27 research outputs found

    The Spirit of Ghost Code

    Get PDF
    Extended version of https://hal.inria.fr/hal-00873187International audienceIn the context of deductive program verification, ghost code is a part of the program that is added for the purpose of specification. Ghost code must not interfere with regular code, in the sense that it can be erased without observable difference in the program outcome. In particular, ghost data cannot participate in regular computations and ghost code cannot mutate regular data or diverge. The idea exists in the folklore since the early notion of auxiliary variables and is implemented in many state-of-the-art program verification tools. However, ghost code deserves rigorous definition and treatment, and few formalizations exist. In this article, we describe a simple ML-style programming language with muta-ble state and ghost code. Non-interference is ensured by a type system with effects, which allows, notably, the same data types and functions to be used in both regular and ghost code. We define the procedure of ghost code erasure and we prove its safety using bisimulation. A similar type system, with numerous extensions which we briefly discuss, is implemented in the program verification environment Why3

    Static versus Dynamic Verification in Why3, Frama-C and SPARK 2014

    Get PDF
    International audienceWhy3 is an environment for static verification, generic in the sense that it is used as an intermediate tool by different front-ends for the verification of Java, C or Ada programs. Yet, the choices made when designing the specification languages provided by those front-ends differ significantly, in particular with respect to the executability of specifications. We review these differences and the issues that result from these choices. We emphasize the specific feature of ghost code which turns out to be extremely useful for both static and dynamic verification. We also present techniques, combining static and dynamic features, that help users understand why static verification fails

    LIGHTYEAR: Using Modularity to Scale BGP Control Plane Verification

    Full text link
    Current network control plane verification tools cannot scale to large networks, because of the complexity of jointly reasoning about the behaviors of all nodes in the network. In this paper we present a modular approach to control plane verification, whereby end-to-end network properties are verified via a set of purely local checks on individual nodes and edges. The approach targets the verification of safety properties for BGP configurations and provides guarantees in the face of both arbitrary external route announcements from neighbors and arbitrary node/link failures. We have proven the approach correct and also implemented it in a tool called Lightyear. Experimental results show that Lightyear scales dramatically better than prior control plane verifiers. Further, we have used Lightyear to verify three properties of the wide area network of a major cloud provider, containing hundreds of routers and tens of thousands of edges. To our knowledge no prior tool has been demonstrated to provide such guarantees at that scale. Finally, in addition to the scaling benefits, our modular approach to verification makes it easy to localize the causes of configuration errors and to support incremental re-verification as configurations are updatedComment: 12 pages (+ 2 pages references), 3 figures submitted to NSDI '2

    L'arithmétique de séparation

    Get PDF
    National audienceNous, praticiens de la preuve de programmes, souhaitons que le processus de la vérification soit le plus automatique possible. Les meilleurs outils pour cela sont à l'heure actuelle les démonstrateurs SMT, qui combinent notamment la logique du premier ordre et l'arithmétique linéaire. Par opposition, le raisonnement inductif n'est pas un point fort des démonstrateurs automatiques. Or, les programmes utilisant des pointeurs le font souvent pour manipuler des structures récursives : listes, arbres, etc. Dans cet article, nous décrivons une approche qui permet d'amener la preuve de programmes avec pointeurs à la portée des démonstrateurs automatiques. L'idée consiste à projeter une structure récursive sur un domaine numérique, de sorte que les propriétés de possession et de séparation deviennent exprimables en terme de simples inégalités arithmétiques. En plus de simplifier la preuve, cela permet une spécification claire et naturelle. On illustre cette approche avec l'exemple classique du renversement en place d'une liste simplement chaînée

    Thirty-seven years of relational Hoare logic: remarks on its principles and history

    Full text link
    Relational Hoare logics extend the applicability of modular, deductive verification to encompass important 2-run properties including dependency requirements such as confidentiality and program relations such as equivalence or similarity between program versions. A considerable number of recent works introduce different relational Hoare logics without yet converging on a core set of proof rules. This paper looks backwards to little known early work. This brings to light some principles that clarify and organize the rules as well as suggesting a new rule and a new notion of completeness.Comment: A version appears in proceedings of ISOLA 2020. Version2: fix typos, minor clarifications, add a citation. Version3: copy edits, add citations on completeness. Version 4: minor corrections. Version 5: restore missing precond in loop rul

    The Matrix Reproved (Verification Pearl)

    Get PDF
    International audienceIn this paper we describe a complete solution for the first challenge of the VerifyThis 2016 competition held at the 18th ETAPS Forum. We present the proof of two variants for the multiplication of matrices: a naive version using three nested loops and the Strassen's algorithm. The proofs are conducted using the Why3 platform for deductive program verification, and automated theorem provers to discharge proof obligations. In order to specify and prove the two multiplication algorithms , we develop a new Why3 theory of matrices and apply the proof by reflection methodology
    corecore