5,470 research outputs found

    Mechanism Design via Dantzig-Wolfe Decomposition

    Full text link
    In random allocation rules, typically first an optimal fractional point is calculated via solving a linear program. The calculated point represents a fractional assignment of objects or more generally packages of objects to agents. In order to implement an expected assignment, the mechanism designer must decompose the fractional point into integer solutions, each satisfying underlying constraints. The resulting convex combination can then be viewed as a probability distribution over feasible assignments out of which a random assignment can be sampled. This approach has been successfully employed in combinatorial optimization as well as mechanism design with or without money. In this paper, we show that both finding the optimal fractional point as well as its decomposition into integer solutions can be done at once. We propose an appropriate linear program which provides the desired solution. We show that the linear program can be solved via Dantzig-Wolfe decomposition. Dantzig-Wolfe decomposition is a direct implementation of the revised simplex method which is well known to be highly efficient in practice. We also show how to use the Benders decomposition as an alternative method to solve the problem. The proposed method can also find a decomposition into integer solutions when the fractional point is readily present perhaps as an outcome of other algorithms rather than linear programming. The resulting convex decomposition in this case is tight in terms of the number of integer points according to the Carath{\'e}odory's theorem

    Bounding Stability Constants for Affinely Parameter-Dependent Operators

    Get PDF
    In this article we introduce new possibilities of bounding the stability constants that play a vital role in the reduced basis method. By bounding stability constants over a neighborhood we make it possible to guarantee stability at more than a finite number of points and to do that in the offline stage. We additionally show that Lyapunov stability of dynamical systems can be handled in the same framework.Comment: Accepted version (C. R. Math.), 6 pages, 3 figure

    Numerical Analysis

    Get PDF
    Acknowledgements: This article will appear in the forthcoming Princeton Companion to Mathematics, edited by Timothy Gowers with June Barrow-Green, to be published by Princeton University Press.\ud \ud In preparing this essay I have benefitted from the advice of many colleagues who corrected a number of errors of fact and emphasis. I have not always followed their advice, however, preferring as one friend put it, to "put my head above the parapet". So I must take full responsibility for errors and omissions here.\ud \ud With thanks to: Aurelio Arranz, Alexander Barnett, Carl de Boor, David Bindel, Jean-Marc Blanc, Mike Bochev, Folkmar Bornemann, Richard Brent, Martin Campbell-Kelly, Sam Clark, Tim Davis, Iain Duff, Stan Eisenstat, Don Estep, Janice Giudice, Gene Golub, Nick Gould, Tim Gowers, Anne Greenbaum, Leslie Greengard, Martin Gutknecht, Raphael Hauser, Des Higham, Nick Higham, Ilse Ipsen, Arieh Iserles, David Kincaid, Louis Komzsik, David Knezevic, Dirk Laurie, Randy LeVeque, Bill Morton, John C Nash, Michael Overton, Yoshio Oyanagi, Beresford Parlett, Linda Petzold, Bill Phillips, Mike Powell, Alex Prideaux, Siegfried Rump, Thomas Schmelzer, Thomas Sonar, Hans Stetter, Gil Strang, Endre Süli, Defeng Sun, Mike Sussman, Daniel Szyld, Garry Tee, Dmitry Vasilyev, Andy Wathen, Margaret Wright and Steve Wright
    • …
    corecore