node update results in a simple summa-
tion over the incoming messages. By transforming Equation (8.5) into an LLR,
a functional node update can be simplified to a recursion [64]. Therewith the
calculation of the LLR of two independent random variable becomes a central
element:

LLR(x1 ⊕ x2) = ln
P (x1 ⊕ x2 = 0)

P (x1 ⊕ x2 = 1)

= ln
eLLR(x1)+LLR(x2) + 1

eLLR(x1) + eLLR(x2)

= signLLR(x1)signLLR(x2) min(|LLR(x1)| , |LLR(x2)|) (8.7)

+ ln
(
1 + e−|LLR(x1)+LLR(x2)|

)
− ln

(
1 + e−|LLR(x1)−LLR(x2)|

)
.

(8.8)

Since the exact evaluation of the last term is still quite complex, different
possibilities for an approximation are used in channel coding for LDPC Codes
combined with BP.
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Sign-Min: The simplest approach, denoted as Sign-Min approximation, is to
ignore the Term (8.8).

Log-Offset: A more advanced approach, denoted as Log-Offset [64], replaces
Term (8.8) with a constant offset:

ln
(

1 + e−|LLR(x1)+LLR(x2)|
)

− ln
(

1 + e−|LLR(x1)−LLR(x2)|
)

≈







o for |LLR(x1) + LLR(x2)| < 2 & |LLR(x1) − LLR(x2)| > 2 |LLR(x1) + LLR(x2)|
−o for |LLR(x1) − LLR(x2)| < 2 & |LLR(x1) + LLR(x2)| > 2 |LLR(x1) − LLR(x2)|
0 otherwise,

where the constant o should be predetermined in a way that the resulting ap-
proximation error is minimal. The optimal value depends on the distribution of
LLR(x1) and LLR(x2), in channel coding we often find o = 0.5. We used this
value for our simulations.

Log-Look-Up: Another, also quite simple implementation of Term (8.8) can be
done by means of a step function as in our approach Log-Look-Up. Therefore,
[64] proposes a Look-up Table with eight entries (Table 8.1). This enables us to
obtain a fairly close approximation.

Table 8.1.: Implementation of ln(1 + e−|LLR(x1)±LLR(x2)|) with a Look-up Table
(Log-Look-Up).

ln
(
1 + e−|LLR(x1)±LLR(x2)|

)

0 ≤ |LLR(x1) ± LLR(x2)| < 0.196 0.65
0.196 ≤ |LLR(x1) ± LLR(x2)| < 0.433 0.55
0.433 ≤ |LLR(x1) ± LLR(x2)| < 0.71 0.45
0.71 ≤ |LLR(x1) ± LLR(x2)| < 1.05 0.35
1.05 ≤ |LLR(x1) ± LLR(x2)| < 1.508 0.25

1.508 ≤ |LLR(x1) ± LLR(x2)| < 2.252 0.15
2.252 ≤ |LLR(x1) ± LLR(x2)| < 4.5 0.05

4.5 ≤ |LLR(x1) ± LLR(x2)| < +∞ 0.00

Log-Linear: We also investigated a more precise approximation than Log-Offset
but less complex than the Look-up Table, denoted as Log-Linear [82], where Term

138



8.2. Embedding with Belief Propagation

(8.8) is replaced by a function:

ln(1 + e−|LLR(x1)±LLR(x2)|)

≈
{

u − v |LLR(x1) ± LLR(x2)| for |LLR(x1) ± LLR(x2)| < u
v

0 otherwise.

The optimum value of the constants u and v again depends on the distribution
of the LLR. A good setup seems to be u = 0.6, v = 0.24 [82]. Günther et al.
propose to use u = 0.6 and v = 0.25, since the multiplication with v evolves into
a shift operation in this case [58].

Note that applying LLR to functional node updates results in a higher numeri-
cal stability, i. e., no multiplications are required. All approximations investigated
in this thesis, are visualized in Figure 8.3.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5

|LLR(x1) ± LLR(x2)|Sign-Min

Exact

Log-Look-Up

Log-Linear

ln(1 + e−|LLR(x1)±LLR(x2)|)

Figure 8.3.: Approximations of the Log Likelihood Ratios (LLR) for Embedding
with LDGM Codes Based on BP According to [58].
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9. Embedding Based on a Code

Trellis

Our intention in this chapter is to sketch the basic idea of the Syndrome Trellis
Codes (STC) as proposed by Filler et al. in [24]. This approach for minimizing
the embedding impact based on a code trellis is able to handle arbitrary profiles
of embedding impact.

Within the following section, we give some basic considerations on convolu-
tional codes as a basis for the code trellis used within Syndrome Trellis Codes for
embedding.

9.1. Basic Considerations

Note that binary convolutional codes, first introduced by Elias [18], are perhaps
the most popular form of binary ECC. They process information serially or con-
tinuously and have numerous applications, e. g. in wireless communication.

Generally, the encoder has memory, i. e., the output symbols do not only de-
pend on the input symbols but also on previous inputs. In other words, the
encoder can be described as a sequential circuit or finite state machine, whereas
the state is defined as the contents of the memory. In theory, the produced se-
quences have infinite end. In practice however, the state of the convolutional
code is periodically forced after l + h steps to state 0. Thus, code sequences are
produced in a block-wise manner. The following description of the underlying
basics of convolutional codes is based on the book of Klimant et al. [70].

Generally, a convolutional coder can be described by means of a shift regis-
ter with linear interconnection. In Figure 9.1, an example for a convolutional
coder is given according to [70]. The shift register has one input and m outputs.
Furthermore, it is characterized by the memory constraint length h.

It is possible to formalize a shift register as a deterministic automat (dA), where
the source code sequence c∗ = (..., u(τ), u(τ+1), u(τ+2)...) is transformed into the
codeword c = (..., (v1(τ), v2(τ), ..., vm(τ)), (v1(τ + 1), v2(τ + 1), ..., vm(τ + 1)), ...).
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u(τ) u(τ − 1) u(τ − 2) . . . u(τ − h)

⊕ ⊕ . . . ⊕ v1(τ)

⊕ ⊕ . . . ⊕ vm(τ)

gmh. . .

g10 g11 g12 g1h

gm0. . .
gm1. . . gm2. . .

Figure 9.1.: Schematic Diagram of a Convolutional Coder Visualized as Shift Reg-
ister According to [70].

Furthermore, the encoder can also be described by means of a generator matrix
of dimension m × (h + 1), whereas the shift register is a realization of G:

Gm×(h+1) =







g10 g11 g12 . . . g1h

g20 g21 g22 . . . g2h

. . . . . . . . . . . . . . .
gm0 gm1 gm2 . . . gmh







.

Note that the generator matrix is often denoted as m-tuple, where each row is
given as an octal number28. By means of this generator, it is possible to calculate
the code sequence v(τ) = {0, 1}m at the moment τ :

v(τ) =








v1(τ)
v2(τ)

...
vm(τ)








= G








u(τ)
u(τ − 1)

...
u(τ − h)








. (9.1)

Generally, the behavior of such a convolutional coder can be described by
means of a encoder state diagram. Note that a memory constraint length of h
connotes 2h states of the encoder. Within the encoder state diagram, also the
allowed transitions including the associated input and output are visualized. An
example is given below according to [70].

Example: Given the convolutional coder shown in Figure 9.2 with h = 2 states
and m = 2 outputs, we find the associated generator matrix with G2×3 =
( 1 0 1

1 1 1 ) = (58, 78).
The related encoder state diagram is given in Figure 9.3.
Based on this encoder state diagram, it is possible to describe the encoder by

means of a code trellis, which contains the information of the state diagram, but

28The generator matrix ( 0 0 1
1 0 1 ), e. g., is given by (18, 58).
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⊕ v1(τ)

u(τ)

⊕ ⊕ v2(τ)

Figure 9.2.: Coder Example for Convolutional Codes According to [70].

01

00

11

10

0/11

0/01

0/00

1/11

1/10

0/01

1/01

0/10

Figure 9.3.: Encoder State Diagram for Convolutional Codes According to [70].
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also uses time as a horizontal axis to show the state transition paths. The code
trellis for the encoder given in the example above is shown in Figure 9.4.

00

11

00

11

10

01

00

11

10

01

11

00

10

01

1 1 0 1 0 0

11 10 10 00 01 11

00

10

01

11

c∗

c

state

τ

1 2 3 4 5 6

shortened trellis input u = 0

input u = 1

Figure 9.4.: Code Trellis According to [70].

The encoder states are given on the left hand side and the transitions are
denoted as lines between the states29. Note that the transition paths specify the
possible code words c ∈ C. Thus, using the code trellis, it is possible to achieve
the related codeword c to arbitrary source codewords c∗. Note that the Viterbi
algorithm can be used for decoding only. However, based on the code trellis, it is
possible to describe the coding as well as the decoding process.

An example for encoding is given in Figure 9.4. The labels related to each

29Note that the code trellis has to be read from left to right.
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transition are determined by the output of the encoder. The code trellis recurs
after τ = l clockings. In order to be able to describe the code for coding and
decoding purposes, the shortened code trellis is sufficient.

As it is shown in Figure 9.4, the source codeword of length l is extended by h
bit in order to get the shift register back to its initial state. This procedure is
advantageous for decoding, since the decoder has to consider only paths stating
and ending in the zero state.

For decoding by means of the Viterbi algorithm, the receiver compares the
received sequence b with all possible paths through the Trellis, i. e. with all
codewords. The sequence c with minimum distance to b is considered as corrected
sequence bcorr. For more information about the underlying basics of convolutional
codes, coding and decoding principles, we refer to [70].

9.2. Syndrome Trellis Codes - Embedding

Algorithm

A practical approach for syndrome coding to minimize the embedding impact
based on a code trellis was presented by Filler et al. in [24]. The main advan-
tage of this algorithm is its linear complexity and memory requirements w.r.t
the number of cover elements. Thus, the application of large codeword length
becomes feasible.

Note that this approach is carried out in the dual domain, i. e., the code is
represented by its parity-check matrix H which is represented by a code trellis30.
In this case, it is possible to determine a solution to Equation (3.33) in an elegant
way31.

As described in Section 3.5, the sender’s goal is to minimize the distortion
introduced during embedding. Therefore, a stego sequence b has to be determined
according to (Equation (3.35)):

b = argmin
b∈C(emb)

dρ(a,b). (9.2)

Note that the parity-check matrix Hk×n has a special form, allowing to repre-
sent every solution of emb = Hk×nb

T as a path through the trellis. Filler et al.
propose to determine Hk×n by placing a small sub-matrix Ĥ of size h × w next
to each other and shifted down by one row. As a result, a sparse, banded matrix
Hk×n is achieved.

Note that the constraint length h affects the algorithm’s speed and efficiency.
Consequently, Filler et al. investigated 6 ≤ h ≤ 12. The width of Ĥ depends on
the inverse relative message length α−1 = w.

30In case of convolutional codes, the generator matrix G is represented by a code trellis instead.
31Note that the receiver determines the embedded message again by calculating the syndrome

emb = Hk×nbT .
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9. Embedding Based on a Code Trellis

An example of such a matrix construction according to [24] is given below with
k = 4 and n = 8:

Ĥh×w =

(
1 0
1 1

)

Hk×n =







1 0
1 1 1 0

1 1 1 0
1 1 1 0







Filler et al. also investigated how to design Ĥ. They found that a matrix Ĥ

optimized for one profile of embedding impact seems to be good for other profiles
as well. Moreover, they investigated several matrices found through exhaustive
search with some simple design rules. Filler et al. state, that good matrices
consist of no identical columns and ones in the first and last rows. The remaining
bits are assigned at random.

In order to embed, the sequence a has to be modified in sequence b. In order
to find the sequence b that minimizes the introduced distortion, the Viterbi
algorithm is applied. Note that due to the form of the matrix, only the first w
bits of b can effect the first bit of the message. Consequently, the stego sequence
b within our example has to be chosen according to:

emb[1] = (H[1, 1]H[1, 2])(b[1]b[2])T

emb[2] = (H[2, 1]H[2, 2]H[2, 3]H[2, 4]))(b[1]b[2]b[3]b[4])T

emb[3] = (H[3, 3]H[3, 4]H[3, 5]H[3, 6]))(b[3]b[4]b[5]b[6])T

emb[4] = (H[4, 5]H[4, 6]H[4, 7]H[4, 8]))(b[5]b[6]b[7]b[8])T.

(9.3)

Thus, it is possible to determine a solution to Equation (3.35) with low com-
plexity based on a trellis since each b satisfying emb = Hk×nb

T is represented
as a path through the trellis. Consequently, the number of paths is exponential
in n. The process of embedding consists of two steps: a forward and a backward
part:

1. Construct the trellis dependent on Hk×n, a and emb, and

2. Determine the closest codeword by means of the backward step.

Recall that each path in the trellis starts in the leftmost all-zero state. The
edges represent adding (b[i] = 1) or not adding (b[i] = 0) the ith column of Hk×n

to the current partial syndrome, the states correspond to the partial syndromes.
A state in the trellis is reachable whenever there is a path connecting this state

with the leftmost all-zero state. At the end of each block, all paths, for which
the first bit of the partial syndrome does not match emb[i] are terminated.

In order to find the closest b, weights are assigned to all trellis edges. Thus,
the problem of finding the closest stego sequence is transformed to the problem of
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finding the path with minimum weight through the trellis. During the backward
path, it is easily possible to track back this path.

An example for the Syndrome Trellis Code is given below.

Example:

In this example, the sender wants to embed the confidential message emb =
(1001) into the cover sequence a = (10011011), while a uniform profile is assumed.

In a first step, the parity-check matrix Hk×n is designed for k = 4 and n = 8
with:

Ĥh×w =

(
1 0
1 1

)

Hk×n =







1 0
1 1 1 0

1 1 1 0
1 1 1 0







.

In order to determine the sequence b that minimizes dρ(a,b), we construct
the code trellis in a first step. Within this example, we find a coder with 4
states: s00, s01, s10s11. Note that the Viterbi Algorithm is realized including
breaks p1, . . . , pk for embedding the confidential message emb of length k.

1. Construct the trellis dependent on Hk×n, a and emb (see Figure 9.5)

– Start with the all-zero syndrome, i. e., with state s00 and p0

– Two edges are drawn from p0s00

∗ The first dashed edge connects p0s00 with H[., 1]s00 and corre-
sponds to not adding the first column of Hk×n to the state s00

∗ Assign a weight of 1 to this edge since it is related to b[1] = 0 and
a[1] = 1, thus the introduced distance between cover sequence a

and stego sequence b would be dρ(a,b) = 132

∗ The second solid edge connects p0s00 with H[., 1]s11 and corre-
sponds to adding the first column of Hk×n to the state s00

∗ Assign a weight of 0 to this edge since it is related to b[1] = 1 and
a[1] = 1, i. e., no distortion would be introduced and dρ(a,b) = 0

– Connect the states related to column H[., 1] and H[., 2]

∗ Two edges are drawn from H[., 1]s00 to H[., 2]s00 and H[., 2]s10,
weighted with 1 and 2 respectively

∗ Two edges are drawn from state H[., 1]s11 to H[., 2]s01 and H[., 2]s11,
weighted with 1 and 0 respectively

32Note that the assignment of 1 is true considering a uniform profile of embedding impact. In
case of a general profile, i. e., in case wet elements should be excluded during the embedding
process, we have to assign the embedding impact ρ whenever a 6= b.
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– Set the first message bit emb[1] = 1

∗ Discard the states s00 and s10 since their least significant bit is 0

∗ No edges come out of these states

– Shift the trellis from s01 to s00 and from s11 to s01

∗ Dotted edge between H[., 2]s01 and p1s00

∗ Dotted edge between H[., 2]s11 and p1s01

– Construct column H[., 3] identically to column H[., 1] and H[., 2]

– Construct column H[., 4]

∗ Find two incoming edges into each state

∗ Eliminate the edge with higher weight, ties can be resolved arbi-
trarily

∗ The surviving edge is denoted in bold

– Construct the remaining columns

– In the last portion of the trellis, there are only two states in each
column due to cropping Hk×n in the last h − 1 sections33

2. Determine the path with minimum weight using the backward step

– Go back from the right-most state

– Use the surviving edges and construct b (denoted red in Figure 9.5)

– The sender finds b = (10110011) with dρ(a,b) = 2.

The receiver extracts the message with: emb = Hk×nb
T







1
0
0
1







=







1 0
1 1 1 0

1 1 1 0
1 1 1 0





















1
0
1
1
0
0
1
1















.

�

33The edges from H[., 7] to H[., 8] are solid, they correspond to adding the zero-column to the
syndrome.
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Figure 9.5.: Example for Syndrome Trellis Code Based Embedding.

149





10. Evaluation of the Algorithms

for a Large Codeword Length

As we did in Chapter 6, we will compare the different approaches for a large
codeword length presented in this thesis:

• Embedding Based on Wet Paper Codes,

• Embedding Based on LDGM Codes, and

• Embedding Based on Syndrome Trellis Codes.

Therefore, we consider the following properties of a steganographic scheme
(Section 2.1.3):

• the security,

• the capacity,

• the success of embedding, and

• the embedding complexity.

Recall that these are competing goals. It is not possible to maximizing the
capacity as well as the security of an algorithm. Moreover, the goal is to minimize
the embedding complexity while maximizing the success rate.

Since the weighting of the properties depends on the individual application,
we do not search for a scalar metric aggregating all these properties. Instead, we
evaluate the presented algorithms according to the properties mentioned above
in an isolated manner.

10.1. Evaluation Concerning the Security

In this thesis, we measure the security of a steganographic scheme by means
of its achieved embedding efficiency e = k/dρ(a,b). Since we consider either
a uniform profile or a general profile, where parts of the cover are denoted as
wet and excluded during embedding (Wet Paper Steganography), dρ(a,b) can be
easily measured using the average number of embedding changes Ra.

In the following, we give some detailed results for the algorithms presented in
the previous chapters as well as a comparison between them.
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10.1.1. Wet Paper Codes

Within this section, we take a closer look at the algorithms described in Chapter 7,
namely Wet Paper Codes, Wet Paper Codes combined with Gaussian elimination
or combined with the Matrix LT Process. These algorithms, proposed by Fridrich
et al., have in common the fact that they do not search for a solution to emb =
Hk×n bT (Equation (3.33)) that minimizes the introduced distortion dρ(a,b).
Instead, they simply solve the system of linear equations. Consequently, they are
not able to achieve a maximized embedding efficiency.

According to Fridrich et al., we find the embedding rate always close to 2 bits
per embedding change for embedding with Wet Paper Codes combined with Gaus-
sian Elimination [44]. Thus, we find the embedding efficiency with e ≈ 2, which
is comparable to LSB embedding.

Furthermore, Fridrich et al., state that the solution obtained by solving the
system of linear equations with the Matrix LT Process will have on average 50%
of ones for arbitrary messages. This results in 50% embedding changes and thus,
the message will be also embedded with e ≈ 2.

Notwithstanding the dissatisfying results in terms of the embedding efficiency,
Böhme pointed out another security related pitfall in his Rump Session Talk at the
Information Hiding Workshop [7]. Böhme found that for Wet Paper Codes with
Matrix LT Process, 25% of the samples where never altered during embedding
considering a fixed sub-matrix Hk×|Dry| and matrices following the robust soliton
distribution. Thus, the positions of changes are predictable whenever no wet
elements are within the cover.

Considering wet elements, Böhme found a bimodal characteristic in the prob-
ability distribution. Note that neither permuting rows or column nor different
matrix parameters affect this distribution. Thus, he summarized that it has to
be the process of solving the system of linear equations itself that causes this dis-
tribution. Consequently, it seems reasonable to consider a pseudo-random path
through the cover whenever embedding is based on Wet Paper Codes with Matrix
LT Process. Note that this problem can not be observed for Embedding based
on LDGM Codes.

10.1.2. LDGM Codes

The application of LDGM Codes in steganography was independently proposed
by Fridrich and Filler based on Survey Propagation (SP) [19, 37] and Günther,
Schönfeld and Winkler based on Belief Propagation (BP) [58, 60].

As stated in Chapter 8, embedding based on BP offers several possibilities
to reduce the embedding complexity. Generally, the BP algorithm is known as
considerably less complex special case of the SP algorithm introduced in [94].
Additional approximations are considered within our thesis.

In our simulations [58, 60], every data point is obtained by averaging over
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10.1. Evaluation Concerning the Security

100 trials. We set the parameters described in Section 8.2.1 to rmax = 1%,
rmin = 0.1%, and βth = 0.8.

Since the optimal value for γj depends on the embedding rate α, we experimen-

tally determined the following appropriate values [60]: γ
1/α=1.59
j = 1.0, γ

1/α=2.0
j =

1.13, γ
1/α=2.86
j = 1.4, γ

1/α=3.45
j = 1.54, and γ

1/α=4.0
j = 1.65; j = 1, . . . , N34.

The results of our simulations in terms of embedding efficiency can be seen in
Figure 10.1 for n = N = 104 and T = 60. Within this figure, the embedding
efficiency for the different approaches is given for several inverse embedding rates
α−1. The higher the inverse relative message length, the lower the percentage of
cover elements used for embedding. Again, a high embedding efficiency is linked
to a more secure embedding scheme.

Within Figure 10.1, we compare the different approximations for embedding
based on Belief Propagation (BP) as presented in Section 8.2.4 as well as the
approach for embedding based on Survey Propagation (SP) as presented in [37].
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Figure 10.1.: Embedding Efficiency e for LDGM Codes with BP, n = N = 104

and T = 60 According to [58].

Regarding Figure 10.1, the approaches for BP based on an exact evaluation of
Term (8.8) (Log-Exact), based on a Look-up Table (Log-Look-Up), and based on
a linear approximation (Log-Linear) are very similar to those of SP [37]. Note
that by means of LDGM Codes, we achieve results relative close to the upper
bound for a wide range of α−1 for these approaches.

Whenever we consider the approach Log-Offset, we find a small derivation for
the embedding efficiency e compared to the other approaches. However, with this

34Note that the parameter γj reflects how strongly the algorithm should try to preserve the
value of yj (Section 8.2.1).
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10. Evaluation of the Algorithms for a Large Codeword Length

approach, the evaluation of Term (8.8) is trivial and thus, it is possible to embed
with a low complexity. Whenever we apply the Sig-Min approach, i. e., ignoring
Term (8.8), we still find good results in terms of embedding efficiency.

Note that embedding based on LDGM Codes is based on an iterative approx-
imation of the coset leader. Thus, the algorithm may stop, whenever a solution
close to the coset leader is determined (see Figure 8.2). Consequently, the maxi-
mum possible embedding efficiency can only be achieved whenever the algorithm
determines the coset leader.

Within the work of Günther, Schönfeld and Winkler [58, 59], the influence of
the number of iterations on the embedding efficiency is also analyzed exemplarily
for α−1 = 2. The results according to [58, 59] are given in Figure 10.2.

We investigate a reinitialization of the messages on the one hand, i. e., the
variable nodes c∗1, . . . , c

∗
l were initialized with random values at the beginning of

the embedding process and after every decimation step.
On the other hand, the variable nodes were not reinitialized after the deci-

mation step. Instead, the remaining variable nodes were updated based on the
messages they received from the functional nodes in the last iteration before dec-
imation. Note that reusing the message in the next iteration enables the sender
to reach the maximum achievable embedding efficiency already with T = 30 iter-
ations between two decimation rounds. Otherwise, ≈ 60 iterations are required.

Additionally, Günther et al. investigated the influence of the cover length N
[58, 59]. They found that with increasing cover length, the codes are able to
converge to the upper boundary on embedding efficiency without reaching it.
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10.1.3. Syndrome Trellis Codes

Embedding based on Syndrome Trellis Codes (STC) as proposed by Filler et al.
and described in Chapter 9, can be seen as an efficient algorithm for embedding
with an inverse relative message length of α−1 ≥ 2. Note that according to the
square root law, the inverse relative message length must increase with increasing
size of the cover in order to maintain the same level of security [26]. Thus, the
secure inverse relative message length in steganographic schemes should be always
above 2.

The width of Ĥh×w depends on the inverse relative message length α−1 = w
while the constraint height h affects the algorithm’s speed and efficiency. As
stated by Filler et al., it is also possible to realize a higher relative message length.

Filler et al. investigated Syndrome Trellis Codes for several values for the
constraint height h with h = 7, . . . , 12 and several inverse relative message length
α−1. The results are illustrated in Figure 10.3 according to [25].
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Figure 10.3.: Embedding Efficiency e for STC Codes for Several Constraint
Heights h According to [25].

As it can be seen in Figure 10.3, the embedding efficiency increases with in-
creasing constraint height h. For h = 12, results close to the upper boundary on
embedding efficiency can be achieved.

Filler et al. state that the bound can be theoretically achieved by increasing the
constraint height. However, the embedding complexity increases exponentially
since the encoder can have 2h states. Consequently, the constraint height is
limited by the computational power of the sender.
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10. Evaluation of the Algorithms for a Large Codeword Length

10.1.4. Comparing the Approaches

In this section, we will give a short comparison in terms of embedding efficiency for
the following two approaches: embedding based on LDGM Codes and embedding
based on Syndrome Trellis Codes. Note that the approach embedding based
on Wet Paper Codes is not comparable since its goal is not to maximize the
embedding efficiency (see Section 10.1.1).

As visualized in Figure 10.1, the sender is able to achieve results close to
the upper boundary on embedding efficiency by means of embedding based on
LDGM Codes. Note that embedding based on LDGM Codes combined with
Belief Propagation achieve the same results in terms of embedding efficiency as
LDGM Codes combined with Survey Propagation. However, the former approach
is less complex.

Even if embedding based on Syndrome Trellis Codes is less complex, the results
presented in Section 10.1.3 are slightly worse than those of the LDGM Codes. A
comparison between both approaches is visualized in Figure 10.4.

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Inverse Relative Message Length α−1 = n
k

E
m

b
ed

d
in

g
E

ffi
ci

en
cy

e

Bound e ≤ α/H−1(α)

uu STC h = 7

uu STC h = 12
rr LDGM, SP/BP (Log-Exact,Log-Look-Up,Log-Linear)
rr LDGM, BP (Log-Offset)

u

u

u

u

u

u

r

r

r

r

r

r

r

r

r

r

Figure 10.4.: Embedding Efficiency e - A Comparison.

As we can see, all approaches are able to cover a wide range of α−1 and achieve
results close to the bound. However, only STC with h = 12 achieve comparable
results to those of embedding based on LDGM Codes.
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10.2. Evaluation Concerning the Capacity

Within this section, we would like to compare the approaches considering their
capacity. In this thesis, we express the capacity as relative message length α =
|m|
N

= k
n
, i. e., the ratio between the maximum length of a secret message (in bit)

and the number of elements of the cover sequence.

For the approaches for a large codeword length, we find n = N . Note that the
maximum length of the embeddable message depends on the parameter k and
the block length n with k = n − l.

However, since the approaches based on Wet Paper Codes (Chapter 7) and
on Syndrome Trellis Codes (Chapter 9) are centered on stochastic matrices or
stochastic matrices with constraints, a non-negligible probability of failure exists.
This results in a decrease of the capacity due to the need to store the actual
message length in a segment of the cover not usable for embedding.

Second, a coding loss has to be considered since the message length is reduced
within each embedding trial in case of non-solvability. Within the following sec-
tion, we will have a deeper look at this property.

Note that for embedding based on LDGM Codes (Chapter 8) we do not have
to deal with a reduced capacity even if the approach is also based on stochastic
matrices with constraints. Since this approach is based on compression, we are
always able to find a solution. Thus, we do not have to deal with non-solvability.
Based on this, we do not have to deal with either a capacity reduction to store
the actual message length or a coding loss due to several embedding trials.

10.3. Evaluation Concerning the Success Rate

Within this Section, we evaluate the probability of success for embedding an
arbitrary message of length k within the cover of length n = N .

Recall the considerations concerning the success of embedding within one block
pso but also depending on the distribution of wet elements for approaches con-
sidering small blocks (see Section 6.3). For approaches applicable for a large
codeword length, i. e., in case n = N , we have to consider only the solvability pso.

Note that the success of embedding pso depends on the property of the code and
affects the complexity of the whole embedding step whenever several embedding
trials are required.

Furthermore, as stated in Section 10.2, the success for embedding an arbitrary
message of length k within the cover of length n = N is always 1 considering
embedding based on LDGM Codes since this approach is based on compression.

Thus, in this section, we discuss the results concerning the success of embedding
for the approaches based on Wet Paper Codes as well as based on Syndrome Trellis
Codes.
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10. Evaluation of the Algorithms for a Large Codeword Length

10.3.1. Wet Paper Codes

In order to evaluate the success of embedding, we need to determine the prob-
ability with which the sender is able to solve the system of linear equations
emb = Hk×nb

T . Note that for embedding based on Wet Paper Codes, the
columns related to wet elements are removed before solving (see Step 2, Section
7.1). Consequently, to determine pso, we need to evaluate the probability that
matrix Hk×|Dry| has full rank, i. e., that Hk×|Dry| consists of k linearly independent
rows.

Based on Equation (3.4), we find the success of embedding pso with:

pso =

k−1∏

i=0

(1 − 2i−|Dry|). (10.1)

Generally, it is possible to assume k = |Dry| for Wet Paper Codes. Thus, we
have to consider Equation (10.1) with k = |Dry| in order to determine pso in this
case. We visualized pso, i. e., the probability that a randomly generated matrix
has full rank, for several values of k with k = 1, . . . , 50 in Figure 10.5.
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Figure 10.5.: Solvability pso of Wet Paper Codes Dependent on k for k = |Dry|.
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As it can be seen in Figure 10.5, the solvability for large stochastic matrices
Hk×|Dry| is low whenever we want to embed a message of length k = |Dry|. We
find pso with 0.5 for a binary 1× 1 matrix. With increasing k, the solvability pso

is reduced considerably and stays constant at 0.288.

Thus, due to the non-negligible probability of a stochastic matrix Hk×|Dry|

of not being of rank k (see Section 3.2.1), the approaches based on stochastic
matrices are only able to communicate |emb| ≤ k message bits. Thus, there
exists the necessity of reducing the actual message length to q ≤ k due to non-
solvability.

In this case, Hk×|Dry| becomes a Hq×|Dry| matrix with q ≤ k and thus, q ≤ |Dry|.
The probability of this matrix being of rank q has to be determined based on
Equation (3.4).
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Figure 10.6.: Solvability pso of Wet Paper Codes with |Dry| = k = 104, q = k− j
and j = 1, . . . , 15.

An example for |Dry| = 104 is visualized in Figure 10.6. We give the solvability
pso for different numbers of bits reducing the actual message length. Figure 10.6
visualizes |Dry| = k = 104, q = k − j and j = 1, . . . , 15.

As it can be seen in Figure 10.6, reducing the actual message length to q ≤ k
significantly increases the solvability pso. In this example, we find a reduction to
q = k − 10 sufficient to increase pso to 0.999.
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10. Evaluation of the Algorithms for a Large Codeword Length

Note that Equation (10.1) is only valid for stochastic matrices. Thus, in the
case of Wet Paper Codes combined with the Matrix LT Process, different con-
siderations apply. Note that the Matrix LT Process will fail if at some point the
algorithm fails to find a row with only one 1 [43]. Thus, we have to deal with
a slight capacity loss applying this faster process of solving the system of linear
equations.

According to Fridrich et al., the loss can be made small depending on the choice
of the parameters used for generating Hk×n, i. e., the parameters initializing the
RSD distribution. Note that the capacity loss decreases with increasing k. In
their paper, Fridrich et al. report the capacity loss according to Table 10.1. Thus,
considering a message length of 10% of the cover size (k = 104, n = N = 105),
we find a capacity loss of 6.2% [46].

Table 10.1.: Capacity Loss for Wet Paper Codes based on the Matrix LT Process
According to [46].

k 1000 10000 30000 100000
Percentage of a Successful Path 43 75 82 90

Capacity Loss 0.098 0.062 0.047 0.033

10.3.2. Syndrome Trellis Codes

Filler et al. investigated several parameters for the constraint height h with h =
6, . . . , 12 for several inverse relative message length α−1 = w with w = 2, . . . , 20
[24, 25]. A set of codes related to these parameters is given in [24, Table 1].

Note that the non-negligible probability of not being able to embed depends
on the inverse relative message length and the properties of the code. Figure 10.7
visualizes the coding loss due to non-solvability depending on the inverse relative
message length according to [25].

As can be seen in Figure 10.7, the coding loss rises with increasing inverse
relative message length α−1. For example, for α−1 = 2 and h = 8 the coding loss
is about 6%. For h = 8 and α−1 = 4, we find a loss of about 10%.

Furthermore, a decreasing coding loss is reported for an increasing constraint
length h. We find, e. g., for α−1 = 2 and h = 8 a coding loss of about 6% and
for h = 12 a coding loss of about 4%. Filler et al. state that by increasing the
constraint length, we can theoretically make the coding loss approach 0. However,
an increased constraint height directly results in an increased complexity as the
number of states in the trellis is defined as 2h. Consequently, Filler et al. find
h = 12 to be reasonable in practice.
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Figure 10.7.: Coding Loss for Syndrome Trellis Codes According to [25].

To minimize the coding loss, Filler et al. propose to use a pseudo-random path
through the cover. The homogeneous distribution of wet elements within the
cover makes the Viterbi algorithm less likely to fail [24]. The message size can
be used as input for a Pseudo Random Number Generator (PRNG). Whenever
the embedding process fails, k is reduced by one. Note that embedding k−1 bits
leads to a different permutation.

10.4. Evaluation Concerning the Embedding

Complexity

Within this section, we investigate the complexity of embedding for the algo-
rithms based on a large codeword length presented and discussed in this thesis.
As we did in Section 6.4, we consider complexity in terms of time complexity and
in terms of memory complexity.

Note that a requirement for a steganographic algorithm is the possibility to
embed in an acceptable time depending on the application. While it seems rela-
tively uncritical for offline approaches, steganography in live-time environments
is more crucial. Furthermore, the memory is limited by the physical properties
of the computer used for determining the stego sequence.
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10. Evaluation of the Algorithms for a Large Codeword Length

10.4.1. Wet Paper Codes

Considering embedding based on Wet Paper Codes, the sender needs to solve a
system of linear equations for k unknowns in binary arithmetic.

For Wet Paper Codes combined with Gaussian Elimination (Section 7.1), Frid-
rich et al. report a complexity of O(k3) [43]. This embedding complexity is of
course impractical for a low inverse relative message length α−1, i. e., for k > 105.

The complexity of embedding lies on the sender’s side because he has to solve
q <= k linear equations with q unknown parameters. As a solution to reduce
the complexity of embedding, several approaches have been proposed by Fridrich
et al., e. g., the application of Structured Gaussian Elimination or the application
of sparse matrices.

For Wet Paper Codes combined with Structured Gaussian Elimination (Section
7.2), the complexity of embedding is linear in the number of cover elements,
however, with a large multiplicative constant. While the complexity is reduced by
factor n3

B, the number of solvings increases nB-times, where nB gives the number
of pseudo-random disjoint subsets. Thus, the total performance is increased by
factor n2

B. Fridrich et al. find it advantageous to choose |Dry| as 200-500 elements
in each subset to achieve a good performance [42].

Furthermore, Fridrich et al. considered several solvers such as those of Lanczos
[74] and Wiedemann [99] for sparse matrices (Section 7.3). However, since in this
application the matrix Hk×n is rectangular and may be singular, the application
of both methods is complicated, i. e., the design of the matrix slows down the
solver.

Applying Wiedemann or Lanczos, the complexity of embedding is proportional
to k(k + wk)(logk)c, where w is the average number of ones in each row of Hk×n

and c is a small positive constant.

Fridrich et al. report in their paper the average running time for Wiedemann,
Lanczos and Gauss for k = 250, 500, 1000, 2000, 5000, 10000, 20000, 30000 [42].
They found that Gaussian Elimination is best for k = {250−5000}. Wiedemann
is best only for large payloads such as k = {10000, 20000} [42].

Note that for embedding based on Wet Paper Codes, no storage space is re-
quired. However, making use of the Lanczos solver, tables of size 4× 8× 2r need
to be stored considering GF (2r). The best results were achieved for r = 14,
resulting in a cache size of 29kByte.

Another approach to speed up the process of solving Equation (3.33) is the
application of principles from Luby Transform Codes (LT Codes). Fridrich et al.
propose to speed up the process of solving by making the matrix Hk×n sparse
and apply the Matrix LT Process (Section 7.4).

Since the density of ones in Hk×n is O(ln(k/δ)/k), the average number of
operations required to complete the LT process is O(nln(k/δ) + (kln(k/δ)) =
O(nln(k/δ)) assuming the maximal-length message is sent (q ≈ k) [43]. The first
term stands for calculating Hk×na

T , while the second term gives the complexity
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of the Matrix LT Process.
Note that the Matrix LT Process enables to solve Equation (3.33) as a whole at

once which greatly simplifies the implementation and decreases the computational
complexity. Thus, embedding based on Wet Paper Codes combined with the
Matrix LT Process is significantly faster than Gaussian Elimination.

Fridrich et al. report a runtime of 0.023 seconds for k = 1000 for Gaussian
Elimination and a runtime of 0.008 seconds for the Matrix LT Process. For
k = 100000, they found a runtime of 9320 seconds for Gaussian Elimination and
a runtime of 3.1 seconds for the Matrix LT Process [46].

10.4.2. LDGM Codes

In this section, we compare the different approximations presented in Section
8.2.4 to each other and to the approach presented in [37].

For a constant inverse relative message length α−1, the number of nodes grows
linearly with increasing block length n. Thus, the BP algorithm works with linear
complexity O(n). The effort for updating one node depends on the number of
its neighbors. The more neighbors it possesses, the more messages need to be
calculated in every iteration.

Generally, the number of neighbors of the functional nodes f1, . . . , fn and the
variable nodes c∗1, . . . , c

∗
l depend on the row and column weights of Gl×n.

LDGM Codes can be classified according to their row and column weight dis-
tributions. If row and column weights are uniform, we speak about a regular
LDGM Code, otherwise it is called irregular. Similar to [37], we use distributions
from [75] that are optimized for the Binary Symmetric Channel (BSC) with an
irregular functional node distribution and a variable node distribution as uniform
as possible.

In Figure 10.8, we compare the update complexity for the different approxi-
mations in terms of the number of operations per node update. We assume that
additions, comparisons and shifts all require the same computational effort, the
evaluation of sign and absolute value are neglected.

According to Figure 10.8, unlike SP, our approach based on BP with LLR does
not need any multiplications or divisions to update nodes. Notwithstanding the
approximation, for updating the variable nodes the effort is at least 100 times
smaller than for SP. Furthermore, the update complexity of our approach does
not grow with increasing irregularity. That makes the LLR based algorithm
especially interesting for embedding.

A comparison between SP and the linear approximation shows that the number
of operations at the functional nodes can be reduced by 81% without loss of
performance.

If the Term (8.8) is completely neglected as with the Sign-Min approach, up-
dating the functional nodes becomes even faster. Compared to Log-Linear, only
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Figure 10.8.: Required Average Number of Operations (Multiplication, Division,
Addition, Comparison, Shift) for the Update of One Variable Node
c∗i and One Functional Node for an LDGM Code, α−1 = 2 According
to [60].

12 instead of 96 operations are required. Concurrently, the speed-up comes along
with a loss in embedding efficiency of around 0.43 at α−1 = 2. The approximation
with a simple constant (Log-Offset) can improve the performance considerably
compared to Sign-Min. But it still performs worse than Log-Linear at nearly the
same computational effort.

Note that the number of iterations T between two decimation rounds is a
parameter with linear impact on the embedding speed.

10.4.3. Syndrome Trellis Codes

As already mentioned in Section 9, the transformation of the problem in the dual
domain is preferable for a small relative message length since usually the Viterbi
algorithm grows exponentially with decreasing α−1 = w.

Note that the Viterbi algorithm has a time and space complexity of O(2hn),
whereas the forward part requires n + b steps [24]. Thus, we find the complexity
linear depending on the block length n = N but exponential depending on the
constraint height h. Considering for example n = N = 106 and h = 10, the
required memory complexity is 210106/8bytes ≈ 122MB.

Consequently, it seems to be reasonable to apply codes with a small constraint
height h. However, these codes are not able to achieve good results in terms of the
embedding efficiency (see Section 10.1.3). Generally, we have to find a trade-off
between time complexity and performance in terms of embedding efficiency.

In order to speed up the search for the coset leader, Filler et al. propose to
vectorize the calculations. In the forward step, we need to store only one bit
corresponding to the label of the incoming edge in order to be able to reconstruct
the path in the backward run [24]. Thus, a runtime of 1−5 seconds for processing
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n = N = 106 elements is reported for h = 6, . . . , 12 and α−1 = w, w = 2, . . . , 20
[24].

10.5. Summary

The evaluation of the algorithms for syndrome coding based on matrices with
a large code dimension was carried out according to the parameters security,
capacity, success of embedding and complexity. The results are summarized in
Table 10.2.

Table 10.2.: Evaluation of Embedding Algorithms Based on a Large Code Word
Length - A Comparison.

security capacity success of embedding complexity
Wet Paper Codes − − − +

LDGM Codes + + + −
STC + − − +

• Considering the security, i. e., the embedding efficiency of the algorithms,
we found that the approach embedding based on Wet Paper Codes is not
able to maximize the embedding efficiency.

Furthermore, Böhme found a bimodal characteristic in the probability dis-
tribution considering embedding based on the Matrix LT Process [7]. Con-
sequently, it seems reasonable to consider a pseudo-random path through
the cover.

• For embedding based on LDGM Codes, results close to the upper bound of
embedding efficiency were achieved for a wide range of α−1. Note that this
approach is based on an iterative approximation of the coset leader.

• As the results achieved so far confirm, matrix embedding based on LDGM
Codes combined with BP is indeed advantageous in terms of embedding
complexity. No multiplications or divisions are required and the number of
additions can be reduced considerably.

While the embedding efficiency of the BP approach with some of the investi-
gated approximations is equal to those of SP, there are also approximations
that achieve slightly worse results. However, using approximations seems
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10. Evaluation of the Algorithms for a Large Codeword Length

to be promising since they offer a tradeoff between complexity and per-
formance. We found that the approximation Log-Offset achieves the best
tradeoff between performance and complexity.

• Even if embedding based on Syndrome Trellis Codes is even less complex,
the results for the embedding efficiency presented Section 10.1.3 are slightly
worse than those of the LDGM Codes.

• All approaches based on LDGM Codes and STC are able to cover a wide
range of α−1 and achieve results close to the bound, whereas only STC
with h = 12 achieve comparable results to those of embedding based on
LDGM Codes. However, an increased constraint height directly results in
an increased complexity as the number of states in the trellis is defined as
2h. Thus, Filler et al. find h = 12 is reasonable in practice.

• Furthermore, we find for Wet Paper Codes and Syndrome Trellis Codes a
non-negligible probability of failure. This non-solvability results in a coding
loss, i. e., in a reduced capacity as well as in an increased complexity. In
case of failure, the sender has to start the embedding process again with a
reduced parameter k. Note that this issue is not valid for embedding based
on LDGM Codes. This approach is based on compression and is always
able to find a solution to Equation (3.33).

To minimize the coding loss, Filler et al. propose to use a pseudo-random
path through the cover. The more homogeneous distribution of wet ele-
ments within the cover makes the Viterbi algorithm less likely to fail [24].
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11. Summary and Outlook

11.1. Results of this Thesis

In practice, a steganographic system is considered insecure, whenever an attacker
is able to distinguish between cover and stego objects with more success than ran-
dom guessing. Thus, the goal for the designer of a steganographic system is clear:
cover and stego should be undistinguishable. Therefore, the characteristic of the
cover has to be preserved during the embedding process, i. e., the introduction of
embedding artifacts has to be minimized.

This thesis focused on the ability of syndrome coding as a concept of channel
coding to reduce the distortion introduced during embedding and to enable a
selection of the positions of changes.

In a first step, we proposed a classification of algorithms related to the concept
of embedding based on syndrome coding. We separated the multitude of algo-
rithms into two classes: approaches based on a deterministic parity-check matrix
and approaches based on stochastic matrices. Furthermore, we differentiated be-
tween concepts for a small code word length and concepts for a large code word
length.

In this thesis, we focused on basic algorithms related to binary embedding and
described them on a consistent basis in a second step. Two of the state-of-the-
art algorithms presented within this thesis - embedding based on BCH Codes
[85, 86, 87] and based on LDGM Codes with Belief Propagation [58, 60, 59] - are
developed in collaboration of Dagmar Schönfeld and the author of this thesis.
Note that the algorithms discussed in this thesis are only a component of the
embedding algorithm rather than a complete embedding scheme.

In a third step, the different approaches are compared to each other in order to
determine advantages and disadvantages for each class of algorithms according
to the following important design principles:

• the security in terms of embedding efficiency,

• the capacity,

• the success of embedding,

• the complexity.

The main results are summarized within the following sections.
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11. Summary and Outlook

11.1.1. Small Codeword Length

In this thesis, we considered the following approaches for syndrome coding based
on matrices with a small code dimension:

• Embedding Based on Stochastic Parity-Check Matrices

– Block Minimal Method

– Matrix Embedding for Large Payloads

• Embedding Based on Deterministic Parity-Check Matrices

– Hamming Codes

– BCH Codes

– Simplex Codes

– Augmented Simplex Codes.

The evaluation of these algorithms was carried out according to the parameters
security, capacity, success rate and complexity. Recall that when choosing a
syndrome coding based embedding scheme, we have to address the goal of the
scheme in a first step. It is not possible to maximize both, the security of the
scheme (related to a high inverse relative message length α−1 = n/k) as well as
the capacity of the scheme (related to a low inverse relative message length).

Considering the security, i. e., the embedding efficiency of the algorithms, we
find that all investigated codes achieve better results than the Hamming Codes.
However, since Hamming Codes are easy to implement with low complexity, they
are often used in practice (e. g., [96]).

Moreover, we found that Matrix Embedding for Large Payloads, Simplex Codes
and Augmented Simplex Codes are only applicable for an inverse relative message
length α−1 ≈ 1. However, according to the square root law of capacity [66],
embedding a low inverse relative message length is rather insecure. Thus, for a
practical scheme, a lower capacity is preferable.

As algorithms covering a wide range of the inverse relative message length
α−1, the BCH Codes as well as the Block Minimal Method achieve good results
in terms of the embedding efficiency. We found both approaches as comparable.
Even if the results considering the embedding efficiency for the Block Minimal
Method are not as good as the results achievable for BCH Codes, the Block
Minimal Method covers the range of α−1 more densely.

However, for embedding based on a stochastic parity-check matrix, we have
to consider a non-negligible probability of the matrix of not being of full rank.
Consequently, the capacity for approaches based on a stochastic parity-check
matrix such as the Block Minimal Method is reduced. First, these approaches
require the sender to store the actual achievable message length. Second, several
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11.1. Results of this Thesis

embedding trials have to be considered resulting in a further reduction of the
capacity as well as an increased complexity.

Generally, we find that codes with a good performance fk always have a rel-
atively low number of information bits l, resulting in a relatively low maximum
number of wet elements |Wet| excluded in the embedding process. However, they
are suited for a large relative message length, since the number of embeddable
bits per block k is high.

While there are fast solutions for calculating the stego sequence that mini-
mizes the introduced distortion for Hamming Codes, Simplex Codes, Augmented
Simplex Codes and BCH Codes with fk = 2, no such strategy is known for ap-
proaches based on stochastic matrices. Thus, this is another clear advantage of
codes based on deterministic parity-check matrices.

11.1.2. Large Codeword Length

In this thesis, we considered the following approaches for syndrome coding based
on matrices with a large code dimension:

• Embedding Based on Wet Paper Codes,

• Embedding Based on LDGM Codes, and

• Embedding Based on Syndrome Trellis Codes.

Again, the evaluation of these algorithms was carried out according to the
parameters security, capacity, success rate and complexity.

Note that the approaches based on Wet Paper Codes are not directly compara-
ble to the other approaches since they do not minimize the introduced distortion
dρ(a,b).

As the results presented in this thesis confirm, matrix embedding based on
LDGM Codes combined with Belief Propagation is indeed advantageous in terms
of security, i. e., embedding complexity. Note that embedding based on LDGM
Codes combined with Belief Propagation achieve the same results in terms of
embedding efficiency as LDGM Codes combined with Survey Propagation. How-
ever, the former approach is less complex. No multiplications or divisions are
required and the number of additions can be reduced considerably. We achieve
results close to the upper bound of embedding efficiency for a wide range of the
inverse relative message length α−1.

Even if embedding based on Syndrome Trellis Codes is less complex, the results
in terms of embedding efficiency are slightly worse compared to those of the
LDGM Codes. Only STC with a constraint height h = 12 achieve comparable
results to those of embedding based on LDGM Codes. However, an increased
constraint height h directly results in an increased complexity.
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11. Summary and Outlook

Furthermore, we find for Wet Paper Codes and Syndrome Trellis Codes a non-
negligible probability of failure. This non-solvability results in a coding loss, i. e.,
in a reduced capacity as well as in an increased complexity. In case of failure, the
sender has to start the embedding process again with a reduced message length.
Note that this issue is not valid for embedding based on LDGM Codes. This
approach is based on compression and is always able to find a solution.

11.2. Conclusion

As the results based on steganalytical investigations in [50, 71] confirm, it is in-
deed advantageous to modify as little as possible and only in inconspicuous parts
of the cover. Thus, the application of syndrome coding in practical embedding
schemes is preferable.

When choosing a code within a practical embedding scheme, we have to make
the main goal of the scheme clear in a first step. As already mentioned, it is
not possible to achieve optimal results for all four properties, namely security,
capacity, success rate and complexity.

The results concerning the embedding efficiency dependent on the inverse rela-
tive message length α−1 are summarized in Figure 11.1. The dashed lines display
the possibility of continuously covering the range of α−1 for codes built according
to stochastic design rules.
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11.2. Conclusion

Whenever the goal is to achieve a high capacity, we have to choose a code with
an inverse relative message length α−1 ≈ 1. We find Matrix Embedding for Large
Payloads, Simplex Codes, Augmented Simplex Codes and Wet Paper Codes as
suitable codes.

Due to the high capacity, we find |m| ≈ N . Consequently, these schemes
achieve an embedding efficiency of e ≈ 2. This result is comparable to embedding
based on LSB or ±1-embedding, i. e., embedding without syndrome coding. Even
if the security of these schemes is rather low due to the low embedding efficiency,
they enable to embed in selected parts of the cover without the need of sharing
the selection rule with the receiver, in contrast to LSB embedding.

Note that there are rather small differences in the results concerning the capac-
ity and the security considering Matrix Embedding for Large Payloads, Simplex
Codes, Augmented Simplex Codes or Wet Paper Codes. However, for Wet Pa-
per Codes, Simplex Codes, and Augmented Simplex Codes the sender is able to
calculate the solution while for Matrix Embedding for Large Payloads he has to
apply exhaustive search.

A major advantage for embedding based on codes described by means of a
deterministic parity-check matrix is a high solvability even in a scenario with wet
elements. While for codes based on stochastic parity-check matrices, the sender
has to deal with non-solvability resulting in a reduced capacity as well as an
increased complexity, this issue is not as crucial for codes based on deterministic
matrices. Thus, the success of embedding for this class of codes is higher.

Generally, we find that codes with a good performance fk always have a rel-
atively low number of information bits l, resulting in a relatively low maximum
number of wet elements |Wet| excluded during the embedding process. How-
ever, they are suited for a large relative message length, since the number of
embeddable bits per block k is high.

A high success of embedding is indeed important considering applications with
a fixed message length or applications with real-time requirements. In this case,
several embedding trials are unacceptable.

According to the square root law of capacity [66], the application of a higher
inverse relative message length α−1 is preferable whenever the security of the
embedding schemes is of prior interest. A good performance in terms of the em-
bedding efficiency for such a high inverse relative message length can be achieved
by means of LDGM Codes and Syndrome Trellis Codes.

These codes are based on stochastic matrices with constraints. Note that the
complexity of embedding is reduced due to the application of decoding schemes
known from channel coding such as message passing algorithms including Belief
Propagation and Survey Propagation or the Viterbi algorithm.

While we have to deal with a reduced capacity and an increased complexity
when applying the approach based on Syndrome Trellis Codes, this is not true
for embedding based on LDGM Codes. Since this iterative embedding process is
based on compression, we always find a solution.
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11. Summary and Outlook

However, some steganographic applications require an embedding scheme based
on small blocks. In this case, we can apply either BCH Codes or the Block
Minimal Method. While the results for BCH Codes in terms of the embedding
efficiency are better, the range of α−1 can be covered more densely through the
Block Minimal Method. However, we propose the application of BCH Codes due
to their higher solvability.

11.3. Outlook

In this thesis, we described the basic algorithms for embedding based on binary
codes built according to stochastic parity-check matrices as well as deterministic
parity-check matrices. We focussed on the embedding step Θ, i. e., the input of
the algorithms are a cover bit string A, the message m and a profile of embedding
impact ρ[1], . . . , ρ[N ].

Thus, the first approach for further research will be the improvement of the
embedding step, i. e., the task of finding codes or combinations of codes that are
able to achieve a higher embedding efficiency.

Most embedding techniques are not limited to binary cases. Thus, some gener-
alizations to arbitrary finite fields exist. For example, Galand et al. investigated
embedding based on q-ary Reed Solomon (RS) Codes [28]. RS Codes enable the
exclusion of up to l elements while it is possible to embed (n− l) elements. How-
ever, we found the embedding efficiency for codes with a small l and an arbitrary
q equal to those of the Hamming Codes. Considering an increased l, i. e. a higher
number of wet elements, the results concerning the embedding efficiency become
even worse. Consequently, these codes achieve an embedding efficiency far away
from the upper bound.

Furthermore, a useful tool for constructing non-binary coverings, called block-
wise direct sum, was proposed by Bierbrauer et al. in [5, 6]. This simple and
efficient construction requires as input two factorizations of equal dimension and
outputs a factorization of larger length. It allows controlling the covering radius
of the output factorization.

As mentioned in Section 2.5.4, ternary embedding is the optimal choice for
steganography if we wish to minimize the embedding distortion [49]. However,
Filler stated that ternary coding is less effective for a higher inverse relative
message length [20]. A general result of Fridrich et al. can be formulated as
follows: it is not beneficial to increase the amplitude of embedding changes in
exchange for their smaller number.

Thus, we focussed on binary embedding schemes. However, as the results in
Figure 11.1 confirm, there is still a gap between the results in terms of embedding
efficiency achieved so far and the upper boundary on embedding efficiency. Con-
sequently, it remains an open question how to reach more closely to the bound
with low computational complexity.
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The second approach for further research will be the design of a complete em-
bedding algorithm. An extension to syndrome coding based on Hamming Codes,
called Modified Matrix Embedding, was presented by Kim et al. in [69, 103].
This simple and practical, even though suboptimal, steganographic algorithm
for JPEG images is a combination of syndrome coding using binary (2k − 1, l)
Hamming Codes and Perturbed Quantization (PQ). This scheme allows up to
three embedding changes. Thus, the sender can select out of multiple possibil-
ities the solution that introduces the smallest distortion. Even if this approach
was presented for Hamming Codes, it is applicable also for other codes.

A different approach might be the concatenation of codes as applied for Turbo
Codes used for error-correction. Within this approach, two codes are combined ei-
ther serially or in parallel, increasing the performance considerably. Even though
first investigations are not that promising [88], this might be a solution to reach
the upper boundary on embedding efficiency.

Another extension, achieving a higher embedding efficiency, are so-called mul-
tilayer approaches such as ZZW or Paper Folding [107, 105, 104, 106, 35, 23, 102].
Within these approaches the cover is divided into several layers. In each layer, a
part of the message is embedded, whereas only the elements in the lowest layer,
i. e., in the least significant bitplane are modified. Therefore, the dependencies
between the different layers have to be modeled. Codes based on LDGM matri-
ces in combination with the ZZW construction [104, 35] achieve an embedding
efficiency e very close to the bound for arbitrarily small relative message length.

A third approach for further research is the definition of reasonable profiles of
embedding impact. A first approach is HUGO, where the profile of embedding
impact is related to results from steganalyzers [79]. However, this is still a research
field in its infantile stage. It seems to be reasonable to combine knowledge of
the image acquisition process as well as knowledge gained from steganalytical
investigations. However, the question remains whether it is possible to design
reasonable cost functions on the fly.
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A. Syndrome Coding Based on

BCH Codes - Embedding

Based on g(x)

As mentioned in Section 3.2.3.2, there are two possible ways to describe BCH
Codes: one based on the parity-check matrix Hk×n and another based on the
generator polynomial g(x). While the classic syndrome coding approach is based
on the former description, we give heuristic approaches for the later one in this
section according to [86].

Basic Approach. Using the generator polynomial g(x) in coding theory, a
syndrome s is calculated by dividing the received sequence b (or the corresponding
polynomial b(x)) by the generator polynomial g(x) and analyze the remainder.
Whenever the received sequence b is a codeword, it is divisible without remainder.
Otherwise an error is detected.

In steganographic systems, the remainder can be used to embed the secret
message. Therefore, the cover sequence a is defined as [al ak], according to the
parameters l and k.

The embedding process can be described as follows: in a first step, the cover
sequence a is divided by g to obtain the syndrome s of length k:

s = mod(a, g). (A.1)

Second, to achieve the positions which have to be flipped in order to embed
emb into a, the syndrome s has to be combined with emb. As a result, the
positions of ones are related to the positions that have to be flipped within ak.
Using this approach, we flip only within the k parity bits of a block of length n35.

In a third step, the stego sequence b leading to the confidential message emb

and related to a can be achieved according to:

b = [al (ak ⊕ (s⊕ emb))] . (A.2)

The resulting stego sequence certainly fulfills the desired property:

s = mod(b, g) = emb. (A.3)

35It is recommended to use an interleaver to pre-process the image before embedding in order
to reduce the impact of possible attacks.
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An example for this embedding scheme is given below:

Example:

The sender would like to embed the confidential message emb = (001) within
the cover bitstring a = (1011101) = [al ak] with l = 4, k = 3. The code is given
by means of its generator polynomial with g(x) = x3 + x + 1 = (1011). The
embedding process is carried out as follows:

• Goal: s = mod(b, g) = emb

• Determine s = mod(b, g) = (101)

• Determine the stego sequence with:

b = [al ak ⊕ (s⊕ emb)]

b = (1011001)

�

Pre-flipping of al. Note that it is not possible to achieve the maximum
possible embedding efficiency with syndrome coding based on g(x) as described
above. However, we can improve embedding efficiency by heuristic approaches as
described in this section.

First investigations for an improved algorithm [86] considered only one addi-
tional bit within l information bits. The essential idea of this heuristic approach
is to pre-flip one out of all l possible information bits, embed the confidential
message and evaluate the results.

The embedding process can be described as follows: in each step i, (i =
1, 2, ..., l), one out of l information bits in al is pre-flipped. Afterward, s de-
noted as si is determined according to Equation (A.1). For each syndrome si, the
weight of (si⊕emb) is determined within the evaluation step, since the goal is to
find the coset leader or at least the combination with minimal Hamming weight.

The total number of bits, which have to be flipped within the cover sequence
a in order to embed the confidential message part emb, is now

w1 =
l

min
i=1

(w(si ⊕ emb) + 1), including the pre-flipped bit.

In order to determine whether the application of the improved approach is
advantageous in comparison to the basic algorithm, w2 is calculated as well, with
the basic unmodified al, as w2 = w(s ⊕ emb).

Whenever w1 is smaller than w2, pre-flipping one bit is indeed advantageous in
comparison to the basic method. In this case, the w1 bits are flipped. Otherwise
the basic method is applied and w2 bits are flipped.
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An example for this embedding scheme is given below:

Example:

The sender would like to embed the confidential message emb = (001) within
the cover bitstring a = (1011101) = [al ak] with l = 4, k = 3. The code is given
by means of its generator polynomial with g(x) = x3 + x + 1 = (1011). The
embedding process is carried out as follows:

• Goal: s = mod(b, g) = emb

• Approach needs l pre-processing steps (flipping patterns fi with w(fi) = 1)

• Pre-flip one bit in al in each step and determine s as si = mod(afi, g)

• Calculate si = mod(afi , g) with w(si ⊕ emb)-> min

af3 = (1001101)

s3 = (011), s3 ⊕ emb = (010)

• If w(si ⊕ emb) + 1 < w(s⊕ emb)

b = [al ⊕ fi ak ⊕ (si ⊕ emb)]

b = (1001111)

�

By the same token, in the optimal case up to fk pre-flipped bits are included.
Experimental investigations have shown that it is sufficient to consider up to fk

instead of l pre-flipped bits. Using this approach, i.e., considering all possible
flipping patterns

(
l
i

)
, (i = 1, 2, ..., fk), it is possible to reach the minimal possible

Ra, i. e., the same embedding efficiency as with the approach described in Section
5.2.1.1.
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B. (15, 7, fk = 2) BCH Code -

Look-up Table

The (15, 7, fk = 2) BCH Code is given with its generator polynomial g(x) =

x8 + x7 + x6 + x4 + 1. We find h(x) = f(x)
g(x)

= x15+1
x8+x7+x6+x4+1

= x7 + x6 + x4 + 1.

Cyclical shifting of the coefficients of h(x) with h = (000000011010001) leads
to

H8×15 =















0 0 0 0 0 0 0 1 1 0 1 0 0 0 1
0 0 0 0 0 0 1 1 0 1 0 0 0 1 0
0 0 0 0 0 1 1 0 1 0 0 0 1 0 0
0 0 0 0 1 1 0 1 0 0 0 1 0 0 0
0 0 0 1 1 0 1 0 0 0 1 0 0 0 0
0 0 1 1 0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 1 0 0 0 1 0 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0 0 0 0 0 0















.

Within the following table, all members of coset C(11100100) are given.

Table B.1.: Coset Member of coset C(11100100).

coset coset member
(11100100) (000000000100101),(000000100110010),(000001000001011)

(000001100011100),(000010001111001),(000010101101110)
(000011001010111),(000011101000000),(000100010011101)
(000100110001010),(000101010110011),(000101110100100)
(000110011000001),(000110111010110),(000111011101111)
(000111111111000),(001000001000010),(001000101010101)
(001001001101100),(001001101111011),(001010000011110)
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B. (15, 7, fk = 2) BCH Code - Look-up Table

coset coset member
(001010100001001),(001011000110000),(001011100100111)
(001100011111010),(001100111101101),(001101011010100)
(001101111000011),(001110010100110),(001110110110001)
(001111010001000),(001111110011111),(010000011101011)
(010000111111100),(010001011000101),(010001111010010)
(010010010110111),(010010110100000),(010011010011001)
(010011110001110),(010100001010011),(010100101000100)
(010101001111101),(010101101101010),(010110000001111)
(010110100011000),(010111000100001),(010111100110110)
(011000010001100),(011000110011011),(011001010100010)
(011001110110101),(011010011010000),(011010111000111)
(011011011111110),(011011111101001),(011100000110100)
(011100100100011),(011101000011010),(011101100001101)
(011110001101000),(011110101111111),(011111001000110)
(011111101010001),(100000010101110),(100000110111001)
(100001010000000),(100001110010111),(100010011110010)
(100010111100101),(100011011011100),(100011111001011)
(100100000010110),(100100100000001),(100101000111000)
(100101100101111),(100110001001010),(100110101011101)
(100111001100100),(100111101110011),(101000011001001)
(101000111011110),(101001011100111),(101001111110000)
(101010010010101),(101010110000010),(101011010111011)
(101011110101100),(101100001110001),(101100101100110)
(101101001011111),(101101101001000),(101110000101101)
(101110100111010),(101111000000011),(101111100010100)
(110000001100000),(110000101110111),(110001001001110)
(110001101011001),(110010000111100),(110010100101011)
(110011000010010),(110011100000101),(110100011011000)
(110100111001111),(110101011110110),(110101111100001)
(110110010000100),(110110110010011),(110111010101010)
(110111110111101),(111000000000111),(111000100010000)
(111001000101001),(111001100111110),(111010001011011)
(111010101001100),(111011001110101),(111011101100010)
(111100010111111),(111100110101000),(111101010010001)
(111101110000110),(111110011100011),(111110111110100)

(111111011001101),(111111111011010)
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C. Determining Look-up Tables

for Fast Embedding Based on

BCH Codes with fk = 2

In this section, we give a brief overview on determining the Look-up Tables re-
quired for the algorithm of embedding by syndrome coding by means of BCH
Codes with fk as described in Section 5.2 according to [101]. For more informa-
tion, we refer to [108] which is available only in Chinese.

In order to determine rul from the syndrome components (Equation (5.6)), we
assume βl = rul:

s1 = β1 + β2 + β3 + . . . + βl (C.1)

s2 = β3
1 + β3

2 + β3
3 + . . . + β3

l . (C.2)

Furthermore, we define the flip location polynomial as: σ(x) = (x − β1)(x −
β2)(x − β3) . . . (x − βl) or σ(x) = xl + σ1x

l−1 + σ2x
l−2 + . . . + σl.

Note that the roots β can be determined after getting coefficients of the poly-
nomial σ(x). The relationship between σ and β is derived as follows:

σ1 = β1 + β2 + . . . + βl (C.3)

σ2 = β1β2 + β2β3 + . . . + βl−1βl (C.4)

σ3 = β1β2β3 + β3β4β5 + . . . + βl−2βl−1βl (C.5)

. (C.6)

The coefficients σ1, σ2, σ3 relay to syndrome components [s1s2] according to
Newton’s identities:

s1 + σ1 = 0 (C.7)

s2 + σ1s
2
1 + σ2s1 + σ3 = 0. (C.8)

Again, this system of equations may have different solutions because it is under-
determined. The objective of steganography is to find in a first step a solution
for σ(x) with minimal degree.
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C. Determining Look-up Tables for Fast Embedding Based on BCH Codes with fk = 2

Once σ(x) is determined, in a second step is to find the roots β. The roots
are calculated before embedding and are stored in Look-up Tables. Thus, the
method does not require exhaustive search to find the roots.

The authors propose to utilize the method of Zhao et al. based on fast Look-
up Tables for finding roots for quadratic and cubic polynomials σ(x) [108]. A
brief description of the coherences used to build the tables quadratic and cubic,
containing the roots of the quadratic and cubic polynomial, respectively, can be
found in this section. Furthermore, a table tab denotes entries that have 3 roots.

Determining a Look-up Table quadratic for Quadratic Polynomial

The approaches exploits the relationship between roots of the pair of quadratic
polynomials in GF (2m) f(x) = x2 + σ1x + σ2 and f(y) = y2 + y + σ2

σ2
1
:

• If y1 is the root of the polynomial f(y), then y1 + 1 is another root of f(y)

• also, x1 = σ1y1 and x2 = σ1y2 + σ1 are roots of the polynomial f(x).

The Look-up Table q keeps the first root of the polynomial fi(y) = y2 + y + i,
where i ∈ [1; 2m−1] in GF (2m). Thus, the size of the Look-up Table is (2m−1)×1.
The roots of the polynomial f(x) can be computed using the root y0 from the
Look-up Table in position σ2

σ2
1
, empty placed in the table are marked with −1.

Determining a Look-up Table cubic for Cubic Polynomial

First, two parameters h and j are defined for a cubic polynomial f(x) = x3 +
σ1x

2 +σ2x+σ3 such as h = σ2
1 +σ2 and j = σ1σ2 +σ3. Note that the polynomial

f(y) = y3 + y + j
h3/2 is a pair to polynomial f(x).

• If y1, y2, y3 are the root of the polynomial f(y) for a certain value j
h3/2 , then

xs = h1/2ys +σ1 with (s = 1, 2, 3) is the set of three roots of the polynomial
f(x)

The Look-up Table cubic keeps roots y for any polynomial fi(y) = y3 + y + i,
where i ∈ [1; 2m − 1] in GF (2m). Consequently, the size of the Look-up Table is
(2m − 1)× 3. Note that polynomial which do not have 3 roots are marked as −1.

The roots of the polynomial f(x) = x3 + σ1x
2 + σ2x + σ3 can be computed

using roots y in the Look-up Table cubic in row j
h3/2 . For further calculations,

the indexes of the rows which have 3 roots have to be stored in a special table
tab of size D, where D is the number of rows which have 3 roots.
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D. BCH Code - Example Code

Parameters

Within this section, example code parameters are given for several BCH Codes
according to Bellmann [3]. While Table D.1 gives examples for primitive codes,
Table D.2 lists examples for non-primitive BCH Codes. Note that the codes are
separated according to the number of minimal polynomials mi(x) used for the
construction of g(x), as basis of the parity-check matrix Hk×n.

Table D.1.: Examples for Primitive BCH Codes.

(n, l) e
3 mi(x)
(15,10) 3.003
(15,12) 2.560
(31,15) 3.624
(63,18) 4.641
4 mi(x)
(15,14) 2.361
(31,20) 3.296
(63,17) 4.635
(63,18) 4.514
(63,20) 4.473
(63,21) 4.450
(63,24) 4.304
5 mi(x)
(31,25) 2.841
(63,20) 4.411
(63,23) 4.348
(63,24) 4.083
(63,26) 4.210
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D. BCH Code - Example Code Parameters

Table D.2.: Examples for Non-Primitive BCH Code.

(n, l) e
1 mi(x)

(9,6) 2.667
(17,8) 3.442
(23,11) 3.856
(33,10) 4.083
(35,12) 3.912
(43,14) 4.227
(47,23) 3.848
2 mi(x)

(9,8) 2.447
(17,16) 2.342
(21,9) 3.597
(21,12) 3.146
(33,12) 3.988
(35,24) 3.057
(51,16) 4.354
3 mi(x)
(21,11) 3.386
(21,12) 3.230
(21,14) 2.667
(21,15) 2.989
(51,18) 4.199
(51,24) 3.936
(85,24) 4.819
4 mi(x)
(21,14) 3.077
(21,17) 2.672
(21,18) 2.494
(51,26) 3.831
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E. Algorithm for Approximating

the Embedding Efficiency for

BCH Codes

Given that the estimation of Ra and thereby that of e so far requires extensive
simulations, we describe an approximation of the embedding efficiency within this
section [86]. We developed an algorithm to approximate the embedding efficiency
e directly from the code parameters k and n. Of course this algorithm can be
used the other way around, in order to find suitable code parameters.

Unfortunately, only perfect codes such as Hamming Codes (fk = 1) and the
non-primitive Golay Code (fk = 3) are able to achieve an average number of
embedding changes Ra even smaller than fk. The reason is that the weights of
the coset leaders are distributed according to the Hamming bound with:

2k =

fk∑

i=0

(
n

i

)

, (E.1)

i. e., there are exactly
(

n
i

)
coset leader with weight i. According to this property,

the average number of embedding changes can be calculated with:

Ra =
1

2k

fk∑

i=0

(
n

i

)

i. (E.2)

For non-perfect codes, Ra will be always greater than fk since the Hamming
bound is not fulfilled with equality: there are more possible syndromes than
needed to realize the performance fk for the code applied in coding theory. When
using these codes in steganographic systems, the remaining syndromes have to
be realized using sequences f with w(f) > fk.

For every quasi-perfect code (fk = 2), we can determine the weight of the

remaining

(

2k −
fk∑

i=0

(
n
i

)
)

coset leaders exactly with (fk + 1). Since the equation

to calculate Ra can be adapted, we calculate Ra with:

Ra =
1

2k

(
fk∑

i=0

(
n

i

)

i +

(

2k −
fk∑

i=0

(
n

i

))

(fk + 1)

)

. (E.3)
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E. Algorithm for Approximating the Embedding Efficiency for BCH Codes

number of coset leader with weight i

summation of all syndromes

maximum number of embedding changes

average number of embedding changes

w[  ]

w[  ] w[  ]

w[  ]

α-¹

α-¹

Figure E.1.: Algorithm to Estimate the Embedding Efficiency e According to [86].

However, for shortened codes and for codes with better performance, i. e.,
fk > 2, the remaining coset leaders do not have only weight (fk + 1). As
our investigations have confirmed, they also contain coset leaders with weight
w(f) > (fk + 1).

In order to estimate Ra for these codes, we assume Equation (E.3), although
this is only a lower bound since this equation is true for fk = 2. The actual
average number of embedding changes Ra will be higher for shortened codes
and codes with fk > 2 depending on the number of remaining coset leaders.
With increasing codeword length, the number of coset leaders not covered by the
Hamming bound is up to 90% of all 2k possible coset leaders [86], i. e., these coset
leaders have a weight of w(f) ≥ (fk + 1).

Approximating the maximum and the average number of embedding changes
(R, Ra) enables us to estimate the embedding efficiency e and the ratio α−1 = n/k
(Figure E.1).

Table C.1 contains examples for the accuracy of our approximation of Ra. The
vector w gives the distribution of the coset leaders among the weights i, i. e.,
w[1] for example gives the number of coset leader with weight 1. Additionally,
the ratio between the calculated and the estimated value of Ra provides a measure
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Table E.1.: Quality of the Approximation Algorithm According to [86].

(n, l, fk) Distribution of the Coset Leaders among the Weights
w[i], (i = 0, 1, ..., n)

Ra
Ra,c

Ra,e

(15, 5, 3), calculated: (1, 15, 105, 455, 420, 28, 0, ..., 0) 3.330
primitive estimated: (1, 15, 105, 455, 448, 0, ..., 0) 3.303

99.2%

(18, 7, 3), calculated: (1, 18, 153, 816, 955, 100, 5, 0, ..., 0) 3.478
shortened,
non-primitive

estimated: (1, 18, 153, 816, 1060, 0, ..., 0) 3.213
92.4%

(31, 11, 5), calculated:
(1, 31, 465, 4495, 31465, 169911, 522009, 320199, 0, . . . , 0)

6.068

primitive estimated:
(1, 31, 465, 4495, 31465, 169911, 736281, 105927, 0, . . . , 0)

5.864
96.6%

of quality for our estimation.
As already mentioned, the approximation gives always a lower bound for codes

with fk > 2. However, there are only minor differences between the calculated
and the estimated average number of embedding changes Ra (Table C.1).

Hence, we used the algorithm described in Figure E.1 the other way around in
order to find appropriate code parameters [86]. Therefore, we varied the code
parameters n, k and evaluated the results concerning e and α−1. The most
promising results are presented in Table E.2.

Table E.2.: Results for Promising Code Parameters According to [86].

n k e α−1

37 19 3.904 1.947
51 18 4.603 2.833
99 34 4.864 2.912

These parameters are substantially better than the results presented in Section
6.1. However, it is still a challenge to derive an appropriate code based on the
estimated parameters. For example, for n = 37 and k = 19, we find the embed-
ding efficiency e = 3.904 and the inverse relative message length α−1 = 1.947 as
promising parameters [86].

According to these code parameters, we can use shortened primitive or short-
ened non-primitive BCH Codes. The question is which code will be able to
achieve the calculated embedding efficiency. The results determined by Schön-
feld and Winkler in [86] are summarized in Table E.3. For further information,
we refer to this paper. Nevertheless, the question is whether it is possible to find
Hk×n according to the parameters n and k easier with random codes, since they
densely cover the range of α−1.
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E. Algorithm for Approximating the Embedding Efficiency for BCH Codes

Table E.3.: Results for Finding an Appropriate Code According to [86].

(n, l, fk), shortened primitive e α−1

(37, 19, 3) 2.934 2.056
(37, 19, 2) 3.001 2.056
(37, 18, 1) 2.673 1.947

(n, l, fk), non-primitive e α−1

(35, 23, 1) 3.092 2.917
(35, 11, 2) 2.588 1.458
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Glossary

±1 steganography Steganographic embedding operation
which applies incrementing or decrement-
ing with equal probability, whenever the
message bit is not equal to the cover bit.

Adaptive Selection Channel Embedding Principle where the selection
rule depends on the cover.

Adaptive Steganography Steganographic scheme, where the embed-
ding rule depends on the cover content.

Attack Algorithm whose goal is to detect the ex-
istence of steganography.

AUC Area Under the Curve. A metric based on
the ROC curve.

BCH Code BCH Code, named after its discoverers
Bose, Chaudhuri and Hocquenghem. Al-
gorithm for embedding with syndrome
coding based on deterministic parity-check
matrices.

Block Minimal Method Algorithm for embedding with syndrome
coding based on stochastic parity-check
matrices.

BMP Bitmap Image. A widely-used image for-
mat.

BP Belief Propagation. Iterative message-
passing algorithm applied for embedding
based on LDGM Codes.

bpp Bit Per Pixel. Measure to express the rel-
ative message length.

Capacity Maximum number of message bits that
can be embedded in a cover object.
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Glossary

Changeable Element Cover element that might be changed dur-
ing embedding. Also denoted as dry ele-
ment.

Code A vector subspace of Fq
n.

Code Co-Dimension The co-dimension k of a linear code gives
the number of parity bits.

Code Dimension Dimension l of a linear code. The code di-
mension determines the cardinality of the
code alphabet with 2l elements.

Codeword An element of the code.
Codeword Length Number of elements in each codeword

given as n.
Coding Theory The science of the properties of codes

and their practicability for specific appli-
cations.

Confidential Message Message the sender wants to embed.
Coset Set of all codewords leading to the same

syndrome.
Coset Leader Member of the coset with the smallest

Hamming weight w.
Cover Original unmodified object before embed-

ding.
Cover Element Individual element of the cover, e. g., a

pixel or a DCT coefficient.
Cover Modification Steganographic method where the cover is

modified in order to embed the confiden-
tial message.

Cover Selection Steganographic method where the cover is
selected out of a source of several covers.
The chosen cover contains the confidential
message.

Cover Synthesis Steganographic method where the cover
containing the confidential message is gen-
erated in a computer-based way.

Covering One of the two main problems that can be
solved using coding theory.

Covering Radius Measure of the distance between the code
and the farthest-off vectors in space.
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Glossary

DCT Discrete Cosine Transformation.
Deterministic Parity-Check Matrix Parity-check matrix built according to de-

terministic design rules, i. e., related to a
linear code.

Dry Element Cover element allowed to be changed dur-
ing embedding.

ECC Error Correcting Codes.
EER Equal Error Rate. A metric based on the

ROC curve.
Embedding Algorithm Algorithm that embeds a confidential mes-

sage into a cover.
Embedding Distortion Distortion introduced to the cover during

embedding.
Embedding Efficiency Number of embeddable bits dependent on

the introduced distortion.
Embedding Impact Expresses how strongly a modification of

a particular position of the cover would in-
fluence the probability of an attacker de-
tecting the embedding.

Embedding Operation Procedure modifying the individual cover
element in order to embed.

Extraction Algorithm Algorithm to extract the confidential mes-
sage from the stego object.

False Alarm Misclassification of a cover object as a
stego object.

FP50 False Positive rate at 50 percent detection
rate. A metric based on the ROC curve.

Generator Matrix Matrix whose rows form the basis of a lin-
ear code.

GF Galois Field.
Golay Code Beside the Hamming Code the only per-

fect code. Algorithm for embedding with
syndrome coding based on deterministic
parity-check matrices.
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Glossary

Hamming Distance Number of elements in which two words
differ.

Hamming Weight Number of non-zero elements in each code-
word.

HC Hamming Code: Perfect linear code.
Parity-check matrix contains all non-zero
elements of length k as rows. Algo-
rithm for embedding with syndrome cod-
ing based on deterministic parity-check
matrices.

JPEG Joint Photographic Experts Group. A
widely-used image format.

KL Divergence Kullback-Leibler divergence: Concept
from information theory. Gives a measure
of the distance between two random vari-
ables.

LDGM Low-Density-Generator-Matrix Codes.
Algorithm for embedding with syndrome
coding based on stochastic parity-check
matrices.

LDPC Low-Density-Parity-Check Matrix Codes.
Linear Code Linear subspace ⊂ Fq

n including all possi-
ble codewords.

LLR Log Likelihood Ratio.
LSB Least Significant Bit.
LSB Embedding Steganographic method. Embedding by

replacing the least significant bit with the
message bit.

LSB Matching Steganographic method, ±1-embedding.
LT Code Luby Transform Code. Sparse linear code.

Matrix LT Process Algorithm based on LT Codes which al-
lows to bring a matrix in the upper trian-
gular form.
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Glossary

ME Matrix Embedding: Synonym for Embed-
ding based on Syndrome Coding.

ME for Large Payloads Algorithm for embedding with syndrome
coding based on stochastic parity-check
matrices.

Meet-in-the-Middle Algorithm based on stochastic parity-
check matrices. Synonym for Block Mini-
mal Method.

Missed Detection Misclassification of a stego object as cover
object.

MP3 MPEG-1 Audio Layer 3. A widely-used
audio format.

MPEG Moving Picture Experts Group. A widely-
used video format.

Number of Embedding Changes Average weight of the coset leaders.

Packing One of the two main problems that can be
solved using coding theory.

Parity-Check Matrix Matrix used for error-correction in coding
theory and for embedding and extraction
in steganography.

PKS Public Key Steganography.
PQ Perturbed Quantization: Embedding

Principle in which embedding occurs dur-
ing an information-reducing process.

Random Parity-Check Matrix A parity-check matrix built according to
stochastic design rules.

Robustness Property describing a steganographic
scheme. Describes the difficulty of remov-
ing hidden information from a stego ob-
ject.

ROC Receiver Operating Characteristics: A
common way to visualize the characteris-
tic relation between the two errors a ste-
ganalyzer can make.
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Glossary

RSD Robust Soliton Distribution.

SC Simplex Code. Algorithm for embedding
with syndrome coding based on determin-
istic parity-check matrices.

Security Property describing a steganographic
scheme. Judged by the impossibility of de-
tecting the communication.

Selection Channel Selects parts of the cover that should be
used for embedding.

SID Survey Inspired Decimation.
SKS Secret Key Steganography.
SP Survey Propagation. Iterative message-

passing algorithm applied for embedding
based on LDGM Codes.

Sparse Matrix For this class of matrices, the weight of
the matrix increases linearly instead of
quadratically with increasing block length
n.

Square Root Law Thesis claiming that the secure capacity
of a stego system is proportional only to
the square root of the number of cover el-
ements.

STC Syndrome Trellis Codes. Algorithm for
embedding with syndrome coding based
on stochastic parity-check matrices.

Steganalysis The counterpart to steganography.
Steganographic Scheme A covert communication system consisting

of the cover source, the stego key source,
the message source and the communica-
tion channel.

Steganography The art of communicating messages in a
covert manner.

Stego Raw, unmodified data before embedding.
Success of Embedding Probability that a given message can be

embedded in a particular cover.
Syndrome Result when multiplying a sequence of

length n with the parity-check matrix.
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Glossary

Syndrome Coding Method for communicating a secret mes-
sage as the syndrome of a linear code.

Systematic Form Special arrangement of a matrix. One part
of the matrix is the identity matrix.

Ternary Code A code built over a ternary alphabet, i.e.,
an alphabet consisting of three symbols.

Undetectability Property describing a steganographic
scheme. Describes the inability of the at-
tacker to prove the existence of the confi-
dential message.

Wet Element Cover element not used for embedding, re-
mains unchanged during the embedding
process.

WPC Wet Paper Codes. Algorithm for em-
bedding with syndrome coding based on
stochastic parity-check matrices.
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Notation and Symbols

ρ[i] Embedding impact at pixel i
Γ Modification step
Λ Extraction step
Π Pre-processing step
Θ Embedding step

A Cover bit string
a Cover sequence
α−1 Inverse relative message length α−1 = n

k

α−1
Dry Inverse relative message length related to

the dry cover elements α−1
Dry = |Dry|/|m|

α Relative message length α = k
n

B Stego bit string
b Stego sequence

C Code
c Codeword
C(s) Coset corresponding to syndrome s

cL(s) Coset leader of the coset corresponding to
syndrome s

dH(x,y) Hamming distance between x and y

DKL(P ||Q) Kullback-Leibler (KL) divergence between
the probability distributions P and Q

dmin Minimum Hamming distance among all
possible distinct pairs in C

dρ(x,y) Impact introduced during embedding
dρ(A,B) =

∑n
i=1 ρ[i]|A[i] −B[i]|

Dry Set of changeable (dry) elements

e Embedding efficiency
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Notation and Symbols

e Lower embedding efficiency
Emb Embedding function
emb Message part used for embedding
Extr Extraction function

f(x) Main polynomial
f Error pattern, flipping pattern
F2 Finite field containing two elements
f|Dry| Flipping pattern related to the dry ele-

ments
fk Number of correctable errors fk =

⌊dmin−1
2

⌋
fm Coset member
Fq Finite field containing q elements

Gl×n Generator matrix
g(x) Generator polynomial
GF Galois field

H(x) Binary entropy function
Hk×|Dry| Sub-matrix of Hk×n corresponding to the

dry elements
Hk×|Wet| Sub-matrix of Hk×n corresponding to the

wet elements
Hk×n Parity-check matrix
h(x) Check polynomial
H0 Null hypothesis
H1 Alternative hypothesis
H−1(x) Inverse binary entropy function

Ik Identity matrix

K Set of possible stego keys
k Secret stego key from the set of possible

stego keys, k ∈ K
k Co-dimension of the code, number of par-

ity bits
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Notation and Symbols

l Dimension of the code, number of infor-
mation bits

LCM Least common multiplier
ld Logarithm dualis, logarithm to the base 2
ln Logarithm naturalis, logarithm to the base

e
log Logarithm, logarithm to the base 10

M(x) Modular polynomial
M Set of possible messages
m Message from the set of possible messages,

m ∈ M
mi(x) Minimal polynomial

N Number of cover elements
n Codeword length
nB Number of blocks per cover

Path Random path trough the image
Pc Distribution of cover objects
π(x) Symbol-assignment function
Ps Distribution of stego objects

q Basis of the q-ary alphabet

R Covering radius
Ra Average distance to code
rank Rank of a matrix

s Syndrome

w Hamming weight of x ∈ {0, 1}n

Wet Set of unchangeable (wet) elements

|X | Cardinality of set X
X Set of possible covers
[i]2 Binary representation of i

|x| Length of vector x
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Notation and Symbols

[i]10 Denary representation of i

χ Cover
X[i, .] ith row of matrix X

x[i] ith element of vector x

X[., j] jth column of matrix X

⊕ XOR (eXclusive OR)
XT Transpose of matrix X

xT Transpose of vector x

⊗ Kronecker Product
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