26,675 research outputs found

    FLIAT, an object-relational GIS tool for flood impact assessment in Flanders, Belgium

    Get PDF
    Floods can cause damage to transportation and energy infrastructure, disrupt the delivery of services, and take a toll on public health, sometimes even causing significant loss of life. Although scientists widely stress the compelling need for resilience against extreme events under a changing climate, tools for dealing with expected hazards lag behind. Not only does the socio-economic, ecologic and cultural impact of floods need to be considered, but the potential disruption of a society with regard to priority adaptation guidelines, measures, and policy recommendations need to be considered as well. The main downfall of current impact assessment tools is the raster approach that cannot effectively handle multiple metadata of vital infrastructures, crucial buildings, and vulnerable land use (among other challenges). We have developed a powerful cross-platform flood impact assessment tool (FLIAT) that uses a vector approach linked to a relational database using open source program languages, which can perform parallel computation. As a result, FLIAT can manage multiple detailed datasets, whereby there is no loss of geometrical information. This paper describes the development of FLIAT and the performance of this tool

    Spatial optimization for land use allocation: accounting for sustainability concerns

    Get PDF
    Land-use allocation has long been an important area of research in regional science. Land-use patterns are fundamental to the functions of the biosphere, creating interactions that have substantial impacts on the environment. The spatial arrangement of land uses therefore has implications for activity and travel within a region. Balancing development, economic growth, social interaction, and the protection of the natural environment is at the heart of long-term sustainability. Since land-use patterns are spatially explicit in nature, planning and management necessarily must integrate geographical information system and spatial optimization in meaningful ways if efficiency goals and objectives are to be achieved. This article reviews spatial optimization approaches that have been relied upon to support land-use planning. Characteristics of sustainable land use, particularly compactness, contiguity, and compatibility, are discussed and how spatial optimization techniques have addressed these characteristics are detailed. In particular, objectives and constraints in spatial optimization approaches are examined

    Harnessing data flow and modelling potentials for sustainable development

    Get PDF
    Tackling some of the global challenges relating to health, poverty, business and the environment is known to be heavily dependent on the flow and utilisation of data. However, while enhancements in data generation, storage, modelling, dissemination and the related integration of global economies and societies are fast transforming the way we live and interact, the resulting dynamic, globalised and information society remains digitally divided. On the African continent, in particular, the division has resulted into a gap between knowledge generation and its transformation into tangible products and services which Kirsop and Chan (2005) attribute to a broken information flow. This paper proposes some fundamental approaches for a sustainable transformation of data into knowledge for the purpose of improving the peoples' quality of life. Its main strategy is based on a generic data sharing model providing access to data utilising and generating entities in a multi disciplinary environment. It highlights the great potentials in using unsupervised and supervised modelling in tackling the typically predictive-in-nature challenges we face. Using both simulated and real data, the paper demonstrates how some of the key parameters may be generated and embedded in models to enhance their predictive power and reliability. Its main outcomes include a proposed implementation framework setting the scene for the creation of decision support systems capable of addressing the key issues in society. It is expected that a sustainable data flow will forge synergies between the private sector, academic and research institutions within and between countries. It is also expected that the paper's findings will help in the design and development of knowledge extraction from data in the wake of cloud computing and, hence, contribute towards the improvement in the peoples' overall quality of life. To void running high implementation costs, selected open source tools are recommended for developing and sustaining the system. Key words: Cloud Computing, Data Mining, Digital Divide, Globalisation, Grid Computing, Information Society, KTP, Predictive Modelling and STI

    From Social Simulation to Integrative System Design

    Full text link
    As the recent financial crisis showed, today there is a strong need to gain "ecological perspective" of all relevant interactions in socio-economic-techno-environmental systems. For this, we suggested to set-up a network of Centers for integrative systems design, which shall be able to run all potentially relevant scenarios, identify causality chains, explore feedback and cascading effects for a number of model variants, and determine the reliability of their implications (given the validity of the underlying models). They will be able to detect possible negative side effect of policy decisions, before they occur. The Centers belonging to this network of Integrative Systems Design Centers would be focused on a particular field, but they would be part of an attempt to eventually cover all relevant areas of society and economy and integrate them within a "Living Earth Simulator". The results of all research activities of such Centers would be turned into informative input for political Decision Arenas. For example, Crisis Observatories (for financial instabilities, shortages of resources, environmental change, conflict, spreading of diseases, etc.) would be connected with such Decision Arenas for the purpose of visualization, in order to make complex interdependencies understandable to scientists, decision-makers, and the general public.Comment: 34 pages, Visioneer White Paper, see http://www.visioneer.ethz.c

    Reviewing agent-based modelling of socio-ecosystems: a methodology for the analysis of climate change adaptation and sustainability

    Get PDF
    The integrated - environmental, economic and social - analysis of climate change calls for a paradigm shift as it is fundamentally a problem of complex, bottom-up and multi-agent human behaviour. There is a growing awareness that global environmental change dynamics and the related socio-economic implications involve a degree of complexity that requires an innovative modelling of combined social and ecological systems. Climate change policy can no longer be addressed separately from a broader context of adaptation and sustainability strategies. A vast body of literature on agent-based modelling (ABM) shows its potential to couple social and environmental models, to incorporate the influence of micro-level decision making in the system dynamics and to study the emergence of collective responses to policies. However, there are few publications which concretely apply this methodology to the study of climate change related issues. The analysis of the state of the art reported in this paper supports the idea that today ABM is an appropriate methodology for the bottom-up exploration of climate policies, especially because it can take into account adaptive behaviour and heterogeneity of the system's components.Review, Agent-Based Modelling, Socio-Ecosystems, Climate Change, Adaptation, Complexity.

    Digital Ecosystems: Ecosystem-Oriented Architectures

    Full text link
    We view Digital Ecosystems to be the digital counterparts of biological ecosystems. Here, we are concerned with the creation of these Digital Ecosystems, exploiting the self-organising properties of biological ecosystems to evolve high-level software applications. Therefore, we created the Digital Ecosystem, a novel optimisation technique inspired by biological ecosystems, where the optimisation works at two levels: a first optimisation, migration of agents which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. The Digital Ecosystem was then measured experimentally through simulations, with measures originating from theoretical ecology, evaluating its likeness to biological ecosystems. This included its responsiveness to requests for applications from the user base, as a measure of the ecological succession (ecosystem maturity). Overall, we have advanced the understanding of Digital Ecosystems, creating Ecosystem-Oriented Architectures where the word ecosystem is more than just a metaphor.Comment: 39 pages, 26 figures, journa

    Where should livestock graze? Integrated modeling and optimization to guide grazing management in the Cañete basin, Peru

    Get PDF
    Integrated watershed management allows decision-makers to balance competing objectives, for example agricultural production and protection of water resources. Here, we developed a spatially-explicit approach to support such management in the Cañete watershed, Peru. We modeled the effect of grazing management on three services – livestock production, erosion control, and baseflow provision – and used an optimization routine to simulate landscapes providing the highest level of services. Over the entire watershed, there was a trade-off between livestock productivity and hydrologic services and we identified locations that minimized this trade-off for a given set of preferences. Given the knowledge gaps in ecohydrology and practical constraints not represented in the optimizer, we assessed the robustness of spatial recommendations, i.e. revealing areas most often selected by the optimizer. We conclude with a discussion of the practical decisions involved in using optimization frameworks to inform watershed management programs, and the research needs to better inform the design of such programs

    Patterns and correlates of claims for brown bear damage on a continental scale

    Get PDF
    Wildlife damage to human property threatens human-wildlife coexistence. Conflicts arising from wildlife damage in intensively managed landscapes often undermine conservation efforts, making damage mitigation and compensation of special concern for wildlife conservation. However, the mechanisms underlying the occurrence of damage and claims at large scales are still poorly understood. Here, we investigated the patterns of damage caused by brown bears Ursus arctos and its ecological and socio-economic correlates at a continental scale. We compiled information about compensation schemes across 26 countries in Europe in 2005-2012 and analysed the variation in the number of compensated claims in relation to (i) bear abundance, (ii) forest availability, (iii) human land use, (iv) management practices and (v) indicators of economic wealth. Most European countries have a posteriori compensation schemes based on damage verification, which, in many cases, have operated for more than 30 years. On average, over 3200 claims of bear damage were compensated annually in Europe. The majority of claims were for damage to livestock (59%), distributed throughout the bear range, followed by damage to apiaries (21%) and agriculture (17%), mainly in Mediterranean and eastern European countries. The mean number of compensated claims per bear and year ranged from 0·1 in Estonia to 8·5 in Norway. This variation was not only due to the differences in compensation schemes; damage claims were less numerous in areas with supplementary feeding and with a high proportion of agricultural land. However, observed variation in compensated damage was not related to bear abundance. Synthesis and applications. Compensation schemes, management practices and human land use influence the number of claims for brown bear damage, while bear abundance does not. Policies that ignore this complexity and focus on a single factor, such as bear population size, may not be effective in reducing claims. To be effective, policies should be based on integrative schemes that prioritize damage prevention and make it a condition of payment of compensation that preventive measures are applied. Such integrative schemes should focus mitigation efforts in areas or populations where damage claims are more likely to occur. Similar studies using different species and continents might further improve our understanding of conflicts arising from wildlife damage

    A Bayesian localised conditional auto-regressive model for estimating the health effects of air pollution

    Get PDF
    Estimation of the long-term health effects of air pollution is a challenging task, especially when modeling spatial small-area disease incidence data in an ecological study design. The challenge comes from the unobserved underlying spatial autocorrelation structure in these data, which is accounted for using random effects modeled by a globally smooth conditional autoregressive model. These smooth random effects confound the effects of air pollution, which are also globally smooth. To avoid this collinearity a Bayesian localized conditional autoregressive model is developed for the random effects. This localized model is flexible spatially, in the sense that it is not only able to model areas of spatial smoothness, but also it is able to capture step changes in the random effects surface. This methodological development allows us to improve the estimation performance of the covariate effects, compared to using traditional conditional auto-regressive models. These results are established using a simulation study, and are then illustrated with our motivating study on air pollution and respiratory ill health in Greater Glasgow, Scotland in 2011. The model shows substantial health effects of particulate matter air pollution and nitrogen dioxide, whose effects have been consistently attenuated by the currently available globally smooth models
    corecore