6 research outputs found

    A Study of Arc Strong Connectivity of Digraphs

    Get PDF
    My dissertation research was motivated by Matula and his study of a quantity he called the strength of a graph G, kappa\u27( G) = max{lcub}kappa\u27(H) : H G{rcub}. (Abstract shortened by ProQuest.)

    Connectivity and spanning trees of graphs

    Get PDF
    This dissertation focuses on connectivity, edge connectivity and edge-disjoint spanning trees in graphs and hypergraphs from the following aspects.;1. Eigenvalue aspect. Let lambda2(G) and tau( G) denote the second largest eigenvalue and the maximum number of edge-disjoint spanning trees of a graph G, respectively. Motivated by a question of Seymour on the relationship between eigenvalues of a graph G and bounds of tau(G), Cioaba and Wong conjectured that for any integers d, k ≥ 2 and a d-regular graph G, if lambda 2(G)) \u3c d -- 2k-1d+1 , then tau(G) ≥ k. They proved the conjecture for k = 2, 3, and presented evidence for the cases when k ≥ 4. We propose a more general conjecture that for a graph G with minimum degree delta ≥ 2 k ≥ 4, if lambda2(G) \u3c delta -- 2k-1d+1 then tau(G) ≥ k. We prove the conjecture for k = 2, 3 and provide partial results for k ≥ 4. We also prove that for a graph G with minimum degree delta ≥ k ≥ 2, if lambda2( G) \u3c delta -- 2k-1d +1 , then the edge connectivity is at least k. As corollaries, we investigate the Laplacian and signless Laplacian eigenvalue conditions on tau(G) and edge connectivity.;2. Network reliability aspect. With graphs considered as natural models for many network design problems, edge connectivity kappa\u27(G) and maximum number of edge-disjoint spanning trees tau(G) of a graph G have been used as measures for reliability and strength in communication networks modeled as graph G. Let kappa\u27(G) = max{lcub}kappa\u27(H) : H is a subgraph of G{rcub}. We present: (i) For each integer k \u3e 0, a characterization for graphs G with the property that kappa\u27(G) ≤ k but for any additional edge e not in G, kappa\u27(G + e) ≥ k + 1. (ii) For any integer n \u3e 0, a characterization for graphs G with |V(G)| = n such that kappa\u27(G) = tau( G) with |E(G)| minimized.;3. Generalized connectivity. For an integer l ≥ 2, the l-connectivity kappal( G) of a graph G is defined to be the minimum number of vertices of G whose removal produces a disconnected graph with at least l components or a graph with fewer than l vertices. Let k ≥ 1, a graph G is called (k, l)-connected if kappa l(G) ≥ k. A graph G is called minimally (k, l)-connected if kappal(G) ≥ k but ∀e ∈ E( G), kappal(G -- e) ≤ k -- 1. A structural characterization for minimally (2, l)-connected graphs and some extremal results are obtained. These extend former results by Dirac and Plummer on minimally 2-connected graphs.;4. Degree sequence aspect. An integral sequence d = (d1, d2, ···, dn) is hypergraphic if there is a simple hypergraph H with degree sequence d, and such a hypergraph H is a realization of d. A sequence d is r-uniform hypergraphic if there is a simple r- uniform hypergraph with degree sequence d. It is proved that an r-uniform hypergraphic sequence d = (d1, d2, ···, dn) has a k-edge-connected realization if and only if both di ≥ k for i = 1, 2, ···, n and i=1ndi≥ rn-1r-1 , which generalizes the formal result of Edmonds for graphs and that of Boonyasombat for hypergraphs.;5. Partition connectivity augmentation and preservation. Let k be a positive integer. A hypergraph H is k-partition-connected if for every partition P of V(H), there are at least k(| P| -- 1) hyperedges intersecting at least two classes of P. We determine the minimum number of hyperedges in a hypergraph whose addition makes the resulting hypergraph k-partition-connected. We also characterize the hyperedges of a k-partition-connected hypergraph whose removal will preserve k-partition-connectedness

    A Study on Graph Coloring and Digraph Connectivity

    Get PDF
    This dissertation focuses on coloring problems in graphs and connectivity problems in digraphs. We obtain the following advances in both directions.;1. Results in graph coloring. For integers k,r \u3e 0, a (k,r)-coloring of a graph G is a proper coloring on the vertices of G with k colors such that every vertex v of degree d( v) is adjacent to vertices with at least min{lcub}d( v),r{rcub} different colors. The r-hued chromatic number, denoted by chir(G ), is the smallest integer k for which a graph G has a (k,r)-coloring.;For a k-list assignment L to vertices of a graph G, a linear (L,r)-coloring of a graph G is a coloring c of the vertices of G such that for every vertex v of degree d(v), c(v)∈ L(v), the number of colors used by the neighbors of v is at least min{lcub}dG(v), r{rcub}, and such that for any two distinct colors i and j, every component of G[c --1({lcub}i,j{rcub})] must be a path. The linear list r-hued chromatic number of a graph G, denoted chiℓ L,r(G), is the smallest integer k such that for every k-list L, G has a linear (L,r)-coloring. Let Mad( G) denotes the maximum subgraph average degree of a graph G. We prove the following. (i) If G is a K3,3-minor free graph, then chi2(G) ≤ 5 and chi3(G) ≤ 10. Moreover, the bound of chi2( G) ≤ 5 is best possible. (ii) If G is a P4-free graph, then chir(G) ≤q chi( G) + 2(r -- 1), and this bound is best possible. (iii) If G is a P5-free bipartite graph, then chir( G) ≤ rchi(G), and this bound is best possible. (iv) If G is a P5-free graph, then chi2(G) ≤ 2chi(G), and this bound is best possible. (v) If G is a graph with maximum degree Delta, then each of the following holds. (i) If Delta ≥ 9 and Mad(G) \u3c 7/3, then chiℓL,r( G) ≤ max{lcub}lceil Delta/2 rceil + 1, r + 1{rcub}. (ii) If Delta ≥ 7 and Mad(G)\u3c 12/5, then chiℓ L,r(G)≤ max{lcub}lceil Delta/2 rceil + 2, r + 2{rcub}. (iii) If Delta ≥ 7 and Mad(G) \u3c 5/2, then chi ℓL,r(G)≤ max{lcub}lcei Delta/2 rceil + 3, r + 3{rcub}. (vi) If G is a K 4-minor free graph, then chiℓL,r( G) ≤ max{lcub}r,lceilDelta/2\rceil{rcub} + lceilDelta/2rceil + 2. (vii) Every planar graph G with maximum degree Delta has chiℓL,r(G) ≤ Delta + 7.;2. Results in digraph connectivity. For a graph G, let kappa( G), kappa\u27(G), delta(G) and tau( G) denote the connectivity, the edge-connectivity, the minimum degree and the number of edge-disjoint spanning trees of G, respectively. Let f(G) denote kappa(G), kappa\u27( G), or Delta(G), and define f¯( G) = max{lcub}f(H): H is a subgraph of G{rcub}. An edge cut X of a graph G is restricted if X does not contain all edges incident with a vertex in G. The restricted edge-connectivity of G, denoted by lambda2(G), is the minimum size of a restricted edge-cut of G. We define lambda 2(G) = max{lcub}lambda2(H): H ⊂ G{rcub}.;For a digraph D, let kappa;(D), lambda( D), delta--(D), and delta +(D) denote the strong connectivity, arc-strong connectivity, minimum in-degree, and out-degree of D, respectively. For each f ∈ {lcub}kappa,lambda, delta--, +{rcub}, define f¯(D) = max{lcub} f(H): H is a subdigraph of D{rcub}.;Catlin et al. in [Discrete Math., 309 (2009), 1033-1040] proved a characterization of kappa\u27(G) in terms of tau(G). We proved a digraph version of this characterization by showing that a digraph D is k-arc-strong if and only if for any vertex v in D, D has k-arc-disjoint spanning arborescences rooted at v. We also prove a characterization of uniformly dense digraphs analogous to the characterization of uniformly dense undirected graphs in [Discrete Applied Math., 40 (1992) 285--302]. (Abstract shortened by ProQuest.)

    The size of strength-maximal graphs

    No full text
    corecore