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Abstract In the context of deductive program verification, ghost code is a part of
the program that is added for the purpose of specification. Ghost code must not
interfere with regular code, in the sense that it can be erased without observable
difference in the program outcome. In particular, ghost data cannot participate in
regular computations and ghost code cannot mutate regular data or diverge. The idea
exists in the folklore since the early notion of auxiliary variables and is implemented
in many state-of-the-art program verification tools. However, ghost code deserves
rigorous definition and treatment, and few formalizations exist.

In this article, we describe a simple ML-style programming language with muta-
ble state and ghost code. Non-interference is ensured by a type system with effects,
which allows, notably, the same data types and functions to be used in both regular
and ghost code. We define the procedure of ghost code erasure and we prove its
safety using bisimulation. A similar type system, with numerous extensions which
we briefly discuss, is implemented in the program verification environment Why3.

Keywords Ghost code - Deductive software verification

1 Introduction

A common technique in deductive program verification consists in introducing data
and computations, traditionally named ghost code, that only serve to facilitate spec-
ification. Ghost code can be safely erased from a program without affecting its final
result. Consequently, a ghost expression cannot be used in a regular (non-ghost) com-
putation, it cannot modify a regular mutable value, and it cannot raise exceptions
that would escape into regular code. However, a ghost expression can use regular
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values and its result can be used in program annotations: preconditions, postcondi-
tions, loop invariants, assertions, etc. A classical use case for ghost code is to equip a
data structure with ghost fields containing auxiliary data for specification purposes.
Another example is ghost step counters to prove the time complexity of an algorithm.

When it comes to computing verification conditions, for instance using a weakest
precondition calculus, there is no need to make a distinction between ghost and
regular code. At this moment, ghost code is just a computation that supplies auxiliary
values to use in specification and to simplify proofs. This computation, however, is
not necessary for the program itself and thus should be removed when we compile
the annotated source code. Therefore we need a way to ensure, by static analysis,
that ghost code does not interfere with the rest of the program.

Despite that the concept of ghost code exists since the early days of deductive
program verification, and is supported in most state-of-the-art tools [2,3,4,5], it de-
serves a proper formal treatment. In particular, a sound non-interference analysis
must ensure that every ghost sub-expression terminates. Otherwise, one could sup-
ply such a sub-expression with an arbitrary postcondition and thus be able to prove
anything about the program under consideration. Another non-obvious observation
is that structural equality cannot be applied naively on data with ghost compo-
nents. Indeed, two values could differ only in their ghost parts and consequently the
comparison would yield a different result after the ghost code erasure.

There is a number of design choices that show up when conceiving a language
with ghost code. First, how explicit should we be in our annotations? For example,
should every ghost variable be annotated as such, or can we infer its status by looking
at the values assigned to it? Second, how much can be shared between ghost and
regular code? For instance, can a ghost value be passed to a function that does not
specifically expect a ghost argument? Similarly, can we store a ghost value in a data
structure that is not specifically designed to hold ghost data, e.g. an array or a tuple?
Generally speaking, we should decide where ghost code can appear and what can
appear in ghost code.

In this article, we show that, using a tailored type system with effects, we can
design a language with ghost code that is both expressive and concise. As a proof of
concept, we describe a simple ML-style programming language with mutable state,
recursive functions, and ghost code. Notably, our type system allows the same data
types and functions to be used in both regular and ghost code. We give a formal proof
of the soundness of ghost code erasure, using a bisimulation argument. A type system
based on the same concepts is implemented in the verification tool Why3 [5]. The
language presented is this paper is deliberately simplified. The more exciting features,
listed in Section 5 and implemented in Why3, only contribute to more complex effect
tracking in the type system, which is mostly orthogonal to the problem of ghost code
non-interference.

This paper is organized as follows. Sec. 2 illustrates the use of ghost code on an
example. Sec. 3 introduces an ML-like language with ghost code. Sec. 4 defines the
operation of ghost code erasure and proves its soundness. Sec. 5 describes the actual
implementation in Why3. We conclude with related work in Sec. 6 and perspectives
in Sec. 7.
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2 A Tiny Program Featuring Ghost Code

Consider the following program fibo that computes Fy, the n-th Fibonacci number,
using an auxiliary function aux:

let rec aux a b n =
if n = 0 then a else aux b (a+b) (n-1)

let fibon = aux 0 1 n

To prove the correctness of this program using deductive verification, we supply
a suitable specification. Let us assume a specification language with contracts [6],
where requires introduces a precondition and ensures introduces a postcondition.
A possible specification would be the following:

let rec aux (a b n: int) : int

requires {0<n}

requires {Jk.0<kAa=FxAb=Fxi1}

ensures {Jk.0<kAa=Fx Ab=Fxi1 Aresult =Fyin}
= if n = 0 then a else aux b (a+b) (n-1)

let fibo (m: int) : int
requires {0<n}
ensures {result=J7F,}
=aux 0 1 n

Even if acceptable, this specification has several drawbacks: first, some information
is duplicated between the pre- and the postcondition; second, it uses existential
quantifiers, which makes the specification less readable and the proof less amenable
for automation.

One way to simplify the specification is to turn quantifiers into something more
constructive, where the existence of k is materialized by an extra argument to func-
tion aux, as follows:

let rec aux (k: int) (a b n: int) : int
requires {0<kA0<n}
requires {a=Fx Ab=Fxy1}
ensures {result=Fyi,}

= if n = 0 then a else aux (k+1) b (a+b) (n-1)

When performing the recursive call to aux, we provide the suitable value for this
extra argument. Similarly, we provide the initial value for k when calling aux in
fibo:

let fibo (n: int) : int
requires {0<n}
ensures {result=7Fy2}
=aux 00 1n

Such an extra computation, used only for the purpose of specification, is precisely
what we call ghost code (here in blue). The point is that we can erase ghost code,
once the verification is completed, to recover the original program. On this example,
it is easy to check that ghost computations have no impact on the program outcome.
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Generally speaking, we need a way to check/enforce non-interference of ghost code
with regular computations. The purpose of this article is to introduce a type system
to do this.

This example also illustrates a desirable feature of ghost code, that is, the ability
to reuse the same data types and operations in both regular and ghost code. Here,
we reuse type int, numeric constants, and addition. Generally speaking, we may
want to do this with arbitrary user-defined types and operations. We will show that
our type system is sufficiently flexible to permit such reuse.

3 GhostML

We introduce GhostML, a minimal ML-like language with ghost code. It features
global references (that is, mutable variables), recursive functions, as well as integer
and Boolean primitive types.

3.1 Syntax

The syntax of GhostML types and expressions is given in Fig. 1 and 2, respectively.
Tgpes are either primitive data types or function types. A function type is an arrow
7] = T2, where 71 is the type of the argument and 7o is the type of the result.
The superscript [ attached to t; indicates the ghost status of the parameter: T
denotes a ghost parameter and L a regular one (here and below, “regular” stands for
“non-ghost”). The latent effect of the function, denoted ¢, is a Boolean value which
indicates possible non-termination or modification of a regular reference. This latent
effect is realised whenever the function is applied.

T = TYPES
| k primitive type
| A7 functional type

e PRIMITIVE TYPES
| int | bool | unit primitive types

g € {L,T} GHOST STATUS

e € {L,T} EFFECT

Fig. 1 Types and effects.

Terms are either values or compound expressions like application, conditional, ref-
erence access, and modification. All the language constructions are standard ML, ex-
cept for the keyword ghost which turns a term into ghost code. We write T
and r?,s” to denote respectively variables and references, that is, we distinguish ref-
erences and variables syntactically. Unlike variables, references are not valid expres-
sions, they can only be used in a term via assignment and dereference. We assume a
fixed finite set of global references.
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t = TERMS
| v value
| twv application
| let 27 =t in t local binding
| if v then t else ¢ conditional
| 77 = assignment
| 1rf dereference
| ghost ¢ ghost code

v = VALUES
| 28 variable
| ¢ constant
| B o1t anonymous function
| rec fP:rBPSr \aB o7t recursive function

c = CONSTANTS
[ () unit
| ...,—1,0,1,... integers
| true,false Booleans
| +,V,=,... operators

Fig. 2 Syntax of terms.

Every variable, function parameter, and reference is annotated with its ghost
status 5. Consider the following example:

let upd—r =Xzt int.s =2t in updT Irt

Here, ghost function upd | takes one regular parameter 1 and assigns it to a ghost

reference s'. Then upd—r is applied to the contents of a regular reference rt. In
practice, some ghost status annotations (e.g., those of locally defined variables) can
be inferred using the typing rules, and do not need to be supplied by the user.

Note that compound terms follow a variant of A-normal form [7]. That is, in
application, conditional, and reference assignment, one of the sub-expressions must
be a value. This does not reduce expressiveness, since a term such as (t; t2) can
be rewritten as let ? = t¢o in ¢1 2%, where 8 is the ghost status of the first formal
parameter of t1.

MiniML Syntax. The syntax of traditional MiniML can be obtained by omitting all
ghost indicators 3 (on references, variables, parameters, and types) and excluding
the ghost construct. Equivalently, we could define MiniML as the subset of GhostML
where all ghost indicators /3 are L. and where terms of the form ghost ¢ do not appear.

3.2 Semantics

In Fig. 3, we give a small-step operational semantics to GhostML which corresponds
to a deterministic call-by-value reduction strategy. An execution state is a pair p-t of



6 Jean-Christophe Filliatre et al.

ghost t1 — (E-GHOST)
1 <m <arity(¢
= y(co) (E-Op-))
€O Cl...Cm — ML:ik.cger...cmxt
= arit, 1 is defined
m = arity(cg) (co,c1y .-+ C) is define (E-Op-5)
€O €l Cm — 0(C0sC1y-nvyCm)
Az 7 t)) v — ]2 <] (E-App-))

vo=rec fBrBSr NP ity
(vo v) — t1[zP v, fB + vg]

(E-AppP-REC)

let 28 =vint; — t1[z? < v] (E-LET)
if true then t1 else to — (E-Ir-TRUE)
if false then ¢4 else to9 — o (E-Tr-FALSE)
B =
_mrt)=c (E-DErer)
w-lrf — pec
p-(rfi=c) = [P cu-() (E-ASSIGN)
pety — pet]

(E-CONTEXT-APP)
j-(tr v) = 1t )

pety = @l t)
pe(let 2P =ty inta) — p'-(let 2P =1¢) intg)

(E-CONTEXT-LET)

Fig. 3 Semantics.

a term ¢ and a store u, which maps global references to constants. Each reduction rule
defines a state transition during one step of execution. The contextual reduction rules
(E-ConTExT-APP) and (E-ConTexT-LET) identify the subterm to be reduced (called the
redexr) whereas other rules apply to redex itself. In the rules, we omit the store p
when it is not changed during the reduction step.

Rule (E-Grost) expresses that, from the point of view of operational semantics,
there is no difference between regular and ghost code. Other rules are standard.
For instance, rules (E-Opr-\) and (E-Or-§) evaluate the application of a constant ¢q to
constants cj ... ¢y,. Such an application either is partial (1 <m < arity(cg)), and then
turns into a function Azt : k.co c1 ... ¢ ™, or is total (m = arity(cp)), and then
some oracle function § gives the result §(co,c1, ..., ¢m). For instance, d(not,true) =
false, 0(+,47,—5) = 42, etc.

As usual, —* denotes the reflexive, transitive closure of —. We say that a closed
term t evaluates to value v in a store p if there is a p/ such that p-t —* u’-v.
Note that, since ¢ is closed, and the reduction rules do not free variables, v is either
a constant or a function, and not a variable. Finally, the divergence of a term ¢ in a
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store  is defined co-inductively as follows:

wet — p -t wt — oo
pu-t — 00

(E-D1v)

MiniML Semantics. Since ghost statuses do not play any role in the semantics of
GhostML, dropping them (or, equivalently, marking all 5 as L) and removing the
rule (E-Gnost) results in a standard call-by-value small-step operational semantics
for MiniML. For the sake of clarity, we use a subscript m when writing MiniML
reduction steps: -t —,, p -t

3.3 Type System

The purpose of the type system is to ensure that “well-typed terms do not go wrong”.
In our case, “do not go wrong” means not only that well-typed terms verify the
classical type soundness property, but also that ghost code does not interfere with
regular code. More precisely, non-interference means that ghost code never modifies
regular references and that it always terminates. For that purpose, we introduce a
type system with effects, where the typing judgement is

I''YXtt:7-8-e

Here, 7 is the type of term . Boolean values 8 and e indicate, respectively, the
ghost status of ¢ and its regular side effects. Typing environment I'" binds variables
to types. Store typing ¥ binds each global reference r? to the primitive type of the
stored value. We restrict types of stored values to primitive types in order to avoid
a possible non-termination via Landin’s knot (that is, recursion encoded using a
reference containing a function), which would be undetected in our type system.
Typing rules are given in Fig. 4. To account for non-interference, each rule whose
conclusion is a judgement I'-X ¢ :7-3-e comes with the implicit side condition

B = —eA—et(r) (1)
where ¢t (7) is defined recursively on 7 as follows:

et (k) =l
€+(T§:€>Tl) 2 evet(m)

In other words, side condition (1) stands for the type system invariant to ensure that,
whenever ¢ is ghost, it must terminate and must not modify regular references. Note
that a weaker form of the invariant § = —e¢ is acceptable, but we strengthen it
with —e™(7) to reject functions whose latent effect would violate the non-interference
once the function is applied.

Let us explain some rules in detail. The rule (T-Const) states that any constant
¢ is regular, pure, and terminating (i.e., 5 = L and € = L). Moreover, we assume
that if ¢ is some constant operation, then its formal parameters are all regular.
The type of each constant is given by some oracle function Typeof(c). For instance,

Typeof(+) = int" == int- = int.
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Typeof(c) =7 P(@f) =7 r
—2—  (T-Consr T-VAR
Tonbeir L.l 700N T-SFaB:7-B-1 (T-VaR)

By = I''Ykti:7-6-L
2(rl) =r (T-DEREF) Li7f (T-GHosT)

I'SHIr8:k-8-L '+ (ghost t1):7-T-L

[2f = 702ty -f1-e€

T-\
LYzl irty):mhS7 B L o
€p = CheckTermination(rec B Naf . t1) T0 = (T26;> 1)
[fPreml- Sk im.th)im0-Bo- L B1>Bo €1 >eo _—
[-XF (rec fB1:79. 028 :19.t1) i 70 - B1- L (T-Rec)
I''YFwv:bool-Bo-L T"-Xkti:7-1-¢1 I''Ebkto:7-Pa-€ (T-17)
-IF
F-Ek(ifvthentl e|Set2)27’~[30\/[))1\//52'€1V62
Skt T8 1 S kto:To-8o-
F'YkFti:m-pr1-a [JU DYt 7o o€ (T-Lerd)
F-E}—(Ietxi:h IntQ)ITQ'Bl\//BQ'El\/EQ
I'"Sktyim-Br-L [xf I''Shty:mm-Ba-
t1:711- B & ﬁﬁ] to:72 (2 €2 (T-LerT)
F~E|—(Ieth:t1 Int2)17'2~ﬁ2~€2
F'E"tliTQJ'%Tl'ﬁl'EQ I'Ytv:im-By-L (T-AppL)
F'E"(tl’l/)iT]'Bl\/BQ'Gl\/GQ
DYkt :7) 27 -B1ea T-SFovim-fa-L
t1:7 =71-B1-€ v:Ty- fBo (T-AppT)

DYkt v):7m1-P1-€1Vea

I'Shv:k-pB-L L=k p>p
Xk (rf :=v):unit-8-—3

(T-ASSIGN)

Fig. 4 Typing rules.

The rule (T-)\) shows that the ghost status of an abstraction is the ghost status
of its body. Note also that effects € of the body become latent, while function itself
has no effects.

The rule (T-Rec) gives the typing for recursive functions. Recall that ghost code
must always terminate, and that termination is in general undecidable. The easiest
solution therefore would be to enforce that no recursive function is ever used in
ghost code, that is, to assign recursive functions a latent non-termination effect.
In practice, however, we want to accept recursive functions whose termination can
be established by static analysis. To do so, we assume the existence of an oracle
function CheckTermination which, given a recursive definition, returns L if it can
prove the function terminating, and T otherwise. By terminating, we mean that any
call terminates, whatever the store and the argument. A typical example of such an
oracle would be the generation of verification conditions from user-provided variants



The Spirit of Ghost Code 9

(as in our forthcoming example on page 21). Note that the oracle is not taking
non-interference into account, so it does not have to distinguish between ghost and
regular code. The rule (T-Rrc) imposes that the latent effect of the recursive function
(e1) is no smaller than the effect computed by the oracle, that is €1 > eg. Similarly,
if the body of the recursive function is ghost ( o = T), then the recursive function
must be ghost as well (81 = T), that is 81 > Bo.

The rule (T-1r) shows how ghost code is propagated through conditional expres-
sions: if at least one of the branches or the Boolean condition is ghost code, then
the conditional itself becomes ghost. Note, however, that the side condition (1) will
reject conditionals where one part is ghost and another part has some effect, as in

if true then - := 42 else ghost ().

The rule (T-Grost) turns any term ¢ into ghost code, provided that ¢ is pure and
terminating. Thus, terms like ghost (rt := 42) are ill-typed, since their evaluation
would interfere with the evaluation of regular code.

The side condition 3 > 3’ of the rule (T-AssicN) ensures that regular references
cannot be assigned ghost code. (Boolean values are ordered as usual, with T > 1.)
Additionally, the rule conclusion ensures that e is T if and only if the assigned
reference is regular (8 = 1), i.e., ghost reference assignments are not part of regular
effects.

The most subtle rules are those for local binding and application. Rule (T-Let ")
states that, whatever the ghost status of a term t¢; is, as long as t; is pure and
terminating, we can bind a ghost variable 2! to 1. Notice that the resulting let-
expression is not necessarily ghost: the type system knows that the value stored in
x " is ghost and will ensure the non-interference of subsequent uses of z | . Similarly,
by rule (T-AppT) a function that expects a ghost parameter can be applied to both
ghost and regular values. Once again, the result may be regular.

Consider the following example' where we trace an update of a regular reference

rL by using a ghost function succ' :

let suce” = Ay ' :int.(y" +1) in

let 2+ =!r+ in

let trace’ = succ” zt in

rti=gl+1
With the rule (T-ArpT), we can apply succ' to the current value of rt, even if
we store it in the regular variable 1. Then, thanks to rule (T-LerT) we are able
to “contain” ghost computation (succ’ z) in trace” which may be used in sub-
sequent computations without interfering with regular code.

Rule (T-Lert) is somewhat dual to (T-Ler"): when binding a regular variable
z to a ghost term, the type system expands the ghost status to the whole let-
expression, “contaminating” it. Similarly, rule (T-Appt) allows us to pass a ghost
value to a function expecting a regular parameter, in which case the application
itself becomes ghost.

Let us look again at the previous example. We can notice that since successor
T is ghost, we cannot use it in regular code and thus cannot replace
rt = 2t 41 by 7 := succ” zt. Given that the successor function is pure and

function succ

1 For the sake of readability, we slightly relax the constraints of the A-normal form and
accept arbitrary terms in the reference assignment.



10 Jean-Christophe Filliatre et al.

terminating, it is more natural to define it as regular code and then reuse it in ghost
computations. The rule (T-Ler+) allows us to improve the code in this way:

let succ™ = Ayt :int. (y= +1) in

let - =1r" in

let trace! = sucet zt in

TJ‘ = SUCCJ' %‘L

To sum up, while rules (T-Ler ") and (T-App ") stop the expansion of ghost code
thanks to the explicit ghost status of bound variables, the purpose of rules (T-Lert)
and (T-App) is to allow ghost code to use regular variables and functions. This was
one of motivations for this work.

Finally, it is worth pointing out that there is no sub-typing in our system. That
is, in the rules for application, the formal parameter and the actual argument must
have exactly the same type 7o. In particular, all latent effects and ghost statuses in
function types must be the same. For instance, a function expecting an argument of
type int"==int cannot be applied to an argument of type int " = int.

Type System of MiniML. Similarly to operational semantics, if we drop all ghost
statuses (or, equivalently, if we consider them marked as 1) and get rid of typing
rule (T-Gnost), we get a standard typing system with effects for MiniML with simple
types. For clarity, we add a subscript m when we write typing judgements for MiniML
terms: ['- X F,, t:7 €.

3.4 Type Soundness

The type system of GhostML enjoys the standard soundness property. Any well-
typed program either diverges or evaluates to a value. This property is well estab-
lished in the literature for ML with references [3,9], and we can easily adapt the
proof in our case. Due to lack of space, we only give the main statements.

As usual, we decompose type soundness into preservation and progress lemmas.
First, we define well-typedness of a store with respect to a store typing.

Definition 1 A store u is well-typed with respect to a store typing >, written X F p,
if dom(u) C dom(X) and p(r?) has type X(r?) for every r® € dom(u).

To prove preservation, we need the following substitution lemma:

Lemma 1 (Substitution Lemma)

Let [xﬁo =1l Xkt:7-f1-eandT-Xkv:1- B2 L be two derivable judgements
such that €T (1) Ve=T and fo = L implies Bo = L. Then, T-XFt[zP0 < v]:7-B3-¢€
is derivable with

i) Bo=L=p1Vp2>f3
i) Bo=T = p1>pP3

Proof By induction on the derivation of the statement
[P0 = 0 Sk t:7 B -

The statement is almost a standard version of substitution lemma for variables. The
only difference is the conditions we impose on ghost statuses in hypotheses and
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conclusion. The intuition is that we use this lemma to prove preservation theorem
in the cases for let-expression let z° = v in t, or for application (t v). In both cases,
by assumption, the corresponding redex will be a well-typed, so we will know that
the side condition (1) holds for the union of effects and ghost statuses of ¢ and v.
However, we do not have this information explicitly in the lemma, so we need to
strengthen its statement. We detail the proof for some interesting cases.

Case (T-Var):  t=z" with ([270 s 70]T")(2”) = 7). There are two subcases to con-
sider, depending on whether 2° is equal 20 or not. If 2% # 2P0, then B, = 3, so
the result follows, whatever 3y is. If 2% = 290, then t[2°0 + v] = v with By = 31 and
B2 = B3. So, if Bp = L, we have 1V 3 =2 > B2 = f3; if Bo =T, then T =31 > 33
which holds for any fs.

Case (T-AssicN):  t=rP1 := o', The typing of t is

P SkEo:k-f-1L S0P) =k 124
-2k b1 .= v sunit- 8161

(T-ASSIGN)

where I' =T, 200 : 7.

Sub-Case Sy = T: by induction hypothesis on the typing subderivation for v,
we get V-2 F o/ [270 < o] 1 k- B4 - L with 3’ > 4. Since 81 > ' by hypothesis, we
have by transitivity 81 > 5. Thus the typing judgement T'- ¥ I (771 := v/)[z0 +
v] : unit- 81 - =1 is derivable.

Sub-Case By = L, 1 = T: by induction hypothesis on the typing subderivation for
v, we get TV - S o' [250 < v 1 k- B - L with T = 1V B2 > 4. Thus the side condition
T > B4 is trivially verified and the typing judgement I'- ¥ = (771 = v/)[270 + o] :
unit- 81 -7 is derivable.

Sub-Case o= 1,51 = L: Since e = T, we can assume that 82 = L. Since 8’ = L
as well, the induction hypothesis on the typing subderivation of v’ gives

IS [2P0 o] k- 05 L

where 85 = L since L ="V P2 > ;. Thus the side condition L > (4 is trivially
verified and the judgement T'-X F (%1 := v/)[270 < v] : unit- 81 - = is derivable.

Case (T-Tr): t =if v’ then t; else t5. The typing of ¢ is

I-YFv :bool-f1g-L TNkt :7-F11-€60 T-Bhto:7- P12 €
T-ZFif v/ thenty elseto:7-B10 V B11 V Bi2-€1 V €

where T =TV, 2P0 : 1.

Sub-Case By = T: by induction hypotheses on the subderivations, we obtain the
following typing judgements:

IV- X Fo'[P0 <] : bool - B30- L with 19> f30

I’.x Ftl[xﬁ(l —v]:7-P31-€1  with S11 > B31

IV Sk toaf0 0] :7-B3p-€a  with 12 > fBao

Thus, the typing judgement

IV (if v’ then t1 else t2)[z70 < v]:7- B30 V B31 V f32-€1 V e
is derivable with 51 > 83 = 830V f[31V B32.
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Sub-Case By = L:if e V€1 V ea = T, then we may assume that 3o = L and the
subcase is proved in the same way; if €™ V €1 V €3 = L, then by induction hypotheses
on the typing subderivations, we obtain

IV 2k o' [270 <] :bool - B30- L with S0 V B2 > B30

ISk t1[2P0 «—v]:7-B31-€e1  with 811 V B2 > P31

[V Sk to[2P0 < v]: 7-B32-€a  with B2 V B2 > B2

Thus, the typing judgement

IV-S k- (if v’ then t1 else t2)[270 < v]:7- B30 V P31 V Pa2-€1 V €2
is derivable with 51V (B2 > 83 =30V [31V B32.

The other cases are proved similarly (with standard auxiliary weakening and
permutation lemmas in the cases for A-abstractions and let-in expressions). O

Lemma 2 (Preservation) IfT-Ykt:7-8-¢ and S+ u, then p-t — u' -t implies
that T-X ¢ 7.8 ¢ and 2+ ', where 3> 8" and e > €.

Proof By induction on the derivation of I'-X ¢ : 7€, using lemmas above. The
only difference with respect to the standard statement is that ghost statuses and
effect indicators can decrease during evaluation. At each step of the induction, we
assume that the desired result holds for all subderivations and proceed by case anal-
ysis on the last rule used in the derivation. The four cases where ¢ is a value cannot
happen.

Case (T-Ir):  t=if v then t; else t2 with typing judgement

I''YFwv:bool-Bg-L T-Xkt1:7-81-e1 T-Xhto:7-Pa €9
I''YFifvothentielseto:7-8g V 81 V Ba-€1 V €3

There are two rules by which p-t — -t can be derived: (E-Tr-Trur) and
(E-Ir-FALSE).

Subcase (E-Ir-TrUE): p-t — p-t1. As can be seen in the typing subderivation of
t1 above, the desired property holds, since SgV 1V P2 > (1 and €1V €2 > €.

Subcase (E-1r-FaLse): p-t — p-to. Identical to the previous subcase.

Case (T-Lert): t= let x+ =1ty in t1. The typing judgement is

[.’I:J_HTQ]F‘EFtliTl‘ﬁl‘El I'"Ykte:mg P2 €
T Zkletzl =t5in t1:711-81VPB2-€1 Ve

There are two rules by which u-t — p' -t can be derived: (E-ContexT-LeT) and
(E-LET).

Subcase (E-LeT): tg =vy and p-let - =wvg int; — u-tl[wl‘ <+ vg]. By substitution
lemma 1, we have I'- ¥ 1 [z < v3] : 71 - B3 - €1 where £1V B2 > f3s.

Subcase (E-Context-Lut): pi-let ot =ty in t1 — p/-let xt =t in 1 with
subderivation p-ta — p’-t5. The typing judgement for ¢ is

[x‘l’—)TQ]F'EFtlZTl'ﬁl'el T'"Ykta:mg-P2 €
I - Sklet 2t =ty in t1:711-81VP2-€1 Ve
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By induction hypothesis on I'- X Ftg : 7o+ B2 - €2 we have T'- X ¢} : 7o+ 55 - €, with
€2 > € B2 > 3. So we can derive

[t S DSk timfie D-Nkthim-B)-é
D-Yklet ot =thinty:m-B1V 3 -e1Vey

with (61 \/62) > (61 \/6/2) and (61 \/52) > (ﬁl \/,Bé)

Case (T-LerT):  t= let &7 =ty in t1. There are two rules by which u-t — ' -t/
can be derived: (E-LeT) and (E-CONTEXT-LET).

Subcase (E-LuT): to =vg and p-let 7 =wvy inty — p-ti[z' < vy] The result
follows from the substitution lemma 1.

Subcase (E-ConTExT-LET): pi-let @' =tg in t7 — p/-let 27 =t} in t; with
subderivation p-to — p’-t5. The typing judgement for ¢ is

[xTHTQ]F-Z}—tliTl-ﬁl'El F'E}_tQZTZ'BZ'J—
D' SkletxT =ty inty:1-B1 €1

By induction hypothesis on I'- X Ftg: 79+ 2+ L we have I'- X -t} : 7o+ 85 - L with
B2 > B5. So we can derive
[JZT’—)TQ]I\EFHZTl'/))l'El F~2Ft/2 :7'2~/)”2'L
'YXk let xT:t’2 inty:11-01-€1

Case (T-Appt): t= t1 vowith-X F ¢ : TQJ‘;ﬁ - 31 - €3. Similar to the case
(T-LeTt).

Case (T-App'): t= t1 vowithD-XF#: 7’;%7’1 - B1 - €3. Similar to the case
(T-LeT ).
Case (T-Drrer): =1 with u-17% — p-u(r?). We have the following typing for
t:
Y(rf)=r
IS8 k-6-L

(T-DEREF)

By hypothesis, ¥ F p, so u(r?) has type x. Moreover, u(r?) is necessarily a constant.
Therefore we can conclude by deriving the typing judgement for ,u(rﬁ ):

BY) =
Typeof(fér.)) k (T-CoNsT)

L'YkuprP)ir-L-L
Case (T-Assicn):  t= 7P := v. The typing rule for ¢ is

I Skv:ik-pg-L 0f)=x B>p
I''SFrP :=v:unit-3--p

The only rule that allows us to derive p-t — p'-t' is (E-Assien). That is v is
necessarily a constant and the derivation is p-r? := ¢ — pu[r® = ¢]-(). It remains
then to check that ¥ u[r? — ¢], which is true, since we have p\{r?} = p/\{r?} and
c= ' (r?) has type k = S(rP).

Case (T-Guost): t= ghost t; with I'-X ¢, :7-8- L. The result follows imme-
diately. 0
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Lemma 3 (Progress) If@-XFt:7-3-¢, then eithert is a value or, for any store
i such that X+ u, there exists a reduction step p-t — u'-t'.

Proof Straightforward induction on the typing derivation of t. a

Additionally, we have the following results for effectless programs.

Lemma 4 (Store Preservation) Let u) denote the reqular part of store u, that
is the restriction of p to regular references. Then, If @- X Ft:7-6-1L and X+ p,
then -t — ' -t implies . =/, .

Proof By induction on the derivation of u-t — p'-t'.
Case (E-Assion): t =78 := ¢ with perfi=c = prf e ().
By hypothesis, e = L, so in the typing of ¢, 5 =T :
' Shv:k-B-L S(rP=k p>p
'Yk (rﬁ =) :unit-B--f

that is 7P is necessarily a ghost reference, so the regular part of the store remains
the same.

Case (E-CONTEXT-APP): p-t1 v — ' -t) v. As t is well-typed by hypothesis, ¢; is
well-typed too with the typing

'Y+t :TBH2>7'2~/3’~61

for some f3/,3” that depend on typing rule for ¢ (either (T-Aprt) or (T-Arp'")).
In both cases, by hypothesis, we have 1L =¢; Vey. As ¢ = L, we can apply the
induction hypothesis on the sub-derivation p-t; — p'-t}, which gives the desired

result py =/,
Case (E-ContexT-LET). Identical to the previous case.
Other cases are trivial since the store is not modified by reduction. a

Lemma 5 (Program Termination) If@-XFt:7-5-1, ¥ pu, then evaluation
of t in store u terminates, that is, there is a value v and a store u' such that -
t —* u .

Proof Let us assume first that the reduction of ¢ does not involve any call to a
recursive function. Since the set of global references is finite and each global reference
r; stores a value of a primitive type k; (whatever its ghost status), the program ¢
can be translated into a simply-typed A-term, using the state monad M £ k1 x
cov X Kp — T X K1 X -+ X K. The result follows by normalization of simply-typed
A-calculus.

Now, let us assume we have an infinite reduction from ¢ involving calls to recursive
functions. Since t has effect L, it only calls recursive functions for which the oracle
(presumed to be sound) says they terminate. Thus we can replace any finite sub-
reduction corresponding to a recursive function call by (Az.x) v where v is the result
value. We still have an infinite reduction, which contradicts the first part of the
proof. a

A consequence of the previous lemmas and the side condition (1) is that ghost
code does not modify the regular store and is terminating.
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4 From GhostML to MiniML

This section describes an erasure operation that turns a GhostML term into a Min-
iML term. The goal is to show that ghost code can be erased from a regular program
without observable difference in the program outcome.

The erasure is written either £(.), when parameterized by some ghost status £,
and simply £(.) otherwise. First, we define erasure on types and terms. The main
idea is to preserve the structure of regular terms and types, and to replace any ghost
code by a value of type unit.

Definition 2 (7-erasure) Let 7 be some GhostML type. The erasure £5(7) of type
7 with respect to 5 is defined by induction on the structure of 7 as follows:

Et(7) £ unit
EL(T2ST) £ £5,(ra) =€ (1)
E1 (k) £ i

In other words, the structure of regular types is preserved and all ghost types are
turned into type unit. Now we can define erasure on terms.

Definition 3 (t-Erasure) Let ¢ be such that I'- X F¢:7- (€ holds. The erasure
E(t) is defined by induction on the structure of ¢ as follows:

Er(t) £
EL(C) 2 c
EL(:L’L) é x

EL(\aP:T1.ty) Az :E5(T).EL(t)

SL(rec fL:T262;7'1.t1) £ recf:SL(TQBQLTl),EL(tl)

EL(rt =) £ =& (v)

() 2 1y

SL(if v then t; else t2) £ if Sl(v) then Sl(tl) else (c/l(tg)

El(t1v) £ &, (t1) Eg(v) where t; has type 8 Ly

(1>

EJ_(Iet l‘ﬁ/ =t in tg) let x :S,B’(tl) in EJ_(tQ)

Note that ghosts variables and ghost references do not occur anymore in £, (t). Note
also that a regular function (recursive or not) with a ghost parameter remains a
function, but with an argument of type unit. Similarly, a let-expression that binds
a ghost variable inside a regular code remains a let, but now binds a variable to ().
More generally, £, (t) is a value if and only if ¢ is a value.

Leaving unit values and arguments in the outcome of erasure may seem unnec-
essary. However, because of latent effects, full erasure of ghost code is not possible.
Consider for instance the function

Azt cint Ay intrt =2
where r is a regular reference. Then a partial application of this function to a single
argument should not trigger the modification of . Our solution is to keep a second
argument y of type unit. These reductions facilitate the proofs of forthcoming theo-
rems. Notice that the program after erasure is semantically equivalent to the original

one, with only extra administrative reduction steps (a term coined by Plotkin [10])
that do not impact the program complexity and can be eliminated at compile time.
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4.1 Well-typedness Preservation

We prove that erasure preserves well-typedness of terms. To do so, we first define
the erasure of a typing context and of a store typing by a straightforward induction
on their size:

Definition 4 (I'-erasure and X-erasure)

E(2) 29 E(2) =
EM,z":7) £ &), x: unit EX,rT 1k) 2 £(%)
EM,zt:m) 2 &), x:E.(T) EX,rt k) 2 EX),r:k

With these definitions, we have immediately that ([z" — 7]I') = [ — unit]€(T)
and &([z +— 7]T) = [z + €1 (1)]E(T). Now we can prove well-typedness preservation
under erasure:

Theorem 1 (Well-typedness Preservation)

If T-Ykt:7-L-€ holds, then E(T)-E(X) b EL(t) : E1.(T) - € holds.
Proof By induction on the typing derivation, with case analysis on the last applied
rule.

[wﬁ+—>T]F~EI—t1 i L€
L-SkAzfirty):rBSrm - L1
By induction hypothesis, we have [z — E(7)]E(T)-E(X) by £1.(t1) : €1 (11) - €. There-
fore, we conclude that E(T')-E(X) by Az : E5(7).EL () : E(T)=E L (1) - L.

Case (T-\):

F'El_t:TQJ‘E:ITl-ﬁl-EQ I''YXFov:im-62-L
F-El—(t 1)):7’1-51\/62-61\/62
By hypothesis 1 V f2 = L. By induction hypotheses on the rule premises,
EM)-EX) bm EL(L): EL(T2)=EL(T1) €2
E(F)E(E) FmgL(’U):gL(TQ)-J_.
Thus, E(F)S(E) Fm gL(t) SL(U) SSJ_(Tl)-El\/EQ.

Case (T-Appt):

F-EFt:TQ—r;Tl-ﬁl-EQ I''Yhtovim G2 L
F-EF(t U)ZTl'ﬁ1'€1V€2
By hypothesis 81 = L. Thus, £, (t v) = £, (¢) (). By induction hypothesis,

Case (T-AprpT):

EM)-E(X) Fm EL (1) :unit=>&, (11) - €2
As E(T)-E(X) b () s unit- L, we conclude that E(T')-E(X) b E1(E) (): EL(T1) €1V
€9.
I'YShv:k-p-L S =k pg>p

I''Skrf :=v:unit-8--48
By hypothesis 8 = L, and by premise side condition 8> 3’, so 3’ = L as well. By
induction hypothesis on the rule premise, we obtain E(T')-E(X) by, EL(v) : k- L.
Also, %(rt) = K, so (£(X))(r) = . Therefore we conclude with
EM)-EXNEFmEL(v) k- L EX)(r)=k
EM)-EX) bEpr =& (v) sunit- T

Other cases are easily proved in a similar way. a

Case (T-ASSIGN):
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4.2 Correctness of Erasure

Finally, we prove correctness of erasure, that is, evaluation is preserved by erasure.
To turn this into a formal statement, we first define the erasure of a store u by a
straightforward induction on the store size:

Definition 5 (u-erasure)

E(2) 29
Euw{r’ —c}) £ &)
E(ue{rt ) & E)w{r—c}

Notice that £(u) removes ghost annotations, and thus is not the same that p . The
correctness of erasure means that, for any evaluation p-t —* p’-v in GhostML, we
have E(u)-E1(t) =%, E(W') &L (v) in MiniML and that, for any diverging evaluation
u-t — oo in GhostML, we have £(u) €1 (t) — oo in MiniML. We prove these
two statements using a bisimulation argument. First, we need the substitution lemma
below, which states that substitution and erasure commute.

Lemma 6 (Substitution Under Erasure) Lett be a GhostML term and v a
GhostML value such that [2° — 7]T- S t:7m9- L€ and T-X kw7 -3 -1, with
B> f', hold. Then the following holds:

EL(t)x + Eg(v)] = &) (t[2P ).
Proof Straightforward induction on the structure of ¢. a

Note that if X'+ p then E(X) b, E(i). To prove erasure correctness for termi-
nating programs, we use the following forward simulation argument:

Lemma 7 (Forward Simulation of GhostML) If @-XFt:7-1-€ and, for
some store p such that X' & p, we have -t — ' -t', then the following holds in
MiniML:

E(n)-EL(t) —m' EW)-EL(E).

Proof By induction on the derivation —.
Case (E-Arp-\): (Az” i m9.t) v — t[2f < v]. If =T, then

F'E"/\leTQ.tiTQTE:ITl'J_'J_ YFovim-p1-1
'Sl imtv):m- L6

Therefore, by substitution under erasure (Lemma 6), we get
E(aT imt)v) =z unit. £ (1) () =m EL W)z — )] =EL [z ).
If = L, then we have

ISkt imt:irgd -1 L T-ZFvim-L-1
I'SkMat:imto):m-Le

Again, by substitution under erasure (Lemma 6), we get

EL(Azt i1 t) v) = EL D)z EL (V)] = EL (t[zt —v]).
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pete — p-th
polet B =ty inty — p'-let 2l =t} int;

Case (E-CONTEXT-LET):

2" DSty Loeg T-Shtgimo-fo- L

If =T, th
b o T -Skletal =tgint;:m-L-e

As ty is an effectless term, we have by store preservation (Lemma 4), o =/, . Thus
we have £(u) = E(u'). Therefore,

E(p)-E (let T =tginty) =Y E(p)-EL(let T =t} in t1).

[zt nl Sktyim-Leg T-Shigim- L6

If =1, th
b » vhen I Skletzt =taint;:7-L-€e Ve

By induction hypothesis on sub-derivation p-ta — p'-th, we get

E(w)-EL(ta) —m' EW)-EL(th).
The result trivially holds when this reduction has 0 steps. Otherwise, we have

E(w)-E1(t2) —m EW)-EL(tY)
E(p)-let x =& (t2) in EL(t1) —m E(W)-let x=E(t5) in £ (1)

Other cases are proved in a similar way.

We are now able to prove the first part of the main theorem:

Theorem 2 (Terminating Evaluation Preservation)
If @3-S kt:7-1L-€ holds and p-t —* u'-v, for some value v and some store
such that S+ p, then E(p)-E1 () =%, E(W)-E1L(v).

Proof By induction on the length of the evaluation -t —* ' -v.

If p-t =0 i’ v, then the result trivially holds since t = v and u’ = u. Now, assume
that -t —' p’-t" —" u'-v for some intermediate store p”. By preservation
(Lemma 2), DXt :7-L-¢” and X'+ "’ for some €”, such that ¢ > €”. By induction
hypothesis on t”, we obtain £(u')- & (t") =%, E(W') €L (v). By forward simulation
(Lemma 7), it follows that &(u)- &, (t) >t E(p")-EL (). Putting pieces together,

we conclude that £(p) £ () —a' E()-EL(#") =%, E')-EL(v). o

Now we prove the second part of the erasure correctness (non-termination preser-
vation), using the following simulation argument.

Lemma 8 (Forward Simulation of MiniML) If &-X+t¢: 7.1 -€ holds, then,
for any store p such that X'F u, if E(pu)-EL(t) —m v-q for some term q and some

store v, then p-t —=1 p/ -t/ where £ (t') =q and E(i') = v.

Proof By induction on the term ¢.

Case 1: tis let 7 =ty in t1. If t5 is not a value, then by the GhostML progress
property (Lemma 3), it can be reduced. By hypothesis, ¢ is well-typed, with a typing
judgement for to being @-X Ftg:7-3- L. By program termination (Lemma 5), we
have p-ty —* u'-v for some v and u'. Consequently,

poletz! =toint; —=* p/letz’ =vinty — g tifz’ ]
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Therefore, by forward simulation in GhostML (Lemma 7), we have
E(n)-EL(t) = En)-EL(leta’ =vint1) —p E(p)-EL(t)[z ().

Finally, by store preservation (Lemma 4), p = /| . Therefore, £(u) = E(u'),
which allows us to conclude.

Case 2: t is let - =ty in t;. We have by hypothesis that ¢; is regular code. Then
we also have that tg is regular too. If t5 is a value, the result follows immediately.
If to is not a value, then the result follows from the results of GhostML soundness
(safety and anti-monotony of statuses), using the induction hypothesis on 2, since
t-erasure preserves the structure of regular terms.

Other cases are proved in a similar way. a

Finally, we establish non-termination preservation:

Theorem 3 (Non-termination Preservation)
If judgement @ - X Ft:7- 1€ holds and p-t — o0, for some store p such that
Yk, then £ (t) also diverges, that is, E(u)-E1(t) —m o0.

Proof By co-induction, it suffices to prove that there exist ¢ and u’ such that the
typing judgement @-X ¢ :7-1L-¢ and X+ 4/, and

E(p) - EL(t) =m EW)-EL() At — 0.

Observe that, since ¢ diverges, ¢ is not a value. Thus & (¢) is not a value either.
By well-typedness preservation (Theorem 1), £, (¢) is well-typed, with

F-EE) b EL(t):EL(T) €

We have £(X) by, E(p), since X'+ p. Therefore, by progress in MiniML, there exist
some term ¢ and some store v such that E(u)- &, () —m v-gq. By simulation
(Lemma 8), p-t ==t u/ ' with ¢ =&, (¢) and v = (). The reduction being

deterministic, ¢’ diverges and we have the following reductions:

et =21t —
I I
E(n)-EL(t) =m v

By preservation (Lemma 2), T'-X ¢ :7- L€, with € > €, and X'+ p/. Now, by
co-induction hypothesis, v-q —,, oo and thus E(p) &1 (1) —m 0. O

5 Implementation
Our method to handle ghost code is implemented in the verification tool Why32.

With respect to GhostML, the language and the type system of Why3 have the
following extensions:

2 Whys3 is freely available from http://why3.1ri.fr/.
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Type Polymorphism. The type system of Why3 is first-order and features ML-style
type polymorphism. Our approach to associate ghost status with variables and ex-
pressions, and not with types, makes this extension straightforward.

Local References. Another obvious extension of GhostML is the support of non-
global references. As long as such a reference cannot be an alias for another one,
the needed alterations to the type system of GhostML are minimal. In a system
where aliases are admitted, the type system and, possibly, the verification condition
generator must be adapted to detect modifications made by a ghost code in locations
accessible from regular code. In Why3, aliases are tracked statically [5], and thus
non-interference is ensured purely by type checking.

Structures with Ghost Fields. Why3 supports algebraic data types (in particular,
records), whose fields may be regular or ghost. Pattern matching on such structures
requires certain precautions. Any variable bound in the ghost part of a pattern must
be ghost. Moreover, pattern matching over a ghost expression that has at least two
branches must make the whole expression ghost, whatever the right-hand sides of
the branches are, just as in the case of a conditional over a ghost Boolean expression.

That said, ghost code can use the same data types as regular code. A ghost
variable may be a record with regular, mutable fields, which can be accessed and
modified in ghost code. Similarly, Why3 has a unique type of arrays and admits both
regular and ghost arrays.

Exceptions. Adding exceptions is rather straightforward, since in Why3 exceptions
are introduced only at the top level. Indeed, it suffices to add a new effect indicator,
that is the set of exceptions possibly raised by a program expression. We can use
the same exceptions in ghost and regular code, provided that the ghost status of
an expression that raises an exception is propagated upwards until the exception is
caught.

Provable Termination. As in GhostML, Why3 allows the use of recursive functions
in ghost code. Loops can be used in ghost code as well. The system requires that
such constructs are supplied with a “variant” clause, so that verification conditions
for termination are generated.

Example. Let us illustrate the use of ghost code in Why3 on a simple example. Fig. 5
contains an implementation of a mutable queue data type, in Baker’s style. A queue
is a pair of two immutable singly-linked lists, which serve to amortize push and pop
operations. Our implementation additionally stores the pure logical view of the queue
as a list, in the third, ghost field of the record. Notice that we use the same list
type both for regular and ghost data. We illustrate propagation in function push
(lines 27-30), where a local variable v is used to hold some intermediate value, to be
stored later in the ghost field of the structure. Despite the fact that variable v is not
declared ghost, and the fact that function append is a regular function, Why3 infers
that v is ghost. Indeed, the ghost value q.view contaminates the result of append.
It would therefore generate an error if we tried to store v in a non-ghost field of
an existing regular structure. Since the expression append q.view (Cons x Nil) is
ghost, it must not diverge. Thus Why3 requires function append to be terminating.
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module Queue
type elt

type list =
| Nil
| Cons elt list

let rec append (11 12: list) : list
variant { 11 }
= match 11 with

| Nil — 12
| Cons x r1 — Cons x (append ri 12)
end

let rec rev_append (11 12: list) : list
variant { 11 }
= match 11 with

| Nil — 12
| Cons x rl — rev_append rl (Cons x 12)
end

type queue = {
mutable front: list;
mutable rear: list;
ghost mutable view: list;

}

let push (x: elt) (q: queue) : unit

= q.rear < Cons x q.rear;
let v = append q.view (Cons x Nil) in
q.view < v

exception Empty

let pop (q: queue): elt
raises { Empty }
= match q.front with
| Cons x £ —
q.front < f;
q.view < append f (rev_append q.rear Nil);
b
| Nil —
match rev_append q.rear Nil with
| Nil —
raise Empty
| Cons x £ —
q.front <« f;
q.rear < Nil;
q.view <+ f;
X
end
end
end

Fig. 5 Queue implementation in Why3.
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This is ensured by the variant clause on line 8. In function pop (lines 34-52), the
regular function rev_append is used both in regular code (line 42) and ghost code
(line 39).

The online gallery of verified Why3 programs contains several other examples of
use of ghost code?, in particular, ghost function parameters and ghost functions to
supply automatic induction proofs (also known as lemma functions).

6 Related Work

The idea to use ghost code in a program to ease specification exists since the early
days (late sixties) of deductive program verification, when so-called auxiliary vari-
ables became a useful technique in the context of concurrent programming. According
to Jones [11] and Reynolds [12], the notion of auxiliary variable was first introduced
by Lucas in 1968 [13]. Since then, numerous authors have adapted this technique in
various domains.

It is worth noting that some authors, in particular, Reynolds [12] and Kley-
mann [14], make a clear distinction between non-operational variables used in pro-
gram annotations and specification-purpose variables that can appear in the program
itself. The latter notion has gradually evolved into the wider idea that ghost code
can be arbitrary code, provided it does not interfere with regular code. For exam-
ple, Zhang et al. [15] discuss the use of auxiliary code in the context of concurrent
program verification. They present a simple WHILE language with parallelism and
auxiliary code, and prove that the latter does not interfere with the rest of the
program. In their case, non-interference is ensured by the stratified syntax of the
language. For instance, loops can contain auxiliary code, but auxiliary code cannot
contain loops, which ensures termination. They also define auxiliary code erasure and
prove that a program with ghost code has no less behaviors than its regular part.
Schmaltz [16] proposes a rigorous description of ghost code for a large fragment of C
with parallelism, in the context of the VCC verification tool [3]. VCC includes ghost
data types, ghost fields in regular structures, ghost parameters in regular functions,
and ghost variables. In particular, ghost code is used to manipulate ownership in-
formation. A notable difference w.r.t. our work is that VCC does not perform any
kind of inference of ghost code. Another difference is that VCC assumes that ghost
code terminates, and the presence of constructions such as ghost (goto 1) makes it
difficult to reason about ghost code termination.

Another example of a modern deductive verification tool implementing ghost code
is the program verifier Dafny [2]. In Dafny, “the concept of ghost versus non-ghost
declarations is an integral part of the Dafny language: each function, method, vari-
able, and parameter can be declared as either ghost or non-ghost.” [17]. In addition,
a class can contain both ghost fields and regular fields. Dafny ensures termination of
ghost code. Ghost code can update ghost fields, but is not allowed to allocate mem-
ory or update non-ghost fields. Consequently, ghost code cannot obtain full reuse
of libraries that allocate and mutate classes or arrays. However, on the fragment of
Dafny’s language corresponding to GhostML, Dafny provides a semantics of ghost
code similar to what is presented here.

3 http://toccata.lri.fr/gallery/ghost.en.html
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The property of non-interference of ghost code is a special case of information flow
non-interference [13]. Indeed, one can see ghost code as high-security information and
regular code as low-security information, and non-interference precisely means that
high-security information does not leak into low-security computations. Information
flow properties can be checked using a type system [19] and proofs in that domain
typically involve a bisimulation technique (though not necessarily through an era-
sure operation). Notice that applying an information flow type system to solve our
problem is not straightforward, since termination of ghost code is a crucial require-
ment. For instance, the type system described by Simonet and Pottier [20] simply
assumes termination of secret code. To the best of our knowledge, this connection
between information flow and ghost code has not been made before, and mainstream
deductive verification tools employ syntactical criteria of non-interference instead of
type-based ones. In this paper, we develop such a type-based approach, specifically
tailored for program verification.

Erasure of ghost code is similar to the mechanism of program extraction in the
Coq proof assistant [21,22]. Indeed, the purpose of such a mechanism is to remove
from the program what is computationally irrelevant. For instance, in a proof of
Jz. P(x), that is a witness ¢ and a proof of P(t), only ¢ is kept in the extracted
program. To do this, the Coq extraction is guided by sorts, namely Set for programs
and Prop for proofs, and non-interference is ensured by Coq type-checking. Coq
users must choose between Set and Prop beforehand. For instance, the type nat
of natural numbers has sort Set and therefore natural numbers are never removed
during extraction, even when they are only used for the purpose of specification
and/or proof. In our approach, the same type of natural numbers can be used for
both regular and ghost code and is kept only when relevant.

7 Conclusion and Perspectives

In this paper, we described an ML-like language with ghost code. Non-interference
between ghost code and regular code is ensured using a type system with effects.
We formally proved the soundness of this type system, that is, ghost code can be
erased without observable difference. Our type system results in a highly expressive
language, where the same data types and functions can be reused in both ghost and
regular code.

We see two primary directions of future work on ghost code and Why3. First,
ghost code, especially ghost fields, plays an important role in program refinement.
Indeed, ghost fields that give sufficient information to specify a data type are natu-
rally shared between the interface and the implementation of this data type. In this
way, the glue invariant becomes nothing more than the data type invariant linking
regular and ghost fields together. Our intention is to design and implement in Why3
a module system with refinement that makes extensive use of ghost code and data.
Second, since ghost code does not have to be executable, it should be possible to
use in ghost code various constructs which, up to now, may only appear in specifica-
tions, such as quantifiers, inductive predicates, non-deterministic choice, or infinitely
parallel computations (cf. the aggregate forall statement in Dafny).
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