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Abstract
This paper considers steganography – the concept of hiding the presence of secret messages in
legal communications – in the computational setting and its relation to cryptography. Very re-
cently the first (non-polynomial time) steganographic protocol has been shown which, for any
communication channel, is provably secure, reliable, and has nearly optimal bandwidth. The
security is unconditional, i.e. it does not rely on any unproven complexity-theoretic assumption.
This disproves the claim that the existence of one-way functions and access to a communication
channel oracle are both necessary and sufficient conditions for the existence of secure steganogra-
phy in the sense that secure and reliable steganography exists independently of the existence of
one-way functions. In this paper, we prove that this equivalence also does not hold in the more
realistic setting, where the stegosystem is polynomial time bounded. We prove this by construct-
ing (a) a channel for which secure steganography exists if and only if one-way functions exist
and (b) another channel such that secure steganography implies that no one-way functions exist.
We therefore show that security-preserving reductions between cryptography and steganography
need to be treated very carefully.
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1 Introduction

Digital steganography has recently received substantial interest in modern computer science
since it allows secret communication without revealing its presence. Currently, using freely
available steganographic software, one party is able to spread secret messages over widely
accessible services, such as photo-sharing websites, camouflaging the presence of the messages
in legal communications. Although the uploads and views by other users can be recorded
and analyzed it is fairly difficult to distinguish the altered documents containing a secret
message from those of millions of the other ordinary documents. For more details on applied
steganography see the textbook [16] or the current survey [38] and the literature therein.
For applications of steganography in other areas, like covert computation, broadcasting, or
anonymous communication see e.g. [6, 7, 14, 18, 24, 35].

A common computational model for secret-key steganography, also used in this paper,
was introduced by Hopper, Langford, and von Ahn [21, 22, 23]. Independently, Katzenbeisser
and Petitcolas [25] provided a similar formulation. In this setting, a stegosystem is defined as
a pair of probabilistic algorithms, called encoder and decoder, which share a secret-key. The
aim of the encoder (often called Alice or the steganographer) is to hide a secret message in a
document and to send it to the decoder (Bob) via a public channel C, which is completely
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16:2 Hard Communication Channels for Steganography

monitored by an adversary (Warden or steganalyst). The channel is modeled by a cover-
document sampler that can be queried adaptively, in a black-box manner and the adversary’s
task is to distinguish those from altered ones called stego-documents.

To hide a secret message m, the encoder can take sample cover-documents, based on past
communication, and manipulate them to embed m. The decoder, receiving stego-documents,
should be able to decode the hidden message correctly. The stegosystem is called reliable if
the decoder succeeds with high probability. The adversary is a probabilistic algorithm with
access to additional knowledge about the channel. A stegosystem is secure if no adversary
of polynomial time complexity is able to distinguish with significant probability between
cover- and stego-documents generated by the stegosystem’s encoder. This implies in general
that the distributions of cover-documents and stego-documents have to be fairly close in
a complexity-theoretic sense. The insecurity of a stegosystem is the advantage of the best
adversary to distinguish between cover- and stego-documents. Thus, a stegosystem is secure
if its insecurity is sufficiently small, i.e. negligible in the security parameter κ defining the
length of the shared secret-key.

The security and reliability are necessary attributes of any reasonable stegosystem.
Additionally, the system should be efficient in terms of the transmission rate (payload), i.e.
the number of bits transmitted per single stego-document should be as high as possible.
The stegosystems used in practice (not necessary provable secure in the computational
model) typically achieve a rate of

√
n [26], where n := n(κ) denotes the length of a single

document that is polynomial in κ. A longstanding conjecture, the Square Root Law of
Steganographic Capacity [15, 27] says that a rate of the form (1− ε)

√
n is always achievable

in the information-theoretic setting.
Importantly, in the definition of the computational model Hopper, Langford and von Ahn

[21, 22, 23] do not bound the running time of the stegosystem, while the time complexity of
the adversary is required to be bounded by a polynomial. For this setting we have shown very
recently the strongest possible result; namely, that there exists a universal stegosystem which
for any channel is secure, reliable and achieves almost optimal rate. Recall, that a system is
called universal1 if the encoding method does not rely on knowledge of the distribution for
the channel C except that its min-entropy is sufficiently large.

I Theorem 1 ([4], Informal). There exists a universal (non-polynomial time) stegosystem S
that is unconditionally secure and reliable. Moreover S is rate-efficient.

This disproves the widely circulated result claimed in [21, 23] that the existence of
one-way functions and access to a communication channel oracle are both necessary and
sufficient conditions for the existence of secure steganography (see e.g. the textbook [16] for a
discussion). In fact, secure and reliable (non-polynomial) steganography exists independently
of the existence of one-way functions.

In this paper we investigate a more reasonable setting in which the stegosystem’s running
time is bounded by a polynomial and study provably secure steganography and its relation
to cryptography. We prove that, despite strong connections, polynomial time steganography
is not cryptography. More precisely we show that, similarly as in the case of non-polynomial
time steganography, the equivalence between the existence of one-way functions and the
existence of secure, reliable, and rate-efficient (polynomial time) steganography does not hold.

1 In the literature universal stegosystems are also called ”black-box”.
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1.1 Previous Works
As we discuss in [4], a commonly heard argument for the premise that steganography
is cryptography goes as follows: Let m and m′ be two different secret messages and s

and s′ be stego-documents which embed m, resp. m′. If the distributions of s and s′ are
indistinguishable from the distribution of the cover-documents, then by the triangle-inequality,
the distributions of s and s′ are also indistinguishable. Hence, a secure stegosystem is also a
secure cryptosystem.

While the argument concerning the triangle-inequality is true, the argument ignores the
channel oracle. If the channel documents are e.g. natural digital pictures, the cryptosystem
simulating the stegosystem needs access to samples of those documents. But an efficient
sampler for this channel seems highly unlikely. Thus, this reasoning is wrong and in fact we
show in [4] that (non-polynomial time) steganography exists independently of the existence
of one-way functions. Below we discuss known results in this direction.

In contrast to the non-polynomial case, universal steganography is very limited when
requiring polynomial running time. In [10], Dedić et al. proved that for every stegosystem S
with security parameter κ (describing the length of the secret key) which hides λ := λ(κ)
bits, takes q := q(κ) samples per stego-document and runs in time p := p(κ) there exists a
channel C(κ) of min-entropy pol(κ) such that

InSec(κ) + UnRel(κ) ≥ 1
2 −

e · q
2λ −Ψ(p, κ)− o(1). (1)

Here, InSec(κ) denotes the insecurity (against polynomial time bounded wardens) and
UnRel(κ) the unreliability of S on C(κ), and Ψ describes a term caused by the insecurity of
the pseudorandom function used in the construction of C(κ). From this result we get that
if restricted to polynomial time steganography, Theorem 1 does not hold unless one-way
functions do not exist:

I Theorem 2 ([10], Informal statement). Assuming one-way functions exist there exists no
secure and reliable universal polynomial time stegosystem of rate ω(log κ).

Interestingly, the logarithmic bound on the bandwidth above is sharp. Due to Hopper et
al. [23] and Dedić et al. [10] we know that the existence of one-way functions implies the
existence of a secure and reliable universal (polynomial time) stegosystem of rate O(log κ).

Theorem 2 shows a very important property, interesting in itself: when requiring polyno-
mial time, the applicability of universal steganography is very limited. Due to this reason it
makes sense to consider the security of a stegosystem S only for a specific channel or for
channels of a specific family, and do not to require its security for all possible channels. This
is also a common approach in practical steganography where a system has to satisfy security
properties for a specific channel, like e.g. natural images in JPEG-format, but its security
for texts, audio signals, TCP/IP transmission packages, etc. is irrelevant. For this setting
the relationship between steganography and cryptography remains unsolved. Particularly, it
is not known whether for any channel C(κ) there exists a secure, reliable, and rate-efficient
(polynomial time) stegosystem for C(κ). The question remains open both for unconditional
security and under some unproven assumptions like the existence of one-way functions.

Note that the lower bound (1) above does not allow to answer this question. To prove
their result, Dedić et al. [10] show that for every (polynomial time) stegosystem S there
exists a channel C(κ) that satisfies inequality (1). However, every channel C(κ) of [10] has a
secure, reliable and rate-efficient (polynomial time) stegosystem (for a proof see e.g. [31]).
Also the following lower bound provided by Hopper et al. [23] does not suffice to solve this
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16:4 Hard Communication Channels for Steganography

problem. They show that for any function q(κ) bounded by a polynomial in κ there exists a
channel C(κ) such that for every (polynomial time) stegosystem S of query complexity q(κ)
which hides λ(κ) bits per document it is true

InSec(κ) + UnRel(κ) ≥ 1− q/2λ − 2−κ. (2)

In case λ(κ) ∈ ω(log κ) the right-hand side of the inequality (2) is big, meaning that S is
insecure or unreliable, but again in in this situation one can construct a (polynomial time)
stegosystem S ′ of query complexity q(κ) + 1 that is secure, reliable and rate-efficient on C(κ).

Hence both of these lower bounds prove that every stegosystem that hides ω(log κ) bits is
insecure or unreliable on some channel from a channel family F . On the other hand, for all of
those channels, one can construct a secure and reliable stegosystem. Hence, the insecurity or
unreliability of the stegosystem on those channels comes from the fact that the stegosystem
must work for all channels in F and not necessarily from the complexity of a single channel.

1.2 Our Contributions
We prove that polynomial time bounded, provably secure, reliable, and rate-efficient stega-
nography is independent of cryptographic assumptions, such as the existence of one-way
functions. This is a consequence of the following results.

I Theorem 3 (Informal). Assuming one-way functions exist there exists a channel C(κ) such
that for C(κ) no secure and reliable polynomial time stegosystem of rate ω(log κ) is possible.

The logarithmic bound on the bandwidth above is sharp unless one-way functions do not
exist. One can conclude even more, namely that if Theorem 3 holds for rate O(log κ), no
one-way functions exists. More formally, we have the following:

I Corollary 4. If proposition (a) is true:
(a) Assuming one-way functions exist there exists a channel C(κ) such that for C(κ) no

secure and reliable polynomial time stegosystem of rate O(log κ) is possible;
then one-way functions do not exist.

To see this, again from [23] and [10] we know that: (b) If one-way functions exist then
for every channel C(κ) there exists secure and reliable polynomial time stegosystem of rate
O(log κ). Thus, proving the proposition (a) in Corollary 4 would be possible only if one-way
functions do not exist – only in this case both of the proposition (a) and (b) are true. Clearly,
current research is far from proving anything like proposition (a).

Theorem 3 is the main technical achievement of this paper. We complement our result
by showing a channel for which the existence of one-way functions implies the existence of
a secure, reliable, and rate-efficient polynomial time stegosystem. Constructions of similar
channels are known in the steganography community however, for the sake of correctness
and completeness we formulate and prove a suitable result in our paper:

I Theorem 5 (Informal). There exists a channel C(κ) such that if one-way functions exist
then secure, reliable, and rate-efficient polynomial time stegosystem for C(κ) exists.

The proofs of the theorems are constructive. Interestingly, the channel C(κ) satisfying
Theorem 3 is specified by a cryptographic signature scheme protocol that is widely used in
practice. While C(κ) per se is artificial, its close relative, the channel of cryptographic signed
emails on the internet, is widely used. In this work we prove also that there exist more such
hard channels satisfying the conditions of Theorem 3. In fact we show that any channel
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which can express the signature scheme belongs to this family. Our construction is inspired
by the technique used in the work of De et al. [9] which apply this method to show that it is
not possible to uniformly generate satisfying assignments to a 3-CNF formula if one is given
polynomial many samples of satisfying assignments. The channels satisfying the conditions
of Theorem 5 are channels that can be sampled by an algorithm in polynomial time.

1.3 Relevant Work
The running time of universal steganography was improved by Kiayias et al. in [28] by using
t-wise independent family of functions instead of a pseudorandom function to choose the
corresponding documents from the channel. They also showed that a key length of (1+o(1))n
is sufficient to achieve information-theoretic security of 2−n/logO(1)(n) for message length n.

Van Le and Kurosawa [29] used arithmetic coding techniques to improve upon the rates
of the universal systems proposed in [23] and [10]. In order to achieve this they assume that
the system has access to additional knowledge on the channel. Their work thus does not fit
into the model introduced by Hopper et al. [23].

Von Ahn and Hopper [36] gave the first complexity-theoretic definitions of public-key
steganography, where the running time of the stegosystem is polynomial time bounded.
Their work was extended by Backes and Cachin [2], who introduced stronger security
definitions and presented a universal non-rate-efficient stegosystem for one of their definitions.
Hopper [20] then proceeded by proving that every so-called efficiently sampleable channel
has a non-rate-efficient stegosystem that achieves the strongest security definition.

Universal stegosystems have also been studied in the information-theoretic setting, where
the information-theoretic distance between the distribution of the channel documents and
the distribution of the stego-documents must be bounded. The first information-theoretic
definitions of steganography were given by Cachin [5]. Wang and Moulin [37] presented
a whole framework to study the optimal embedding rate of information-theoretic perfect
stegosystems. For more information on this see e.g. [8, 15, 33].

The paper is organized as follows: The next section contains the basic definitions regarding
stegosystems, their security and the cryptographic primitives we make use of. The proof
of Theorem 3 and its extension can be found in Section 3, while Theorem 5 is proved in
Section 4. Finally, we conclude our paper and discuss the future work in Section 5.

2 Preliminaries and Definitions

We say that an algorithm A has oracle access to a probability distribution D (denoted as
AD), if A can sample an element d according to D in unit time. The elements are sampled
independently. If D is parameterized by ρ1, ρ2, . . . , ρk, we write AD(ρ1,...,ρk) to describe the
situation, where all of the parameters are fixed. If D is allowed to choose the parameter ρi
itself, this is denoted by a dot, as in AD(ρ1,...,ρi−1,·,ρi+1,...,ρk). More generally, we also use
dots in the parameters of an algorithm to indicate that this parameter may be chosen freely.

If one tries to hide the transfer of a secret message via unsuspicious communication, one
first needs to define a model for this type of communication. This is done via the notion of a
channel C on an alphabet Σ.

I Definition 6. A channel C on the alphabet Σ is a function taking an n ∈ N and a history
h ∈ (Σn)∗ to a probability distribution on Σn, denoted by Ch,n.

Note that we do not require the distributions Ch,1, Ch,2, . . . to be polynomial time con-
structible, as the typical channels in use may be of high complexity, e.g., pictures or poems.

ISAAC 2016



16:6 Hard Communication Channels for Steganography

As usual, a communication channel has a certain capacity, that is bounded by the
entropy of the channel. The min-entropy H(D) of a probability distribution D is defined as
H(D) := mind∈supp(D){− logD(d)}. The min-entropy H(Cn) of a channel C with respect to
n ∈ N is then defined as H(Cn) = minh{H(Ch,n)}. The number of bits embeddable into a
single document is bounded by H(Cn) (see e.g. [22] for a proof).

To give a sound formal treatment, we parameterize the behaviour of all parties by the
security parameter κ – the length of the secret key k. We therefore say that a function
f : N→ [0, 1] is negligible, if for every c and all sufficiently large n, it holds that f(n) < n−c.

Informally, a stegoencoder SE has access to samples of C and embeds a message m into a
sequence of documents d1, . . . , d`, thereby producing a sequence d∗1, . . . , d∗` . The goal of SE
is that no efficient algorithm can distinguish the distributions of d1, . . . , d` and d∗1, . . . , d∗` .

I Definition 7. A stegosystem S for the polynomial time constructible message space
{Mκ}κ∈N with document length n : N → N and output length ` : N → N is a pair of
probabilistic, polynomial time Turing machines (PPTMs) [SE, SD] with the following
functionality upon security parameter κ:

The encoding algorithm SE takes as input a key k ∈ {0, 1}κ, a messagem ∈Mκ, a history
h and a state information s ∈ {0, 1}∗ and produces a document d and state information
s′ ∈ {0, 1}∗ by having access to Ch,n. By SEC(k,m, h), we denote the outcome of:

Steganographic Encoding SEC(k,m, h)

1. s := λ; // initialize the first state as the empty string
2. for i = 1, . . . , `:
3. (di, s) ← SECh,n(κ)(k,m, h, s);
4. h := hdi; // concatenate h with the new document
5. return d1, . . . , d`

Note that SE is only allowed to get samples for the i+ 1-th document, after it produced
the i-th document. For the sake of simplicity, we sometimes write SEC(k,m, h)i to denote
the i-th document di.
The decoding algorithm SD takes as input a key k ∈ {0, 1}κ and a sequence of documents
d1, . . . , d` and outputs a message m′.

The sampling complexity q(κ) of SE is the number of calls of SE to its sampling oracle. The
transmission rate b(κ) is defined as b(κ) := log | supp(Mκ)|/`(κ) ≤ n(κ).

The key k ∈ {0, 1}κ is shared by SE and SD before the embedding process. Clearly, SD
should be able to reconstruct the original message with high probability. We say that S is
ρ-reliable, if the maximum probability of an error (i.e. SD(k, SEC(k,m, h)) 6= m) is bounded
by 1− ρ(κ) for every message m and every history h. If S is ρ-reliable for a negligible ρ, we
call S reliable. In addition to this, SE wants to embed as much information as possible into a
document in order to reduce the overhead of the transmission. We say that S is rate-efficient,
if there is constant α > 0 such that b(κ) ≥ H(Cn(κ))α for all κ (we thus embed nα bits per
document with entropy n).

2.1 Security of a Stegosystem
A warden W is a PPTM that should decide whether the communication parties use steganog-
raphy or not. In order to do so, W chooses a history and a message and presents this to a
challenge oracle CH which, on key k, message m and history h outputs a sequence of `(κ)
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documents d1, . . . , d`. This sequence is either the output of the stegosystem SEC(k,m, h) for
a uniformly chosen key k or the `-fold output C`(m,h) of the channel with the distribution
C`(m,h) ∼ (Ch,n(κ), Chd1,n(κ), . . . , Chd1d2···d`−1,n(κ)).

The goal of W is now to reconstruct whether the challenge oracle is SEC(k, ·, ·) (it
outputs 0 or »Stego«) or C`(·, ·) (it outputs 1 or »not Stego«). More precisely, we consider
the following experiment for an chosen hiddentext attack (cha):

Steganographic Security chaκ(W,S, C)

1. k ← {0, 1}κ;
2. b← {0, 1};
3. if b = 0 then CH := SEC(k, ·, ·) else CH := C`(·, ·);
4. b′ ←W C·,n(κ),CH(·,·)(1κ); // W chooses h and m for CH
5. if b = b′ then return 1 else return 0

Note that the warden has several liberties: It may choose the history for the channel oracle
(the stegosystem can only work with its given history), the history submitted to the challenge
oracle and the message submitted to the challenging oracle.

As W is able to chose the message (or the hiddentext), we say that the chosen hiddentext
attack (cha) advantage Advcha

W,S,C(κ) of W on the stegosystem S on channel C is given as

Advcha
W,S,C(κ) = 2 ·

∣∣Pr[chaκ(W,S, C) = 1]− 1/2
∣∣,

where the probabilities are taken over the random choice of k and the randomness of CH,W
and the channel. The random hiddentext attack (rha) advantage Advrha

W,S,C(κ) of a warden
W is defined similarly with the difference that the messages given to the challenge oracle CH
are chosen randomly instead of adversarially. This is a much weaker security requirement
than cha-security. Finally, for x ∈ {cha,rha}, the x-insecurity InSecx

S,C(q, t, κ) of a
stegosystem S on the channel C is defined as

InSecx
S,C(q, t, κ) = max

W
{Advx

W,S,C(κ)}.

The maximum is taken over all wardens W that make an expected number of q(κ) queries
and run in expected time t(κ). We say that S is x-ε-secure, if InSecx

S,C(q, t, κ) ≤ ε(κ) for all
polynomials q and t and x-secure if it is x-negl-secure for a negligible function negl.

2.2 Cryptographic Primitives
We recall briefly the definitions of the following three cryptographic primitives and the known
relationships between them. For exact definitions see e.g. the literature quoted below.

One-Way Function. A polynomial time computable function F : {0, 1}∗ → {0, 1}∗ is called
a one-way function, if every algorithm (inverter) upon input F (x) fails to produce an element
x′ such that F (x′) = F (x).

Signature Scheme. A signature scheme SIG consists of a probabilistic key-generation
algorithm G, that produces a secret key and a public key, a probabilistic signing algorithm
S, that takes the secret key, a message and produces a signature for the message and a
deterministic verifying algorithm V , that takes the public key and tests whether a message-
signature pair is valid. An attacker either gets random valid message-signature pairs (random-
message attack (RMA)) or can produce valid signatures for chosen messages (chosen-message
attack (CMA)). Its goal is to produce a fresh message-signature pair.
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16:8 Hard Communication Channels for Steganography

Symmetric Encryption Scheme. A symmetric encryption scheme SES consists of an
encryption algorithm ENC, which takes a secret key and a plain text and produces a
cyphertext. This cyphertext can be decoded by the decryption algorithm DEC with the
help of the same secret key. An attacker is given access to an oracle, which either encrypts
a message chosen by the attacker (the real message) or gives a totally random cyphertext
(the random message). The goal of the attacker is to distinguish those cases. We denote
the advantage of an attacker A to distinguish real messages from random ones (ror) on a
symmetric encryption scheme SES with key length κ by Advror

SES,A(κ). Also, the probability
that the decrypted message does not equal the original message must be negligible.

There is a deep connection between those primitives, as all of them are equivalent to each
other. The groundbreaking works [3, 13, 17, 19, 32] imply the following:

I Theorem 8 (informal). One-Way functions exists ⇔ RMA-secure signature schemes exists
⇔ CMA-secure signature schemes exists ⇔ secure symmetric encryption schemes exist

In Section 3, we construct an RMA-forger on a special signature scheme ŜIG, that is
“complete” for all signature schemes, i.e., if ŜIG is insecure, every signature scheme is insecure.
The construction of such a complete signature scheme relies on the following theorem of
Levin which states the existence of a complete one-way function F̂ :

I Theorem 9 (Levin [30]). The function F̂ is a one-way function iff one-way functions exist.

Combining Theorem 8 and Theorem 9, we get the following corollary needed to construct
the “complete” signature scheme ŜIG:

I Corollary 10. The signature scheme ŜIG is RMA-secure iff one-way functions exist.

3 A Channel C such that Efficient Steganography on C Does Imply
the Non-existence of One-way Functions

The main result of this section, Corollary 14, says that for the widely used channel specified
by a signature scheme protocol, secure and efficient steganography implies that one-way
functions do not exist. Then we show that our construction can be generalized for more
channels. We will only work with rha-secure stegosystems in this section, as impossibility
results upon this weaker notion imply the same results for cha-secure stegosystems.

Our first technical goal is to formalize the following intuition: A secure and reliable
stegosystem for a channel C must (a) have negligible probability of producing documents
outside of supp(Ch,n) and (b) be able to generate new documents out of the sampled documents.
These properties have been formulated first in [10] for universal stegosystems.

We start with showing that the probability that the output of a secure stegosystem is
not in the support of the channel is small (under the assumption that Warden can efficiently
test whether a document belongs to the support of the channel). Before, let us introduce an
auxiliary notion of a membership-testable channel with confidence parameter ν: We say that C
is membership-testable with confidence parameter ν if there exists a probabilistic polynomial
time algorithm, call it Test, which takes a polynomial number ~x = x1, x2, . . . , xq of documents
such that Cx1x2...xi−1(xi) > 0 for every i ≥ 1 and a document x and it either returns 1 or
0 such that the probability Pr~x←supp(C∅,n)[Test(~x, x) = 1] is ≥ 1− ν, if x ∈ supp(C~x,n) and
≤ ν otherwise.

I Lemma 11. Let S = [SE, SD] be a stegosystem for the message space {Mn}n∈N with
document length n and output length ` for the channel C such that S is rha-ε-secure.
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Furthermore, let C be membership-testable with parameter ν. Then for all κ ∈ N, m ∈
supp(Mκ), histories h, and all i = 1, . . . , `(κ), it holds for di = SEC(k,m, h)i that
Prk←{0,1}κ [di 6∈ supp(Chd1d2...di−1,n(κ))] ≤ ε(κ) + 2ν.

Next, we will prove that, as long as the support of Ch,n is large enough, a reliable
stegosystem needs to produce non-seen examples of supp(Ch,n). Intuitively, we need to
embed | supp(Mn)| ≈ 2n messages (hereby creating at least 2n different documents) while
we only have access to pol(n) example documents. Note that for a rate-efficient polynomial
time stegosystem, the term log | supp(Mκ)|

`(κ) = b(κ) is of the form κα for a α > 0 and thus the

term q(κ)`(κ)

| supp(Mκ)| = q(κ)`(κ)

2b(κ)·`(κ) =
(
q(κ)
2b(κ)

)`(κ)
≈
(

pol(κ)
2κα

)`(κ)
is negligible.

I Lemma 12. Let S = [SE, SD] be a ρ-reliable stegosystem for the message space {Mn}n∈N
with sample complexity c and output length ` for the channel C. Then for every κ, the
probability that the encoder SE produces a cover-document, which was not provided by the
channel oracle, is at least 1− ρ(κ)− q(κ)`(κ)

| supp(Mκ)| .

The proofs of the lemmas above are similar to those presented in [10], thus we skip them.
We will now combine the two lemmas in order to construct an attacker to a signature

scheme. For a signature scheme SIG = [G,S, V ], define the channel CSIG with probability
distributions Ch,n as follows: If h is the empty history ∅, the probability distribution C∅,n is
the uniform distribution on all public keys generated by G(1n). If (pk, sk) ∈ supp(G(1n)),
the probability distribution Cpk,n is then created by the following experiment:

Distribution of Cpk,n

1. m←Msig
n ; σ ← S(sk,m); return (m,σ)

Furthermore, for every i ≥ 1 and every series of valid (with respect to (pk, sk)) message-
signature pairs (m1, σ1), (m2, σ2) . . . the distribution Cpk(m1,σ1)(m2,σ2)...(mi,σi),n is also equal
to Cpk,n. Note that CSIG is membership-testable with confidence parameter 0 due to the
public key. A similar technique was used by Dwork et al. [12] and later by Ullman [34] in
the context of differential privacy [11]. They prove that a certain class of databases exists
such that any algorithm for a given set of counting queries is either not differentially private
or inaccurate.

I Theorem 13. Let SIG = [G,S, V ] be a signature scheme. If there exists a polynomial
time stegosystem S = [SE, SD] for CSIG for the message space {Mn}n∈N with rate b, output
length ` and sampling complexity q such that S is rha-ε-secure and ρ-reliable on CSIG, then
there exists an efficient forger on SIG with advantage at least 1− ε(κ)− ρ(κ)− q(κ)`(κ)

| supp(Mκ)|
for every κ.

Combining Theorem 13 and Corollary 10 with ŜIG, we obtain the following result that
directly implies Theorem 3.

I Corollary 14. The existence of a secure, reliable and rate-efficient polynomial time stego-
system on the channel CŜIG implies that one-way functions do not exist.

In the rest of this section we show that the proof of Theorem 13 can be generalized
to more channels if they can express the signature scheme. Examples for such channels
include satisfying assignments of 3-CNF formulas or satisfying assignments of monotone
2-CNF formulas. Our construction is inspired by the work of De et al. [9] who used a similar
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technique to show that it is not possible to uniformly generate satisfying assignments to a
3-CNF formula if one is given polynomial many samples of satisfying assignments.

Let SIG = [G,S, V ] be a signature scheme and in(κ) be an upper bound on the size of
every message-signature pair constructed by the signing algorithm S on security parameter κ.
Let B be a function class of Boolean functions such that there is a polynomial time
invertible Levin reduction [A,B,C] from circuit-sat (see e.g. [1] for a formal definition)
to B. Such a reduction transforms a circuit C into a function f := A(C) and a satisfying
assignment β of C into a value x := B(C, β) with f(x) = 1. Furthermore, every x′ with
f(x′) = 1 can be transformed into a satisfying assignment β′ := C(f, x′) of C. Moreover
let γ : A(circuit-sat)→ {0, 1}∗ be a polynomial time encoding of the functions generated
by the reduction such that red(κ) is an upper bound on |γ(A(C))|, if C has in(κ) input
gates. Furthermore, let C be a channel with probability distributions Ch,κ defined as follows.
For the empty history ∅, the distribution C∅,κ is the uniform distribution on γ(A({C |
C has in(κ) input gates})) ⊆ {0, 1}red(κ). For every history h0 = γ(A(C)) the probability
distribution Ch0,κ is the uniform distribution on documents x ∈ {0, 1}in(κ) with A(C)(x) = 1.
Furthermore, for every i ≥ 1 and every series of documents x1, x2, . . . ∈ {0, 1}in(κ) with
A(C)(xj) = 1 for every j, the probability distribution Ch0x1x2...xi,κ is also the uniform
distribution on the documents x ∈ {0, 1}in(κ) with A(C)(x) = 1. Moreover, assume C is
membership-testable with confidence parameter ν.

I Theorem 15. Let SIG be a signature scheme and let C be a channel as defined above.
Assume S is a polynomial time stegosystem for the message space {Mn}n∈N with transmission
rate b, output length ` and sampling complexity q for C such that S is rha-ε-secure and
ρ-reliable on C. Then for every κ, there is a polynomial forger for SIG(κ) with advantage at
least 1− ε(κ)− 2ν − ρ(κ)− q(κ)`(κ)

| supp(Mκ)| .

4 A Channel C such that Efficient Steganography on C Does Imply
the Existence of One-way Functions

We will now show a channel C such that secure and reliable steganography on it implies the
existence of one-way functions (this will follow from the theorem below and Theorem 8).
The channel is assumed to be efficiently sampleable, i.e. such for which a polynomial time
algorithm simulating sampling from C exists. Then a straightforward argument implies the
following equivalences between steganography and cryptography.

I Theorem 16. Let C be a channel with Ch,n = Ch′,n := Cn for all histories h, h′ and assume
C is efficiently sampleable. If there exists a secure, reliable, and rate-efficient (polynomial
time) stegosystem S = [SE, SD] for the channel C with message space {Mn}n∈N, then
there exists a secure symmetric encryption scheme SES for the plaintexts {Mplain

n }n∈N with
Mplain

n =Mn and cyphertexts {Mcypher
n }n∈N withMcypher

κ = C`(κ)
n(κ).

I Theorem 17. Let SES be a secure symmetric encryption scheme on plaintexts {Mplain
n }n∈N

and cyphertexts {Mcypher
n }n∈N. Let C be a channel with the documents supp(Mcypher

n ) and
Ch,n =Mcypher

n for every h. There exists a secure, reliable, and rate-efficient (polynomial
time) stegosystem S for C with message space {Mn}n∈N withMn =Mplain

n .

Thus, reasonable steganography on e.g. the channel Cn that is the uniform distribution
on {0, 1}n, is equivalent to the existence of one-way functions. This proves Theorem 5.
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5 Conclusions and Further Work

We have proved that steganography and cryptography are somehow orthogonal to each
other. To show this statement, we constructed a specific channel based upon secure signature
schemes and proved that every rate-efficient stegosystem on this channels breaks the security
of the signature scheme. By using a universal one-way function due to Levin, we were then
able to show that the existence of such a rate-efficient stegosystem implies that one-way
functions do not exist. This is a generalization of the result of Dedić et al. [10], who only
proved the existence of a family of channels F such that the existence of a rate-efficient
stegosystem that works for every channel in F implies the non-existence of one-way functions.
We thus proved that there is a channel C1 such that rate-efficient steganography on C1 implies
the non-existence of one-way functions. On the other hand, we also gave a simple channel C2
and proved that rate-efficient steganography on C2 implies the existence of one-way functions.

The existence of those channels thus implies that statements of the form “Steganography
is Cryptography” or “Steganography implies Cryptography” are wrong in this universality.
Furthermore, it proves that the communication channel is a fundamental object in steganog-
raphy and can not be ignored. In order to explore the fascinating connection between
steganography and cryptography, it would be interesting to broaden our understanding of the
influence of the communication channels. The work of Liśkiewicz et al. [31] already showed
that knowledge or ignorance about some aspect of the channels has a significant impact on
the steganographic setting.
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