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Abstract

Linear programming is one of the most important classes of optimization problems. These

mathematical models have been used by academics and practitioners to solve numerous real

world applications. Quickly solving linear programs impacts decision makers from both the

public and private sectors. Substantial research has been performed to solve this class of

problems faster, and the vast majority of the solution techniques can be categorized as one

dimensional search algorithms. That is, these methods successively move from one solution to

another solution by solving a one dimensional subspace linear program at each iteration. This

dissertation proposes novel algorithms that move between solutions by repeatedly solving

a two dimensional subspace linear program. Computational experiments demonstrate the

potential of these newly developed algorithms and show an average improvement of nearly

25% in solution time when compared to the corresponding one dimensional search version.

This dissertation’s research creates the core concept of these two dimensional search

algorithms, which is a fast technique to determine an optimal basis and an optimal solution to

linear programs with only two variables. This method, called the slope algorithm, compares

the slope formed by the objective function with the slope formed by each constraint to

determine a pair of constraints that intersect at an optimal basis and an optimal solution.

The slope algorithm is implemented within a simplex framework to perform two dimen-

sional searches. This results in the double pivot simplex method. Differently than the

well-known simplex method, the double pivot simplex method simultaneously pivots up to

two basic variables with two nonbasic variables at each iteration. The theoretical compu-

tational complexity of the double pivot simplex method is identical to the simplex method.

Computational results show that this new algorithm reduces the number of pivots to solve

benchmark instances by approximately 40% when compared to the classical implementation

of the simplex method, and 20% when compared to the primal simplex implementation of



CPLEX, a high performance mathematical programming solver. Solution times of some

random linear programs are also improved by nearly 25% on average.

This dissertation also presents a novel technique, called the ratio algorithm, to find an

optimal basis and an optimal solution to linear programs with only two constraints. When

the ratio algorithm is implemented within a simplex framework to perform two dimensional

searches, it results in the double pivot dual simplex method. In this case, the double pivot

dual simplex method behaves similarly to the dual simplex method, but two variables are

exchanged at every step.

Two dimensional searches are also implemented within an interior point framework. This

dissertation creates a set of four two dimensional search interior point algorithms derived

from primal and dual affine scaling and logarithmic barrier search directions. Each iteration

of these techniques quickly solves a two dimensional subspace linear program formed by the

intersection of two search directions and the feasible region of the linear program. Search

directions are derived by orthogonally partitioning the objective function vector, which allows

these novel methods to improve the objective function value at each step by at least as much

as the corresponding one dimensional search version. Computational experiments performed

on benchmark linear programs demonstrate that these two dimensional search interior point

algorithms improve the average solution time by approximately 12% and the average number

of iterations by 15%.

In conclusion, this dissertation provides a change of paradigm in linear programming

optimization algorithms. Implementing two dimensional searches within both a simplex and

interior point framework typically reduces the computational time and number of iterations

to solve linear programs. Furthermore, this dissertation sets the stage for future research

topics in multidimensional search algorithms to solve not only linear programs but also

other critical classes of optimization methods. Consequently, this dissertation’s research

can become one of the first steps to change how commercial and open source mathematical

programming software will solve optimization problems.
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CPLEX, a high performance mathematical programming solver. Solution times of some
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searches, it results in the double pivot dual simplex method. In this case, the double pivot
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on benchmark linear programs demonstrate that these two dimensional search interior point

algorithms improve the average solution time by approximately 12% and the average number
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optimization algorithms. Implementing two dimensional searches within both a simplex and
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Chapter 1

Introduction

Linear programming is an important class of optimization models. For decades, linear pro-

grams have improved complex systems from both the public and private sectors. Quickly

finding an optimal solution to these mathematical models is vital to modern society, and

numerous researchers have created results that decrease the computational time to solve

linear programs. This dissertation’s research advances this field by creating several two di-

mensional search algorithms that solve linear programs faster than the corresponding one

dimensional search version.

Linear programming problems seek to either maximize or minimize an objective function

denoted by a linear cost function in terms of decision variables. This objective function

is restricted to a set of linear inequality and/or equality constraints. Typically, decision

variables in a linear program may assume any nonnegative real value. When a linear program

is optimally solved, the values attributed to the decision variables represent a solution that

satisfies all constraints and provides the best possible objective function value.

Recent applications demonstrate the vital importance of linear programming. For in-

stance, research in the logistics industry uses linear programs to optimize supply chain

operations planning, intermodal transportation, and coordinated production and logistics

planning (Garćıa et al., 2013; Kunnumkal et al., 2012; Lawrence and Burbridge, 2007; Spit-

ter et al., 2005). Examples of linear programs applied to financial systems include asset
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management, insurance, risk in portfolio optimization, and real option management of com-

modity storage (Chalermkraivuth et al., 2005; Mansini et al., 2007; Nadarajah et al., 2015).

Manufacturing businesses have also benefited from linear programming. Optimizing steel

making and casting production, irregular strip packing, and scrap charge in steel production

are some of the examples in this industry (Gomes and Oliveira, 2006; Rong and Lahdelma,

2008; Tang et al., 2000). In health care and medicine, linear programs have optimized high-

dose-rate brachytherapy dose distributions, radiation therapy treatment planning, and diets

(Alterovitz et al., 2006; Easton, 2009; Lee et al., 2003; Romeijn et al., 2006; van Dooren,

2018). Other than the applications in the private industry, linear programming has estab-

lished governmental policies in the wood-fiber market, water in farming systems, and energy

saving (Bartolini et al., 2007; Gautier et al., 2000; Zhou and Ang, 2008).

Besides these applications, Williams (2013) presents several other industries and prob-

lems where linear programming is applicable or accepted as a solution approach. Some of

these applications include the oil and mining industries, agriculture, food, chemical, man-

power planning, military, and energy systems. Other types of linear programming problems

discussed by Williams (2013) are the network models, and some of them include the classi-

cal transportation, transshipment, assignment, minimum cost, maximum flow, and shortest

path problems.

These practical applications are only a small sample of linear programming’s ability to

improve complex real world systems. However, the application and importance of this class

of mathematical models goes beyond that. Linear programs are frequently the base to solve

other classes of optimization problems as well. For instance, integer and mixed integer

programming problems are typically solved by the branch and bound technique (Land and

Doig, 1960). Each node of the branch and bound tree denotes a linear relaxation problem.

That is, a linear program where the integrality restrictions are eliminated. Consequently, one

could view the solution process of integer and mixed integer programs as solving numerous

linear programs.

Another example involves applying successive linear programming algorithms to solve

nonlinear optimization problems (Palacios-Gomez et al., 1982). These techniques, as the

2



name suggests, determine an approximate optimal solution to nonlinear programs via a

sequence of linear programs. Other examples of optimization models where linear program-

ming and its theory are vital include semidefinite programming (Wolkowicz et al., 2000) and

complementary problems (Hu et al., 2012).

Either as a modeling approach or as a technique to solve other classes of mathematical

programming models, linear programs play a critical role in optimization. Even though

polynomial time methods exist to solve linear programming problems (Gondzio, 2012), a

substantial amount of time may still be required to find an optimal solution to these models.

This is because real world linear programming applications, and also other aforementioned

classes of optimization problems where linear programs are used as a solution procedure, are

frequently large and sparse.

Furthermore, the complexity of current real world applications has escalated substantially

over the years. The amount of data available to model optimization problems has also

drastically increased due to the discovery of many efficient data analytics techniques. All

these and other facts combined frequently create optimization models that cannot be solved

quickly. In this case, decision makers must sacrifice the quality of the optimization model in

order to obtain solutions within a reasonable amount of time.

1.1 Research Motivation and Objective

Because of the importance of quickly solving linear programming problems, numerous ad-

vancements to state-of-the-art commercial and open source mathematical programming

solvers are developed every year. These advancements are theoretical, algorithmic, and com-

putational in nature. Consequently, finding novel techniques to solve linear programming

models faster than the existing methods is the primary motivation of this dissertation.

The majority of these advancements can be categorized as one dimensional search tech-

niques. For instance, the well-known simplex method (Dantzig, 1947) and the majority of

interior point methods (Kojima et al., 1993) are one dimensional search techniques. That

is, these algorithms solve linear programs by analyzing a one dimensional subspace problem

3



at each iteration. While there exist methods to solve linear programs by analyzing multi-

dimensional subspace problems at each step (see Chapter 2), the amount of work done in

this topic is either minimal or does not change this one dimensional search paradigm estab-

lished in optimization methods. Consequently, both the lack of research and the lack of a

broader view with respect to multidimensional search methods to solve linear programs is a

motivation to this dissertation’s research.

The objective of this dissertation is to advance the discipline of multidimensional searches

in linear programming. More specifically, this dissertation focuses on two dimensional search

techniques. The goal is to create novel two dimensional search algorithms that can solve

linear programming problems faster than the corresponding one dimensional search version.

Furthermore, this dissertation also aims to establish a new research area in optimization

methods by motivating other researchers to study and pursue cutting-edge multidimensional

search solution methods.

1.2 Research Contributions

This dissertation presents a variety of contributions that advance the topic of two dimen-

sional searches in linear programming. These contributions are theoretical, algorithmic, and

computational in nature. Details about each of these contributions are explained in the

following sections.

1.2.1 Theoretical Contributions

This dissertation’s theoretical contributions are demonstrated through a set of theorems,

lemmas, and corollaries along with their corresponding proofs and arguments. The disser-

tation provides several theoretical results to guarantee that unboundedness, feasibility, and

optimality conditions are satisfied when two dimensional searches are performed. Sufficient

conditions are also presented to guarantee not only an optimal solution to these two dimen-

sional searches, but also an optimal simplex basis. Moreover, this dissertation’s research

4



proves that if all these conditions are implemented within a simplex framework, then an

optimal solution to nondegenerate linear programming problems can be obtained within a

finite number of steps.

This dissertation also argues the theoretical benefit of two dimensional search directions

over a single one dimensional search direction. Under broad conditions, two dimensional

searches are proved to improve the objective function value by at least as much as one

dimensional searches. This theoretical result leads to one of the principles for determining

two search directions in an interior point framework.

1.2.2 Algorithmic Contributions

This dissertation’s algorithmic contributions are eight new two dimensional search algo-

rithms for linear programming. These techniques are formalized from the theoretical foun-

dation established in this dissertation’s research. These algorithms and their corresponding

contributions are as follows.

i) The slope algorithm (SA) finds an optimal basis and an optimal solution to linear

programs with two variables.

ii) The ratio algorithm (RA) determines an optimal basis and an optimal solution of linear

programs with two constraints.

iii) The double pivot simplex method (DPSM) is a primal simplex framework algorithm

where up to two basic leaving variables are exchanged with two nonbasic entering vari-

ables at each step. The slope algorithm performs two dimensional searches and defines

the two basic leaving variables.

iv) The double pivot dual simplex method (DPDSM) is a dual simplex framework algo-

rithm where two variables can be exchanged simultaneously at each iteration. The ratio

algorithm determines both nonbasic entering variables.

5



v) The two dimensional search primal affine scaling interior point algorithm (2DIMP
aff⊥)

determines successive feasible and improved interior solutions by using two primal affine

scaling search directions. The two search directions are derived from orthogonal vectors

with respect to the objective function.

vi) The two dimensional search primal logarithmic barrier interior point algorithm

(2DIMP
log⊥) considers two primal logarithmic barrier search directions at each itera-

tion. Each of these two search directions are composed of a primal affine scaling search

direction along with a centering component.

vii) The two dimensional search dual affine scaling interior point algorithm (2DIMD
aff⊥) has

two dual affine scaling search directions at each step. These search directions are derived

from orthogonal vectors with respect to the right-hand side vector.

viii) The two dimensional search dual logarithmic barrier interior point algorithm

(2DIMD
log⊥) determines an improved feasible interior solution at each step by using two

dual logarithmic barrier search directions.

1.2.3 Computational Contributions

This dissertation’s primary computational contribution is the computational results obtained

with the implementation and comparison of the aforementioned two dimensional search

algorithms to the corresponding one dimensional search version. Some of these algorithms

were also compared to the implementation of CPLEX (IBM, 2016), a high performance

mathematical programming solver. Computational experiments tested these methods with

random linear programs and instances from well-known benchmark libraries such as Netlib

(Gay, 1985) and MIPLIB (Koch et al., 2011).

The double pivot simplex method, when compared to the simplex method over random

dense linear programs, improves the number of pivots and solution time by an average of

approximately 17%. If random sparse instances are considered, this improvement becomes

30%. The number of pivots are also improved by nearly 41% when tested over benchmark
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instances from Netlib and MIPLIB. Furthermore, the number of pivots are reduced by about

22%, on average, when tested with both sets of benchmark problems and compared to the

primal simplex implementation of CPLEX.

The two dimensional search interior point algorithms, when contrasted to the correspond-

ing one dimensional search version over benchmark linear programs from Netlib, improve the

number of iterations by nearly 15%, on average. Computational results also show an over-

all improvement in solution time of approximately 12%. Additionally, the average relative

improvement in objective function value per iteration is around 23%.

1.3 Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 2 describes some of the

main contributions in the field of linear programming so that the reader can understand the

difference between this dissertation’s research and these other contributions. In addition,

this chapter gives a chance for the reader visualize how this research advances the knowledge

in linear programming. These advancements are discussed within the context of a simplex

framework and an interior point framework.

Chapter 3 discusses two dimensional searches in linear programming. The chapter in-

troduces the main difference between one and two dimensional search algorithms. Benefits

and requirements for an efficient implementation of two dimensional searches are discussed.

With the primary considerations established, the slope algorithm is presented. This tech-

nique finds an optimal basis and an optimal solution to linear programs with only two

variables. Theoretical and algorithmic results are presented along with an example to show

its implementation. Chapter 3 also presents the ratio algorithm, a method to find an optimal

basis and an optimal solution to linear programs with exactly two constraints.

Chapter 4 demonstrates how the slope algorithm and the ratio algorithm can be im-

plemented within a simplex framework. The chapter provides the mathematical concept of

a simplex framework. The double pivot simplex method, an advancement to the simplex

method, is presented. Theoretical results and an example support the understanding of this
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new algorithm. The chapter also discusses the double pivot simplex method with respect

to degeneracy. Computational experiments compare the double pivot simplex method with

the simplex method, and also with the primal simplex implementation of CPLEX. Details

on the implementation, and the comparison of results on random and benchmark linear pro-

grams are presented. The chapter concludes with the double pivot dual simplex method, a

novel dual simplex framework where the ratio algorithm performs two dimensional searches.

Theoretical results and an example assist the reader to understand this algorithm.

Chapter 5 extends the concept of two dimensional searches to an interior point frame-

work. The chapter begins with the theoretical foundation of four classical one dimensional

search interior point algorithms: primal affine scaling, dual affine scaling, primal logarithmic

barrier, and dual logarithmic barrier. Principles for determining two search directions are

discussed with the support of theoretical results and an example. The chapter presents novel

two dimensional search primal and dual affine scaling and logarithmic barrier interior point

algorithms. Implementation details and results of a computational study that compare each

of these methods with the corresponding one dimensional search version are described.

Chapter 6 concludes the dissertation and provides a summary of the main results. This

dissertation’s research establishes a change of paradigm in optimization methods, which may

result in important future research. Consequently, the chapter also discusses theoretical,

algorithmic, and computational future research topics that may improve the efficiency of

state-of-the-art commercial and open source mathematical programming solvers. If such a

claim is confirmed, numerous industries in both the public and private sectors would benefit

substantially.
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Chapter 2

An Overview of Advancements in

Linear Programming

Linear programming is one of the most important classes of optimization problems. Formally,

a linear program (LP) with n variables and r constraints takes the form of:

maximize z = cTx

subject to Ax ≤ b

x ≥ 0,

where n and r are positive integers, c ∈ Rn, x ∈ Rn, A ∈ Rr×n, and b ∈ Rr. Denote

N = {1, 2, ..., n} to be the set of variable indices and R = {1, 2, ..., r} to be the set of

constraint indices. The feasible region of an LP is denoted by S = {x ∈ Rn+ : Ax ≤ b} and

the optimal solution of an LP is (z∗, x∗), where x∗ ∈ S and z∗ = cTx∗ ≥ cTx′ for all x′ ∈ S.

Every LP has a corresponding dual problem. Mathematically, define an LP’s correspond-

ing dual linear program (DLP) as:

minimize z = bTw

subject to ATw ≥ c

w ≥ 0,
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where w ∈ Rr. Observe that in this case, N becomes the set of constraint indices and

R becomes the set of variable indices. The feasible region of a DLP can be defined as

T = {w ∈ Rr+ : ATw ≥ c}. Furthermore, the optimal solution of a DLP is (z∗, w∗) such that

w∗ ∈ T and z∗ = bTw∗ ≤ bTw′ for all w′ ∈ T .

Some of the earliest works in linear programming were developed by Nobel Laureates

Kantorovich (1939) and Koopmans (1949), although one could credit the origins of linear

programming to Fourier (1826) and de la Vallée Poussin (1911) (see Grattan-Guinness (1970)

and Farebrother (2006) for additional discussion). The work of Kantorovich describes math-

ematical methods to organize and plan production processes within an optimization perspec-

tive, while the paper from Koopmans focuses on the optimal utilization of transportation

systems. Credit must also be given to Leontief (1936), who invented the input-output model

in economics, and von Neumann (1928), who was critical to the development of duality

theory in linear programming. These researchers all influenced Dantzig (1982, 1991), who

can be considered the “father” of linear programming. This is because Dantzig developed

the general formulation of linear programming problems and invented the simplex method

(Dantzig, 1947), the first algorithm to optimally solve LPs. Additional details on the dis-

covery of linear programming can also be found in Dorfman (1984).

Linear programming rapidly became popular not only in the academic community, but

also in the public and private sectors. Currently, LPs dramatically impact society by improv-

ing complex systems from numerous industries (recall the examples of current applications

discussed in Chapter 1). Consequently, it suffices to state that millions of LPs are solved

every day, which helps create a more efficient world.

More quickly solving linear programming problems also became a priority over the

decades. This is because solving LPs faster enable decision makers to more efficiently improve

their systems. Additionally, LPs also play an important role in other classes of optimization

problems such as integer and nonlinear programming. The practical importance of solving

linear programs faster has motivated researchers to pursue numerous advancements. While

an enormous number of advancements in linear programming have been developed through-

out the years, all of them can be divided in two major categories: advancements within the
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context of a simplex framework and advancements within the context of an interior point

framework.

Figure 2.1(a) depicts the concept of a simplex framework. These algorithms begin from

an initial solution. This solution corresponds to an extreme point (or a corner point), which is

defined by the intersection of n or more constraints of the LP. These algorithms successively

move to another solution, also defined by an extreme point, until an optimal solution is

obtained. Define an extreme point in a simplex framework as a basic solution. A basic

solution is denoted as a set with basic variables (values are nonzero assuming a nondegenerate

basis) and nonbasic variables (values equal to zero). If a basic solution satisfies all the

constraints of the LP, then this solution corresponds to a basic feasible solution. Observe

that one should not view a simplex framework as moving from an extreme point to an

adjacent extreme point. Instead, a simplex framework simply moves from one extreme point

to another extreme point.

(a) Simplex framework (b) Interior point framework

Figure 2.1: Graphical representation of a simplex and an interior point framework

Figure 2.1(b) presents the concept of an interior point framework. The primary premise

is that these techniques begin from an initial solution that is contained in the interior of

the LP’s feasible region. The algorithms then move to another solution, also contained
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in the interior of the LP’s feasible region, until they converge to an optimal solution. This

movement typically occurs by following one or multiple search directions. Because an interior

point framework requires every solution to be within the interior of the LP’s feasible region,

these methods never achieve an exact optimal solution. Instead, these techniques achieve a

solution that is sufficiently close to an optimal solution.

Research performed on both frameworks are theoretical and computational in nature.

This includes different strategies to improve the movement between solutions, techniques to

avoid or skip stationary solutions, or methods to more quickly solve their subproblems or

update solutions. The following sections describe some of these advancements within both

frameworks since the late 1940s.

2.1 Advancements in a Simplex Framework

Even though other contributions to linear programming appeared before 1947, the simplex

method created by Dantzig (1947) is what made linear programming possible. The simplex

method is one of the most famous and important developments in science, and was recognized

by the Journal of Computing in Science & Engineering as one of the top 10 algorithms of the

20th century (Dongarra and Sullivan, 2000). The simplex method has a worst-case running

time of O(2n) (Klee and Minty, 1972). However, Spielman and Teng (2004) demonstrate

that the simplex method may run in polynomial time when instances are randomly generated

and slightly perturbed.

While the simplex method from Dantzig was used to solve LPs for many years, its dual

version, first introduced by Lemke (1954), is mostly used in state-of-the-art commercial and

open source solvers (Koberstein and Suhl, 2007). Not only the computational performance of

the dual simplex method is shown to be superior to the simplex method (Bixby, 2002), but it

also offer other benefits. For instance, the dual simplex method can be used to find an initial

feasible solution instead of the well-known Big-M or two-phase simplex implementations

(Bazaraa et al., 2010). This is because the dual simplex method starts super optimal and

moves toward feasibility. Furthermore, the dual simplex method is used to solve the linear
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relaxation problem of each child from a branch and bound tree (Land and Doig, 1960). The

branch and bound technique typically solves integer and mixed integer programs (see other

methods for integer programming in Marchand et al. (2002), Jünger et al. (2010), Vitor

(2015), Bailey et al. (2018) Vitor and Easton (2016, 2019b)).

Currently, efficient implementations of the simplex and dual simplex method are available

in commercial and open source solvers. However, the original implementation proposed by

Dantzig was very inefficient and its practical application was not promising by that time

(Orchard-Hays, 1990). This is because each iteration of the simplex method updated all the

elements of the simplex tableau, including the reduced costs, right-hand side values, basis

inverse, and other constraint values.

Numerous researchers developed theoretical and computational improvements to the sim-

plex method. The author believes that two major advancements made the simplex method

substantially more efficient over the last decades. First, the advancements in computer ma-

chinery throughout the years. Second, and probably the most critical one, is the effective

methods to update the basis inverse. Other contributions such as techniques to handle degen-

erate LPs, pivoting rules, and methods to perform multiple pivots should also be considered.

Observe that the history of theoretical and computational advancements in LP solvers is

relatively long. Trying to describe all these advancements in a single chapter of a dissertation

is not only unfair to the researchers that made it possible, but also not applicable. The reader

is encouraged to read the work from Orchard-Hays (1968, 1978a,b,c, 1984, 1990), Dantzig

(1982, 1991), Shamir (1987), Bixby (1994, 2002, 2012), and Darby-Dowman and Wilson

(2002) for additional details on some of these advancements.

2.1.1 Update the Basis Inverse

The simplex method and other simplex frameworks are completely dependent upon the

inverse of the basis matrix, which is determined by the set of basic variables. In the simplex

method, each iteration determines an entering nonbasic variable and a leaving basic variable.
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Thus, a column of the basis matrix is replaced and the updated inverse matrix is required

for the following iteration.

Observe that solving the inverse of the basis matrix requires the solution of a system of

linear equations and its transpose. Even though some well-known techniques exist to obtain

the basis inverse matrix using LU factorization via Gaussian elimination (Elble and Sahinidis,

2012a; Suhl and Suhl, 1990; Tomlin, 1972), substantial research has been performed over the

last decades to more efficiently obtain this invertible matrix. Recently, Elble and Sahinidis

(2012b) provided a detailed mathematical review of several of the methods discussed in this

section, and their work is suggested for additional background information.

The first technique was proposed by Dantzig and Orchard-Hays (1954) and it follows the

product form of the inverse. The core concept of this method is to represent the inverse of the

basis matrix by the product of elementary matrices. Each elementary matrix corresponds

to the identity matrix with one of its columns replaced by a set of elements determined by

constraint values defined by the entering nonbasic variable and the leaving basic variable.

These columns are well-known in the literature as the eta-vectors and the elementary matrices

are referred to as the eta-matrices.

Each update in the basis inverse proposed by Dantzig and Orchard-Hays consists to

the product of the current basis inverse with a set of eta-matrices. In contrast, Bartels

and Golub (1969) derived a method where the factors from the lower and upper triangular

matrices of the LU decomposition are updated using a similar idea as the eta matrix. To

maintain the structure of the upper and lower triangular matrices, the Bartels and Golub

update performs a column permutation and a series of elementary transformations. Observe

that Bartels (1971) also provides an interesting discussion about the benefits obtained with

respect to round-off errors when similar strategies are implemented.

Later on, Forrest and Tomlin (1972) proposed a technique that was mostly designed

to solve sparse LPs. The Forrest and Tomlin update is still considered one of the most

effective methods (Huangfu and Hall, 2015). Differently from the Bartels and Golub update,

the Forrest and Tomlin update maintain triangularity by performing both column and row

permutations before a series of elementary transformations. One can see that Reid (1982) also
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uses both column and row permutations to restore triangularity, but additional permutations

are considered at each step.

Other contributions in this topic also exist such as the update methods from Gill et al.

(1984), Fletcher and Matthews (1984), Tolla (1986), and Eldersveld and Saunders (1992).

Another widely used effective method was discovered by Suhl and Suhl (1993). This tech-

nique is a modification from the Forrest and Tomlin update in which the position of the

permuted columns plays an important role. That is, the Forrest and Tomlin update per-

mutes the income vector to the last position of the matrix while the Suhl and Suhl update

permutes this vector to the last nonzero.

Recently, Huangfu and Hall (2015) proposed a set with three novel update techniques

for practical sparse LPs. The alternate product form update and the middle product form

update are advancements to the product form of the inverse from Dantzig and Orchard-

Hays. A third technique involves an advancement to the Forrest and Tomlin update. In this

case, the so-called collective Forrest and Tomlin update allows multiple Forrest and Tomlin

simultaneous updates to obtain the inverse of the basis matrix. Computational experiments

on a high performance solver (Huangfu and Hall, 2018) indicates that the last technique is

as efficient as performing Forrest and Tomlin updates independently.

2.1.2 Degeneracy

One of the biggest issues within a simplex framework is degeneracy (Greenberg, 1986;

Megiddo, 1986). Degeneracy occurs when a basic feasible solution has at least one ba-

sic variable that equals zero. Degenerate linear programming problems may force simplex

framework algorithms to complete extra operations by performing multiple iterations at the

same feasible solution. That is, these techniques may visit different basic feasible solutions

with an identical objective function value. Additionally, degenerate LPs may cycle, which

prohibits these algorithms from terminating. During several years, researchers have investi-

gated and discovered techniques to prevent degeneracy and avoid cycling.
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Some of these techniques involve pivoting strategies, and the first method was created

by Bland (1977). When Bland’s rule is implemented, the simplex method is guaranteed to

terminate within a finite number of steps. This rule is simple and consists of selecting an

improving entering nonbasic variable with the lowest index with respect to the columns, and

a leaving basic variable that satisfies the minimum ratio test and has the lowest index with

respect to the rows. Observe that Bland also proposes a recursive rule in addition to his

index rule.

Similarly, Fukuda (1982) also describes a pivoting rule that theoretically avoids cycling

(Clausen, 1987). This technique is mostly known as the Edmonds-Fukuda rule, and involves

selecting an entering variable, also following index rules, from a set that may contain both

basic and nonbasic variables. On the theoretical survey presented by Terlaky and Zhang

(1993), the paper discusses the relation between the “last in first out” and the “most often

selected” rules to finite pivoting rules, including the techniques from Bland and Fukuda,

and also other pivoting rules such as the finite crisscross method (Terlaky, 1987), Jensen’s

general recursion rule (Jensen, 1985), and the lexicographic method (Todd, 1985).

Another class of techniques to handle degenerate LPs is the so-called perturbation method.

The core concept of this strategy is to slightly perturb the right-hand side values of the basic

variables that are degenerate so that they become nonzero. One of the greatest benefits with

this strategy is that a perturbation is only required after a degenerate basis has been found.

On the other hand, this technique increases the number of basic feasible solutions, and these

solutions have the potential to improve the objective function value by only a small amount

(Elhallaoui et al., 2010a). Some of these perturbation methods were developed by researchers

such as Charnes (1952), Wolfe (1963), Ryan and Osborne (1988), and Pan (1999, 2000).

An approach suggested by Pan (1998) involves the idea of a reduced basis. From a

basic feasible solution, the method proposed by Pan identifies a set of degenerate basic

variables. Columns and rows associated with these variables are removed so that a reduced

basis matrix is obtained. This subproblem is solved and its dual values help determine the

reduced costs of all the variables from the original problem. Observe that Pan also uses the
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idea of compatible and incompatible variables (Raymond et al., 2010) to remove variables

from the original problem or add constraints to the subproblem.

Other researchers expanded the method of Pan. For instance, Elhallaoui et al. (2005)

presents a dynamic constraint aggregation method to obtain subproblems associated with

degenerate basic variables. Similarly, Elhallaoui et al. (2008) improves the previous technique

by reducing the size of both the original problem and the subproblem. Further improvements

to both methods are also presented (Elhallaoui et al., 2010b). Improved simplex primal

algorithms for degenerate LPs were also derived from the combination of previous discussed

methods (Elhallaoui et al., 2010a; Raymond et al., 2010).

2.1.3 Pivoting Rules

The simplex method, as initially created by Dantzig (1947), has a simple and straightforward

pivoting rule. That is, an improving entering nonbasic variable is selected as the variable

with the most negative reduced cost, while the leaving basic variable is determined by the

minimum ratio test (usually selected arbitrarily when a tie is detected). Pivoting rules have

a high correlation to the number of iterations performed by the simplex method and other

simplex frameworks, and consequently to the performance of these algorithms. Research have

investigated several pivoting strategies to improve the simplex method and other simplex

framework algorithms.

Overall, there are three types of pivoting rules: finite, full pricing, and partial pricing.

The first one is related to the termination of the algorithm in a finite number of steps,

and usually avoids or resolve degeneracy. Full pricing denotes techniques that evaluate all

nonbasic variables at each step to find an entering variable. In contrast, partial pricing only

evaluates a set of nonbasic variables at each iteration. Terlaky and Zhang (1993) discuss

several pivoting strategies discovered until the early 1990s such as finite rules, pivoting

strategies related to parametric programming, and pivoting rules inspired by interior point

methods. Recent surveys on pivoting rules also exist (Pan, 2014; Ploskas and Samaras, 2017).
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Observe that the strategies discussed in Chapter 2.1.2 to handle degenerate linear pro-

gramming problems (Bland, 1977; Fukuda, 1982; Jensen, 1985; Terlaky, 1987; Todd, 1985)

are all finite pivoting rules. Other strategies also include for example the admissible pivot

method from Lim and Park (2004), the s-monotone index selection pivoting rule from Csiz-

madia et al. (2012), the improvement to Bland’s rule proposed by Liao (2013), and the

optimal pivot rule from Etoa (2016).

Full pricing rules have also been investigated. One can see that Dantzig pivoting tech-

nique can be classified as full pricing. Some commercial and open source solvers have widely

used the steepest-edge (Forrest and Goldfarb, 1992; Goldfarb and Reid, 1977) and Devex

(Harris, 1973) pivoting rules to solve LPs (Bixby, 2002; Pan, 2010). The steepest-edge rule

selects an improving entering nonbasic variable by analyzing the normalized vector of re-

duced costs formed by the set of candidate entering nonbasic variables. The Devex rule is

similar to the steepest-edge pivoting rule, but this strategy considers an approximation of

the normalized vector of reduced costs.

One technique derived from the idea of normalized reduced costs is the largest-distance

pivoting rule (Pan, 2008a). Even though this rule is applied in the primal space, its inter-

pretation is easily obtained when analyzing the dual space. The largest-distance pivoting

rule considers “fixed normalized factors”, and computational experiments show an improved

performance over the Devex rule.

When it comes to partial pricing strategies, Pan (2008b) proposes a nested pricing piv-

oting rule. Given a subset of all reduced costs, the method selects one that is sufficiently

negative. If none exists, then the algorithm redefines the subset of reduced costs until one

sufficiently negative reduced cost is found or optimality is proven. The paper describes a

nested Dantzig rule, a nested steepest-edge rule, and a nested Devex rule. Observe that Pan

(2010) reports efficient computational results when the largest-distance and nested pricing

pivoting rules are combined. Other partial pricing techniques also exist (Benichou et al.,

1977; Greenberg, 1978; Maros, 2003a,b).
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2.1.4 Multiple Pivots

Practical LPs are usually large and sometimes complex to solve. Solution times to solve

these LPs may be relatively long, even though polynomial time algorithms exist to solve this

critical class of optimization problems (Gondzio, 2012). A common technique to decrease

the solution time of LPs, which highly motivated this research, is to solve the problem on

a subset of variables and/or constraints. An optimal basis from this subproblem is used

to identify a new subset of variables and/or constraints, and the process repeats until an

optimal basis to a subproblem identifies an optimal basis to the original instance. This

general methodology when utilized within a simplex framework is called in this dissertation

as multiple pivot techniques. Some of the methods developed throughout the years that

follow this strategy are decomposition methods, column generation, and block pivots.

Decomposition methods were first introduced by Dantzig and Wolfe (1960, 1961) and

these techniques are sometimes referred to as the decomposition principle. The core concept

of decomposition methods is the partitioning of the original problem into two parts. The first

part consists of a general structure while the second part denotes a special structure (Bazaraa

et al., 2010). The general structure usually has constraints that cannot be decomposed,

while the special structure contains those constraints that follow a similar framework and its

solution can be easily obtained when decomposed. Each structure is successively solved as

an LP, and necessary information is exchanged between both LPs until an optimal solution

to the original instance is finally obtained.

Other than the classical Dantzig and Wolfe decomposition method, Benders (1962) pro-

posed another classical decomposition framework that can be applied to linear programming,

and is often used in stochastic programming. Observe that the idea of a reduced basis can

also be considered a decomposition method (Elhallaoui et al., 2005, 2008, 2010a,b; Pan, 1998;

Raymond et al., 2010). Recently, Gauthier et al. (2018) also created a vector space decom-

position framework that is guided by dual optimality considerations. Other decomposition

methods can also be found in Conejo et al. (2006).
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Another multiple pivot technique is column generation. This method was initially pro-

posed by Ford and Fulkerson (1958). The goal is to solve LPs that have numerous vari-

ables, and the number of variables is substantially greater than the number of constraints

(Nemhauser, 2012). Column generation begins with a subset of these variables (usually

enough variables to form an initial basis). This subproblem is solved and the algorithm

analyzes if adding one of the excluded variables (new column) improves the current solution.

This process is repeated until an optimal solution to the original LP is achieved. Observe

that column generation techniques are sometimes applied to decomposition methods to han-

dle the interaction between the general and special LPs. Column generation has been used

for example to solve cutting-stock problems (Gilmore and Gomory, 1961, 1963), shipping

scheduling problems (Appelgren, 1969), and machine learning related topics (Demiriz et al.,

2002). Column generation has also widely been used in integer and mixed integer program-

ming (Lübbecke and Desrosiers, 2005; Nemhauser, 2012).

Block pivot techniques are another class of multiple pivots. While the simplex method

exchanges exactly one basic variable with one nonbasic variable at each iteration, block pivot

methods exchange a set of these variables at each step. Bazaraa et al. (2010) provide three

conditions that must be satisfied to have successful block pivots: basis structure maintained,

feasibility, and no worse objective function values. Bazaraa et al. argue that block pivots are

not often explored because checking for feasibility is either difficult or time consuming. The

reader will see later in this dissertation that some of the algorithms created by this research

are block pivot techniques, and correctly checking for feasibility can be quickly performed.

Block pivots are also discussed by Howard (1960), Padberg (1999), and Ye (2011).

2.2 Advancements in an Interior Point Framework

Even though simplex framework algorithms can efficiently solve linear programming prob-

lems, no polynomial time pivoting rule is known to date, and some researchers believe that

one probably does not exist (Gondzio, 2012). This fact, associated with the importance of

solving LPs faster, motivated extensive research to various other techniques. This investiga-
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tion resulted in the discovery of numerous algorithms within the context of an interior point

framework. Interior point methods are one of the most important breakthroughs in linear

programming, and were a complete change of paradigm to the field.

Substantial interior point algorithm results for linear programming appeared in the early

1980s, but credit must be given to Frisch (1955), Carroll (1961), and Fiacco and McCormick

(1968), who developed critical interior point algorithm results for nonlinear programming.

Currently, there still exists a debate as to whether or not interior point algorithms are com-

putationally faster than the simplex method (Bertsimas and Tsitsiklis, 1997; Gondzio, 2012;

Illés and Terlaky, 2002; Terlaky and Zhang, 1993; Todd, 2002). Based on these discussions,

interior point methods frequently solve large and sparse LPs faster than the simplex method.

The first promising interior point algorithm for LPs was proposed by Khachiyan (1980).

This method, mostly known as the Khachiyan’s ellipsoid interior point algorithm, determines

a sequence of ellipsoids which contains a solution that satisfy the LP’s feasible region. When

one of these ellipsoids has its center violating at least one of the constraints, then the algo-

rithm constructs a smaller ellipsoid containing this constraint and the process is repeated.

Khachiyan’s ellipsoid interior point algorithm was the first known polynomial time method

to solve LPs. However, this techniques was proved to be ineffective in practice because of

its high dependency on the input data (Goldfarb and Todd, 1989).

The first interior point algorithm that was efficient in practice was created by Karmarkar

(1984). Similar to Khachiyan’s technique, Karmarkar’s projective interior point algorithm

can solve LPs in polynomial time. From a feasible interior solution, this method computes a

feasible and improving search direction at each step, and moves along this search direction to

an improved feasible interior solution. In this case, Karmarkar’s technique computes search

directions by using a projective transformation to place feasible interior solutions near the

center of the LP’s feasible region in the transformed space.

Given the impressive results with Karmarkar’s method, numerous other researchers have

studied and proposed alternate interior point algorithms. Some of the major results can be

classified as affine scaling methods, barrier methods, path following algorithms, infeasible

interior point algorithms, and multidimensional search techniques. Additional details about
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the history or background information of interior point methods is found in the well-known

papers of Lustig et al. (1994a), Shanno (2012), and Gondzio (2012). Other algorithmic and

theoretical results can also be found in Fang and Puthenpura (1993), Bazaraa et al. (2010),

and Vanderbei (2014).

2.2.1 Affine Scaling Methods

Affine scaling interior point algorithms are similar to Karmarkar’s projective interior point

algorithm. The main difference between both techniques is on the computation of search

directions. That is, affine scaling methods place feasible interior solutions near the center of

the LP’s feasible region by using an affine scaling transformation instead of the projective

transformation from Karmarkar’s algorithm. Another difference is that affine scaling meth-

ods can be directly applied to LPs in standard form, while Karmarkar’s algorithm requires

additional transformations to the problem. On the other hand, theoretical convergence re-

sults are usually easier to obtain in projective algorithms than in affine scaling techniques

(Vanderbei and Lagarias, 1990).

The first results on affine scaling methods were published by Dikin (1967, 1974). How-

ever, Dikin’s work was noticed only after Karmarkar created its projective algorithm. From

the work of Karmarkar, other researchers developed critical results to affine scaling interior

point algorithms. For instance, Barnes (1986), Vanderbei et al. (1986), and Adler et al.

(1989) independently developed algorithmic and theoretical results on affine scaling meth-

ods. Only after a few years of these discoveries, Bayer and Lagarias (1989a) and Vanderbei

and Lagarias (1990) more clearly presented the idea of Dikin, including a detailed review of

Dikin’s theoretical convergence result. In fact, several other researchers developed conver-

gence results to affine scaling methods (Güler and Ye, 1993; Monteiro et al., 1993; Saigal,

1996a; Tseng and Luo, 1992; Tsuchiya, 1992).

Affine scaling methods have three basic variants: primal, dual, and primal-dual. The

primal affine scaling interior point algorithm optimizes over the primal form of LPs (see

Chapter 5.1.1 for the mostly used formulation). The algorithm begins with a primal feasible
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interior solution and moves toward optimality while maintaining primal feasibility. The dual

affine scaling interior point algorithm considers the a dual LP formulation (see Chapter 5.1.2).

From an initial dual feasible interior solution, the algorithm maintains dual feasibility during

the entire solution process while it achieves optimality. Computationally speaking, the dual

affine scaling method tends to converge faster than the primal affine scaling technique, and

it is less sensitive to numerical errors (Fang and Puthenpura, 1993). Other variants of the

classical primal and dual affine scaling methods have also been developed (Hager and Zhang,

2014; Liao, 2014; Nayak et al., 2012; Pan, 2013; Saigal, 1996b).

The primal-dual affine scaling interior point algorithm optimizes over the primal and

dual LP formulations simultaneously. The algorithm uses a logarithmic barrier function to

accomplish all three Karush-Kuhn-Tucker (KKT) conditions (primal feasibility, dual feasibil-

ity, and complementary slackness) during the optimality process. Because of this additional

feature, and other such variants explored throughout the years, the primal-dual affine scal-

ing interior point algorithm is usually not viewed as an affine scaling method. Instead, this

techniques is simply categorized in the broad class of primal-dual interior point methods.

The first primal-dual framework was proposed by Megiddo (1989). Furthermore, both

Kojima et al. (1989) and Monteiro and Adler (1989) discovered polynomial time primal-dual

algorithms for LPs. The history of primal-dual methods is relatively long, and the work of

Wright (1997) is suggested for a complete study. Recent research on primal-dual methods

also exists (Bai et al., 2008; Baryamureeba and Steihaug, 2006; Benson and Shanno, 2007;

Edlund et al., 2009; Takács and Darvay, 2018).

2.2.2 Barrier Methods

Barrier interior point algorithms utilize some type of barrier function to push successive fea-

sible interior solutions away from the boundary of the LP’s feasible region. These algorithms

have a barrier function associated with a weight parameter included in the objective func-

tion. The basic idea is that this additional term must approach infinity (or negative infinity

depending on the optimization direction) as the solution approaches the boundary of the
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LP’s feasible region. Consequently, the barrier function prevents solutions from becoming

sufficiently close or violating constraints. One can see that barrier interior point algorithms

convert a constrained LP to an unconstrained problem.

Observe that the algorithms from Megiddo (1989), Kojima et al. (1989), and Monteiro

and Adler (1989) can also be classified as barrier interior point algorithms, and are an

advancement to the initial research in logarithmic barrier methods. Overall, the majority

of barrier techniques use a logarithmic function as the barrier term. This idea comes from

nonlinear programming (Fiacco and McCormick, 1968; Frisch, 1955), but was first explored

in linear programming by Gill et al. (1986) and Gay (1987). In fact, Gill et al. show that the

primal logarithmic search direction and Karmarkar’s search direction are identical for some

positive weight parameter. Later on, Gonzaga (1989a, 1992) and Shanno and Bagchi (1990)

showed that Karmarkar’s projective algorithm and other such variants (Renegar, 1988) can

be easily represented as logarithmic barrier methods.

The work of Nesterov and Nemirovskii (1994) discusses the benefits of logarithmic func-

tions to barrier methods. Nesterov and Nemirovskii introduce the concept of self-concordant

functions and their properties. These type of functions, which are preserved under affine

transformations, describe a suitable relationship between the second and third derivatives of

a nonlinear function with respect to the convergence of Newton’s method. In this case, Nes-

terov and Nemirovskii show that logarithmic functions are self-concordant. Other research

on interior point methods derived from logarithmic barrier functions also exist (El Ghami

et al., 2008; Jansen et al., 1994; Komodakis and Pesquet, 2015).

Even though the majority of results in barrier methods involve logarithmic functions,

other researchers have developed different approaches to this class of interior point methods.

For instance, researchers such as Bai et al. (2003, 2004), El Ghami and Roos (2008), El

Ghami et al. (2009), and Darvay and Takács (2018) all provide studies and/or barrier interior

point algorithms based on kernel functions. Similarly, El Ghami et al. (2012) and Bouafia

et al. (2016) consider kernel functions with a trigonometric barrier term, and both show

improvements in the iteration bound for large and small updates.
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2.2.3 Path Following Algorithms

Numerous interior point algorithms can be categorized in the class of so-called path following

methods. These techniques limit successive feasible interior solutions to a neighborhood

defined by a path, which is usually referred to as the central path (Bayer and Lagarias,

1989a,b; Megiddo, 1989). The main idea is to center search directions so that they more

closely follow the trajectory of the central path.

Common path following methods typically include a logarithmic barrier function so that

the neighborhood defined by the central path does not contain solutions close to the boundary

of the LP’s feasible region. Observe that the aforementioned initial primal-dual frameworks

developed by Megiddo (1989), Kojima et al. (1989), and Monteiro and Adler (1989) are also

path following methods. Path following algorithms are dependent on a centering parameter

that ranges between 0 and 1. Consequently, these methods are usually categorized as short-

step, long-step, and predictor-corrector.

Short-step path following methods choose a centering parameter close to 1. In this

case, the movement between solutions stays within the neighborhood defined by the central

path. While feasibility is guaranteed and solutions stay away from the boundary of the LP’s

feasible region, only small progress is made toward the direction of the optimal solution.

Consequently, short-step path following methods perform short movements until optimality

is achieved, as its name suggests. This strategy was not deeply explored in the literature,

but some studies are included in Renegar (1988), Gonzaga (1989b), Gonzaga (1992), and

Shaw and Goldfarb (1994).

Long-step path following algorithms determine a centering parameter farther from 1 and

closer to 0. Consequently, larger steps toward the direction of the optimal solution are

performed, but solutions usually stay away from the central path and its neighborhood.

Because long-step techniques perform less conservative movements, its iteration bound is

smaller, and long-step path following methods are typically preferred rather than short-step

methods. Examples of research developed using long-step strategies include the work of

Gonzaga (1991b,c), Anstreicher and Bosch (1992), Anstreicher (1996), and Wu (1998).
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The most useful and explored path following implementation involves the predictor-

corrector strategy. Predictor-corrector path following algorithms balance both the central

path and the direction of the optimal solution. That is, the centering parameter is alternated

between 0 and 1 at successive iterations. One can view an iteration where the centering pa-

rameter equals 0 as the predictor step, while the other is denoted as the corrector step.

The first predictor-corrector algorithm was proposed by Mehrotra (1992), which was further

explored by Lustig et al. (1992, 1994b). Other predictor-corrector path following methods

also exist (Colombo and Gondzio, 2008; Gondzio, 1996; Haeberly et al., 1999; Ma and Liu,

2017; Winternitz et al., 2012; Yang, 2013).

2.2.4 Infeasible Interior Point Algorithms

Several proposed interior point methods require an initial feasible interior solution, which is

not always simple to obtain. Even though modifying the problem being solved may lead to

such a solution (Kojima et al., 1989; Megiddo, 1989; Monteiro and Adler, 1989), this modi-

fication increases the size of the instance and may result into numerical issues (Lustig, 1990;

Lustig et al., 1991; McShane et al., 1989). Infeasible interior point methods, as the name

suggests, do not require an initial strictly feasible solution. In this case, the algorithm can

solve an LP in its standard form and no artificial problem is necessary. Basically, all that

is needed are strictly positive decision and slack variables. Search directions in an infeasible

interior point method are modified such that the algorithm moves toward feasibility and

consequently, to an optimal solution. Currently, infeasible primal-dual methods are consid-

ered one of the computationally fastest algorithms to solve linear programming problems

(Gondzio, 2012).

The first infeasible primal dual interior point algorithm was presented by Kojima et al.

(1993), who also proved its global convergence. Primal, dual, and slack search directions are

determined by solving a system of linear equations that are dependent on the residuals with

respect to the current solution. One can view the residuals as the “amount of infeasibility”

in the primal and dual spaces given by the current solution. Kojima et al. also defines a
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rule to calculate distinct step sizes in both spaces, which allows primal and dual/slack search

directions to maximize the movement in both spaces. Additionally, Zhang (1994) provided

a polynomial time long-step path following interior point method from the work developed

by Lustig et al. (1991).

Other variants of infeasible primal dual interior point methods can be found in the pa-

pers of Potra (1994), Ye et al. (1994), Freund (1996), and Potra (1996). Recently, other

researchers have also proposed infeasible interior point methods for LPs. For instance, Gu

et al. (2010), Mansouri and Zangiabadi (2013), Ahmadi et al. (2014), Mansouri et al. (2015),

and Roos (2015) all created improved full Newton step infeasible interior point methods.

For each of these algorithms, one feasibility step and several centering steps are performed

at each iteration. Furthermore, Asadi and Roos (2016) and Liu et al. (2011) design infea-

sible large neighborhood techniques inspired by the full Newton step methods and second

order corrector algorithms. Another example is the arc-search infeasible interior point algo-

rithms from Yang et al. (2016) and Yang (2018), which have a wider infeasible central path

neighborhood than the existing methods.

2.2.5 Multidimensional Search Techniques

The core concept of multidimensional search interior point algorithms involves the idea of

two or more search directions in contrast to a single search direction (see Chapter 3.1 for

additional details). In this case, each step of an interior point algorithm searches over a

multidimensional subspace instead of a line. While algorithms with a single search direction

have been throughly explored over the decades, only a minimal amount of work has been

done on algorithms with multiple search directions.

Karmarkar and Ramakrishnan (1985) gave a talk in the ORSA/TIMS Joint National

Meeting, and were the first to discuss the concept and potential benefits of multidimensional

search interior point algorithms for LPs. Later on, Gonzaga (1991a) presented the first

preliminary theoretical results on multidimensional search procedures. Gonzaga compares

the trust region of many one dimensional search methods and provides an expanded trust
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region when two dimensional searches are performed over a two dimensional region. Gonzaga

also discusses the use of cost improvement search directions along with recentering search

directions on a two dimensional search framework.

The work of Karmarkar and Ramakrishnan and Gonzaga provided a transformative

change of paradigm, but no algorithmic results were presented. The first promising results

on two dimensional searches appeared in the work of Boggs et al. (1989), which developed the

first two dimensional search interior point algorithm to solve LPs. From a feasible interior

solution, their technique defines one of its search directions as a dual affine direction. The

other search direction is determined by either the so called rank-one update direction or a

Newton recentering direction. The rank-one update search direction is derived by the first

constraint found by the dual affine search direction. Boggs et al. argue that the rank-one

update search direction is either improving or dominated by the dual affine search direc-

tion, which guarantees an improving movement at each iteration. The Newton recentering

search direction is implemented only at the final iterations when the rank-one update search

direction is less productive due to the large number of active constraints.

The method of Boggs et al. was implemented only at Phase 2 (when an initial feasible

interior solution has been already obtained) and two dimensional subspace linear programs

were solved with the general implementation of the simplex method. The algorithm was

tested on a small subset of benchmark linear programs against the classical dual affine

scaling interior point algorithm. The paper of Boggs et al. does not report any solution

times, but claim an improvement in the number of iterations.

The above two dimensional search interior point algorithm was extended to a three dimen-

sional search version by Domich et al. (1991). The method is similar to the one developed by

Boggs et al., and a third search direction is derived from Huard’s method of centers (Huard,

1967). Computational experiments showed not only an improvement in the number of itera-

tions but also an improvement in solution times. Other multidimensional search techniques

not related to interior point methods or linear programming include the work of Megiddo

(1984), Dyer (1986), Dyer and Frieze (1989), Seidel (1991), Agarwala and Fernández-Baca

(1996), and Dyer and Sen (2000).
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To the best of the author’s knowledge, the algorithms of Boggs et al. and Domich

et al. are the only multidimensional search interior point algorithms developed for linear

programming. Even though both showed theoretical and practical benefits on this new

advancement to interior point methods, this topic has not been explored by other researchers.

Furthermore, all developed multiple pivot techniques discussed in Chapter 2.1.4 were created

more from an application perspective rather than a fundamental change of paradigm. That

is, the majority of these methods more efficiently solve specific applications or classes of

problems that are hard to solve using the classical techniques. However, if applied to solve

any other general problem, these methods may not necessarily be as effective as the classical

one dimensional search algorithms.

As discussed in Chapter 1.1, this lack of research along with the lack of a broader view

with respect to multidimensional search methods is one of the motivations to this disser-

tation’s research. The following chapters provide novel multidimensional search techniques

within both a simplex and interior point frameworks.
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Chapter 3

Two Dimensional Searches in Linear

Programming

This chapter presents newly developed two dimensional search techniques for linear program-

ming. Chapter 3.1 discusses the concept of one dimensional and two dimensional searches

implemented to both a simplex and an interior point framework. Chapter 3.2 describes the

slope algorithm, a technique to find both an optimal basis and an optimal solution to LPs

with only two variables. This method is also expanded in Chapter 3.3 to create the ratio

algorithm, a technique to determine an optimal basis and an optimal solution to LPs with

only two constraints. These methods are the foundation for the two dimensional search

algorithms presented in Chapters 4 and 5.

The primary content of this chapter is based on the journal paper, “The Double Pivot

Simplex Method”, published in Mathematical Methods of Operations Research (Vitor and

Easton, 2018b) and the conference paper, “The Ratio Algorithm to Solve the Optimal Basis

of Two Constraint Linear Programs”, published in the Proceedings of the 2018 IISE Annual

Conference (Vitor, 2018). Some fundamental insights are also retrieved from the manuscript,

“Projected Orthogonal Vectors in Two Dimensional Search Interior Point Algorithms for

Linear Programming”, which is currently under peer-review (Vitor and Easton, 2019a).
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3.1 One Dimensional vs. Two Dimensional Searches

Numerous techniques, as discussed in Chapter 2, have been developed to solve LPs. These

methods are iterative algorithms that solve linear programming problems using a master-

subproblem strategy. To solve the original LP (master problem), the algorithms successively

move from one solution to another solution by solving a smaller LP (subproblem) at each

iteration. This strategy is commonly used not only to solve LPs, but also to solve many

other classes of optimization problems such as integer and nonlinear programming.

The vast majority of these linear programming algorithms can be viewed as one dimen-

sional search techniques. That is, these methods successively improve the objective function

value by solving a one dimensional subspace linear program at each step. Given a solution,

the subproblem determines how far to move along a single feasible improving search direction

to a new solution.

In contrast, two dimensional search algorithms solve a two dimensional subspace linear

program at each iteration. This subproblem requires two search directions instead of one. In

this case, at least one of them must be a feasible improving search direction. The subproblem

determines the next solution by searching over a two dimensional subspace defined by the

nonnegative linear combination of both search directions and the LP’s feasible region.

Figure 3.1(a) geometrically demonstrates, in a 3-dimensional LP sketch, the concept

of one dimensional searches when applied to a simplex framework. From a basic feasible

solution xk1D, a feasible improving search direction dk1D is selected. This search direction,

when intersected with the LP’s feasible region, creates a one dimensional subspace defined

by the line from xk1D to xk+1∗

1D . Optimally solving xk1D + λk1Dd
k
1D along with λk1D ≥ 0 forms

a one dimensional subspace linear program. An optimal solution to this subproblem, λk
∗

1D,

maximizes the movement from xk1D along search direction dk1D to xk+1∗

1D . This new and

improved basic feasible solution is defined as xk+1∗

1D = xk1D + λk
∗

1Dd
k
1D.

Figure 3.1(b) geometrically presents the primary concept of two dimensional searches

in a simplex framework. From a basic feasible solution xk2D, two feasible search directions

dk
′

2D and dk
′′

2D are selected where at least one of them must be improving. Observe that a
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nonnegative linear combination of dk
′

2D and dk
′′

2D defines a plane. This plane, when intersected

with the LP’s feasible region, creates a two dimensional subspace defined in Figure 3.2(b)

by Π. Optimally solving xk2D + λk
′

2Dd
k′
2D + λk

′′
2Dd

k′′
2D with λk

′
2D ≥ 0 and λk

′′
2D ≥ 0 creates a two

dimensional subspace linear program. An optimal solution to this subproblem, (λk
′∗

2D, λ
k′′∗

2D ),

determines the new and improved basic feasible solution xk+1∗

2D = xk2D + (λk
′∗

2Dd
k′
2D + λk

′′∗

2D d
k′′
2D).

(a) One dimensional search (b) Two dimensional search

Figure 3.1: Graphical representation of one and two dimensional searches in a simplex
framework

Observe that one and two dimensional searches behave similarly in an interior point

framework. Figure 3.2(a) presents the concept for one dimensional searches. In this case,

xk1D must be a feasible interior solution as well as xk+1∗

1D . Since xk+1∗

1D is at the boundary of

the LP’s feasible region, xk+1∗

1D is backed off by a constant α ∈ (0, 1). Thus, the new and

improved feasible interior solution becomes xk+1
1D = xk1D + αλk

∗
1Dd

k
1D. Furthermore, Figure

3.2(b) describes two dimensional searches where xk2D is feasible and in the interior of the

LP’s feasible region, and xk+1∗

2D is backed off so that xk+1
2D = xk2D + α(λk

′∗

2Dd
k′
2D + λk

′′∗

2D d
k′′
2D) for

some α ∈ (0, 1) is also a feasible interior solution.

The real benefit obtained with these two dimensional search methods can be attributed

to the addition of a second search direction. Observe in Figures 3.1(a) and 3.2(a) that

either in a simplex or interior point framework, finding a new and improved feasible solution
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at each iteration is limited by all the solutions contained in a single ray. When a second

search direction is added in Figures 3.1(b) and 3.2(b), the number of potential solutions is

drastically increased, which allows these methods to search over a broader space.

(a) One dimensional search (b) Two dimensional search

Figure 3.2: Graphical representation of one and two dimensional searches in an interior
point framework

Another benefit is the quality of solutions obtained with two dimensional search algo-

rithms. This is because there are an infinity number of one dimensional search directions

that can be represented as a nonnegative linear combination of other two search directions.

Therefore, if these two search directions are appropriately selected, then these techniques

have the potential to improve the object function value at each iteration by more than the

corresponding one dimensional search version.

Because two dimensional search techniques examine a broader space to search for a new

and improved feasible solution at each step, these methods have the potential to improve the

objective function value by more than one dimensional search techniques. Thus, one would

expect these algorithms to perform fewer iterations. On the other hand, one could claim that

solving a two dimensional subspace linear program may require more computational effort

than solving a one dimensional subspace linear program. Therefore, two dimensional search

algorithms may not necessarily perform faster than the corresponding one dimensional search
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version. Consequently, effective methods should be implemented to solve their subproblems

in order to counteract this additional effort. This requires using other algorithms to solve

these subproblems rather than the traditional techniques such as the classical simplex method

or interior point methods.

Observe that a two dimensional subspace linear program has only two decision variables,

and is one of the simplest LPs to solve. These two variable linear programs can be easily

solved by the graphical method, which is commonly presented in courses teaching linear pro-

gramming. Many authors have proposed effective algorithms to solve such simple problems.

For instance, Shamos and Hoey (1976) present a O(r log r) algorithm that can solve two vari-

able linear programs while Megiddo (1983) and Dyer (1984) present linear time algorithms

to solve two or three variable linear programs.

Even though these methods can rapidly find an optimal solution to a two variable linear

program, such algorithms do not necessarily determine an optimal basis. That is, an op-

timal basic feasible solution from where there does not exist any feasible improving search

directions. For instance, if the two variable linear program has three or more constraints

intersecting at an optimal solution, then these methods do not necessarily obtain an optimal

basis. If on the other hand, exactly two constraints intersect at an optimal solution, then

these algorithms can be easily modified to return an optimal basis.

Since an interior point framework only requires an optimal solution to its subproblems,

implementing the method of Shamos and Hoey, Megiddo, or Dyer to perform two dimensional

searches is sufficient. On the other hand, both an optimal basis and an optimal solution is

necessary in a simplex framework. This is because selecting a non-optimal basis to its

subproblems may result to an unchanged basis of the master problem, and the algorithm

may never terminate.

The following section presents the slope algorithm, a newly developed technique to iden-

tify both an optimal basis and an optimal solution of two variable linear programs. The

subsequent section describes the ratio algorithm, which finds an optimal basis and an opti-

mal solution of LPs with only two constraints. Both techniques can be implemented within
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a simplex and an interior point framework, and are the foundation for the two dimensional

search algorithms developed for this dissertation’s research.

3.2 The Slope Algorithm

The slope algorithm (SA) is designed to solve two variable linear programs within a simplex

framework. Thus, these subproblems satisfy three conditions: the cost coefficient of both

variables are positive, both of the variables have nonnegativity constraints, and the right-

hand side value of every constraint is nonnegative. Formally, let c1, c2 ∈ R+ \{0}, A ∈ Rr×2,

and b ∈ Rr+. Define a two variable linear program (2VLP) as:

maximize z = c1x1 + c2x2

subject to aj,1x1 + aj,2x2 ≤ bj ∀ j ∈ R

x1, x2 ≥ 0.

Denote S2 = {x ∈ R2
+ : aj,1x1 + aj,2x2 ≤ bj ∀ j ∈ R} as the feasible region of a 2VLP.

To implement SA, the nonnegativity constraints are converted into less than or equal to

constraints. Define a slope algorithm two variable linear program (SA2VLP) as:

maximize z = c1x1 + c2x2

subject to aj,1x1 + aj,2x2 ≤ bj ∀ j ∈ R′,

where R′ = {1, ..., r + 2}, c1 > 0, c2 > 0, bj ≥ 0 for all j ∈ R′, ar+1,2 = ar+2,1 = 0,

ar+1,1 = ar+2,2 = −1, and br+1 = br+2 = 0.

The slope algorithm evaluates the angle or “slope” of each constraint, and contrasts

these values with the slope formed by the cost coefficients c1 and c2. Since the slope of

each constraint may not be well defined depending on whether the constraint coefficients are

positive, negative, or zero, denote:

M > max
{

max
j∈R′

{∣∣aj,1
aj,2

∣∣ : aj,2 6= 0
}
,max
j∈R′

{∣∣aj,2
aj,1

∣∣ : aj,1 6= 0
}
, c2
c1

}
.
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Each constraint j ∈ R′ of an SA2VLP is partitioned into one of nine sets R′ψω where ψ

and ω denotes whether aj,1 and aj,2 are < 0, = 0, or > 0. Each set assigns a value for a slope

coefficient, αj, as follows:

αj =



−2M If j ∈ R′=< where R′=< = {j ∈ R′ : aj,1 = 0, aj,2 < 0}

−M +
aj,2
aj,1

If j ∈ R′>< where R′>< = {j ∈ R′ : aj,1 > 0, aj,2 < 0}

−M If j ∈ R′>= where R′>= = {j ∈ R′ : aj,1 > 0, aj,2 = 0}
aj,2
aj,1

If j ∈ R′>> where R′>> = {j ∈ R′ : aj,1 > 0, aj,2 > 0}

M If j ∈ R′=> where R′=> = {j ∈ R′ : aj,1 = 0, aj,2 > 0}

M − aj,1
aj,2

If j ∈ R′<> where R′<> = {j ∈ R′ : aj,1 < 0, aj,2 > 0}

2M If j ∈ R′<= where R′<= = {j ∈ R′ : aj,1 < 0, aj,2 = 0}

3M If j ∈ R′== where R′== = {j ∈ R′ : aj,1 = 0, aj,2 = 0}

3M If j ∈ R′<< where R′<< = {j ∈ R′ : aj,1 < 0, aj,2 < 0}.

Due to the large value of M , viewing the constraints in a non-descending order according

to the values of the αj’s creates a counterclockwise orientation of the constraints’ slopes

starting from the x1 axis. Figure 3.3 depicts the constraints with their respective αj values.

Observe that only eight out of the nine constraints are viewable because R′== defines the

entire two dimensional space.

The first step in creating SA is to determine whether or not an SA2VLP is unbounded.

The following lemma provides a relationship between the coefficients from two constraints,

which helps derive conditions of an unbounded SA2VLP.

Lemma 3.2.1. If SA2VLP has j and k ∈ R′ such that αj < αk and αk ≤ −M , then

aj,2ak,1 < aj,1ak,2.

Proof. Assume an SA2VLP has j and k ∈ R′ such that αj < αk and αk ≤ −M . If αj = −2M ,

then aj,1 = 0, aj,2 < 0, and −2M < αk ≤ −M . Thus, ak,1 > 0. Consequently, aj,2ak,1 < 0,

ak,2aj,1 = 0, and aj,2ak,1 < aj,1ak,2.
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If −2M < αj < −M , then aj,1 > 0, aj,2 < 0, and αj < αk ≤ −M . If αk < −M , then

−M +
aj,2
aj,1

< −M +
ak,2
ak,1

, which results in aj,2ak,1 < aj,1ak,2. If αk = −M , then ak,1 > 0 and

ak,2 = 0. Thus, aj,2ak,1 < 0 and ak,2aj,1 = 0. Consequently, aj,2ak,1 < aj,1ak,2. 2

Figure 3.3: Sample αj for eight classes of constraints of an SA2VLP

Since the point (0, 0) is feasible, c1 > 0, c2 > 0, x1 ≥ 0, and x2 ≥ 0 for every SA2VLP,

thus any feasible ray d = (d1, d2) ∈ R2 implies that SA2VLP is unbounded. Therefore, if

there exists a d = (d1, d2) ∈ R2
+ such that aj,1d1 + aj,2d2 ≤ 0 for all j ∈ R′, then SA2VLP

is unbounded. The following theorem provides necessary and sufficient conditions for an

unbounded SA2VLP.

Theorem 3.2.1. An SA2VLP is unbounded, if and only if, the following three conditions

hold:

i) R′>> = ∅;

ii) If R′>= 6= ∅, then R′=> = ∅ and R′<> = ∅;

iii) If R′>< 6= ∅, then R′=> = ∅ and
aj,2
aj,1
≤ ak,2

ak,1
for every j ∈ R′>< and every k ∈ R′<>.
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Proof. Assume an SA2VLP is unbounded. Thus, there exists a ray d = (d1, d2) such that

aj,1d1 + aj,2d2 ≤ 0 for all j ∈ R′ and c1d1 + c2d2 > 0. Since x1 ≥ 0, x2 ≥ 0, c1 > 0, and

c2 > 0, the unbounded ray must satisfy d1 ≥ 0, d2 ≥ 0, and d1 + d2 > 0.

Assume there exists a j ∈ R′>>. Then aj,1 > 0 and aj,2 > 0. Evaluating d on the jth

constraint results in aj,1d1 + aj,2d2 > 0, contradicting d being a feasible ray. Thus, R′>> = ∅

and i) is satisfied.

Assume there exists a j ∈ R′>=. Therefore, aj,1 > 0 and aj,2 = 0. Since d1 ≥ 0, d1 = 0 or

d is not a feasible ray for the jth constraint. Thus, d = (0, d2) where d2 > 0. If any k ∈ R′

has ak,2 > 0, then d is not a feasible direction for the kth constraint. Thus, R′=> = ∅ and

R′<> = ∅, which satisfies ii).

Assume there exists a j ∈ R′><. Consequently, aj,1 > 0 and aj,2 < 0. For contradiction,

assume k ∈ R′=>, which implies ak,1 = 0 and ak,2 > 0. In order for d to be an improving

direction that is feasible on the kth constraint, d2 = 0 and d1 > 0. Thus, aj,1d1 + aj,2d2 > 0,

contradicting d being a feasible direction for the jth constraint. Therefore, R′=> = ∅ and the

first condition of iii) is satisfied.

Assume there exists j ∈ R′>< and k ∈ R′<>. This implies that aj,1 > 0, aj,2 < 0, ak,1 < 0,

and ak,2 > 0. Since d is an improving direction and feasible on the jth and kth constraints,

d1 > 0, d2 > 0, aj,1d1 + aj,2d2 ≤ 0, and ak,1d1 + ak,2d2 ≤ 0. Therefore, d1 ≤ −aj,2d2
aj,1

.

Substituting into the second inequality results in ak,1

(
− aj,2d2

aj,1

)
+ ak,2d2 ≤ 0, which implies

d2

(
− ak,1aj,2

aj,1
+ ak,2

)
≤ 0. Since d2 > 0, −ak,1aj,2

aj,1
+ ak,2 ≤ 0, implying that

aj,2
aj,1
≤ ak,2

ak,1
.

Therefore, the second condition of iii) is satisfied.

Conversely, assume an SA2VLP satisfies conditions i), ii), and iii). Let j∗ ∈ R′=<∪R′><∪

R′>= such that αj∗ ≥ αj for all j ∈ R′=< ∪R′>< ∪R′>=. The claim is that the j∗th constraint

defines a ray of unboundedness, which is d = (−aj∗,2, aj∗,1). Trivially, c1(−aj∗,2)+ c2(aj∗,1) >

0 for any j∗ ∈ R′=< ∪R′>< ∪R′>=. Since the point (0, 0) is feasible, it suffices to show that d

is a feasible direction for each k ∈ R′.

Let k ∈ R′ such that αk < αj∗ . The conditions of Lemma 3.2.1 are satisfied and ak,2aj∗,1 <

ak,1aj∗,2. This implies that ak,2aj∗,1−ak,1aj∗,2 < 0. If k ∈ R′ such that αk = αj∗ , then the j∗th

and k∗th constraints are parallel and ak,2aj∗,1 − ak,1aj∗,2 = 0. Consequently, d is a feasible
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direction for every such constraint and the remainder of the cases need only to consider

αk > αj∗ .

If j∗ ∈ R′=<, then R′>< = ∅ and R′>= = ∅ because αj∗ ≥ αj for all j ∈ R′=< ∪R′>< ∪R′>=.

Since R′>> = ∅, ak,1 ≤ 0 for all k ∈ R′. Thus, ak,1(−aj∗,2) + ak,2(0) ≤ 0 for all k ∈ R′ and d

is a feasible improving ray.

If j∗ ∈ R′><, then aj∗,1 > 0, aj∗,2 < 0, R′>> = ∅, R′=> = ∅, and R′>= = ∅ due to i), the

first condition of iii), and αj∗ being the maximum αj for all j ∈ R′=< ∪R′>< ∪R′>=. For any

k ∈ R′<= ∪ R′== ∪ R′<<, ak,1(−aj∗,2) ≤ 0 and ak,2(aj∗,1) ≤ 0, so ak,1(−aj∗,2) + ak,2(aj∗,1) ≤ 0.

If k ∈ R′<>, ak,1 < 0. The second condition of iii),
(
aj∗,2
aj∗,1

≤ ak,2
ak,1

for all k ∈ R′<>
)

, implies

aj∗,2ak,1 ≥ ak,2aj∗,1. Therefore, ak,1(−aj∗,2) + ak,2(aj∗,1) ≤ 0. Consequently, d is a feasible

direction for each k ∈ R′ such that αk > αj∗ . Thus, d is a ray of unboundedness.

If j∗ ∈ R′>=, then R′>> = ∅, R′=> = ∅, and R′<> = ∅ according to i) and ii). Therefore,

ak,2 ≤ 0 and ak,1(0) + ak,2(aj∗,1) ≤ 0 for all k ∈ R′ such that αk > αj∗ . Consequently, d is a

feasible improving ray. Since all cases have an improving ray, SA2VLP is unbounded. 2

The three graphs in Figure 3.4 illustrate the conditions of Theorem 3.2.1. The j∗ con-

straint is labeled in each figure and is represented by a solid line. This constraint identifies

a ray of unboundedness as shown in the theorem. The dashed lines demonstrate constraints

that cannot exist for SA2VLP to be unbounded.

Since the point (0, 0) is feasible, an optimal solution to SA2VLP exists whenever SA2VLP

is bounded. The following lemma and two corollaries provide other useful relationships

between the coefficients of two constraints and also the objective function coefficients c1 and

c2. From any SA2VLP, define SA2VLPj,k to be an SA2VLP with only four constraints.

The constraints are the two nonnegativity constraints and the jth and kth constraints from

SA2VLP.
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(a) Condition i) of Theorem 3.2.1 (b) Condition ii) of Theorem 3.2.1

(c) Condition iii) of Theorem 3.2.1

Figure 3.4: Graphical representation of conditions i), ii), and iii) from Theorem 3.2.1

Lemma 3.2.2. If an SA2VLP has j and k ∈ R′ such that SA2VLPj,k is bounded, αj < M ,

−M < αk ≤ 2M , and αj < αk, then aj,2ak,1 < aj,1ak,2.

Proof. Assume an SA2VLP has j and k ∈ R′ such that SA2VLPj,k is bounded, αj < M ,

−M < αk ≤ 2M , and αj < αk. From Theorem 3.2.1, the possible combinations for the j and

k constraints are limited. Therefore, the proof shows that aj,2ak,1 < aj,1ak,2 for all possible

values of αj.

If αj = −2M , then aj,1 = 0 and aj,2 < 0. Since SA2VLPj,k is bounded and from the

conditions of Theorem 3.2.1, then αk < M . Thus, ak,1 > 0 and ak,2 > 0. Consequently,

aj,2ak,1 < aj,1ak,2.

If −2M < αj < −M , then aj,1 > 0, aj,2 < 0, and αk < 2M or SA2VLPj,k is unbounded

from Theorem 3.2.1. If αk ≤ M , then ak,1 > 0 and ak,2 ≥ 0. Thus, aj,2ak,1 < 0 and
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aj,1ak,2 ≥ 0, which implies aj,2ak,1 < aj,1ak,2. If αk > M and because SA2VLPj,k is bounded,

then
aj,2
aj,1

>
ak,2
ak,1

by the results from Theorem 3.2.1. Hence, aj,2ak,1 < ak,2aj,1.

If αj = −M , then aj,1 > 0, aj,2 = 0, and αk < 2M or SA2VLPj,k is unbounded. Thus,

ak,2 > 0, aj,2ak,1 = 0, and aj,1ak,2 > 0. Consequently, aj,2ak,1 < aj,1ak,2.

If −M < αj < M , then aj,1 > 0 and aj,2 > 0. If αk < M , then
aj,2
aj,1

<
ak,2
ak,1

and aj,2ak,1 <

aj,1ak,2, because αj < αk. If M ≤ αk < 2M , then ak,1 ≤ 0 and ak,2 > 0. Consequently,

aj,2ak,1 < aj,1ak,2. If αk = 2M , then ak,1 < 0 and ak,2 = 0, and so aj,2ak,1 < aj,1ak,2 = 0. 2

Observe that the right-hand side bj and bk are not contained in the proofs or statements

of Lemmas 3.2.1 and 3.2.2. These lemmas are based solely on the slopes, represented by αj

and αk. However, these relationships remain between a constraint and the cost coefficients

c1 and c2. Since c1 > 0 and c2 > 0, the α value of the objective function is equivalent to c2
c1

.

Since −M < c2
c1
< M , the following two corollaries are direct applications of Lemma 3.2.2.

Corollary 3.2.1. If SA2VLP has a j ∈ R′ such that αj <
c2
c1

, then aj,2c1 < aj,1c2. 2

Corollary 3.2.2. If SA2VLP has a k ∈ R′ such that c2
c1
≤ αk ≤ 2M , then c2ak,1 ≤ c1ak,2.

Proof. Assume an SA2VLP has a k ∈ R′ such that c2
c1
< αk. From Lemma 3.2.2, c2ak,1 <

c1ak,2. If c2
c1

= αk, then ak,1 > 0 and ak,2 > 0. Thus, c2
c1

=
ak,2
ak,1

and c2ak,1 = c1ak,2, which

implies c2ak,1 ≤ c1ak,2. 2

There are typically an infinite number of points in R2 that satisfy both the jth and kth

constraints. This dissertation defines the intersection point of the jth and kth constraints as

the unique extreme point of the feasible region defined by only these two constraints. If no

such extreme point exists, then the jth and kth constraints are parallel, aj,1ak,2−aj,2ak,1 = 0,

and the constraints are said to be nonintersecting. Consequently, any intersecting constraints

satisfy aj,1ak,2 − aj,2ak,1 6= 0, and the intersection point is given by x = (x1, x2), where:

x1 =
bjak,2 − bkaj,2
aj,1ak,2 − aj,2ak,1

and x2 =
aj,1bk − bjak,1
aj,1ak,2 − aj,2ak,1

.

41



Theorem 3.2.2 identifies nonsupportive constraints in S2 by evaluating x on a particular

constraint. A constraint is said to support S2 if there exists a point in S2 that meets the

constraint at equality.

Theorem 3.2.2. If a bounded SA2VLP has i, j, and k ∈ R′ such that αi < αj < αk ≤ 2M ,

αj < M , and the intersection point of the jth and kth constraints violates the ith constraint,

then the jth constraint does not support S2.

Proof. Assume an SA2VLP is bounded and there exists constraints i, j, and k ∈ R′ such

that αi < αj < αk ≤ 2M , αj < M , and the intersection point of the jth and kth constraints,

x, violates the ith constraint. The points in R2 that meet the jth constraint at equality can

be expressed as x+ ρ(aj,2,−aj,1) and x+ λ(−aj,2, aj,1) where ρ ≥ 0 and λ > 0.

Evaluating x+ ρ(aj,2,−aj,1) for all ρ ≥ 0 on the ith constraint results in ai,1x1 + ai,2x2 +

ρ(ai,1aj,2 − ai,2aj,1). Since x violates the ith constraint, ai,1x1 + ai,2x2 > bi. The ith and jth

constraints satisfy either the conditions of Lemma 3.2.1 or Lemma 3.2.2 and ai,2aj,1 < ai,1aj,2.

Therefore, ai,1x1 + ai,2x2 + ρ(ai,1aj,2 − ai,2aj,1) > bi for all ρ ≥ 0, and none of these points

are contained in S2.

Evaluating x+λ(−aj,2, aj,1) for all λ > 0 on the kth constraint results in ak,1x1 +ak,2x2 +

λ(−ak,1aj,2+ak,2aj,1). Since x satisfies the kth constraint, ak,1x1+ak,2x2 = bk. The jth and kth

constraints satisfy either the conditions of Lemma 3.2.1 or Lemma 3.2.2 and aj,2ak,1 < aj,1ak,2.

Thus, ak,1x1 + ak,2x2 + λ(−ak,1aj,2 + ak,2aj,1) > bk for all λ > 0, and none of these points are

contained in S2. Consequently, the jth constraint does not support S2. 2

Corollary 3.2.3 trivially extends this result to constraints with larger slope values. The

proof is obtained by simply swapping x1 and x2 and applying Theorem 3.2.2.

Corollary 3.2.3. If a bounded SA2VLP has j, k, and l ∈ R′ such that αj < αk < αl ≤ 2M ,

−M < αk, and the intersection point of the jth and kth constraints violates the lth constraint,

then the kth constraint does not support S2. 2

The next two corollaries identify the intersection points of constraints and apply Theorem

3.2.2 and Corollary 3.2.3 to determine nonsupportive constraints. Combining these results
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enables the creation of a linear time procedure to identify a feasible extreme point of S2,

assuming constraints are sorted in a non-descending order according to their αj values.

Corollary 3.2.4. If a bounded SA2VLP has h, i, j, and k ∈ R′ such that αh < αi < αj <

αk ≤ 2M , αj < M , and the intersection point of the jth and kth constraints satisfies the ith

constraint but violates the hth constraint, then the ith and jth constraints do not support S2.

Proof. Assume a bounded SA2VLP has constraints h, i, j, and k ∈ R′ such that αh < αi <

αj < αk ≤ 2M , αj < M , the intersection point of the jth and kth constraints, x, satisfies

the ith constraint, and violates the hth constraint. Let the intersection point of the ith and

kth constraints be x. Since x satisfies the ith constraint, thus x = x+ λ(ak,2,−ak,1) for some

λ ≥ 0. Evaluating x on the hth constraint results in ah,1x1 + ah,2x2 + λ(ah,1ak,2 − ah,2ak,1).

Since x violates the hth constraint, then ah,1x1 + ah,2x2 > bh. The hth and kth constraints

satisfy either the conditions of Lemma 3.2.1 or Lemma 3.2.2 and ah,2ak,1 < ah,1ak,2. Thus,

ah,1x1 + ah,2x2 + λ(ah,1ak,2 − ah,2ak,1) > bh. Consequently, x violates the hth constraint and

the conditions of Theorem 3.2.2 are satisfied, which implies that the ith and jth constraints

do not support S2. 2

Corollary 3.2.5. If a bounded SA2VLP has j, k, l, and m ∈ R′ such that αj < αk < αl <

αm ≤ 2M , −M < αk, and the intersection point of the jth and kth constraints satisfies

the lth constraint, but violates the mth constraint, then the lth and kth constraints do not

support S2. 2

The slope algorithm identifies an optimal solution to SA2VLP by finding constraints j

and k ∈ R′ such that αj <
c2
c1
≤ αk, SA2VLPj,k is bounded, the intersection point of the jth

and kth constraints is feasible, and αk − αj is minimized. The following theorem formalizes

that the first three conditions are sufficient to identify an optimal solution to SA2VLP.
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Theorem 3.2.3. An optimal solution to an SA2VLP occurs at the intersection point of the

jth and kth constraints if the following three conditions hold:

i) αj <
c2
c1
≤ αk ≤ 2M ;

ii) SA2VLPj,k is bounded;

iii) The intersection point of the jth and kth constraints is feasible.

Proof. Assume SA2VLP has j and k ∈ R′ such that SA2VLPj,k is bounded, αj <
c2
c1
≤ αk ≤

2M , and the intersection point of the jth and kth constraints, x, is feasible. The proof shows

that every direction from x is either infeasible or nonimproving. Partitioning all possible

directions in R2 \ {(0, 0)} results in the following four sets:

� D1 = {d ∈ R2 \ {(0, 0)} : d = β(aj,2,−aj,1) + (1− β)(ak,2,−ak,1) ∀ β ∈ [0, 1)};

� D2 = {d ∈ R2 \ {(0, 0)} : d = β(−aj,2, aj,1) + (1− β)(ak,2,−ak,1) ∀ β ∈ (0, 1)};

� D3 = {d ∈ R2 \ {(0, 0)} : d = β(−aj,2, aj,1) + (1− β)(−ak,2, ak,1) ∀ β ∈ (0, 1]};

� D4 = {d ∈ R2 \ {(0, 0)} : d = β(aj,2,−aj,1) + (1− β)(−ak,2, ak,1) ∀ β ∈ [0, 1]}.

Since −M < c2
c1
≤ αk, the jth and kth constraints satisfy Lemma 3.2.2 and aj,2ak,1 <

aj,1ak,2. Evaluating any d ∈ D1 on the jth constraint results in β(aj,1aj,2)+(1−β)(aj,1ak,2)−

β(aj,2aj,1)− (1− β)(aj,2ak,1) = (1− β)(aj,1ak,2 − aj,2ak,1) > 0 for all β ∈ [0, 1). Thus, x+ λd

violates the jth constraint for every λ > 0, and D1 is a set of infeasible directions from x.

Evaluating any d ∈ D2 on the jth constraint results in −β(aj,1aj,2) + (1 − β)(aj,1ak,2) +

β(aj,2aj,1)− (1− β)(aj,2ak,1) = (1− β)(aj,1ak,2− aj,2ak,1) > 0 for all β ∈ (0, 1). Thus, x+ λd

violates the jth constraint for every λ > 0, and D2 is a set of infeasible directions from x.

Evaluating any d ∈ D3 on the kth constraint results in −β(ak,1aj,2)− (1− β)(ak,1ak,2) +

β(ak,2aj,1) + (1 − β)(ak,2ak,1) = β(−ak,1aj,2 + ak,2aj,1) > 0 for all β ∈ (0, 1]. Thus, x + λd

violates the kth constraint for every λ > 0, and D3 is a set of infeasible directions from x.

Evaluating any d ∈ D4 on the objective function results in β(c1aj,2 − c2aj,1) + (1 −

β)(−c1ak,2 + c2ak,1). Since αj <
c2
c1

, the conditions of Corollary 3.2.1 are satisfied and
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aj,2c1 < aj,1c2. Thus, β(c1aj,2− c2aj,1) ≤ 0 for all β ∈ [0, 1]. Since c2
c1
≤ αk, c2ak,1 ≤ c1ak,2 by

Corollary 3.2.2 and (1−β)(−c1ak,2+c2ak,1) ≤ 0 for all β ∈ [0, 1]. Consequently, every d ∈ D4

is a nonimproving direction. Since every direction from x is infeasible or nonimproving and

SA2VLP is a linear convex problem, x is an optimal solution. 2

The above results enable the creation of SA, which optimally solves 2VLPs. The slope

algorithm is shown in Algorithm 3.1. The input to SA is a 2VLP and a sufficiently large

positive number M . The slope algorithm returns that either 2VLP is unbounded or an

optimal solution (z∗, x∗) along with j∗ ∈ R′, k∗ ∈ R′, αj∗ , and αk∗ . The j∗ and k∗ represent

the intersecting constraints that provide an optimal basis and an optimal solution to 2VLP.

Even though j∗, k∗, αj∗ , and αk∗ are not part of 2VLP’s optimal solution, this information is

necessary to identify an optimal basis. The proof that j∗ and k∗ identifies an optimal basis

of a 2VLP is presented in Chapter 4.2.

The slope algorithm correctly solves any SA2VLP. The check for unboundedness follows

the conditions of Theorem 3.2.1 when the constraints are viewed from their α values. If

SA2VLP is bounded, then the algorithm returns an x∗ at the intersection point of two

constraints, j∗ and k∗. Clearly, such a j∗ and k∗ exist due to the nonnegativity constraints.

One constraint has an α value less than c2
c1

and the other constraint has an α value greater

than or equal to c2
c1

. The point is validated against all constraints according to Theorem

3.2.2 and Corollaries 3.2.3, 3.2.4, and 3.2.5. From Theorem 3.2.3, x∗ is an optimal solution

to SA2VLP.

To determine the theoretical running time of SA, observe that the algorithm first cal-

culates every element of the array α in O(r) and sorts this array (lines 3-4). There are

numerous sorting algorithms and let S(r) be the effort required by the selected algorithm to

sort r elements. The main step of SA (lines 5-28) first determines two intersecting constraints

in O(r). The check for unboundedness is performed in O(1). If SA2VLP is bounded, then

SA calculates x in O(1).
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Algorithm 3.1 : The Slope Algorithm (SA)

1: begin
2: From a 2VLP, create the corresponding SA2VLP;
3: Calculate α = (α1, α2, ..., αr+2);
4: Let P = (ρ1, ..., ρr+2) be a list of sorted constraint indices such that αρj ≤ αρj+1

∀ j ∈ {1, ..., r + 1};
5: Determine j′ ∈ R′ such that αρj′ <

c2
c1
≤ αρj′+1

;
6: k′ ← j′ + 1;

7: if
(
αρj′ = −2M and αρk′ ≥M

)
or
(
−2M < αρj′ < −M and αρk′ = 2M

)
or(

αρj′ = −M and αρk′ = 2M
)

or(
−2M < αρj′ < −M and M < αρk′ < 2M and

aρj′ ,2

aρj′ ,1
≤ aρk′ ,2

aρk′ ,1

)
then

8: return 2VLP is unbounded;
9: else
10: j ← j′;
11: k ← k′;
12: Calculate x = (x1, x2) from constraints ρj′ and ρk′ ;
13: while j > 1 or k < r + 2 do
14: if j > 1 then j ← j − 1;

15: if aρj ,1x1 + aρj ,2x2 > bρj then
16: j′ ← j;
17: k ← k′;
18: Calculate x = (x1, x2) from constraints ρj′ and ρk′ ;

19: if k < r + 2 then k ← k + 1;

20: if aρk,1x1 + aρk,2x2 > bρk then
21: k′ ← k;
22: j ← j′;
23: Calculate x = (x1, x2) from constraints ρj′ and ρk′ ;

24: z∗ ← c1x1 + c2x2;
25: x∗ ← x;
26: j∗ ← ρj′ ;
27: k∗ ← ρk′ ;
28: return z∗, x∗, j∗, k∗, αj∗ , and αk∗ ;

29: end

Each iteration of the while loop either validates that the current x is feasible on up to two

constraints in O(1), or that x violates a constraint. If a violation occurs, a new x is calculated.

From Corollaries 3.2.4 and 3.2.5, if x violates a constraint, then every constraint between j′

and j or k′ and k is nonsupportive in SA2VLP. Consequently, the while loop is repeated at

most O(r) times. Thus, the entire main step requires O(r) effort. Furthermore, SA requires
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O(1) to report a solution to SA2VLP or that SA2VLP is unbounded. Consequently, SA

requires O(S(r)) effort and the most time consuming step is sorting the array α. From

merge sort (Sedgewick and Wayne, 2011), S(r) = r log r and SA runs in O(r log r) time.

Example 3.2.1 demonstrates the implementation of SA to solve a 2VLP. In addition,

Figure 3.5 presents a graphical representation of the corresponding SA2VLP in R2.

Example 3.2.1. Consider the following 2VLP.

maximize z = 2x1 + x2

subject to −3x1 − 5x2 ≤ 0 (1)

4x1 + 3x2 ≤ 100 (2)

2x1 − x2 ≤ 20 (3)

x1 + x2 ≤ 9 (4)

−2x1 + x2 ≤ 6 (5)

x2 ≤ 6 (6)

3x1 + x2 ≤ 37 (7)

x1 ≤ 9 (8)

x1 − x2 ≤ 3 (9)

x1 , x2 ≥ 0

The first step of SA converts 2VLP into an SA2VLP by changing the nonnegativity

conditions into constraints −x1 ≤ 0 (10), −x2 ≤ 0 (11), and assigning R′ = {1, 2, ..., 11}.

The slope algorithm calculates α = (3M, 3
4
,−M− 1

2
, 1,M+2,M, 1

3
,−M,−M−1, 2M,−2M)

and then sorts the indices of the constraints in a non-descending order according to these

values, which results in P = (11, 9, 3, 8, 7, 2, 4, 6, 5, 10, 1). The algorithm identifies j′ = 5 and

k′ = 6 since αρj′ = 1
3
< c2

c1
= 1

2
≤ αρj′+1

= 3
4
. Because −M < αρj′ , none of the conditions for

an unbounded SA2VLP are satisfied.

The slope algorithm continues by setting j = 5, k = 6, and calculating the intersection

point of the ρ5 and ρ6 constraints, (7) and (2). This intersection point is x = (11
5
, 152

5
),
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represented by x1 in Figure 3.5. The slope algorithm assigns j = 4 and the feasibility of x is

validated on the ρ4 constraint, (8), because 11
5
< 9. Next, k = 7 and the point is tested on

the ρ7 constraint, (4). This point is infeasible because 11
5

+ 152
5
> 9. From Corollary 3.2.3,

(2) does not support S2 and SA assigns k′ = 7 and j returns to 5.

Figure 3.5: Graphical representation of Example 3.2.1

From SA, x becomes (14,−5), which is the intersection point of (7) and (4) and is

represented by x2 in Figure 3.5. The slope algorithm updates j = 4 and x is evaluated on

(8), which indicates an infeasibility since 14 > 9. Thus, j′ = 4 and k = 7. The updated x

occurs at (9, 0), the intersection of (8) and (4), and is represented by x3 in Figure 3.5. The

algorithm assigns k = 8 and x does not violate (6), (3), and (5), but it does violate (9).

From Theorem 3.2.2 and Corollary 3.2.4, both (8) and (3) do not support S2.
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The algorithm assigns j′ = 2 and k = 7. The new x = (6, 3) is the intersection point of

(9) and (4), and is identified by x4 in Figure 3.5. The slope algorithm follows with k = 8

and this point does not violate (6), (11), (5), (10), and (1). Thus, x = (6, 3) satisfies all the

constraints and by Theorem 3.2.3, this point is an optimal solution to 2VLP. The algorithm

reports z∗ = 15, x∗ = (6, 3), j∗ = 9, k∗ = 4, α9 = −M − 1, and α4 = 1.

The slope algorithm is a newly created technique to solve simple two variable linear

programs with fairly stringent assumptions. Since this dissertation aims to implement SA

within a simplex framework to perform two dimensional searches, these assumptions are

always true. However, SA can be easily modified to solve any two variable linear program.

The author believes that this modification is straightforward, and is left as an exercise. The

following section extends the applicability of SA to solve other two dimensional search linear

programming problems.

3.3 The Ratio Algorithm

This dissertation’s research uses the knowledge from SA to create the ratio algorithm (RA),

a novel technique to find an optimal basis and an optimal solution to LPs with only two

constraints. Such an optimal basis is required if RA is implemented within a dual simplex

framework. Since SA generates an optimal basis and an optimal solution to LPs with only two

variables, one could obtain an optimal basis and an optimal solution to two constraint linear

programs by solving its corresponding dual problem with SA and applying complementary

slackness. The ratio algorithm facilitates this process by implementing the same logic used

in SA. In this case, RA compares the ratio defined by each variable with the ratio of the

right-hand side values.

Recall from the discussion in Chapter 3.1 that the algorithms of Shamos and Hoey (1976),

Megiddo (1983), and Dyer (1984) all solve a two variable linear program. However, these

techniques do not necessarily identify an optimal basis. Thus, solving the corresponding

dual problem and applying complementary slackness does not guarantee an optimal basis to

LPs with only two constraints.
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Formally, let c ∈ Rn+, A ∈ R2×n, and b1, b2 ∈ R+ \ {0}. Define a two constraint linear

program (2CLP) as:

minimize z = cixi

subject to a1,ixi ≥ b1

a2,ixi ≥ b2

xi ≥ 0

for all i ∈ N = {1, ..., n}. Denote S
2

= {x ∈ Rn+ : a1,ixi ≥ b1, a2,ixi ≥ b2 ∀ i ∈ N} as the

feasible region of a 2CLP. The standard form of a two constraint linear program (S2CLP)

adds a surplus variable to each of the two constraints. Formally, an S2CLP takes the form:

minimize z = cixi

subject to a1,ixi = b1

a2,ixi = b2

xi ≥ 0

for all i ∈ N ′ = {1, ..., n + 2}, where cn+1 = cn+2 = 0, a1,n+1 = a2,n+2 = −1, and

a1,n+2 = a2,n+1 = 0. Furthermore, assume ci ≥ 0 for all i ∈ N ′, b1 > 0, and b2 > 0.

Similarly to SA, these assumptions are considered to facilitate the presentation of the ratio

algorithm, but one can easily modify the proposed method to solve any two constraint linear

programming problem.

The ratio algorithm calculates the ratio of each variable defined by both constraint values

and contrasts these ratios to the ratio of the right-hand side values b1 and b2. Let

M > max
{

max
i∈N ′

{∣∣a1,i
a2,i

∣∣ : a2,i 6= 0
}
,max
j∈N ′

{∣∣a2,i
a1,i

∣∣ : a1,i 6= 0
}
, b2
b1

}
be the sufficiently large positive number in this case. Each variable of an S2CLP is partitioned

into one of nine sets and the ratio βi for each variable i ∈ N ′ is calculated as follows:
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βi =



−2M If i ∈ N ′=< where N ′=< = {i ∈ N ′ : a1,i = 0, a2,i < 0}

−M +
a2,i
a1,i

If i ∈ N ′>< where N ′>< = {i ∈ N ′ : a1,i > 0, a2,i < 0}

−M If i ∈ N ′>= where N ′>= = {i ∈ N ′ : a1,i > 0, a2,i = 0}
a2,i
a1,i

If i ∈ N ′>> where N ′>> = {i ∈ N ′ : a1,i > 0, a2,i > 0}

M If i ∈ N ′=> where N ′=> = {i ∈ N ′ : a1,i = 0, a2,i > 0}

M − a1,i
a2,i

If i ∈ N ′<> where N ′<> = {i ∈ N ′ : a1,i < 0, a2,i > 0}

2M If i ∈ N ′<= where N ′<= = {i ∈ N ′ : a1,i < 0, a2,i = 0}

3M If i ∈ N ′== where N ′== = {i ∈ N ′ : a1,i = 0, a2,i = 0}

3M If i ∈ N ′<< where N ′<< = {i ∈ N ′ : a1,i < 0, a2,i < 0}.

Algorithm 3.2 presents RA, and its input is a 2CLP and an appropriate M . The output

to RA is either that the corresponding 2CLP is infeasible or an optimal solution (z∗, x∗),

variable indices that define an optimal basis i∗ and j∗, and ratios βi∗ and βj∗ . In this case,

denote x = (xi, xj) as the solution of the following system with two equations:

a1,ixi + a1,jxj = b1

a2,ixi + a2,jxj = b2,

where

xi =
b1a2,j − a1,jb2

a1,ia2,j − a1,ja2,i

and xj =
a1,ib2 − b1a2,i

a1,ia2,j − a1,ja2,i

.

The ratio algorithm begins by calculating a ratio βi for every variable index i ∈ N ′. Each

variable index is then sorted in a non-descending order according to their βi values, and two

variable indices i and i + 1 are determined such that βi <
b2
b1
≤ βi+1. The algorithm checks

if variable indices i and j = i + 1 define an infeasible S2CLP. If not, variable indices i and

j define an optimal basis and an optimal solution of the corresponding S2CLP, or the ratio

algorithm searches for another pair of variable indices with a better objective function value.

Since the ratio algorithm is an extension from the slope algorithm, the majority of theo-

retical results can be easily derived from Chapter 3.2. Thus, this section only provides the
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primary arguments to show that RA correctly solves a 2CLP. The proof that RA identifies

an optimal basis for 2CLPs is shown in Chapter 4.3.

Algorithm 3.2 : The Ratio Algorithm (RA)

1: begin
2: From a 2CLP, create the corresponding S2CLP;
3: Calculate β = (β1, β2, ..., βn+2);
4: Let K = (κ1, κ2, ..., κn+2) be a list of sorted variable indices such that βκi ≤ βκi+1

∀ i ∈ {1, 2, ..., n+ 1};
5: Determine i′ ∈ N ′ such that βκi′ <

b2
b1
≤ βκi′+1

;
6: j′ ← i′ + 1;

7: if
(
βκi′ = −2M and βκj′ ≥M

)
or
(
−2M < βκi′ < −M and βκj′ = 2M

)
or(

βκi′ = −M and βκj′ = 2M
)

or(
−2M < βκi′ < −M and M < βκj′ < 2M and

a2,κi′
a1,κi′

≤
a2,κj′

a1,κj′

)
then

8: return S2CLP is infeasible;
9: else
10: i← i′;
11: j ← j′;
12: Calculate x← (xκi′ , xκj′ ) and z′ ← cκi′xκi′ + cκj′xκj′ ;
13: while i > 1 or j < n+ 2 do
14: if i > 1 then i← i− 1;

15: Calculate x← (xκi , xκj′ ) and z ← cκixκi + cκj′xκj′ ;
16: if z < z′, xκi ≥ 0, and xκj′ ≥ 0 then
17: i′ ← i;
18: j ← j′;
19: Calculate x← (xκi′ , xκj′ ) and z′ ← cκi′xκi′ + cκj′xκj′ ;

20: if j < n+ 2 then j ← j + 1;

21: Calculate x← (xκi′ , xκj) and z ← cκi′xκi′ + cκjxκj ;
22: if z < z′, xκi′ ≥ 0, and xκj ≥ 0 then
23: j′ ← j;
24: i← i′;
25: Calculate x← (xκi′ , xκj′ ) and z′ ← cκi′xκi′ + cκj′xκj′ ;

26: z∗ ← z′;
27: x∗κi′ ← xκi′ ;
28: x∗κj′ ← xκj′ ;

29: x∗q ← 0 for all q ∈ N ′ \ (κi′ ∪ κj′);
30: i∗ ← κi′ ;
31: j∗ ← κj′ ;
32: return z∗, x∗, i∗, j∗, βi∗ , and βj∗ ;

33: end
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The check for an infeasible S2CLP identifies if either xi � 0, xj � 0, and/or no solution

exists to the system of equations defined by variable indices i and j. From Algorithm 3.2,

four conditions exist to determine if an S2CLP is infeasible: (1st) βi = −2M and βj ≥ M ;

(2nd) −2M < βi < −M and βj = 2M ; (3rd) βi = −M and βj = 2M ; (4th) −2M < βi < −M ,

M < βj < 2M , and
a2,i
a1,i
≤ a2,j

a1,j
. Observe that an S2CLP is infeasible if at least one of the

four conditions is satisfied. For instance, the second condition states βi = −M +
a2,i
a1,i

and

βj = 2M . Since a2,i < 0, a2,j = 0, and b2 > 0, clearly xi � 0. Given xi < 0, a1,i > 0,

a1,j < 0, and b1 > 0, then xj � 0 and variable indices i and j define an infeasible S2CLP.

The reader can easily verify the other three conditions and conclude that all three also define

an infeasible S2CLP.

If an S2CLP is feasible, the check for optimality defined by the while loop in Algorithm

3.2 begins with x = (xi, xj) and z′ = cixi + cjxj. The ratio algorithm checks whether there

exists a variable index h with βh < βi < βj ≤ 2M , x = (xh, xj), and z = chxh+cjxj such that

z < z′. If so, then variable index i does not define an optimal solution to the corresponding

S2CLP. Similarly, the ratio algorithm identifies a variable index k with βi < βj < βk ≤ 2M ,

x = (xi, xk), and z = cixi + ckxk. If z < z′, then variable index j does not define an optimal

solution to S2CLP. This argument can be easily extended to a variable index g such that

βg < βh < βi < βj ≤ 2M or a variable index l such that βi < βj < βk < βl ≤ 2M . If

z = cgxg + cjxj < z′, then both h and i do not define an optimal solution. Similarly, if

z = cixi + clxl < z′, then j and k do not define an optimal solution to S2CLP. Observe that

RA also eliminates variables that have z < z′, but violate the nonnegativity conditions.

To prove that RA requires O(n log n) effort, observe that the values of βi are calculated

in O(n) time and sorted in O(n log n) time. Determining variable index i such that βi <
b2
b1
≤

βi+1 requires O(n) effort. The algorithm determines if an S2CLP is infeasible in constant

time. Each computation within the while loop requires O(1) effort. Observe that every

step of the while loop either concludes z ≮ z′ or calculates a new x and updates variable

indices i or j because z < z′. If z < z′, then every variable index between i and j does not

define an optimal solution to S2CLP due to the aforementioned arguments, and the loop

no longer visits these indices. Thus, using amortized analysis the while loop requires O(n)
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effort. Reporting an optimal solution and the variable indices that define an optimal basis

takes O(1). Consequently, the theoretical computational complexity of RA is bounded by

sorting a list of variable indices, which is O(n log n).

Observe that
(
n
2

)
bases exist in every two constraint linear program, and two primary

methods exist to find an optimal basis to such a simple problem. Finding an optimal basis

by enumerating all possible bases and checking the reduced cost for each nonbasic variable

requires O(n3) effort. The simplex method can also find an optimal basis to LPs with only

two constraints, but its worst case complexity for this class of problems is also O(n3). Since

RA only requires O(n log n) effort, this technique is the theoretically fastest method to solve

these simple LPs with only two constraints.

Example 3.3.1 presents a 2CLP and demonstrates the implementation of RA to solve this

LP with only two constraints.

Example 3.3.1. Consider the following 2CLP.

minimize z = 12x1 + 8x2 + 12x3 + 8x4 + 30x5 + 20x6 + 57x7 + 6x8 + 25x9 + 10x10

subject to −3x1 + 2x3 + 4x4 − 3x5 + 3x6 + 7x7 + x8 + x9 + 2x10 ≥ 12

2x1 + x2 + x3 − x4 − 10x5 + x6 + 3x7 + x9 − x10 ≥ 5

x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9 , x10 ≥ 0

The ratio algorithm begins by creating the following S2CLP from the above 2CLP and

calculates βi for each i ∈ N ′:

minimize z = 12x1+8x2+12x3 +8x4 +30x5+20x6+57x7+6x8+25x9 +10x10

subject to −3x1 + 2x3 +4x4− 3x5+ 3x6+ 7x7+ x8+ x9 + 2x10−x11 =12

2x1+ x2+ x3− x4−10x5+ x6+ 3x7 + x9− x10 −x12 = 5

x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9 , x10 ≥ 0.

Therefore, β1 = M + 3
2
, β2 = M , β3 = 1

2
, β4 = −M − 1

4
, β5 = 3M , β6 = 1

3
, β7 = 3

7
,

β8 = −M , β9 = 1, β10 = −M − 1
2
, β11 = 2M , and β12 = −2M . The ratio algorithm sorts all
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variables in a non-descending order according to their βi values and creates a list of sorted

variables K = (12, 10, 4, 8, 6, 7, 3, 9, 2, 1, 11, 5). The algorithm searches for an i′ ∈ N ′ such

that βκi′ <
b2
b1
≤ βκi′+1

. Since β6 = 1
3
< b2

b1
= 5

12
≤ β7 = 3

7
, the algorithm determines i′ = 5

and j′ = 6. Observe that none of the conditions for an infeasible S2CLP are satisfied because

β6 = 1
3

and β7 = 3
7
. Thus, the algorithm follows and assign i to 5 and j to 6.

The algorithm calculates x = (xκi′ , xκj′ ) = (x6, x7) = (1
2
, 3

2
) along with z′ = c6x6 +

c7x7 = 951
2
, decreases i to 4, and calculates x = (xκi , xκj′ ) = (x8, x7) = (1

3
, 5

3
) along with

z = c8x8 + c7x7 = 97. Since z = 97 ≮ z′ = 951
2
, no changes are made to i′ and j. The

ratio algorithm follows by increasing j to 7 and calculating x = (xκi′ , xκj) = (x6, x3) = (2, 3)

along with z = c6x6 + c3x3 = 76. Since z = 76 < z′ = 951
2
, j′ becomes 7, i returns to 5, and

z′ becomes 76.

The algorithm decreases i to 4 and calculates x = (xκi , xκj′ ) = (x8, x3) = (2, 5) along

with z = c8x8 + c3x3 = 72. Since z = 72 < z′ = 76, i′ becomes 4 and j continues at 7.

Following RA, j increases to 8, x = (xκi′ , xκj) = (x8, x9) = (7, 5), z = c8x8 + c9x9 = 167,

and no changes occur to j′ and i because z = 167 ≮ z′ = 72. When i decreases to 3,

x = (xκi , xκj′ ) = (x4, x3) = (1
3
, 16

3
) and z = c4x4 + c3x3 = 662

3
. Since z = 662

3
< z′ = 72, i′

becomes 3, j returns to 7, and z′ becomes 662
3
.

The reader can easily continue with RA and verify that the following x’s and z’s become:

x = (x4, x9) = (7
5
, 32

5
) and z = 1711

5
; x = (x10, x3) = (1

2
, 11

2
) and z = 71; x = (x4, x2) = (3, 8)

and z = 88; x = (x12, x3) = (1, 6) and z = 72; x = (x4, x1) = (39
5
, 32

5
) and z = 1391

5
;

x = (x4, x11) = (−5,−32) and z = −40; x = (x4, x5) = (105
43
,−32

43
) and z = −234

43
. Observe

that z ≮ z′ = 662
3

for all z’s, except the last two cases. However, these two cases have x4 � 0,

x11 � 0, and x5 � 0, which violates the nonnegative conditions. Consequently, RA reports

z∗ = 662
3
, x∗ = (0, 0, 16

3
, 1

3
, 0, 0, 0, 0, 0, 0, 0, 0), i∗ = 4, j∗ = 3, βi∗ = −M − 1

4
, and βj∗ = 1

2
.

Similarly to SA, i∗, j∗, βi∗ , and βj∗ are not part of the optimal solution of any S2CLP.

However, this information is critical to implement RA within a dual simplex framework. The

next chapter presents the results when SA and RA are both implemented to perform two

dimensional searches in a simplex framework.
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Chapter 4

Two Dimensional Searches in a

Simplex Framework

This chapter presents theoretical and computational results when two dimensional searches

are implemented within a simplex framework. Chapter 4.1 describes the basic knowledge

of a simplex framework. Chapter 4.2 presents the double pivot simplex method, a primal

simplex framework in which the slope algorithm determines up to two basic leaving variables.

Chapter 4.3 shows the double pivot dual simplex method, a dual simplex framework where

the ratio algorithm finds up to two nonbasic entering variables.

The primary content of this chapter is based on the journal paper, “The Double Pivot

Simplex Method”, published in Mathematical Methods of Operations Research (Vitor and

Easton, 2018b). Additionally, some theoretical results are retrieved from the conference pa-

per, “The Ratio Algorithm to Solve the Optimal Basis of Two Constraint Linear Programs”,

published in the Proceedings of the 2018 IISE Annual Conference (Vitor, 2018).

4.1 The Primal and Dual Simplex Frameworks

This section presents the mathematical concept of a simplex framework. Both the primal

and dual simplex frameworks are discussed based on the well-known simplex method and
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the dual simplex method. These techniques are well documented in the literature and are

taught in numerous undergraduate and graduate courses in various disciplines worldwide.

Additional information can also be found in Winston (2004), Bazaraa et al. (2010), and

Hillier and Lieberman (2015).

Let a standard linear program (SLP) be an LP where all inequalities are converted into

linear equations. This typically requires adding a slack, surplus, or artificial variable to each

constraint. Mathematically, an SLP is defined as:

maximize z = cTx

subject to Ax = b

x ≥ 0.

For this chapter, assume c ∈ Rn+r, x ∈ Rn+r, A ∈ Rr×(n+r), and b ∈ Rr. Furthermore, let

N = {1, 2, ..., n + r} be the set of variable indices, R = {1, 2, ..., r} be the set of constraint

indices, and S = {x ∈ Rn+r
+ : Ax = b} be the feasible region of an SLP. Observe that in this

case, c is augmented with r zeros while A is augmented with an r × r identity matrix.

Formally, BV ⊆ N is said to be a basis if |BV | = |R| and A.BV is nonsingular. The set

of nonbasic indices is NBV = N \BV . The corresponding basic and nonbasic variables are

xBV and xNBV , respectively, where xBV = A.BV
−1b and xNBV = 0. If A.BV

−1b ≥ 0, then

BV is a feasible basis with xBV and xNBV being the corresponding basic feasible solution.

Moreover, if BV is feasible and cπi = cBV
TA.BV

−1A.i − ci ≥ 0 for each i ∈ NBV where cπ is

the calculated reduced cost, then BV is an optimal basis.

This dissertation follows the common notation that a period “.” represents all the

columns of a given matrix and a colon “:” denotes all the rows of a given matrix or vector.

Furthermore, a set as a subscript restricts the matrix or vector to only those indices of the

set. For instance, A.BV represents the columns of A restricted to the indices in BV , A:BV

corresponds to the rows of A restricted to the indices in BV , and xBV is the x values of

the indices in BV . Since a simplex framework exchanges elements in BV with elements in

NBV , order is important and every basis BV in the remainder of this dissertation is viewed
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as an r tuple. Moreover, the process of exchanging basic variables with nonbasic variables

is referred to as a pivot.

Prior to describing the primal and dual simplex frameworks, one should understand the

primary steps of the simplex method and the dual simplex method. The simplex method

(SM) starts with a basic feasible solution and moves toward optimality. That is, SM begins

with an SLP and a feasible basis BV such that cBV
TA.BV

−1A.i − ci < 0 for some i ∈ NBV

and (A.BV
−1b)j ≥ 0 for all j ∈ BV . The first step of SM is to evaluate each nonbasic

variable’s reduced cost, cπi = cBV
TA.BV

−1A.i − ci for all i ∈ NBV . If all nonbasic reduced

costs are nonnegative, then BV is an optimal basis, and the corresponding basic feasible

solution with z = cBV
TxBV represents an optimal solution to SLP.

If BV is not optimal, then there exists an entering nonbasic variable with index p ∈ NBV

such that cπp < 0. Define R+ = {j ∈ R : (A.BV
−1A.p)j > 0}. If R+ = ∅, then the problem is

unbounded. If not, SM performs the minimum ratio test and identifies a j∗ ∈ R+ such that:

(A.BV
−1b)j∗

(A.BV
−1A.p)j∗

≤
(A.BV

−1b)j

(A.BV
−1A.p)j

for all j ∈ R+. The simplex method replaces the j∗th element in BV with p. This process is

referred to as a classic pivot in this dissertation. The algorithm continues until an optimal

basis to SLP is identified or SLP is shown to be unbounded.

In contrast, the dual simplex method (DSM) starts with an SLP and a super optimal

basic solution. Let BV be a super optimal basis to SLP if cBV
TA.BV

−1A.i − ci ≥ 0 for all

i ∈ NBV . Frequently, a super optimal BV also represents an infeasible solution to SLP so

that (A.BV
−1b)j < 0 for some j ∈ BV . In this case, DSM moves toward feasibility. From

SLP and BV , the dual simplex method first evaluates the solution of each basic variable,

(A.BV
−1b)j for all j ∈ BV . If the value of all basic variables is nonnegative, then BV is

feasible, and consequently, an optimal basis. Thus, the corresponding basic feasible solution

with z = cBV
TxBV represents an optimal solution to SLP.

If BV is not feasible, then there exists a leaving basic variable with index p′ ∈ BV

such that (A.BV
−1b)p′ < 0. Let N− = {i ∈ N : (A.BV

−1A.i)p′ < 0}. If N− = ∅, then the
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problem is infeasible. Otherwise, DSM identifies an i∗ ∈ N− using an equivalent version of

the minimum ratio test such that:∣∣∣∣∣cBV
TA.BV

−1A.i∗ − ci∗

(A.BV
−1A.i∗)p′

∣∣∣∣∣ ≤
∣∣∣∣∣cBV

TA.BV
−1A.i − ci

(A.BV
−1A.i)p′

∣∣∣∣∣
for all i ∈ N−. The dual simplex method performs a classic pivot and replaces the p′th

element in BV with i∗. The algorithm continues until a feasible basis to SLP is identified

(an optimal basis) or SLP is shown to be infeasible.

Define a simplex framework as the basic steps of SM or DSM independent of the pivoting

method. As an example, let consider the steps of SM but the same logic can be applied if DSM

is chosen. A simplex framework starts with an SLP and a basis BV . The simplex framework

determines a set of nonbasic variables Q ⊆ NBV . Thus, a new basis BV ∗ ⊂ BV ∪ Q is

identified, and this basis replaces BV . In this case, the act of selecting Q and replacing BV

with BV ∗ is referred to as a pivot. The simplex framework repeats this process until an

optimal basis to SLP is obtained or SLP is shown to be unbounded.

To generalize the idea of a simplex framework for a primal and dual approach, observe

that a primal simplex framework starts with an SLP and a feasible basis BV . The method

identifies Q ⊆ NBV such that Q 6= ∅ and cBV
TA.BV

−1A.q − cq < 0 for some q ∈ Q. The

following multidimensional subspace linear program,

maximize z = (cQ
T − cBV TA.BV −1A.Q)xQ

subject to (A.BV
−1A.BV )xBV + (A.BV

−1A.Q)xQ = A.BV
−1b

xBV , xQ ≥ 0,

is solved. Let BV ∗ be an optimal basis to the above subproblem, and BV ∗ replaces BV .

This process continues until an optimal basis to SLP is obtained.
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On the other hand, a dual simplex framework starts with an SLP and a super optimal

basis BV . The method identifies Q′ ⊆ BV such that Q′ 6= ∅ and (A.BV
−1b)q′ < 0 for some

q′ ∈ Q′. Therefore, the following multidimensional subspace linear program,

minimize z = (cTNBV − cBV TA.BV −1A.NBV )xNBV

subject to (A.BV
−1A.BV ):Q′(xBV ):Q′ + (A.BV

−1A.NBV ):Q′(xNBV ):Q′ = (A.BV
−1b):Q′

xBV , xNBV ≥ 0,

is solved such that BV ∗ is an optimal basis to this multidimensional subspace linear program.

Thus, BV ∗ replaces BV and the process continues until a feasible basis, and consequently

an optimal basis, to SLP is obtained. Observe that the optimization direction of these

multidimensional subspace linear programs can be easily changed depending on whether

SLP is a maximization or minimization problem.

Both SM and DSM are simplex frameworks that perform classic pivots. The algorithms

exchange exactly one basic variable with a nonbasic variable at each iteration. That is,

|Q| = 1 and |Q′| = 1. The simplex method identifies an entering nonbasic variable and

uses the minimum ratio test to find a leaving basic variable. In this case, a one dimensional

subspace linear program consists of r + 1 variables, r constraints, and r + 1 nonnegativity

constraints. The r + 1 variables are the r basic variables and the one entering nonbasic

variable. On the other hand, DSM identifies a leaving basic variable and uses an equivalent

version of the minimum ratio test to determine an entering nonbasic variable. That is, a one

dimensional subspace linear program has n+1 variables, 1 constraint, and n+1 nonnegative

constraints. The n + 1 variables are the n nonbasic variables and the one leaving basic

variable. In both cases, the minimum ratio test performs a one dimensional search to find a

new solution at each iteration.

The following sections present novel simplex frameworks where up to two basic variables

are exchanged with two nonbasic variables at every iteration. In this case, either SA or RA

perform a two dimensional search at each step to identify a new solution.
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4.2 The Double Pivot Simplex Method

The double pivot simplex method (DPSM) is a primal simplex framework to solve LPs.

This novel technique has |Q| = 2, and a two dimensional subspace linear program is solved

at each iteration. Observe that if a non-optimal basis is selected to this subproblem, then

BV ∪ Q could remain unchanged, and the algorithm may never terminate. Consequently,

the algorithms from Shamos and Hoey (1976), Megiddo (1983), or Dyer (1984) cannot be

directly applied to solve these two dimensional subspace linear programs since none of these

methods determine an optimal basis. On the other hand, SA can be implemented to solve

DPSM’s subproblems since SA determines both an optimal basis and an optimal solution to

simple 2VLPs.

Prior to describing DPSM, one should question whether SA can identify an optimal

basis to a 2VLP. Theorem 3.2.3 proves that SA finds an optimal solution to a 2VLP, but

not necessarily an optimal basis. To prove SA can also identify an optimal basis to any

multidimensional subspace linear program with |Q| = 2, convert 2VLP into standard form

(S2VLP) by adding r slack variables. Each constraint of an S2VLP has the form of:

aj,1x1 + aj,2x2 + xj+2 = bj ∀ j ∈ R.

If implemented within a primal simplex framework, these slack variables represent the

initial basic variables. Furthermore, the only nonzero reduced costs are c1 and c2, which are

both positive. The right-hand side is precisely the values of the basic variables, which are

greater than or equal to zero. Removing the basic variables from this instance results in a

2VLP. Theorem 4.2.1 proves that SA returns sufficient information to determine an optimal

basis, assuming that S2VLP is bounded. Additionally, this result also provides an alternate

proof to Theorem 3.2.3.

61



Theorem 4.2.1. Given a bounded 2VLP and a sufficiently large positive number M , the

slope algorithm reports j∗, k∗, αj∗, and αk∗ such that the following sets are an optimal basis

for the corresponding S2VLP:

i) If αj∗ = −2M , then BV = {3, 4, ..., k∗ + 1, 1, k∗ + 3, ..., r + 2};

ii) If αk∗ = 2M , then BV = {3, 4, ..., j∗ + 1, 2, j∗ + 3, ..., r + 2};

iii) If αj∗ 6= −2M and αk∗ 6= 2M , then BV = {3, 4, ..., j∗ + 1, 1, j∗ + 3, ..., k∗ + 1, 2, k∗ +

3, ..., r + 2}.

Proof. Given a bounded 2VLP and a sufficiently large positive number M , the slope algo-

rithm reports j∗, k∗, αj∗ , and αk∗ . To prove BV is an optimal basis to S2VLP, all possible

cases of αj∗ and αk∗ are examined.

Assume that αj∗ = −2M , and let BV = {3, 4, ..., k∗+ 1, 1, k∗+ 3, ..., r+ 2} with NBV =

{2, k∗ + 2}. Since 2VLP is bounded, −M < αk∗ < M , ak∗,1 > 0, and ak∗,2 > 0; therefore,

cπk∗+2 = c1
ak∗,1

> 0 and cπ2 =
ak∗,2c1
ak∗,1

− c2, where cπ is the calculated reduced cost. From SA,

c2
c1
≤ αk∗ and the conditions of Corollary 3.2.2 are satisfied. Therefore, c2ak∗,1 ≤ c1ak∗,2, which

implies cπ2 ≥ 0. Since ak∗,1 > 0, then the columns of BV = {3, 4, ..., k∗+ 1, 1, k∗+ 3, ..., r+ 2}

in S2VLP are linearly independent and therefore, BV is an optimal basis to S2VLP.

Assume that αk∗ = 2M , BV = {3, 4, ..., j∗+1, 2, j∗+3, ..., r+2}, and NBV = {1, j∗+2}.

Since S2VLP is bounded, −M < αj∗ < M , aj∗,1 > 0, and aj∗,2 > 0; therefore, cπj∗+2 = c2
aj∗,2

>

0 and cπ1 =
aj∗,1c2
aj∗,2

− c1. From SA, αj∗ <
c2
c1

and the conditions of Corollary 3.2.1 are satisfied.

Therefore, c1aj∗,2 < c2aj∗,1, which implies cπ1 > 0. Since aj∗,2 > 0, then the columns of

BV = {3, 4, ..., j∗ + 1, 2, j∗ + 3, ..., r + 2} in S2VLP are linearly independent, and BV is an

optimal basis to S2VLP.

Assume that αj∗ 6= −2M , αk∗ 6= 2M , BV = {3, 4, ..., j∗ + 1, 1, j∗ + 3, ..., k∗ + 1, 2, k∗ +

3, ..., r + 2}, and NBV = {j∗ + 2, k∗ + 2}. The first step is to prove that the columns of

BV in S2VLP are linearly independent. Since αj∗ <
c2
c1
≤ αk∗ ≤ 2M , the conditions of

Lemma 3.2.2 are satisfied. Thus, aj∗,2ak∗,1 < aj∗,1ak∗,2 and so aj∗,2ak∗,1 − aj∗,1ak∗,2 < 0 (†).

Consequently, the columns of BV in S2VLP are linearly independent. One can verify that
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cπk∗+2 =
−c2aj∗,1+c1aj∗,2

aj∗,2ak∗,1−aj∗,1ak∗,2
. The conditions of Corollary 3.2.1 are satisfied, so aj∗,2c1 < aj∗,1c2.

Combining this fact with (†) results in cπk∗+2 > 0. Similarly, cπj∗+2 =
c2ak∗,1−c1ak∗,2

aj∗,2ak∗,1−aj∗,1ak∗,2
. The

conditions of Corollary 3.2.2 are satisfied, so c2ak∗,1 ≤ c1ak∗,2. Coupling this fact with (†)

results in cπj∗+2 ≥ 0. Thus, BV is an optimal basis for S2VLP. 2

Given the primary results, DPSM (Algorithm 4.1) is presented within the context of

a revised simplex framework. The reader can easily modify DPSM to create a dictionary

or tableau version. The double pivot simplex method follows the spirit of Dantzig’s rule

and selects the two indices with the most negative reduced cost for the entering nonbasic

variables. However, many of the pivoting rules discussed in Chapter 2.1.3 could have been

applied in this case. The input to DPSM is an SLP, a feasible basis BV (typically the

slack variables), and a sufficiently large positive number M . Observe that DPSM performs

a classic pivot if there is only one negative reduced cost (lines 14-22).

In the absence of degeneracy (recall discussion in Chapter 2.1.2 and see additional details

in Chapter 4.2.1), DPSM correctly solves an LP within a finite number of steps. Theorem

4.2.2 formalizes this claim.

Theorem 4.2.2. Given a nondegenerate SLP, an initial feasible basis BV , and a sufficiently

large positive number M , DPSM correctly terminates within a finite number of steps.

Proof. Given a nondegenerate SLP, an initial feasible basis BV , and a sufficiently large

positive number M , let z be the objective function value of the current basis and ẑ denote

the objective function value after DPSM performs a pivot. The double pivot simplex method

can perform one out of four types of pivots at each iteration. That is, one of the three double

pivots or a classic pivot. If a double pivot is performed, then cπp = cp − cBV TA.BV −1A.p > 0,

cπq = cq − cBV TA.BV −1A.q > 0, and ẑ = z + cπpx
∗
p + cπqx

∗
q where (x∗p, x

∗
q) is an optimal solution

to 2VLP. If a classic pivot is performed, then cπp > 0 and ẑ = z + cπpθ
∗ where θ∗ is the the

final value of θ in Algorithm 4.1 (lines 14-22).

If a double pivot where two nonbasic variables enter the basis is performed, then αj∗ 6=

−2M and αk∗ 6= 2M , which results in x∗p > 0 and x∗q > 0. If a double pivot where the

nonbasic variable with the most negative reduced cost enters the basis is performed, then
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αj∗ = −2M , x∗p > 0, and x∗q = 0. If a double pivot where the nonbasic variable with the

second most negative reduced cost enters the basis is performed, then αk∗ = 2M , which

implies x∗p = 0 and x∗q > 0. If a classic pivot is performed, then 0 < θ < M . Consequently,

either pivot results in ẑ > z since SLP is nondegenerate.

Because each iteration of DPSM either pivots to an improved basic feasible solution or

determines a ray of unboundedness, DPSM does not visit the same basis more than once.

Since there are at most
(
n+r
r

)
bases, DPSM terminates within a finite number of steps. 2

Algorithm 4.1 : The Double Pivot Simplex Method (DPSM)

1: begin
2: while cBV

TA.BV
−1A.i − ci 6≥ 0 for all i ∈ (N \BV ) do

3: p← argmin
p∈(N\BV )

cTBVA.BV
−1A.p − cp;

4: q ← argmin
q∈(N\(BV ∪{p}))

cTBVA.BV
−1A.q − cq;

5: if cBV
TA.BV

−1A.q − cq < 0 then
6: Let 2VLP be:

maximize z = (cp − cBV TA.BV −1A.p)xp + (cq − cBV TA.BV −1A.q)xq
subject to (A.BV

−1A.p)xp + (A.BV
−1A.q)xq ≤ A.BV

−1b
xp, xq ≥ 0;

7: Solve 2VLP with SA;
8: if 2VLP is unbounded then return SLP is unbounded;

9: if αj∗ = −2M then BVk∗ ← p;

10: if αk∗ = 2M then BVj∗ ← q;

11: if αj∗ 6= −2M and αk∗ 6= 2M then
12: BVj∗ ← p;
13: BVk∗ ← q;

14: else
15: θ ←M ;
16: for each i ∈ R do
17: if (A.BV

−1A.p)i > 0 and (A.BV
−1b)i

(A.BV
−1A.p)i

< θ then

18: θ ← (A.BV
−1b)i

(A.BV
−1A.p)i

;

19: l← i;

20: if θ = M then return SLP is unbounded;
21: else
22: BVl ← p;

23: return x∗BV ← A.BV
−1b, x∗(N\BV ) = 0, and z∗ = cTx∗;

24: end
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To assess the benefit of DPSM over SM, one should compare the improvement in objective

function value and the theoretical effort per iteration of both techniques. Assume that both

DPSM and SM have the same basic feasible solution. If one of DPSM’s entering nonbasic

variables is identical to the entering basic variable, xp, from SM, then the objective function

value from DPSM’s pivot is at least as good as the objective function value from SM’s pivot

(see Chapter 5.2.1 for discussion). Furthermore, DPSM and SM only pivot to the same basis

when SA returns αj∗ = −2M .

The theoretical effort required by an iteration of SM with a classic pivot involves cal-

culating A.BV
−1 and identifying an improving nonbasic variable xp, which is achieved by

evaluating cBV
TA.BV

−1A.i − ci for each i ∈ NBV . The minimum ratio test calculates

A.BV
−1A.p, A.BV

−1b, and performs a division. Given a revised simplex framework, changing

the entering basic variable with the leaving basic variable requires O(1) effort. Thus, the

theoretical effort per iteration of SM is bounded by calculating the inverse and identifying the

entering nonbasic and leaving basic variables. Consequently, each iteration of SM requires

O(rn+ I(r)) effort where I(r) is the time required to find the inverse of an r × r matrix.

The theoretical effort per iteration of DPSM requires calculating A.BV
−1 and identifying

two improving nonbasic variables, xp and xq. These steps are nearly identical to SM and re-

quire identical theoretical effort. Thus, SA determines the leaving basic variables in O(S(r))

effort, where S(r) is the time required to sort a set of r elements. Exchanging the basic

variables is performed again in O(1). Observe that n ≥ r due to the addition of slack or

artificial variables, and SA’s running time is dominated by O(I(r)). Therefore, each double

pivot is restricted by calculating the inverse and identifying the entering nonbasic variables,

which requires O(rn+ I(r)) effort. Consequently, a double pivot and a classic pivot require

the same theoretical effort per iteration, assuming a revised simplex framework.

As discussed in Chapter 2.1.1, state-of-the-art commercial and open source LP solvers

do not calculate the inverse of a matrix at every iteration. Instead, solvers update the basis

inverse matrix. Consequently, the theoretical running time of SM and DPSM in practice is

O(rn+U(r)) where U(r) is the effort required to update the basis factorization of a problem
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with r constraints. Observe that developing an efficient technique to update the basis matrix

inverse with two variables at a time is a critical future research topic.

Example 4.2.1 demonstrates the implementation of DPSM in a tableau format. Addi-

tionally, Table 4.1 presents the three tableaus that demonstrate DPSM’s pivots.

Example 4.2.1. Consider the following LP.

maximize z = 20x1 + 12x2 + 15x3 + 6x4

subject to x1 − 2x2 + 3x3 + x4 ≤ 99 (1)

x1 + x3 ≤ 40 (2)

4x1 + 9x2 + x3 + 4x4 ≤ 106 (3)

2x1 + 2x2 + x3 + x4 ≤ 60 (4)

2x1 − x2 + 5x3 ≤ 170 (5)

x1 , x2 , x3 , x4 ≥ 0

The first tableau in Table 4.1 represents the above LP in standard form (SLP) and DPSM

begins with a feasible basis BV = {5, 6, 7, 8, 9}. The nonbasic variables with the two most

negative reduced costs correspond to x1 and x3 with p = 1 and q = 3. The slope algorithm

solves the following 2VLP:

maximize z = 20x1 + 15x3

subject to x1 + 3x3 ≤ 99

x1 + x3 ≤ 40

4x1 + x3 ≤ 106

2x1 + x3 ≤ 60

2x1 + 5x3 ≤ 170

x1 , x3 ≥ 0.

The slope algorithm computes α = (3, 1, 1
4
, 1

2
, 5

2
, 2M,−2M) and identifies α4 = 1

2
< c3

c1
=

15
20
≤ α2 = 1 with x = (x1, x3) = (20, 20). This point satisfies all constraints, and SA returns

j∗ = 4, k∗ = 2, α4 = 1
2
, and α2 = 1. Due to the returned values, the nonbasic indices 1 and 3
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replace the fourth and second elements in BV , resulting in BV = {5, 3, 7, 1, 9}. The second

tableau in Table 4.1 demonstrates this double pivot’s outcome.

The next iteration begins by identifying the nonbasic variables with the two most negative

reduced costs, x2 and x4, resulting in p = 2 and q = 4. The slope algorithm solves the

following 2VLP:

maximize z = 2x2 + x4

subject to 2x2 + 3x4 ≤ 19

−2x2 − x4 ≤ 20

3x2 + x4 ≤ 6

2x2 + x4 ≤ 20

5x2 + 3x4 ≤ 30

x2 , x4 ≥ 0.

The slope algorithm calculates α = (3
2
, 3M, 1

3
, 1

2
, 3

5
, 2M,−2M), identifies α3 = 1

3
< c4

c2
=

1
2
≤ α4 = 1

2
, and assigns x to (−14, 48). The slope algorithm eventually determines that an

optimal solution occurs at x∗ = (0, 6), obtained from constraints (3) and (6) that intersect

at an optimal basis, and returns j∗ = 3, k∗ = 6, α3 = 1
3
, and α6 = 2M . Since αk∗ = 2M ,

the nonbasic index 4 replaces the third element in BV , resulting in BV = {5, 3, 4, 1, 9}.

The third tableau in Table 4.1 presents the result of this double pivot. Observe that there

are no other nonbasic variables with negative reduced cost in the third tableau. Thus,

BV = {5, 3, 4, 1, 9} is an optimal basis to the corresponding SLP, and DPSM reports an

optimal solution z∗ = 706 and x∗ = (14, 0, 26, 6, 1, 0, 0, 0, 12).

In contrast, SM solves the LP from Example 4.2.1 in four iterations. From an initial fea-

sible basis BV = {5, 6, 7, 8, 9}, SM successively moves to the following bases: {5, 6, 1, 8, 9},

{5, 6, 1, 3, 9}, {5, 2, 1, 3, 9}, and {5, 4, 1, 3, 9}. Consequently, DPSM performs 50% fewer it-

erations than SM in this example.
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Table 4.1: Double pivot simplex tableau from Example 4.2.1

BV
z x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

1 -20 -12 -15 -6 0 0 0 0 0 0

x5 0 1 -2 3 1 1 0 0 0 0 99

x6 0 1 0 1 0 0 1 0 0 0 40

x7 0 4 9 1 4 0 0 1 0 0 106

x8 0 2 2 1 1 0 0 0 1 0 60

x9 0 2 -1 5 0 0 0 0 0 1 170

1 0 -2 0 -1 0 10 0 5 0 700

x5 0 0 2 0 3 1 -5 0 2 0 19

x3 0 0 -2 1 -1 0 2 0 -1 0 20

x7 0 0 3 0 1 0 2 1 -3 0 6

x1 0 1 2 0 1 0 -1 0 1 0 20

x9 0 0 5 0 3 0 -8 0 3 1 30

1 0 1 0 0 0 12 1 2 0 706

x5 0 0 -7 0 0 1 -11 -3 11 0 1

x3 0 0 1 1 0 0 4 1 -4 0 26

x4 0 0 3 0 1 0 2 1 -3 0 6

x1 0 1 -1 0 0 0 -3 -1 4 0 14

x9 0 0 -4 0 0 0 -14 -3 12 1 12

Observe that DPSM has three types of double pivots and Example 4.2.1 presents two of

them. The first double pivot replaces two basic variables with two nonbasic variables. The

second double pivot exchanges only one basic variable with one nonbasic variable, which

implies that one of the entering nonbasic variables, x2, is also a “leaving” variable. In this

pivot, the index that enters the basis corresponds to the nonbasic variable with the second

most negative reduced cost, x4. The other type of double pivot (αj∗ = −2M) corresponds

exactly to a classic pivot and the variable with the most negative reduced cost is the only

entering nonbasic variable.

If one of the nonbasic entering variables in DPSM is identical to SM, double pivots are

guaranteed to improve the objective function value by at least as much as classic pivots.

The classic pivot from the initial feasible basis BV = {5, 6, 7, 8, 9} results in an objective

function value of z = 530. Thus, the relative improvement of a double pivot is:
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(
700− 0

530− 0
− 1

)
× 100% = 32.1%.

Performing a classic pivot from BV = {5, 3, 7, 1, 9} results in an objective function value of

z = 704. The second double pivot’s relative improvement is:(
706− 700

704− 700
− 1

)
× 100% = 50%.

Therefore, even if a double pivot has a single nonbasic entering and basic leaving variable,

the benefit may still be substantial.

4.2.1 The Double Pivot Simplex Method and Degeneracy

Recall from Chapter 2.1.2 that degeneracy occurs when a basic feasible solution has at

least one basic variable that equals zero. Solving degenerate LPs by using SM without

implementing any finite pivoting rules may result in SM visiting different basic feasible

solutions with an identical objective function value. This behavior may potentially lead to

cycling. This section demonstrates that implementing SA instead of the minimum ratio test

in a primal simplex framework diminishes some of the issues caused by degeneracy.

Theorem 3.2.3 guarantees that an optimal solution to an SA2VLP occurs at the intersec-

tion of the jth and kth constraints as long as αj <
c2
c1

, αk ≥ c2
c1

, SA2VLPj,k is bounded, and

the point intersecting at j and k is feasible. The slope algorithm returns constraints j∗ and

k∗, which not only fulfill Theorem 3.2.3’s conditions, but also satisfy αk∗ − αj∗ ≤ αk − αj

for all j and k pairs of constraints that meet Theorem 3.2.3’s conditions (Algorithm 3.1,

line 5). The selection of these particular constraints results in an optimal basis according to

Theorem 4.2.1.

Example 4.2.2 provides a degenerate 2VLP that helps explain this concept. The graphical

representation of this 2VLP is presented in Figure 4.1.
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Example 4.2.2. Consider the following 2VLP.

maximize z = 5x1 + 4x2

subject to x1 − x2 ≤ 3 (1)

x1 ≤ 3 (2)

2x1 + x2 ≤ 6 (3)

3x1 + 2x2 ≤ 10 (4)

x1 + x2 ≤ 4 (5)

2x1 + 3x2 ≤ 10 (6)

x1 + 2x2 ≤ 6 (7)

x2 ≤ 3 (8)

−x1 + x2 ≤ 3 (9)

−x1 − x2 ≤ 0 (10)

x1 , x2 ≥ 0

Solving the above 2VLP with SA results in z∗ = 18, x∗ = (2, 2), j∗ = 4, k∗ = 5. Observe

that α4 = 2
3
< c2

c1
= 4

5
< α5 = 1. There are six pairs of constraints that satisfy Theorem 3.2.3

and identify an optimal solution: (3) and (5); (3) and (6); (3) and (7); (4) and (5); (4) and

(6); (4) and (7). The reader can easily convert the above 2VLP into an S2VLP and verify

that any one of these six bases is also an optimal basis to the 2VLP. The slope algorithm

chooses constraints (4) and (5) because this pair minimizes αk−αj (α5−α4 = 1
3
). Therefore,

SA identifies an optimal basis even for degenerate 2VLPs.

One can see that the following four pairs of constraints also identify an optimal solution

to the corresponding 2VLP: (3) and (4); (5) and (6); (5) and (7); (6) and (7). However, none

of the bases corresponding to these pairs of constraints identify an optimal basis. Observe

that the algorithms from Shamos and Hoey (1976), Megiddo (1983), or Dyer (1984) all solve

a two variable linear program, but these techniques may end with any one of these four

pairs of constraints intersecting at an optimal solution. Consequently, these fast methods

do not always identify an optimal basis and cannot be used as a double pivoting strategy
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within a primal simplex framework as previously mentioned. Additionally, recall that all

these methods may not necessarily find an optimal basis to the corresponding dual of the

above 2VLP, which led to the development of RA.

Figure 4.1: Graphical representation of Example 4.2.2

In contrast, implementing classic pivots on this degenerate 2VLP demonstrates a weak-

ness of SM. Performing four classic pivots by partially applying Bland’s rule to resolve ties

in the minimum ratio test results in a basis with constraints (5) and (6). Even though this

basis identifies an optimal solution, it does not identify an optimal basis as aforementioned,

and one more pivot is required to obtain an optimal basis. Therefore, degeneracy caused

additional work for SM, but not for DPSM.

To determine whether or not DPSM performs better than SM on degenerate LPs that cy-

cle, consider the 11 instances summarized by Gass and Vinjamuri (2004). These 11 problems

cycle when solved with SM without any anti-cycling technique. However, DPSM identifies

an optimal solution (or an unbounded LP) in every one of these 11 LPs. Therefore, DPSM

avoids cycling on these frequently demonstrated degenerate LPs.
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In conclusion, DPSM handles the issues caused by degenerate linear programming prob-

lems more effectively than SM. However, one should not infer from this claim that DPSM

completely eliminates all issues with respect to degeneracy. Determining whether or not

DPSM cycles is an unresolved research question.

4.2.2 Computational Study

The previous sections presented DPSM and provided evidence that it is theoretically superior

to SM. This section discusses some experiments to determine whether or not DPSM is

computationally faster than SM. The study was performed on an Intelr CoreTM i7-6700

3.4GHz processor with 32 GB of RAM, and implemented in C++. A portion of this study

implemented DPSM and SM with CPLEX Version 12.7, a high performance mathematical

programming solver (IBM, 2016). In this case, CPLEX’s preprocessing operations were

turned off in order to measure the real effectiveness of DPSM over SM and CPLEX’s primal

simplex algorithm.

4.2.2.1 Preliminary Implementation and Results

The first experiment of this computation study implemented DPSM and SM explicitly. The

code not only computed A.BV
−1 at every iteration using the LU decomposition package from

Press et al. (2007), but also determined explicitly the reduced cost cπi = cBV
TA.BV

−1A.i− ci

for all nonbasic variables i ∈ NBV , the right-hand side A−1
.BV b, and the constraint values

A−1
.BVA.p and A−1

.BVA.q of both improving nonbasic variables.

To test DPSM and SM’s explicit implementations, dense and sparse random instances

were generated. These random LPs take the form of:

maximize z =
n∑
i=1

cixi

subject to
n∑
i=1

aj,ixi ≤ bj ∀ j ∈ {1, 2, ..., r}

xi ≥ 0 ∀ i ∈ {1, 2, ..., n}.
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Dense random LPs have each aj,i ∈ Z+ randomly generated and uniformly distributed

between 0 and 1, 000, bj =
⌊

1
2

n∑
i=1

aj,i

⌋
, and ci =

r∑
j=1

aj,i + b200γic where γi is a uniform

random number between 0 and 1. Sparse random LPs have every aj,i = 1 if a uniform

random number between 0 and 1 is greater than or equal to ξ, where ξ is a sparseness

coefficient; or aj,i = 0 otherwise. Right-hand side and cost coefficient values for sparse LPs

are generated identically as dense LPs. Observe that these random instances are similar to

the problems suggested by Chu and Beasley (1998).

These random instances were solved with 200, 400, 600, 800, and 1, 000 variables and

100, 200,..., 1, 000 constraints. To avoid random anomalies with respect to the randomly

generated problems, 20 different instances were solved for each combination of variables and

constraints. Tables 4.2-4.4 present the average percentage improvement in the number of

pivots and solution time obtained with DPSM over SM for all 20 problems of each size.

Improvement in the number of pivots and solution time is defined as:

δDPSM
SM

=

(
y
SM
− y

DPSM

y
SM

)
× 100%,

where yDPSM is the number of pivots or solution time performed by DPSM and ySM indicates

the number of pivots or solution time performed by SM. Observe that Tables 4.2-4.4 total

3, 000 instances solved with each DPSM and SM.

Table 4.2 shows the results for dense random LPs. Tables 4.3 and 4.4 provide the compu-

tational results for sparse random LPs, and these problems have a sparseness coefficient of

ξ = 0.75 and ξ = 0.90, respectively. When dense random LPs are analyzed, DPSM averages

17.3% fewer pivots and 17.2% less computational time. Evaluating sparse random LPs with

ξ = 0.75 results in an average improvement in the number of pivots of approximately 29.9%

and solution time of nearly 29.7%. If sparse random LPs with ξ = 0.90 are considered, the

number of pivots is decreased by 29.5% and solution time by 29.4%, on average. Observe

that there is a high correlation between the number of pivots and solution time. This fol-

lows the theoretical run time analysis, which implies that implementing SA instead of the

minimum ratio test had a negligible impact on the total running time of these experiments.
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Table 4.2: Improvement in the number of pivots and solution time of DPSM over SM
(Dense Random LPs)

Cont/Var

Average % Improvement Average % Improvement

Number of Pivots Solution Time

200 400 600 800 1, 000 200 400 600 800 1, 000

100 19.3 19.1 16.9 15.7 18.6 18.8 18.6 16.6 15.4 18.6

200 18.9 20.5 16.7 17.4 17.4 18.7 20.4 16.7 17.4 17.4

300 20.0 17.7 17.9 16.6 16.1 19.9 17.7 17.8 16.6 15.9

400 21.0 16.3 17.0 16.5 16.8 20.8 16.2 16.9 16.4 16.8

500 18.6 15.9 15.9 16.8 14.9 18.5 15.8 16.2 16.7 14.9

600 19.7 16.8 16.8 17.0 16.0 19.6 16.8 16.7 16.9 15.9

700 17.4 17.2 16.5 17.1 15.7 17.1 17.0 16.3 16.8 15.4

800 19.0 19.5 16.7 15.0 16.2 18.8 19.3 16.5 14.6 16.0

900 19.2 16.7 16.9 15.0 15.9 19.1 16.7 17.0 15.1 16.0

1, 000 19.5 19.8 15.7 16.0 14.6 19.4 19.6 15.6 16.0 14.5

Average
19.3 18.0 16.7 16.3 16.2 19.1 17.8 16.6 16.2 16.1

17.3% 17.2%

Table 4.3: Improvement in the number of pivots and solution time of DPSM over SM
(Sparse Random LPs, ξ = 0.75)

Cont/Var

Average % Improvement Average % Improvement

Number of Pivots Solution Time

200 400 600 800 1, 000 200 400 600 800 1, 000

100 28.6 27.4 24.4 20.7 26.2 28.0 26.6 24.4 20.5 26.1

200 33.8 28.2 30.5 27.2 27.2 33.5 28.0 30.3 27.1 27.1

300 35.4 29.0 27.4 30.6 27.7 35.3 29.0 27.3 30.5 27.6

400 31.1 30.8 34.4 28.0 27.1 30.9 30.7 34.3 27.9 27.0

500 31.3 30.6 31.6 26.3 28.5 31.2 30.3 31.6 26.2 28.5

600 34.2 33.4 28.9 31.1 28.0 34.3 33.4 28.9 31.3 27.8

700 31.6 32.7 33.7 30.9 30.1 31.5 32.7 33.7 30.8 30.0

800 28.2 34.8 32.0 31.0 28.6 28.0 35.0 31.9 30.8 28.4

900 24.6 34.4 32.1 31.5 29.0 24.4 34.4 32.0 31.2 28.6

1, 000 22.5 35.7 32.2 29.9 27.8 22.5 35.6 32.4 29.4 27.6

Average
30.1 31.7 30.7 28.7 28.1 30.0 31.6 30.7 28.6 27.9

29.9% 29.7%
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Table 4.4: Improvement in the number of pivots and solution time of DPSM over SM
(Sparse Random LPs, ξ = 0.90)

Cont/Var

Average % Improvement Average % Improvement

Number of Pivots Solution Time

200 400 600 800 1, 000 200 400 600 800 1, 000

100 33.0 26.2 29.3 21.0 22.9 33.4 26.1 29.0 20.9 22.8

200 30.2 28.3 24.2 28.1 26.1 30.1 28.2 24.1 28.1 26.1

300 31.2 28.0 27.5 29.3 29.8 31.2 27.9 27.4 29.2 29.7

400 33.9 32.7 30.8 27.4 27.0 33.8 32.7 30.7 27.3 26.9

500 34.2 32.8 30.2 29.1 25.4 33.9 33.0 30.1 29.1 25.2

600 34.4 32.6 32.7 28.3 28.0 34.2 32.5 32.6 28.1 27.8

700 30.1 34.4 29.7 27.7 26.5 29.9 34.2 29.5 27.5 26.3

800 27.7 32.9 31.4 28.7 26.5 27.7 32.7 31.2 28.6 26.1

900 26.9 34.3 31.3 30.2 30.4 26.7 34.1 31.8 29.8 30.3

1, 000 25.4 32.5 30.8 31.7 32.0 25.5 32.5 30.7 31.8 31.8

Average
30.7 31.5 29.8 28.1 27.5 30.6 31.4 29.7 28.0 27.3

29.5% 29.4%

These 3, 000 instances were also run with CPLEX’s primal simplex algorithm. In this

case, CPLEX surpassed both DPSM and SM’s explicit implementations and solved the

instances in a few seconds, while DPSM and SM required hours. This result is not surprising

as explicitly implementing DPSM or SM eliminates decades of computational advancements.

Unlike researchers at commercial optimization companies, the author does not have sufficient

access to change the pivoting strategy in commercial software from a classic pivot to a

double pivot. However, CPLEX has several API routines that allow the manipulation of the

basis variables. These routines enabled this computational study to mimic double pivots

over CPLEX’s infrastructure and take advantage of numerous computational advancements

offered by the solver. The following sections provide details on this implementation and the

computational results obtained.
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4.2.2.2 CPLEX’s Implementation Details

Among several of the API routines offered by CPLEX, this computational study used four of

them. Entering nonbasic variable for SM was obtained from the CPXgetdj routine. Routines

CPXgetx and CPXbinvacol were used to perform the minimum ratio test and determine the

leaving basic variable. The CPXpivot routine updated the basis by swapping the leaving

basic variable with the entering nonbasic variable.

A similar implementation was followed for DPSM. Both entering nonbasic variables were

obtained from the CPXgetdj routine. Two calls to the CPXbinvacol routine and one call to

the CPXgetx routine created a 2VLP. The slope algorithm solved the 2VLP and identified

the leaving and entering variable(s). Unfortunately, the CPXpivot routine only allows for

a single exchange of variables at a time. Thus, if two nonbasic variables entered the basis,

the CPXpivot routine was called twice. If either of the other type of pivots occurred, the

CPXpivot routine was called once.

Both DPSM and SM require an initial feasible basis, which can be obtained either from

a Big-M or Phase 1 implementation using DPSM or SM (Bazaraa et al., 2010). In this

computational study, CPLEX’s Phase 1 reported an initial feasible basis. The same basis

was used for both DPSM and SM in every instance solved.

Solution times obtained with these implementations became comparable with CPLEX’s

primal simplex algorithm. Obviously, these implementations were still slower than CPLEX,

but it only slowed the solution time by less than 50%. With a reasonable implementation

of DPSM and SM, the study solved instances from Netlib (Gay, 1985) and MIPLIB (Koch

et al., 2011), benchmark libraries with linear and mixed integer linear programs, respectively.

Instances from MIPLIB were changed to LPs by eliminating the integrality constraints. To

avoid the upper and lower bound simplex implementations, additional constraints were added

to the problems in order to represent these bounds. Number of constraints, variables, and

nonzeros shown in Tables 4.5-4.7 account for these transformations.

During the computational experiments, the author encountered serious issues with nu-

merical instability from the CPXpivot routine. This issue prohibited DPSM and SM from
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terminating and/or led to numerically singular bases for many of the benchmark instances.

When a basis is found to be singular, CPLEX removes one or more variables from the current

basis and re-includes these variables on further iterations when an optimal basis is obtained.

If after re-including these variables the basis is no longer optimal, then CPLEX proceeds

until an optimal basis is found; otherwise, an optimal solution and optimal basis to the

problem has been found.

Unfortunately, the author could not duplicate CPLEX’s internal repair process in the

implementation of DPSM or SM. Failure to correctly repair the basis may result in incorrect

and/or illegal pivots. The author attempted to fix this problem through more frequent

refactoring of the basis (CPX PARAM REINV ), restricting the number of times CPLEX

repairs the basis (CPX PARAM SINGLIM ), and tracking the kappa value to identify when

a pivot makes the basis become unstable. However, none of these attempts resolved the

aforementioned issues.

The reader should know that CPLEX’s numerical instability occurred in both DPSM

and SM. The computational experiments found problems where DPSM solved, but SM did

not, and vice versa. Therefore, this computational study only reports the results of the

benchmark problems where both DPSM and SM solved the instance with CPLEX’s API

routines.

4.2.2.3 CPLEX’s Results and Analysis

Tables 4.5 and 4.6 show all instances solved from Netlib. Table 4.7 presents all instances

solved from MIPLIB. Overall, 46 instances were solved from Netlib and 10 from MIPLIB.

Because of the number of instances from Netlib, results to this benchmark library are divided

in two tables, and the average of all problems is presented in Table 4.6. These tables

present the number of pivots (Phase 2 only) performed by each method, including CPLEX’s

primal simplex implementation. Tables also include the number of constraints, variables, and

nonzeros of each instance. Furthermore, Tables 4.5-4.7 describe the percentage improvement
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obtained with DPSM over SM and DPSM over CPLEX. Similar to δDPSM
SM

, improvement in

the number of pivots of DPSM over CPLEX’s primal simplex algorithm is defined as:

δ DPSM
CPLEX

=

(
y
CPLEX

− y
DPSM

y
CPLEX

)
× 100%,

where yDPSM is the number of pivots performed by DPSM and yCPLEX equals the number of

pivots performed by CPLEX’s primal simplex algorithm.

Table 4.5: Improvement in the number of pivots of DPSM over SM and CPLEX’s primal
simplex algorithm (Netlib)

Name Cont Var Nz
Number of Pivots

δDPSM
SM

δ DPSM
CPLEXCPLEX SM DPSM

ADLITTLE 56 138 424 58 100 56 44.0% 3.4%

AGG 488 615 2,862 64 85 45 47.1% 29.7%

AGG2 516 758 4,740 85 87 55 36.8% 35.3%

AGG3 516 758 4,758 56 64 34 46.9% 39.3%

BANDM 305 472 2,494 227 305 152 50.2% 33.0%

BEACONFD 173 295 3,408 88 95 52 45.3% 40.9%

BRANDY 220 303 2,202 194 271 208 23.2% -7.2%

CZPROB 1,158 3,791 11,166 1,122 3,741 1,681 55.1% -49.8%

DEGEN2 444 757 4,201 1,041 6,771 1,145 83.1% -10.0%

E226 223 472 2,768 247 435 231 46.9% 6.5%

FFFFF800 524 1,028 6,401 216 278 135 51.4% 37.5%

FINNIS 619 1,141 2,959 277 670 344 48.7% -24.2%

FIT1D 1,050 2,075 15,479 911 1,064 847 20.4% 7.0%

FIT1P 1,026 2,076 10,666 987 1,357 797 41.3% 19.3%

FIT2D 10,525 21,024 150,042 20,166 13,298 11,663 12.3% 42.2%

GANGES 1,713 2,110 7,745 294 678 268 60.5% 8.8%

GROW7 420 581 3,172 208 246 139 43.5% 33.2%

GROW15 900 1,245 6,820 977 871 759 12.9% 22.3%

KB2 52 77 331 35 40 37 7.5% -5.7%

LOTFI 153 366 1,136 177 377 261 30.8% -47.5%

RECIPELP 207 320 919 33 34 16 52.9% 51.5%

SC50A 50 78 160 20 18 11 38.9% 45.0%

SC50B 50 78 148 19 16 11 31.3% 42.1%

SCAGR7 129 185 465 81 84 52 38.1% 35.8%
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Table 4.6: Improvement in the number of pivots of DPSM over SM and CPLEX’s primal
simplex algorithm (Netlib) - continued

Name Cont Var Nz
Number of Pivots

δDPSM
SM

δ DPSM
CPLEXCPLEX SM DPSM

SCAGR25 471 671 1,725 357 433 259 40.2% 27.5%

SCFXM1 330 600 2,732 171 227 118 48.0% 31.0%

SCFXM2 660 1,200 5,469 327 503 276 45.1% 15.6%

SCFXM3 990 1,800 8,206 502 794 445 44.0% 11.4%

SCORPION 388 466 1,534 270 271 242 10.7% 10.4%

SEBA 1,023 1,537 5,369 65 70 36 48.6% 44.6%

SHARE1B 117 253 1,179 150 404 198 51.0% -32.0%

SHARE2B 96 162 777 40 80 39 51.3% 2.5%

SHELL 912 1,903 4,060 325 404 244 39.6% 24.9%

SHIP04L 402 2,166 6,380 346 366 195 46.7% 43.6%

SHIP04S 402 1,506 4,400 155 145 76 47.6% 51.0%

SHIP08L 778 4,363 12,882 668 717 382 46.7% 42.8%

SHIP08S 778 2,467 7,194 454 567 291 48.7% 35.9%

SHIP12L 1,151 5,533 16,276 276 262 153 41.6% 44.6%

SHIP12S 1,151 2,869 8,284 187 187 101 46.0% 46.0%

STANDATA 479 1,383 3,459 138 113 62 45.1% 55.1%

STANDGUB 481 1,492 3,567 113 121 97 19.8% 14.2%

STANDMPS 587 1,383 4,107 418 409 245 40.1% 41.4%

STOCFOR1 117 165 501 91 59 32 45.8% 64.8%

STOCFOR2 2,157 3,045 9,357 1,057 1,315 946 28.1% 10.5%

STOCFOR3 16,675 23,541 72,721 18,931 21,221 18,254 14.0% 3.6%

TUFF 366 660 4,626 85 253 124 51.0% -45.9%

Average 40.6% 20.3%

Tables 4.5-4.7 combined show that DPSM averages 41% fewer pivots than SM and 22%

fewer pivots than CPLEX’s primal simplex algorithm. Each double pivot identified an av-

erage of only 2 constraints that updated x, implying that Theorem 3.2.2 and Corollaries

3.2.3, 3.2.4, and 3.2.5 are infrequently implemented. The study shows that on average 83%

of pivots entered two nonbasic variables in the basis, 2% entered the nonbasic variable with

the most negative reduced cost, and 15% entered the nonbasic variable with the second most

negative reduced cost. Overall, only 0.05% of the iterations had a single negative reduced
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cost, which implies that the vast majority of the iterations pivoted with SA and not with

the minimum ratio test.

Table 4.7: Improvement in the number of pivots of DPSM over SM and CPLEX’s primal
simplex algorithm (MIPLIB)

Name Cont Var Nz
Number of Pivots

δDPSM
SM

δ DPSM
CPLEXCPLEX SM DPSM

50v-10 1880 3843 6222 222 212 116 45.3% 47.7%

dfn-gwin-UUM 158 985 2679 137 126 76 39.7% 44.5%

ger50 17 trans 499 22641 172262 751 623 345 44.6% 54.1%

germanrr 21703 32269 207927 78 77 55 28.6% 29.5%

ic97 potential 1774 2502 5640 47 48 24 50.0% 48.9%

janos-us-DDM 760 2268 6468 342 318 161 49.4% 52.9%

mcsched 3854 5399 13487 3118 4158 3666 11.8% -17.6%

noswot 282 408 1115 10 33 10 69.7% 0.0%

ns1766074 182 262 828 83 224 137 38.8% -65.1%

timtab1 568 794 1623 54 53 30 43.4% 44.4%

Average 42.1% 23.9%

The average relative improvement in objective function value per iteration of all bench-

mark instances solved is ∆ = 170%. Define improvement in the objective function value per

iteration as:

∆ =

(
zdouble pivot − zcurrent

zclassic − zcurrent

− 1

)
× 100%,

where zcurrent is the z value of the current basis, zdouble pivot is the z value after a double

pivot, and zclassic is the z value after a classic pivot. If a classic pivot does not improve the

objective function value, then:

∆ =

(
zdouble pivot − zcurrent

zcurrent

)
× 100%.

In other words, ∆ represents the percentage improvement in objective function value that

occurs by using a double pivot compared to the improvement attributed to the use of a

classic pivot. Hence, all values of ∆ are averaged to create ∆.
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When analyzing based on pivot type, ∆ = 473% for double pivots that enter two nonbasic

variables into the basis, ∆ = 135% for double pivots that enter the nonbasic variable with

the second most negative reduced cost, and obviously ∆ = 0% for double pivots that enter

the nonbasic variable with the most negative reduced cost.

Even though DPSM outperforms SM and CPLEX’s primal simplex algorithm in number

of pivots, the question of whether or not DPSM is computationally faster still remains.

Tables 4.5, 4.6, and 4.7 do not include solution times because the vast majority of these

instances were solved by DPSM, SM and CPLEX’s primal simplex algorithm in less than a

tenth of a second. Obtaining reliable data on such small time increments is both inconclusive

and unconvincing. However, it suffices to say that DPSM, SM, and CPLEX’s primal simplex

algorithm were very close in computational time for these instances.

To provide a partial answer, some dense and sparse random LPs that did not present

numerical instability issues with respect to the CPXpivot routine were solved with DPSM

and SM. These LPs take the same form of the LPs described in Chapter 4.2.2.1. In total, 50

problems that ranged from 2, 000−10, 000 variables and 1, 000−5, 000 constraints were solved.

These instances were large enough to produce reasonable solution times for comparison. On

average, these problems solved with DPSM in 62 seconds, SM in 54 seconds, and CPLEX’s

primal simplex algorithm in 39 seconds.

When broken down by steps, SM spent on average 1% of the solution time to find the

entering nonbasic variable, 6% to obtain the right-hand side values and constraint matrix

values of the entering nonbasic variable, 1% to perform the minimum ratio test, 91% to

swap the leaving and entering variables using the CPXpivot routine, and 1% for all other

operations. Similarly, DPSM spent on average 1% to find both entering nonbasic variables,

11% to create 2VLPs, 1% to find the leaving basic variable(s) with SA, 86% to exchange the

leaving with entering variable(s) using the CPXpivot routine (called once or twice depending

on the type of pivot), and 1% for all other operations. Therefore, the vast majority of time is

spent pivoting and creating data for the minimum ratio tests or 2VLPs. Thus, SA is similar

in computational speed to the minimum ratio test, which follows the theoretical analysis

that both algorithms have the same theoretical running time per iteration.
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This small study demonstrates that SA does not significantly impact DPSM’s solution

time. The most expensive step corresponds to the CPXpivot routine. This routine not

only updates the basis’ inverse factorization, but also calculates the solution of all basic

variables, reduced cost values, dual price values, etc. Unfortunately, DPSM frequently calls

the CPXpivot routine twice during an iteration, which forces unnecessary work. Thus,

this implementation of DPSM is at a competitive disadvantage compared to both SM and

CPLEX’s primal simplex algorithm. Consequently, only a full implementation of DPSM in

a quality commercial or open source linear programming solver can truly answer whether

or not DPSM is faster than SM. Fully implementing DPSM requires the development of an

efficient method to update the basis factorization for double pivots.

4.3 The Double Pivot Dual Simplex Method

As discussed in Chapter 2.1, the dual simplex method is sometimes preferred to the simplex

method in state-of-the-art commercial and open source solvers. This section presents the

double pivot dual simplex method (DPDSM), a novel dual simplex framework to solve LPs

where |Q′| = 2. Similar to the dual simplex method, DPDSM requires an optimal basis

to its two dimensional subspace linear program solved at each iteration; that is, a 2CLP.

Consequently, RA is the method used to solve DPDSM’s subproblems.

To implement RA within a dual simplex framework, one should question whether RA

can identify an optimal basis to a 2CLP. Thus, the major theoretical result in this section

is to prove that variable indices i∗ and j∗ define an optimal basis to a 2CLP. To prove this

result, consider the standard form of a 2CLP presented in Chapter 3.3 (S2CLP).

The following three corollaries describe conditions that help proving this critical result.

Corollary 4.3.1 presents the relationship between the coefficients of two variable indices.

Corollaries 4.3.2 and 4.3.3 describe the relationship between the coefficients of two variable

indices and the right-hand side values b1 and b2. For brevity, the proof of each of these three

corollaries is not presented. However, the proof from Corollary 4.3.1 can be easily derived
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from Lemma 3.2.2, and the proof from Corollaries 4.3.2 and 4.3.3 can be obtained from

Corollaries 3.2.1 and 3.2.2.

Corollary 4.3.1. If S2CLP has i and j ∈ N such that none of the conditions for an infeasible

S2CLP are satisfied, βi < M , −M < βj ≤ 2M , and βi < βj, then a2,ia1,j < a1,ia2,j. 2

Corollary 4.3.2. If S2CLP has an i ∈ N such that βi <
b2
b1

, then a2,ib1 < a1,ib2. 2

Corollary 4.3.3. If S2CLP has a j ∈ N such that b2
b1
≤ βj ≤ 2M , then a1,jb2 ≤ a2,jb1. 2

Theorem 4.3.1 proves that RA defines an optimal basis to any feasible S2CLP. The proof

follows by examining all appropriate cases for βi∗ and βj∗ .

Theorem 4.3.1. Given a feasible S2CLP and a sufficiently large positive number M , the

ratio algorithm reports i∗, j∗, βi∗, and βj∗ such that the following sets are an optimal basis

for the corresponding S2CLP:

i) If βi∗ = −2M , then BV = {j∗, n+ 2};

ii) If βj∗ = 2M , then BV = {n+ 1, i∗};

iii) If βi∗ 6= −2M and βj∗ 6= 2M , then BV = {i∗, j∗}.

Proof. Given a feasible S2CLP and a sufficiently large positive numberM , the ratio algorithm

reports i∗, j∗, βi∗ , and βj∗ . To determine that BV is an optimal basis to the corresponding

S2CLP, one must show cπi < 0 for each i ∈ NBV , and bπ1 and bπ2 are nonnegative where cπ

and bπ are the calculated reduced cost and right-hand side values, respectively.

From Algorithm 3.2, cπi < 0 for every i ∈ N \ (i∗ ∪ j∗) = NBV because the z calculated

with these variable indices is greater than z′. If z < z′, then Algorithm 3.2 has cπi > 0 for

some i ∈ N \ (i∗ ∪ j∗) = NBV , but either bπ1 < 0 and/or bπ2 < 0. Consequently, the reduced

cost of each variable index, except i∗ and j∗, is either nonimproving or defines an infeasible

basis. Since i∗ and j∗ are both improving, the remainder of the proof shows that bπ1 and bπ2

are nonnegative by evaluating all appropriate cases for βi∗ and βj∗ .
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If βi∗ = −2M , assume BV = {j∗, n+ 2}. Since the S2CLP is feasible, then −M < βj∗ <

M , which implies a1,j∗ > 0 and a2,j∗ > 0. Therefore, bπ1 = b1
a1,j∗

> 0 and bπ2 =
a2,j∗b1−a1,j∗b2

a1,j∗
.

From Corollary 4.3.3, b2
b1
≤ βj∗ ≤ 2M and a1,j∗b2 ≤ a2,j∗b1. Consequently, bπ2 ≥ 0.

If βj∗ = 2M , assume BV = {n+1, i∗}. Since the S2CLP is feasible, then −M < βi∗ < M ,

which implies a1,i∗ > 0 and a2,i∗ > 0. Therefore, bπ2 = b2
a2,i∗

> 0 and bπ1 =
a1,i∗b2−a2,i∗b1

a2,i∗
. From

Corollary 4.3.2, βi∗ <
b2
b1

and a2,i∗b1 < a1,i∗b2. Consequently, bπ1 > 0.

If βi∗ 6= −2M and βj∗ 6= 2M , assume BV = {i∗, j∗}. Observe that bπ1 =
a1,j∗b2−a2,j∗b1

a2,i∗a1,j∗−a1,i∗a2,j∗

and bπ2 =
a2,i∗b1−a1,i∗b2

a2,i∗a1,j∗−a1,i∗a2,j∗
. Since βi∗ <

b2
b1
≤ βj∗ ≤ 2M , conditions of Corollaries 4.3.1, 4.3.2,

and 4.3.3 are satisfied. From Corollaries 4.3.1 and 4.3.3, a2,i∗a1,j∗ < a1,i∗a2,j∗ and a1,j∗b2 ≤

a2,j∗b1, respectively. Thus, bπ1 ≥ 0. From Corollary 4.3.2, a2,i∗b1 < a1,i∗b2. Combining this

fact with Corollary 4.3.1 results in bπ2 > 0.

Since a1,j∗ > 0 when βi∗ = −2M , a2,i∗ > 0 when βj∗ = 2M , and a2,i∗a1,j∗ − a1,i∗a2,j∗ < 0

when βi∗ 6= −2M and βj∗ 6= 2M , then the columns of BV are linearly independent in all

three cases. Consequently, BV is an optimal basis to the S2CLP and the proof is shown. 2

Algorithm 4.2 presents DPDSM. Similar to DPSM, the double pivot dual simplex method

is shown within the context of a revised simplex framework, and the algorithm chooses the

two indices with the most negative right-hand side values for the leaving basic variables.

The input to DPDSM is an SLP, a super optimal basis BV , and a sufficiently large positive

number M .

The double pivot dual simplex method correctly solves a nondegenerate SLP following the

same arguments and steps used to prove Theorem 4.2.2. The following corollary formalizes

this claim.

Corollary 4.3.4. Given a nondegenerate SLP, an initial super optimal basis BV , and a

sufficiently large positive number M , DPDSM correctly terminates within a finite number of

steps. 2

Since DPDSM begins with a super optimal basis, the algorithm either finds that the cor-

responding SLP is infeasible or an optimal basis and its corresponding optimal solution. The
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double pivot dual simplex method decreases the “infeasibility” at each iteration by at least

as much as DSM. Furthermore, one can easily verify that DPDSM’s theoretical running time

is O(rn + I(r)) when considering the classical revised simplex framework implementation,

or O(rn+ U(r)) when considering a commercial or open source solver implementation.

Algorithm 4.2 : The Double Pivot Dual Simplex Method (DPDSM)

1: begin
2: while (A.BV

−1b)j 6≥ 0 for all j ∈ BV do
3: p′ ← argmin

p′∈BV
(A.BV

−1b)p′ ;

4: q′ ← argmin
q′∈(BV ∪{p})

(A.BV
−1b)q′ ;

5: if (A.BV
−1b)q′ < 0 then

6: Let 2CLP be:

minimize z = (c(N\BV )
T − cBV TA.BV −1A.(N\BV ))x(N\BV )

subject to − (A.BV
−1A.(N\BV ))p′x(N\BV ) ≥ −(A.BV

−1b)p′

− (A.BV
−1A.(N\BV ))q′x(N\BV ) ≥ −(A.BV

−1b)q′
x(N\BV ) ≥ 0;

7: Solve 2CLP with RA;
8: if 2CLP is infeasible then return SLP is infeasible;

9: if βi∗ = −2M then BVp′ ← j∗;

10: if βj∗ = 2M then BVq′ ← i∗;

11: if βi∗ 6= −2M and βj∗ 6= 2M then
12: BVp′ ← i∗;
13: BVq′ ← j∗;

14: else
15: θ ←M ;
16: for each k ∈ N do
17: if (A.BV

−1A.k)p′ < 0 and
∣∣∣ cBV TA.BV −1A.k−ck

(A.BV
−1A.k)p′

∣∣∣ < θ then

18: θ ←
∣∣∣ cBV TA.BV −1A.k−ck

(A.BV
−1A.k)p′

∣∣∣;
19: l← k;

20: if θ = M then return SLP is infeasible;
21: else
22: BVp′ ← l;

23: return x∗BV ← A.BV
−1b, x∗(N\BV ) = 0, and z∗ = cTx∗;

24: end

To demonstrate the implementation of DPDSM, Example 4.3.1 is presented. Table 4.8

depicts the three tableaus that show DPDSM’s pivots.
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Example 4.3.1. Consider the following LP.

minimize z = 99x1 + 40x2 + 106x3 + 60x4 + 170x5

subject to x1 + x2 + 4x3 + 2x4 + 2x5 ≥ 20 (1)

−2x1 + 9x3 + 2x4 − x5 ≥ 12 (2)

3x1 + x2 + x3 + x4 + 5x5 ≥ 15 (3)

x1 + 4x3 + x4 ≥ 6 (4)

x1 , x2 , x3 , x4 , x5 ≥ 0

One can see that the above LP is exactly the corresponding dual of the LP from Example

4.2.1. The first tableau describes the corresponding SLP from Example 4.3.1, and the initial

super optimal basis is BV = {6, 7, 8, 9}. Observe that this tableau is super optimal because

the reduced cost for all nonbasic variables are negative and SLP is a minimization problem.

In addition, BV = {6, 7, 8, 9} is also infeasible because all right-hand side values are negative.

To begin, DPDSM selects the basic variables with the two most negative right-hand side

values, which are x6 and x8. Consequently, p′ = 1 and q′ = 3. The ratio algorithm solves

the following 2CLP:

minimize z = 99x1 + 40x2 + 106x3 + 60x4 + 170x5

subject to x1 + x2 + 4x3 + 2x4 + 2x5 ≥ 20

3x1 + x2 + x3 + x4 + 5x5 ≥ 15

x1 , x2 , x3 , x4 , x5 ≥ 0.

The ratio algorithm calculates β = (3, 1, 1
4
, 1

2
, 5

2
, 2M,−2M) and finds i∗ = 4 and j∗ = 2

because β4 = 1
2
< b8

b6
= 15

20
≤ β2 = 1. The algorithm verifies that x = (x4, x2) = (5, 10),

and z′ = 60x4 + 40x2 = 700 is the minimal feasible objective function value that one could

obtain from S2CLP. Hence, RA returns i∗ = 4, j∗ = 2, β4 = 1
2
, and β2 = 1. In this case,

the first element in BV is replaced with index 4, the third element in BV is replaced with

index 2, and the resulting basis is BV = {4, 7, 2, 9}. The second tableau in Table 4.8 shows

this double pivot.
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Table 4.8: Double pivot dual simplex tableau from Example 4.3.1

BV
z x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

1 -99 -40 -106 -60 -170 0 0 0 0 0

x6 0 -1 -1 -4 -2 -2 1 0 0 0 -20

x7 0 2 0 -9 -2 1 0 1 0 0 -12

x8 0 -3 -1 -1 -1 -5 0 0 1 0 -15

x9 0 -1 0 -4 -1 0 0 0 0 1 -6

1 -19 0 -6 0 -30 -20 0 -20 0 700

x4 0 -2 0 3 1 -3 -1 0 1 0 5

x7 0 -2 0 -3 0 -5 -2 1 2 0 -2

x2 0 5 1 -2 0 8 1 0 -2 0 10

x9 0 -3 0 -1 0 -3 -1 0 1 1 -1

1 -1 0 0 0 -12 -14 0 -26 -6 706

x4 0 -11 0 0 1 -12 -4 0 4 3 2

x7 0 7 0 0 0 4 1 1 -1 -3 1

x2 0 11 1 0 0 14 3 0 -4 -2 12

x3 0 3 0 1 0 3 1 0 -1 -1 1

Because x7 = −2 and x9 = −1, DPDSM continues with p′ = 2 and p′ = 4. The ratio

algorithm solves the following 2CLP:

minimize z = 19x1 + 6x3 + 30x5 + 20x6 + 20x8

subject to 2x1 + 3x3 + 5x5 + 2x6 − 2x8 ≥ 2

3x1 + x3 + 3x5 + x6 − x8 ≥ 1

x1 , x3 , x5 , x6 , x8 ≥ 0.

The ratio algorithm determines β = (3
2
, 1

3
, 3

5
, 1

2
, 3M, 2M,−2M) and finds β3 = 1

3
< b9

b7
=

1
2
≤ α6 = 1

2
such that x = (x3, x6) = (0, 1) with z′ = 6x3 +20x6 = 20. The algorithm runs its

optimality procedure and eventually determines x = (x3, x10) = (1, 1) with z′ = 6x3 +0x10 =

6 as the minimal feasible objective function value from S2CLP. Observe that x10 corresponds

to one of the two surplus variables added to 2CLP in order to convert it to an S2CLP. Even

though this variable index is out of the range of SLP, this does not cause issues to DPDSM
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because index 10 never enters into the basis. This comment also follows for the other surplus

variable, x11. Finally, RA returns i∗ = 3, j∗ = 10, β3 = 1
3
, and β10 = 2M .

Since βj∗ = 2M , the fourth element in BV is replaced with index 3 and the resulting

basis is BV = {4, 7, 2, 3}. The third tableau in Table 4.8 shows this double pivot. Since

cπi < 0 for all i ∈ NBV (minimization problem), x4 6< 0, x7 6< 0, x2 6< 0, and x3 6< 0, thus

BV = {4, 7, 2, 3} is feasible and optimal. Therefore, DPDSM reports an optimal solution

z∗ = 706 and x∗ = (0, 12, 1, 2, 0, 0, 1, 0, 0).

Similar to DPSM in Example 4.2.1, DPDSM performs 50% fewer iterations than DSM in

this example. This is because DSM begins with BV = {6, 7, 8, 9} and successively moves to

the following bases until an optimal basis is obtained: BV = {3, 7, 8, 9}, BV = {3, 7, 4, 9},

BV = {3, 2, 4, 9}, BV = {3, 2, 4, 7}. Additionally, the relative improvement in objective

function value is 32.1% for the first double pivot and 50% for the second double pivot. These

improvements are also identical to Example 4.2.1 because of the primal-dual relationship

between both LPs.

This chapter demonstrated that two dimensional searches within a simplex framework

substantially decrease the number of pivots and have the potential to more quickly solve

LPs. Even though both SM and DSM are vastly used by commercial and open source

solvers, interior point methods became popular over the last decades, and are occasionally

faster than SM or DSM depending on the type of LPs solved (recall this discussion in

Chapter 2). Hence, an obvious research direction is to implement two dimensional searches

within an interior point framework. The next chapter describes the algorithmic, theoretical,

and computational research created on this topic.
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Chapter 5

Two Dimensional Searches in an

Interior Point Framework

This chapter presents a new set of two dimensional search interior point algorithms. The pri-

mary goal is to demonstrate and validate through novel methods that these two dimensional

search interior point algorithms solve LPs faster than the corresponding one dimensional

search version. Chapter 5.1 discusses the classical one dimensional search interior point al-

gorithms studied during this dissertation’s research. Chapter 5.2 presents novel primal and

dual two dimensional search interior point algorithms derived from affine and logarithmic

barrier search directions. Chapter 5.3 describes computational experiments that show the

effectiveness of the newly developed algorithms.

The primary content of this chapter is based on the manuscript, “Projected Orthogonal

Vectors in Two Dimensional Search Interior Point Algorithms for Linear Programming”,

currently under peer-review (Vitor and Easton, 2019a). Some preliminary results to this

manuscript can also be found in the conference paper, “A Two Dimensional Search Primal

Affine Scaling Interior Point Algorithm for Linear Programs”, published in the Proceedings

of the 2018 IISE Annual Conference (Vitor and Easton, 2018a).
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5.1 One Dimensional Search Interior Point Algorithms

This section presents the main theoretical and algorithmic details of the classical one di-

mensional search primal affine scaling (Chapter 5.1.1), dual affine scaling (Chapter 5.1.2),

primal logarithmic barrier (Chapter 5.1.3), and dual logarithmic barrier (Chapter 5.1.4) inte-

rior point algorithms. These methods are well documented in the literature and this section

only presents a summary of each algorithm. Fundamental knowledge about each of these

techniques is vital to understanding the newly developed two dimensional search algorithms

in Chapter 5.2. Additional details about these methods can be found in Gondzio (2012),

Gonzaga (1992), Lustig et al. (1994a), Fang and Puthenpura (1993), Bazaraa et al. (2010),

and Vanderbei (2014).

5.1.1 One Dimensional Search Primal Affine Scaling Interior Point

Algorithm

Formally, denote a primal linear program (PLPx) as:

minimize z = cTx

subject to Ax = b

x ≥ 0,

where c ∈ Rn, x ∈ Rn, A ∈ Rr×n is full row rank, and b ∈ Rr. Denote N = {1, ..., n} as

the set of variable indices and R = {1, ..., r} as the set of constraint indices of a PLPx. The

feasible region of a PLPx is defined as S = {x ∈ Rn+ : Ax = b} and the relative interior of

S is denoted by S ′ = {x ∈ Rn : Ax = b, x > 0}. The optimal solution of a PLPx is (z∗, x∗)

where x∗ ∈ S and z∗ = cTx∗ ≤ cTx for all x ∈ S. Observe that the one dimensional search

primal affine scaling interior point algorithm (1DIMP
aff) converges to (z∗, x∗) by successively

moving from an x′ ∈ S ′ to an x′′ ∈ S ′ with cTx′′ < cTx′. Furthermore, PLPx corresponds

exactly to an SLP, but PLPx is a minimization LP and A is simply defined as full row rank

in this case.
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From a feasible interior solution xk1D, each iteration k of 1DIMP
aff has the following three

primary steps: (1) determine a feasible and improving search direction dxk1D; (2) find an ap-

propriate step size λk1D > 0 by solving a one dimensional subspace linear program (1DSLP);

(3) move to a new and improved feasible interior solution xk+1
1D . In such a case, 1DIMP

aff

follows the spirit of Karmarkar’s projective scaling algorithm (Karmarkar, 1984). Recall

that Karmarkar’s algorithm utilizes a projective transformation to place the feasible interior

solution near the center of the LP’s feasible region in the transformed space. The algorithm

moves to an improved feasible interior solution in the transformed space by following the

steepest descent, given by the objective function. The inverse of the projective transforma-

tion maps the improved feasible interior solution back to the original space and the algorithm

repeats this process until a termination criterion is satisfied.

The core concept of 1DIMP
aff is the replacement of the projective transformation from

Karmarkar’s algorithm with the affine scaling transformation. Given a feasible interior so-

lution xk1D > 0 at the kth iteration, the affine scaling transformation y = X−1
k x maps xk1D

from the x-space to the y-space where Xk is an n× n nonsingular diagonal matrix with the

elements of xk1D in the diagonal. Observe that mapping xk1D from the x-space to the y-space

using the aforementioned transformation preserves all linear properties of x. Consequently,

applying the affine scaling transformation to the corresponding PLPx results in the following

primal linear program in the y-space (PLPy):

minimize z = cTXky

subject to AXky = b

y ≥ 0.

A search direction dyk1D to PLPy is feasible if AXky
k
1D = b and AXk(y

k
1D + λk1Ddy

k
1D) = b,

which implies AXkdy
k
1D = 0. Moreover, dyk1D is an improving search direction to PLPy if

cTXk(y
k
1D + λk1Ddy

k
1D) < cTXky

k
1D for every λk1D > 0, resulting in cTXkdy

k
1D < 0. From

the aforementioned discussion about Karmarkar’s algorithm, projecting −(cTXk)
T = −Xkc

onto the null space of AXk is sufficient to have AXkdy
k
1D = 0 and cTXkdy

k
1D < 0. Let
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I − XkA
T (AX2

kA
T )−1AXk be the orthogonal projection matrix and the search direction

dyk1D = −(I−XkA
T (AX2

kA
T )−1AXk)Xkc where I is an n×n identity matrix. Consequently,

dyk1D = −Xk(c− AT (AX2
kA

T )−1AX2
kc).

Since dyk1D is a feasible and improving search direction, the question is how far to move

from yk1D along dyk1D to an improved feasible interior solution yk+1
1D . Thus, one must determine

λk1D > 0 such that yk+1
1D = yk1D + λk1Ddy

k
1D ≥ 0. If dyk1D > 0, then yk1D + λk1Ddy

k
1D > 0 for all

λk1D > 0 and the problem is unbounded. If dyk1D = 0, the current solution is primal optimal.

If not, then there exists some i ∈ N such that (dyk1D)i ≤ 0, which implies λk1D ≤ −
(yk1D)i
(dyk1D)i

or simply λk1D < − 1
(dyk1D)i

because dyk1D = −Xk(c − AT (AX2
kA

T )−1AX2
kc). Thus, optimally

determining λk1D, denoted by λk
∗

1D, corresponds to solving

λk
∗

1D = min
i

{
− 1

(dyk1D)i
: (dyk1D)i < 0 ∀ i ∈ N

}
,

which is equivalent to solving the following 1DSLP:

minimize z = cTXkdy
k
1Dλ

k
1D

subject to dyk1Dλ
k
1D ≥ −1

λk1D ≥ 0.

Finally, a new and improved feasible interior solution in the y-space, yk+1
1D , is yk1D +

αλk
∗

1Ddy
k
1D where α ∈ (0, 1). Observe that by forcing α < 1, the boundary of PLPy is never

reached and yk+1
1D remains in the interior. The final step is to map the current yk+1

1D back to

the x-space by using the inverse of the affine scaling transformation, x = Xky. Consequently,

xk+1
1D = xk1D + αλk

∗
1DXkdy

k
1D.

In summary, 1DIMP
aff begins each iteration k with xk1D ∈ P ′ and determines xk+1

1D =

xk1D + αλk
∗

1Ddx
k
1D ∈ P ′ for some α ∈ (0, 1) until 1DIMP

aff is sufficiently close to (z∗, x∗), where

dxk1D = −X2
k(c− AT (AX2

kA
T )−1AX2

kc) and

λk
∗

1D = min
i

{
− (xk1D)i

(dxk1D)i
: (dxk1D)i < 0 ∀ i ∈ N

}
.
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5.1.2 One Dimensional Search Dual Affine Scaling Interior Point

Algorithm

The corresponding dual linear program (DLPw,s) of a PLPx can be defined as:

maximize z = bTw

subject to ATw + s = c

w is unrestricted

s ≥ 0,

where w ∈ Rr and s ∈ Rn. The feasible region of a DLPw,s is denoted as T = {w ∈ Rr, s ∈

Rn+ : ATw+s = c} and the relative interior of T is T ′ = {w ∈ Rr, s ∈ Rn : ATw+s = c, s > 0}.

The optimal solution of a DLPw,s is (z∗, w∗, s∗) where (w∗, s∗) ∈ T and z∗ = bTw∗ ≥ bTw

for all (w, s) ∈ T . Since DLPw,s is a maximization problem, the one dimensional search dual

affine scaling interior point algorithm (1DIMD
aff) converges to (z∗, w∗, s∗) by moving from a

(w′, s′) ∈ T ′ to a (w′′, s′′) ∈ T ′ with bTw′′ > bTw′ at each iteration.

Even though 1DIMD
aff follows the same principle of 1DIMP

aff and Karmarkar’s interior

point algorithm, s is the variable placed near the center of the dual LP’s feasible region in

the transformed space, because w is unrestricted. Therefore, 1DIMD
aff begins each iteration k

with a feasible interior dual solution (wk1D, s
k
1D) and determines a feasible improving search

direction (dwk1D, ds
k
1D), selects an appropriate step size ρk1D > 0 by solving a 1DSLP, and

calculates a new and improved feasible interior dual solution (wk+1
1D , sk+1

1D ).

To determine a search direction (dwk1D, ds
k
1D) that is feasible (ATdwk1D + dsk1D = 0) and

improving (bTdwk1D > 0), the affine scaling transformation v = S−1
k s is applied to DLPw,s

and creates a DLPw,v. From the affine scaling transformation, dsk1D = Skdv
k
1D and the

feasibility condition becomes ATdwk1D + Skdv
k
1D = 0. Multiplying ATdwk1D + Skdv

k
1D =

0 with AS−2
k results in dwk1D = −(AS−2

k AT )−1AS−1
k dvk1D. Since bTdwk1D > 0, dvk1D =

−
(
(AS−2

k AT )−1AS−1
k

)T
b and dwk1D = (AS−2

k AT )−1b. Consequently, dsk1D = Skdv
k
1D =

−AT (AS−2
k AT )−1b = −ATdwk1D.
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Observe that 1DIMD
aff optimally determines ρk1D > 0, denoted by ρk

∗
1D, following a similar

logic as how 1DIMP
aff calculates λk

∗
1D. That is,

ρk
∗

1D = min
i

{
− (sk1D)i

(dsk1D)i
: (dsk1D)i < 0 ∀ i ∈ N

}
.

Since dsk1D has been already derived into the s−space, the new and improved feasible

interior dual solution is computed as wk+1
1D = wk1D + αρk

∗
1Ddw

k
1D and sk+1

1D = sk1D + αρk
∗

1Dds
k
1D

for some α ∈ (0, 1).

5.1.3 One Dimensional Search Primal Logarithmic Barrier Inte-

rior Point Algorithm

Interior point methods, as many other iterative techniques, are sensitive to numerical errors.

This numerical instability may cause these algorithms to perform poorly near the boundary

of the LP’s feasible region. That is, if a feasible interior solution is sufficiently close to

the boundary of the LP’s feasible region, the algorithm may behave incorrectly and lead to

early termination, an infeasible solution, or even an incorrect solution. Recall from Chapter

2.2.2 that one possible method to resolve this issue is to introduce a barrier term to the

objective function of the problem. Commonly, this term is a logarithmic barrier function.

This section describes the one dimensional search primal logarithmic barrier interior point

algorithm (1DIMP
log), a technique that combines primal affine scaling and centering search

directions.

From a PLPx, 1DIMP
log considers the following primal nonlinear program (PNLPx,µ):

minimize z = f(x, µ) = cTx− µ
∑
i∈N

lnxi

subject to Ax = b

x > 0,

where µ ∈ R+ with lim
k→∞

µk = 0. Observe that in PNLPx,µ, x = 0 is no longer allowed and

the constraint x > 0 is incorporated by the portion −µ
∑
i∈N

lnxi in the objective function.
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This penalizes f(x, µ) when x approaches 0, which avoids x reaching the boundary of the

LP’s feasible region. Consequently, x∗ is an optimal solution to PLPx, if and only if, x∗ is

also an optimal solution to PNLPx,µ when µk approaches zero as k approaches infinity.

To find a feasible and improving search direction dxk1D for µk1D > 0 at each iteration k, a

quadratic approximation of f at a feasible interior solution xk1D is derived. Let

f(x, µ) ≈ f(xk1D, µ
k
1D) +∇f(xk1D, µ

k
1D)Tdxk1D + 1

2
(dxk1D)T∇2f(xk1D, µ

k
1D)dxk1D

be the quadratic approximation of f and the following primal quadratic program (PQPdxk1D
)

determines the search direction dxk1D:

minimize z =∇f(xk1D, µ
k
1D)Tdxk1D + 1

2
(dxk1D)T∇2f(xk1D, µ

k
1D)dxk1D

subject to Adxk1D = 0.

Observe that the resulting dxk1D is an improving search direction because PQPdxk1D
min-

imizes the quadratic approximation of f , and dxk1D is a feasible search direction because

Axk1D = b and A(xk1D +λk1Ddx
k
1D) = b since Adxk1D = 0. One can use the method of Lagrange

multipliers to solve PQPdxk1D
. Let L(xk1D, µ

k
1D, γ

k
1D) = f(xk1D, µ

k
1D) − γk1DAdxk1D be the La-

grangian for the corresponding PQPdxk1D
where γk1D ∈ Rn is the Lagrange multiplier. Since

∇f(xk1D, µ
k
1D) = c − µk1DX−1

k e and ∇2f(xk1D, µ
k
1D) = µk1DX

−2
k where e = (1, 1, ..., 1)T ∈ Rn,

then:

∂L(xk1D, µ
k
1D, γ

k
1D)

∂dxk1D
=∇f(xk1D, µ

k
1D) +∇2f(xk1D, µ

k
1D)dxk1D − ATγk1D

= c− µk1DX−1
k e+ µk1DX

−2
k dxk1D − ATγk1D = 0.

Coupling this fact with Adxk1D = 0 results in the following system of equations:

µk1DX−2
k AT

A 0


dxk1D
γk1D

 =

c− µk1DX−1
k e

0
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Solving the above system of equations results in:

dxk1D = − 1
µk1D

Xk(I −XkA
T (AX2

kA
T )−1AXk)(Xkc− µk1De)

= − 1
µk1D

X2
k(c− AT (AX2

kA
T )−1AX2

kc) +Xk(e−XkA
T (AX2

kA
T )−1AXke).

Therefore, dxk1D = 1
µk1D

dx
k

1D + Xk(e −XkA
T (AX2

kA
T )−1AXke) where dx

k

1D is the search

direction determined by 1DIMP
aff. Consequently, the above dxk1D represents the combination

of the primal affine scaling search direction with a centering search direction that pushes xk+1
1D

away from the boundary of the LP’s feasible region. Since an optimal solution to PNLPx,µ is

achieved when µk1D approaches zero as k approaches infinity, µk+1
1D is reduced by a constant

β ∈ (0, 1) and µk+1
1D = βµk1D. While computing a search direction for 1DIMP

log differs from

1DIMP
aff, determining λk

∗
1D and xk+1

1D is similar to 1DIMP
aff.

5.1.4 One Dimensional Search Dual Logarithmic Barrier Interior

Point Algorithm

The same logic used to derive 1DIMP
log can be applied to solve a DLPw,s. Thus, the one

dimensional search dual logarithmic barrier interior point algorithm (1DIMD
log) considers the

dual nonlinear program (DNLPw,µ):

maximize z = f(w, µ) = bTw + µ
∑
i∈N

ln(ci − ATi w)

subject to ATw < c,

where µ ∈ R+. Observe that s = c−ATw and the term
∑
i∈N

ln(ci−ATi w) in f(w, µ) denotes

the sum of each slack variable si from DLPw,s, which penalizes s when it is sufficiently close

to the boundary of the dual LP’s feasible region. Similarly to 1DIMP
log, w∗ is an optimal

solution to DLPw,s, if and only if, w∗ is an optimal solution to DNLPw,µ when µk approaches

zero as k approaches infinity.
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Let the Lagrangian for the corresponding DNLPw,µ at wk1D be

L(wk1D, µ
k
1D, γ

k
1D) = f(wk1D, µ

k
1D) + γk1D

T
(c− ATwk1D),

where γk1D ∈ Rn is the Lagrange multiplier. The reader can trivially verify that b −

µk1DAS
−1
k e = 0 and sk1D > 0 are the first order KKT conditions to L(wk1D, µ

k
1D, γ

k
1D). Because

γk1D
T

(c − ATwk1D) = 0 and c − ATwk1D > 0, then γk1D
T

= 0. Thus, one step of Newton’s

method from an interior feasible solution (wk1D, s
k
1D) with sk1D > 0 at the kth iteration re-

sults in dwk1D = 1
µk1D

(AS−2
k AT )−1b− (AS−2

k AT )−1AS−1
k e and dsk1D = −ATdwk1D. Equivalently,

dwk1D = 1
µk1D

d̂w
k

1D − (AS−2
k AT )−1AS−1

k e where d̂w
k

1D is the search direction determined by

1DIMD
aff. Consequently, dwk1D is composed by the dual affine scaling search direction along

with a centering search direction. Moreover, ρk
∗

1D and wk+1
1D are calculated similarly to 1DIMD

aff.

5.2 Two Dimensional Search Interior Point Algorithms

This section develops primal and dual two dimensional search interior point algorithms

derived from affine and logarithmic barrier search directions. Prior to describing these newly

created techniques, this chapter presents some general properties to determine effective search

directions for two dimensional search methods.

5.2.1 Principles for Determining Two Search Directions

Each of the four techniques presented in Chapter 5.1, and every other one dimensional

search interior point algorithm, have different procedures to determine search directions.

Selecting a search direction is a vital step for each of these methods, because it impacts the

algorithm’s performance. Similarly, choosing two search directions appropriately is critical

to creating effective two dimensional search interior point algorithms. This section provides

two principles for selecting search directions.

At each iteration, two dimensional search interior point algorithms require more com-

putational effort than the corresponding one dimensional search version. Consequently, the
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improvement in objective function value per iteration should be significant in order to coun-

teract this additional effort. The first principle involves selecting two search directions that

lead to a feasible interior solution with an objective function value that is at least as good

as the objective function value obtained with a single search direction.

One key observation is that a two dimensional subspace linear program (2DSLP) is

guaranteed to improve the objective function value by at least as much as a 1DSLP, if

the search direction from 1DSLP is contained in the nonnegative linear combination of the

two search directions from 2DSLP. Theorem 5.2.1 formalizes this claim for two dimensional

search interior point algorithms designed to solve any PLPx.

Theorem 5.2.1. Given a PLPx, a feasible interior solution x ∈ S ′, and search directions

d1D, d′2D, and d′′2D where d1D = θ′2Dd
′
2D + θ′′2Dd

′′
2D for some θ′2D, θ

′′
2D ∈ R+, then z1D ≥ z2D

where z1D = min{cT (x + λ1Dd1D) : x + λ1Dd1D ∈ S and λ1D ≥ 0}, and z2D = min{cT (x +

λ′2Dd
′
2D + λ′′2Dd

′′
2D) : x+ λ′2Dd

′
2D + λ′′2Dd

′′
2D ∈ S, λ′2D ≥ 0, and λ′′2D ≥ 0}.

Proof. Given a PLPx, assume x ∈ S ′ is a feasible interior solution. Let d1D, d′2D, and

d′′2D be search directions where d1D = θ′2Dd
′
2D + θ′′2Dd

′′
2D for some θ′2D, θ

′′
2D ∈ R+. Denote

z1D = min{cT (x + λ1Dd1D) : x + λ1Dd1D ∈ S and λ1D ≥ 0} where λ∗1D represents the

optimal solution to 1DSLP. Define λ′2D = θ′λ∗1D and λ′′2D = θ′′λ∗1D. Clearly, λ′2D and λ′′2D ≥ 0.

Furthermore, x+ λ∗1Dd1D ∈ S and

x+ λ∗1Dd1D = x+ λ∗1D(θ′d′2D + θ′′d′′2D)

= x+ λ∗1Dθ
′d′2D + λ∗1Dθ

′′d′′2D

= x+ λ′2Dd
′
2D + λ′′2Dd

′′
2D.

Therefore, x + λ′2Dd
′
2D + λ′′2Dd

′′
2D ∈ S, and so x + λ′2Dd

′
2D + λ′′2Dd

′′
2D is a feasible solution to

z2D = min{cT (x + λ′2Dd
′
2D + λ′′2Dd

′′
2D) : x + λ′2Dd

′
2D + λ′′2Dd

′′
2D ∈ S, λ′2D ≥ 0, and λ′′2D ≥ 0}.

Consequently, z1D = cT (x+ λ′2Dd
′
2D + λ′′2Dd

′′
2D) ≥ z2D and the result follows. 2
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The following corollary extends Theorem 5.2.1 for two dimensional search interior point

algorithms designed to solve any DLPw,s. The reader can trivially derive the proof of Corol-

lary 5.2.1 from the previous theorem.

Corollary 5.2.1. Given a DLPw,s, a feasible interior solution (w, s) ∈ T ′, and search di-

rections (dw1D, ds1D), (dw′2D, ds
′
2D), and (dw′′2D, ds

′′
2D) where dw1D = θ′2Ddw

′
2D + θ′′2Ddw

′′
2D

and ds1D = θ′2Dds
′
2D + θ′′2Dds

′′
2D for some θ′2D, θ

′′
2D ∈ R+, then z1D ≤ z2D where z1D =

max{bT (w + ρ1Ddw1D) : (w + ρ1Ddw1D, s + ρ1Dds1D) ∈ T and ρ1D ≥ 0}, and z2D =

max{bT (w + ρ′2Ddw
′
2D + ρ′′2Ddw

′′
2D) : (w + ρ′2Ddw

′
2D + ρ′′2Ddw

′′
2D, s+ ρ′2Dds

′
2D + ρ′′2Dds

′′
2D) ∈ T ,

ρ′2D ≥ 0, and ρ′′2D ≥ 0}. 2

The previous theoretical results ensure that the movement obtained with two search di-

rections improves the objective function value by at least as much as the movement obtained

with a single search direction. Obviously, there may be an infinite number of search direc-

tions that satisfy the first principle. Thus, the next question is how to determine a suitable

pair of search directions.

Observe that d′2D and d′′2D have a direct impact to the area of the two dimensional

subspace, and consequently, to the solution of 2DSLP. One would expect that the larger the

area of the two dimensional subspace, the better the objective function value obtained by the

new and improved feasible interior solution. Consequently, one anticipates fewer iterations if

the area of the two dimensional subspace formed by the two search directions and the LP’s

feasible region is sufficiently large.

A second principle focuses on selecting two search directions that increase the feasible

region of 2DSLPs. Example 5.2.1 describes a method to satisfy the first and second principles.

The LP from the following example is not shown in standard form to better exemplify the

aforementioned principle. However, the reader can easily convert this LP into a PLPx by

augmenting an identity matrix to the constraint matrix A.
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Example 5.2.1. Consider the following LP.

minimize z = −4x1 − x2

subject to −3x1 + x2 ≤ 6

x1 + x2 ≤ 10

x1 − x2 ≤ 6

x1 , x2 ≥ 0

The feasible region of the above LP is shown in Figure 5.1. To solve this problem using

either a one dimensional or two dimensional search interior point algorithm, let the initial

feasible interior solution be x1D = x2D = (1, 1)T . Figure 5.1(a) shows the movement to a new

and improved feasible solution when the single search direction d1D = (2, 1)T is considered.

Solving a 1DSLP, defined by the line from x1D to x∗1D, determines the optimal step size,

λ∗1D = 8
3
, which leads to the new and improved feasible solution x∗1D = x1D + λ∗1Dd1D =(

19
3
, 11

3

)
. The optimal objective function value of this movement is z∗1D = −29. Observe that

one can turn x∗1D into an interior solution by multiplying λ∗1D by some α ∈ (0, 1).

Figure 5.1(b) demonstrates the process when two search directions d′2D = (3, 1)T and

d′′2D = (1, 1)T are selected. In such a case, d1D is contained in the nonnegative linear combi-

nation of d′2D and d′′2D since
(
θ′2D, θ

′′
2D

)
=
(

1
2
, 1

2

)
and d1D = 1

2
d′2D + 1

2
d′′2D. Solving a 2DSLP

results in
(
λ′∗2D, λ

′′∗
2D

)
= (2, 0). Consequently, x∗2D = x2D + λ′∗2Dd

′
2D + λ′′∗2Dd

′′
2D = (7, 3) and

z∗2D = −31. If d′2D = (5, 1)T and d′′2D = (1, 5)T are chosen, as depicted in Figure 5.1(c), then

d1D = 3
8
d′2D + 1

8
d′′2D, and 2DSLP returns

(
λ′∗2D, λ

′′∗
2D

)
=
(

4
3
, 0
)

such that x∗2D =
(

23
3
, 7

3

)
and

z∗2D = −33. In this case, not only the z value from Figure 5.1(c) is better than the z value

from Figure 5.1(a), but it is superior to the z value from Figure 5.1(b).

Figure 5.1(d) shows the case when d′2D = (2, 0)T and d′′2D = (0, 1)T are selected. The

solution to the corresponding 2DSLP results in
(
λ′∗2D, λ

′′∗
2D

)
=
(

7
2
, 1
)
, and x∗2D = (8, 2) with

z∗2D = −34. Observe that this solution is also the optimal solution to the LP. In this case, d1D

is orthogonally partitioned so that
(
θ′2D, θ

′′
2D

)
= (1, 1) and d1D = d′2D+d′′2D. Consequently, by
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choosing two search directions that are orthogonal to each other, both principles presented

in this dissertation are satisfied.

(a) One single search direction d1D = (2, 1)T t t t t
t t t t t t t t t t t

(
1
2 ,

1
2

)
t t t t t t t t t t t t t t t t t

t t t t 1
2d

′
2D + 1

2d
′′
2D t

(b) Two search directions d′2D = (3, 1)T and d′′2D =
(1, 1)T where

(
θ′2D, θ

′′
2D

)
=
(
1
2 ,

1
2

)
and d1D =

1
2d

′
2D + 1

2d
′′
2D

(c) Two search directions d′2D = (5, 1)T and d′′2D =
(1, 5)T where

(
θ′2D, θ

′′
2D

)
=
(
3
8 ,

1
8

)
and d1D =

3
8d

′
2D + 1

8d
′′
2D

(d) Two search directions d′2D = (2, 0)T and d′′2D =
(0, 1)T where

(
θ′2D, θ

′′
2D

)
= (1, 1) and d1D = d′2D +

d′′2D

Figure 5.1: Graphical representation of Example 5.2.1
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While defining two orthogonal search directions using the affine scaling and logarithmic

barrier search directions described in Chapter 5.1 satisfy both principles, these search di-

rections would likely violate the feasibility conditions. Observe that the search directions

from the previous section are derived from the objective function. Applying these princi-

ples to the objective function instead, results in two search directions that are feasible and

potentially improving. The following sections present primal and dual affine scaling and

logarithmic barrier two dimensional search interior point algorithms where the objective

function is orthogonally partitioned to derive two search directions.

5.2.2 Two Dimensional Search Primal Affine Scaling and Loga-

rithmic Barrier Interior Point Algorithms

The two dimensional search primal affine scaling interior point algorithm (2DIMP
aff⊥) and the

two dimensional search primal logarithmic barrier interior point algorithm (2DIMP
log⊥) are

first presented. These methods are denoted with a ⊥ because search directions are derived

from orthogonal vectors. Since both algorithms are similar, they are described jointly in

Algorithm 5.1 using the same framework. Similarly to 1DIMP
aff and 1DIMP

log, the three

primary steps of these methods are: (1) from a feasible interior solution xk2D, compute two

feasible and potential improving search directions dk
′

2D and dk
′′

2D; (2) determine a step size(
λk
′∗

2D, λ
k′′∗

2D

)
for each of the two search directions by solving a 2DSLP; (3) calculate a new

and improved feasible interior solution xk+1
2D from the 2DSLP’s result.

Algorithm 5.1 requires a PLPx, an initial solution x0
2D > 0 with Ax0

2D = b, an α ∈ (0, 1),

and a sufficiently small number ε > 0 as input. Additional input to 2DIMP
log⊥ includes a

sufficiently large positive number µ0
2D and some β ∈ (0, 1). Both methods randomly partition

the objective function vector c at each iteration k into two new vectors ck
′

and ck
′′
. When a

particular element of ck
′

is assigned with an element from c, the corresponding element from

ck
′′

is necessarily assigned to 0 and vice versa.
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Algorithm 5.1 : Two Dimensional Search Primal Affine Scaling Interior Point Algorithm
(2DIMP

aff⊥) and Two Dimensional Search Primal Logarithmic Barrier Interior Point Algo-
rithm (2DIMP

log⊥)

1: begin
2: Let k = 0, x0

2D > 0 with Ax0
2D = b, α ∈ (0, 1), and ε > 0 be sufficiently small. For

2DIMP
log⊥, let µ0

2D > 0 and β ∈ (0, 1);
3: for each i ∈ N do
4: if u ∼ U(0, 1) ≤ 1

2
then

5: ck
′
i = ci and ck

′′
i = 0;

6: else
7: ck

′
i = 0 and ck

′′
i = ci;

8: if either ck
′
i = 0 or ck

′′
i = 0 for every i ∈ N then choose an arbitrary p ∈ N such

that ck
′
p 6= 0 or ck

′′
p 6= 0 and ck

′
p ↔ ck

′′
p ;

9: if 2DIMP
aff⊥ then dk

′
2D = dxk

′
2D = −X2

k(ck
′ − AT (AX2

kA
T )−1AX2

kc
k′);

dk
′′

2D = dxk
′′

2D = −X2
k(ck

′′ − AT (AX2
kA

T )−1AX2
kc
k′′);

10: if 2DIMP
log⊥ then dk

′
2D = 1

µk2D
dxk

′
2D +Xk(e−XkA

T (AX2
kA

T )−1AXke);

dk
′′

2D = 1
µk2D

dxk
′′

2D +Xk(e−XkA
T (AX2

kA
T )−1AXke);

11: Solve the following 2DSLP:

minimize z = cTdk
′

2Dλ
k′
2D + cTdk

′′
2Dλ

k′′
2D

subject to dk
′

2Dλ
k′
2D + dk

′′
2Dλ

k′′
2D ≥ −xk2D

λk
′

2D, λ
k′′
2D ≥ 0;

12: if 2DSLP is unbounded then
13: return PLPx is unbounded;
14: else
15: xk+1

2D = xk2D + α(λk
′∗

2Dd
k′
2D + λk

′′∗

2D d
k′′
2D);

16: if
|cT xk+1

2D −c
T xk2D|

|cT xk2D|
< ε then

17: return PLPx is optimal, x∗ = xk+1
2D , and z∗ = cTxk+1

2D ;
18: else
19: if 2DIMP

log⊥ then calculate µk+1
2D = βµk2D;

20: k ← k + 1;
21: goto 3;

22: end

Both −ck′ and −ck′′ are projected onto the null space of A to generate search directions

dk
′

2D and dk
′′

2D that are feasible. Observe that both dk
′

2D and dk
′′

2D are not necessarily improving

because −c is not entirely projected onto the null space of constraint matrix A. In this case,

at least one of the two search directions is improving. The following 2DSLP,
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minimize z = cTdk
′

2Dλ
k′
2D + cTdk

′′
2Dλ

k′′
2D

subject to dk
′

2Dλ
k′
2D + dk

′′
2Dλ

k′′
2D ≥ −xk2D

λk
′

2D, λ
k′′
2D ≥ 0,

is optimally solved, and its optimal solution, (λk
′∗

2D, λ
k′′∗

2D ), determines the next feasible interior

solution xk+1
2D = xk2D + α(λk

′∗

2Dd
k′
2D + λk

′′∗

2D d
k′′
2D). The algorithms then repeat these steps until

improvement in the objective function value becomes sufficiently small.

If 1DIMP
aff and 2DIMP

aff⊥ are considered, then clearly search directions dk1D = dxk1D =

−X2
k(I − AT (AX2

kA
T )−1AX2

k)c, dk
′

2D = dxk
′

2D = −X2
k(I − AT (AX2

kA
T )−1AX2

k)ck
′
, and dk

′′
2D =

dxk
′′

2D = −X2
k(I−AT (AX2

kA
T )−1AX2

k)ck
′′
, respectively. Thus, dk1D = dk

′
2D+dk

′′
2D, Theorem 5.2.1

holds, and the first principle is satisfied. On the other hand, dk
′

2D and dk
′′

2D are not orthogonal

to each other because dk
′

2D · dk′′2D 6= 0. To partially accomplish the second principle and create

a larger feasible region to 2DSLP, the objective function c is orthogonally partitioned into

ck
′

and ck
′′
, which results in c = ck

′
+ ck

′′
and ck

′ · ck′′ = 0, and both are used to derive search

directions dk
′

2D and dk
′′

2D, respectively.

One may claim that partitioning dk1D directly into dk
′

2D and dk
′′

2D using the same scheme

presented in Algorithm 5.1 (lines 3-7) satisfies both principles. However, Adx′2D 6= 0 and

Adx′′2D 6= 0 in this case, which makes both search directions infeasible. A potential future re-

search topic is to develop search directions that are orthogonal to each other in the projected

space. Observe that this discussion also applies to both 1DIMP
log and 2DIMP

log⊥.

Randomly partitioning c at each iteration is not necessary to satisfy both principles. How-

ever, random partitioning exhibited superior performance compared to a static partitioning

scheme in preliminary computational experiments. The author believes that randomly par-

titioning c allows consecutive iterations to search over vastly different spaces in the LP’s

feasible region. This strategy should require fewer iterations.

The author is confident that all four two dimensional search techniques developed in

this chapter correctly solve LPs. However, deriving a proof does not immediately follow the

same methodology as other researchers used to prove the convergence of the one dimensional

search interior point algorithms (see Chapter 2.2.1). The complicating factor involves the
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lack of dual estimates for the corresponding new and improved feasible interior solution at

each iteration. In one dimensional search interior point algorithms, these dual estimates are

trivially obtained. Unfortunately, the dual estimates are difficult to generate because of the

nonnegative linear combination of the two search directions. Since this chapter is primarily

focused on the computational benefits of the newly created two dimensional search interior

point algorithms, proving convergence for 2DIMP
aff⊥, 2DIMP

log⊥, and also for the algorithms

shown in the next section is left as a critical future research topic.

Since 2DIMP
aff⊥ and 2DIMP

log⊥ improve the objective function value by at least as much

as the corresponding one dimensional search version, one should question the additional the-

oretical and computational effort per iteration required by these techniques. Theoretically,

1DIMP
aff and 1DIMP

log compute dk1D = dxk1D, and the most time consuming step calculates

(AX2
kA

T )−1. As discussed in Chapter 4.2, the time to compute the inverse of an r × r ma-

trix is O(I(r)). Solving a 1DSLP takes O(n) time. Updating xk1D also requires O(n) effort

and calculating other parameters can be done in O(1) time. Consequently, the theoretical

running time per iteration of 1DIMP
aff and 1DIMP

log is O(I(r)).

Both 2DIMP
aff⊥ and 2DIMP

log⊥ partition c into ck
′

and ck
′′

in O(n) time. Computing dk
′

2D

and dk
′′

2D requires O(I(r)) each. Solving a 2DSLP takes O(n) time (Dyer, 1984; Megiddo,

1983) since interior point methods do not require an optimal basis to their subproblems.

Moreover, updating the solution xk+1
2D also requires O(n) effort. Other operations can be done

in O(1) time, and the theoretical running time per iteration of 2DIMP
aff⊥ and 2DIMP

log⊥ is

O(I(r)). Therefore, both 2DIMP
aff⊥ and 2DIMP

log⊥ have the same theoretical running time per

iteration as 1DIMP
aff and 1DIMP

log, respectively. An analysis to the additional computational

effort of these algorithms is discussed in Chapter 5.3.
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5.2.3 Two Dimensional Search Dual Affine Scaling and Logarith-

mic Barrier Interior Point Algorithms

The other two algorithms described in this chapter are the two dimensional search dual affine

scaling interior point algorithm (2DIMD
aff⊥) and the two dimensional search dual logarithmic

barrier interior point algorithm (2DIMD
log⊥). Both 2DIMD

aff⊥ and 2DIMD
log⊥ are shown jointly

in Algorithm 5.2 using a similar framework. The input to Algorithm 5.2 is a DLPw,s, an

initial solution (w0
2D, s

0
2D) with ATw0

2D + s0
2D = c and s0

2D > 0, an α ∈ (0, 1), and ε > 0.

Moreover, 2DIMD
log⊥ also requires a large positive number µ0

2D and a β ∈ (0, 1).

Both 2DIMD
aff⊥ and 2DIMD

log⊥ partition the right-hand side b into bk
′

and bk
′′

at each

iteration k such that when bk
′
j is assigned with bj, then bk

′′
j = 0 for all j ∈ R, and vice

versa. This guarantees that b = bk
′

+ bk
′′

and bk
′ · bk′′ = 0, which partially satisfies the

second principle. Both vectors derive search directions such that dwk1D = d̂w
k′

2D + d̂w
k′′

2D (or

dwk1D =
ˆ̂
dwk

′
2D +

ˆ̂
dwk

′′
2D for 2DIMD

log⊥) and dsk1D = dsk
′

2D + dsk
′′

2D. Thus, Corollary 5.2.1 holds

and the second principle is satisfied.

Algorithm 5.2 creates a 2DSLP from search directions with respect to the slack variables.

This is because s is the variable placed near the center of the LP’s feasible region and w is

unrestricted. However, each 2DSLP is maximized with respect to the dual search directions.

The optimal solution to 2DSLP, (ρk
′∗

2D, ρ
k′′∗

2D ), is computed and both wk+1
2D and sk+1

2D are updated.

The analysis performed in Chapter 5.2.2 with respect to the theoretical running time

per iteration of 2DIMP
aff⊥ and 2DIMP

log⊥ also follows for 2DIMD
aff⊥ and 2DIMD

log⊥. That is,

2DIMD
aff⊥ and 2DIMD

log⊥ have the same theoretical running time as 1DIMD
aff and 1DIMD

log,

respectively, and this is O(I(r)). One should question whether these two dimensional search

interior point algorithms can solve LPs faster than the corresponding one dimensional search

version. The following section demonstrates that the additional computational effort is

minimal and these novel two dimensional search techniques can improve both the number

of iterations and solution time.
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Algorithm 5.2 : Two Dimensional Search Dual Affine Scaling Interior Point Algorithm
(2DIMD

aff⊥) and Two Dimensional Search Dual Logarithmic Barrier Interior Point Algorithm
(2DIMD

log⊥)

1: begin
2: Let k = 0, (w0

2D, s
0
2D) with ATw0

2D + s0
2D = c and s0

2D > 0, α ∈ (0, 1), and ε > 0 be
sufficiently small. For 2DIMD

log⊥, let µ0
2D > 0 and β ∈ (0, 1);

3: for each j ∈ R do
4: if u ∼ U(0, 1) ≤ 1

2
then

5: bk
′
j = bj and bk

′′
j = 0;

6: else
7: bk

′
j = 0 and bk

′′
j = bj;

8: if either bk
′
j = 0 or bk

′′
j = 0 for every j ∈ R then choose an arbitrary q ∈ R such

that bk
′
q 6= 0 or bk

′′
q 6= 0 and bk

′
q ↔ bk

′′
q ;

9: if 2DIMD
aff⊥ then d̂w

k′

2D = (AS−2
k AT )−1bk

′
, dk

′
2D = dsk2D = −AT d̂w

k′

2D;

d̂w
k′′

2D = (AS−2
k AT )−1bk

′′
, dk

′′
2D = dsk2D = −AT d̂w

k′′

2D;

10: if 2DIMD
log⊥ then

ˆ̂
dwk

′
2D = 1

µk2D
d̂w

k′

2D− (AS−2
k AT )−1AS−1

k e, dk
′

2D = dsk2D = −AT ˆ̂
dwk

′
2D;

ˆ̂
dwk

′′
2D = 1

µk2D
d̂w

k′′

2D− (AS−2
k AT )−1AS−1

k e, dk
′′

2D = dsk2D = −AT ˆ̂
dwk

′′
2D;

11: Let z = bT d̂w
k′

2Dρ
k′
2D + bT d̂w

k′′

2Dρ
k′′
2D for 2DIMD

aff⊥ and z = bT
ˆ̂
dwk

′
2Dρ

k′
2D + bT

ˆ̂
dwk

′′
2Dρ

k′′
2D

for 2DIMD
log⊥

12: Solve the following 2DSLP:

maximize z
subject to dk

′
2Dρ

k′
2D + dk

′′
2Dρ

k′′
2D ≥ −sk2D

ρk
′

2D, ρ
k′′
2D ≥ 0;

13: if the 2DSLP is unbounded then
14: return DLPw,s is unbounded;
15: else
16: if 2DIMD

aff⊥ then wk+1
2D = wk2D + α(ρk

′∗

2D d̂w
k′

2D + ρk
′′∗

2D d̂w
k′′

2D);

17: if 2DIMD
log⊥ then wk+1

2D = wk2D + α(ρk
′∗

2D
ˆ̂
dwk

′
2D + ρk

′′∗

2D
ˆ̂
dwk

′′
2D);

18: sk+1
2D = sk2D + α(ρk

′∗

2Dd
k′
2D + ρk

′′∗

2D d
k′′
2D);

19: if
|bTwk+1

2D −b
Twk2D|

|bTwk2D|
< ε then

20: return DLPw,s is optimal, (w∗2D, s
∗
2D) = (wk+1

2D , sk+1
2D ), and z∗ = bTwk+1

2D ;
21: else
22: if 2DIMD

log⊥ then calculate µk+1
2D = βµk2D;

23: k ← k + 1;
24: goto 3;

25: end
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5.3 Computational Study

To validate the computational effectiveness of the two dimensional search interior point

algorithms, all eight techniques presented in this chapter were implemented in Python 3.6.6.

Computational experiments were tested on an Intelr CoreTM i7-6700 3.40GHz processor with

32 GB of RAM. The following sections describe the major implementation details along with

the instances and computational results.

5.3.1 Implementation Details

To generate an initial feasible interior solution, the Big-M method was implemented (see

Fang and Puthenpura (1993) for additional details). For the primal affine scaling and loga-

rithmic barrier methods, an artificial variable associated with a large positive number in the

objective function was added to PLPx, so the problem had n+ 1 variables and r constraints.

Thus, the initial feasible interior solution became (1, 1, ..., 1)T ∈ Rn+1 and the residuals were

assigned to the constraint values of the artificial variable. This modified PLPx was solved

with 1DIMP
aff, 2DIMP

aff⊥, 1DIMP
log, and 2DIMP

log⊥ until these algorithms achieved an optimal

solution. Observe that this solution is also an optimal solution to the original PLPx.

For the dual affine scaling and logarithmic barrier techniques, the Big-M method added

an additional constraint associated with a large positive number in the right-hand side of

PLPx, which corresponds to adding an artificial variable to DLPw,s. In such a case, this

artificial variable began with a negative value and the modified problem was solved with

1DIMD
aff, 2DIMD

aff⊥, 1DIMD
log, and 2DIMD

log⊥ until the artificial variable became nonnegative.

The solution obtained became the initial feasible interior solution to the original problem.

To avoid numerical instability issues, the large positive number in the primal and dual

versions of the Big-M method was determined differently for each instance. While the

majority of instances converged with a reasonable M value, some other problems required

a larger number. To map this number with each instance, M was determined as a function

of the largest objective function coefficient (primal) or the largest right-hand side coefficient
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(dual). However, M was identical when solving a particular instance with both the one and

two dimensional search interior point algorithms.

As previously discussed, the most time consuming step of all eight interior point algo-

rithms is to compute (AX2
kA

T )−1 or (AS−2
k AT )−1. To perform this operation, three meth-

ods were considered: (1) inverse calculator contained in the linear algebra package from

NumPy (numpy.linalg.inv), which utilizes Lapack’s LU factorization; (2) Cholesky decom-

position also contained in the linear algebra package from NumPy (numpy.linalg.cholesky);

(3) Cholesky decomposition in the linear algebra package from SciPy (scipy.linalg.cholesky).

Experiments demonstrated that not only methods (2) and (3) were numerically more sta-

ble than method (1), but also these techniques were about 50% faster. Furthermore, the

Cholesky decomposition from NumPy provided a more accurate convergence (small error)

than the Cholesky decomposition from SciPy. Consequently, the Cholesky decomposition

method from NumPy computed the matrix inverse for all algorithms.

Observe that the algorithm of Boggs et al. (1989) solved 2DSLPs using the general

implementation of the simplex method. A small contribution of this research is to implement

faster methods to solve 2DSLPs. While the slope algorithm could be easily used to solve

these 2DSLPs, this computational study implemented the algorithm from Dyer (1984) in

order to avoid the additional sorting step.

Every instance in this computational study was solved by 2DIMP
aff⊥, 2DIMP

log⊥, 2DIMD
aff⊥,

and 2DIMD
log⊥ 10 different times in order to avoid random anomalies associated with the

partitioning of the objective function. Consequently, the number of iterations, solution time,

and relative improvement in objective function value reported in Tables 5.2–5.6 correspond

to the average of all 10 runs. Furthermore, each instance was solved with α = 0.99, α = 0.95,

and α = 0.90. Experiments determined that α = 0.95 led the majority of instances to a

smoother convergence. Therefore, results reported in this dissertation have α = 0.95. For

the logarithmic barrier algorithms, β = 0.5 and µ = 1× 104.

Since the optimal objective function value is known for all instances presented in this dis-

sertation, the computational study calculated the error with respect to the solution obtained

by each of the eight algorithms. Error is defined as:
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τ =
|z − z∗|
|z∗|

,

where z is the final objective function value obtained with the one dimensional and two

dimensional search interior point algorithms, and z∗ is the optimal objective function value.

Every instance reported has τ < 1 × 10−6. This implies that all instances in this study

converged to an optimal solution.

Boggs et al. considered two strategies: fully solve each instance with two search direc-

tions; start solving each problem with two search directions and switch to a single search

direction in the last few iterations. This research also implemented both strategies because

the closer 2DIMP
aff⊥, 2DIMP

log⊥, 2DIMD
aff⊥, and 2DIMD

log⊥ are to the optimal solution, the

smaller the two dimensional subspace is. In this case, the two search directions may behave

similar to the single search direction. Experiments showed that solving instances with two

search directions from beginning to end performed computationally better. This result sup-

ports the conclusion from Boggs et al., and this computational study only reports results

where instances are fully solved with two search directions.

5.3.2 Instances and Computational Results

Similar to the computational study developed to test the double pivot simplex method, this

research tested the newly created two dimensional search interior point algorithms with in-

stances from Netlib (Gay, 1985). From all instances in Netlib, 60 problems were selected.

These problems have different number of variables and constraints, more dense and sparse

structures, and different convergence profiles. Slack and surplus variables were added to each

instance when necessary to make matrix A full row rank. Moreover, additional constraints

were added to each instance to represent variables with lower bounds, upper bounds, and

fixed bounds. Table 5.1 presents the characteristics of these instances with the aforemen-

tioned transformations. Observe that several of the problems shown in Table 5.1 overlap

with Tables 4.5-4.6.
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Table 5.1: Number of constraints, variables, and nonzero elements in instances tested from
Netlib

Name Cont Var Nz Name Cont Var Nz

25FV47‡ 1,853 3,424 13,285 SC50A 50 78 160

ADLITTLE 56 138 424 SC50B 50 78 148

AFIRO 27 51 102 SCAGR7 129 185 465

AGG2† 516 758 4740 SCAGR25 471 671 1,725

BANDM† 305 472 2,494 SCFXM1† 330 600 2,732

BEACONFD 173 295 3,408 SCFXM2† 660 1,200 5,469

BLEND 74 114 522 SCFXM3‡ 990 1,200 5,469

BNL1 1,107 2,282 6,692 SCORPION 948 1,306 2,934

BNL2‡ 2,324 4,486 14,996 SCRS8‡ 490 1,275 3,288

BORE3D† 675 990 2,546 SCSD1† 77 760 2,388

BRANDY 552 801 3,032 SCSD6 147 1,350 4,316

CZPROB† 1,158 3,791 11,166 SCTAP1† 300 660 1,872

D2Q06C‡ 2,171 5,831 33,081 SCTAP2 1,090 2,500 7,334

D6CUBE 1,246 7,430 39,781 SCTAP3 1,480 3,340 9,734

DEGEN2 886 1,420 5,306 SHARE1B† 117 253 1,179

DEGEN3 2,937 4,755 29,017 SHARE2B 96 162 777

E226‡ 223 472 2,768 SHIP04L 1,110 3,238 8,150

ETAMACRO†‡ 689 1,105 3,115 SHIP04S 1,110 2,568 6,170

FIT1D 1,050 2,075 15,479 SHIP08L 2,174 6,457 16,372

FIT1P‡ 1,026 2,076 10,666 SHIP08S 2,174 4,561 10,684

GANGES‡ 1,713 2,110 7,745 SHIP12L 3,241 8,668 21,501

GROW7† 420 581 3,172 SHIP12S 3,241 6,004 13,509

GROW15 900 1,245 6,820 STANDATA 490 1,405 3,492

GROW22 1,320 1,826 10,012 STANDGUB‡ 816 2,000 4,410

ISRAEL† 174 316 2,443 STANDMPS 598 1,405 4,140

KB2 52 77 331 STOCFOR1 117 165 501

QAP8 2,736 4,368 11,856 STOCFOR2 2,157 3,045 9,357

RECIPELP‡ 207 320 919 TRUSS 1,000 8,806 27,836

SC105 105 163 340 WOOD1P 730 3,324 71,431

SC205‡ 205 317 665 WOODW 1,098 8,418 37,487

† and ‡ denote instances solved with the primal (†) and/or dual (‡) logarithmic barrier methods

The study tracked two primary results: number of iterations and solution time. To

calculate improvement in the number of iterations, define:
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δIter =

(
Iter1D − Iter2D

Iter1D

)
× 100%,

where Iter1D and Iter2D are the number of iterations obtained with the one dimensional and

two dimensional search interior point algorithms, respectively. Similarly, improvement in

solution time is defined as:

δTime =

(
Time1D − Time2D

Time1D

)
× 100%,

where Time1D and Time2D are the solution times from the one dimensional and two dimen-

sional search techniques, respectively. These improvements are identical to δDPSM
SM

and δ DPSM
CPLEX

defined in Chapters 4.2.2.1 and 4.2.2.3, respectively.

Some instances presented issues with convergence because all eight implemented algo-

rithms depend on many parameters and can be extremely sensitive to numerical errors.

There were instances that solved with 1DIMP
aff but not with 1DIMP

log, or solved with 2DIMD
log⊥

but not with 2DIMD
aff⊥, and vice versa. Consequently, Tables 5.1-5.6 present the results for

each instance with either the affine scaling methods or the logarithmic barrier techniques.

To distinguish between each algorithm, let a † denote instances solved with 1DIMP
log and

2DIMP
log⊥. Similarly, let a ‡ denote problems solved with 1DIMD

log and 2DIMD
log⊥. Finally, all

remaining instances were solved with 1DIMP
aff, 2DIMP

aff⊥, 1DIMD
aff, and 2DIMD

aff⊥.

Tables 5.2 and 5.3 show the number of iterations and solution time for all instances solved

with the primal algorithms. In addition, δIter and δTime are presented. Because the large

number of instances, 30 out of the 60 results are presented in Table 5.2 and the other 30

are shown in Table 5.3. On average, the number of iterations is improved by approximately

16% and solution time is improved by nearly 14%. When analyzing problems solved with

1DIMP
aff and 2DIMP

aff⊥ only, this improvement is around 14% and 13%, respectively. This

improvement is approximately 21% and 16%, respectively, when only considering problems

solved with 1DIMP
log and 2DIMP

log⊥.
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Table 5.2: Improvement in the number of iterations and solution time of 2DIMP
aff⊥ and

2DIMP
log⊥ over 1DIMP

aff and 1DIMP
log

Name
1DIMP 2DIMP

⊥ Improvement (δ)

Iter. Time (s) Iter. Time (s) δIter δTime

25FV47‡ 207 335.36 196 320.73 5.3% 4.4%

ADLITTLE 31 0.20 29 0.17 6.5% 16.4%

AFIRO 16 0.06 14 0.05 12.5% 16.7%

AGG2† 60 5.06 50 4.41 16.7% 12.9%

BANDM† 38 1.26 28 0.97 26.3% 23.3%

BEACONFD 17 0.28 13 0.18 23.5% 37.5%

BLEND 34 0.17 24 0.11 29.4% 35.1%

BNL1 97 53.45 91 51.21 6.2% 4.2%

BNL2‡ 233 726.98 224 715.11 3.9% 1.6%

BORE3D† 50 7.62 32 5.15 36.0% 32.4%

BRANDY 116 10.23 85 7.70 26.7% 24.7%

CZPROB† 57 78.10 45 64.51 21.1% 17.4%

D2Q06C‡ 455 1,912.05 398 1,723.09 12.5% 9.9%

D6CUBE 17 59.66 16 56.87 5.9% 4.7%

DEGEN2 15 3.78 14 3.49 6.7% 7.7%

DEGEN3 34 154.40 33 149.19 2.9% 3.4%

E226‡ 44 1.12 40 1.04 9.1% 7.1%

ETAMACRO†‡ 41 7.39 39 7.13 4.9% 3.5%

FIT1D 100 46.19 78 36.68 22.0% 20.6%

FIT1P‡ 190 87.94 145 66.93 23.7% 23.9%

GANGES‡ 184 157.30 170 145.94 7.6% 7.2%

GROW7† 26 1.40 22 1.25 15.4% 10.8%

GROW15 229 54.09 170 40.83 25.8% 24.5%

GROW22 208 107.47 213 110.52 -2.4% -2.8%

ISRAEL† 153 2.36 82 1.35 46.4% 43.0%

KB2 105 0.45 72 0.29 31.4% 35.2%

QAP8 13 47.28 12 43.01 7.7% 9.0%

RECIPELP‡ 50 0.74 43 0.70 14.0% 6.0%

SC105 69 0.46 58 0.37 15.9% 19.3%

SC205‡ 163 2.48 89 1.41 45.4% 43.2%

SC50A 34 0.12 30 0.12 11.8% 2.5%

† and ‡ denote instances solved with the primal (†) and/or dual (‡) logarithmic barrier methods
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Table 5.3: Improvement in the number of iterations and solution time of 2DIMP
aff⊥ and

2DIMP
log⊥ over 1DIMP

aff and 1DIMP
log - continued

Name
1DIMP 2DIMP

⊥ Improvement (δ)

Iter. Time (s) Iter. Time (s) δIter δTime

SC50B 39 0.14 35 0.13 10.3% 3.9%

SCAGR7 220 1.95 186 1.74 15.5% 10.8%

SCAGR25 169 10.91 138 9.17 18.3% 16.0%

SCFXM1† 54 2.48 35 1.74 35.2% 29.6%

SCFXM2† 54 10.17 44 8.76 18.5% 13.8%

SCFXM3‡ 316 118.05 201 75.47 36.4% 36.1%

SCORPION 218 56.62 209 54.42 4.1% 3.9%

SCRS8‡ 99 14.06 88 13.14 11.1% 6.6%

SCSD1† 20 0.66 20 0.72 0.0% -8.3%

SCSD6 18 1.66 15 1.47 16.7% 11.4%

SCTAP1† 26 1.28 24 1.22 7.7% 4.5%

SCTAP2 245 152.28 239 149.43 2.4% 1.9%

SCTAP3 260 315.07 254 314.20 2.3% 0.3%

SHARE1B† 74 0.67 59 0.58 20.3% 14.1%

SHARE2B 35 0.19 24 0.14 31.4% 27.3%

SHIP04L 133 118.76 124 112.33 6.8% 5.4%

SHIP04S 140 91.00 131 86.06 6.4% 5.4%

SHIP08L 162 780.88 149 725.37 8.0% 7.1%

SHIP08S 162 468.99 152 441.92 6.2% 5.8%

SHIP12L 150 1,810.26 134 1,630.13 10.7% 10.0%

SHIP12S 142 1,003.58 133 928.52 6.3% 7.5%

STANDATA 40 6.45 32 5.38 20.0% 16.7%

STANDGUB‡ 28 9.96 23 7.76 17.9% 22.1%

STANDMPS 48 9.01 36 6.82 25.0% 24.2%

STOCFOR1 67 0.38 52 0.32 22.4% 15.4%

STOCFOR2 404 705.24 369 654.71 8.7% 7.2%

TRUSS 380 1,628.78 351 1,573.51 7.6% 3.4%

WOOD1P 80 53.89 54 38.00 32.5% 29.5%

WOODW 94 386.28 92 385.83 2.1% 0.1%

Average 15.5% 13.9%

† and ‡ denote instances solved with the primal (†) and/or dual (‡) logarithmic barrier methods
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Tables 5.4 and 5.5 describe the results for the dual algorithms. Differently than Boggs

et al., this computational study implemented the two dimensional search techniques in both

Phase 1 and Phase 2 of the Big-M method. Thus, the results in Tables 5.4–5.5 include the

combined number of iterations and solution time of both phases. The number of iterations

improves by nearly 13% and solution time by around 10%, on average. Problems solved

with only 1DIMD
aff and 2DIMD

aff⊥ improve the number of iterations and solution time by

approximately 12% and 10%, respectively. When considering only instances solved with

1DIMD
log and 2DIMD

log⊥, iterations and solution time are improved by about 16% and 11%,

respectively.

5.3.3 Analysis of Results

Overall, the majority of problems showed some improvement. Only four instances had either

a negative improvement or no improvement when the primal algorithms are implemented.

Furthermore, only four other problems did not not improve the number of iterations and/or

solution time when the dual algorithms are considered.

One should compare the performance of these two dimensional search interior point

algorithm with Boggs et al.’s results. Unfortunately, the work from Boggs et al. did not

report solution times. Instead, Boggs et al. only reported the number of iterations for 29 out

of the 60 instances shown in Table 5.1. Their method improved the number of iterations by

approximately 9%; whereas, 2DIMD
aff⊥ and 2DIMD

log⊥ decreased the number of iterations by

about 12%. Similarly, 2DIMP
aff⊥ and 2DIMP

log⊥ improved the number of iterations by nearly

16%. Consequently, orthogonally partitioning the objective function to create two search

directions reduces the number of iterations by more than the rank-one update or Newton

recentering search direction.

115



Table 5.4: Improvement in the number of iterations and solution time of 2DIMD
aff⊥ and

2DIMD
log⊥ over 1DIMD

aff and 1DIMD
log

Name
1DIMD 2DIMD

⊥ Improvement (δ)

Iter. Time (s) Iter. Time (s) δIter δTime

25FV47‡ 59 71.90 55 67.03 6.8% 6.8%

ADLITTLE 28 0.13 27 0.13 3.6% 3.0%

AFIRO 19 0.06 18 0.06 5.3% 3.2%

AGG2† 25 1.45 23 1.38 8.0% 4.6%

BANDM† 19 0.49 19 0.52 0.0% -5.1%

BEACONFD 17 0.20 14 0.18 17.6% 10.4%

BLEND 24 0.13 21 0.10 12.5% 21.1%

BNL1 115 39.11 104 35.52 9.6% 9.2%

BNL2‡ 51 114.09 46 103.81 9.8% 9.0%

BORE3D† 26 2.45 25 2.39 3.8% 2.3%

BRANDY 33 2.16 29 1.92 12.1% 11.3%

CZPROB† 83 53.10 76 49.26 8.4% 7.2%

D2Q06C‡ 57 165.80 52 154.66 8.8% 6.7%

D6CUBE 23 39.26 19 34.19 17.4% 12.9%

DEGEN2 20 3.65 19 3.43 5.0% 5.9%

DEGEN3 29 74.38 25 64.57 13.8% 13.2%

E226‡ 25 0.57 22 0.53 12.0% 7.3%

ETAMACRO†‡ 30 3.82 25 3.35 16.7% 12.4%

FIT1D 74 21.91 66 19.90 10.8% 9.1%

FIT1P‡ 30 10.98 23 8.38 23.3% 23.7%

GANGES‡ 18 11.83 15 9.66 16.7% 18.3%

GROW7† 39 1.47 38 1.47 2.6% -0.3%

GROW15 40 6.52 40 6.65 0.0% -2.0%

GROW22 41 13.68 40 13.38 2.4% 2.2%

ISRAEL† 32 0.47 30 0.44 6.3% 4.5%

KB2 20 0.07 19 0.07 5.0% 3.4%

QAP8 33 69.23 29 61.25 12.1% 11.5%

RECIPELP‡ 27 0.35 18 0.31 33.3% 11.1%

SC105 17 0.10 16 0.10 5.9% 5.9%

SC205‡ 33 0.48 26 0.43 21.2% 10.6%

SC50A 14 0.05 12 0.05 14.3% 11.5%

† and ‡ denote instances solved with the primal (†) and/or dual (‡) logarithmic barrier methods
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Table 5.5: Improvement in the number of iterations and solution time of 2DIMD
aff⊥ and

2DIMD
log⊥ over 1DIMD

aff and 1DIMD
log - continued

Name
1DIMD 2DIMD

⊥ Improvement (δ)

Iter. Time (s) Iter. Time (s) δIter δTime

SC50B 15 0.06 11 0.05 26.7% 19.6%

SCAGR7 33 0.25 27 0.22 18.2% 10.2%

SCAGR25 43 2.03 36 1.74 16.3% 14.2%

SCFXM1† 26 0.79 20 0.65 23.1% 18.0%

SCFXM2† 26 2.88 19 2.13 26.9% 26.1%

SCFXM3‡ 23 6.64 18 5.49 21.7% 17.4%

SCORPION 37 6.56 34 6.18 8.1% 5.8%

SCRS8‡ 39 4.47 37 4.43 5.1% 0.9%

SCSD1† 14 0.34 9 0.25 35.7% 25.7%

SCSD6 16 1.06 10 0.75 37.5% 29.7%

SCTAP1† 24 0.87 22 0.76 8.3% 12.5%

SCTAP2 24 8.75 23 8.73 4.2% 0.2%

SCTAP3 24 16.23 23 15.60 4.2% 3.9%

SHARE1B† 23 0.17 19 0.15 17.4% 12.4%

SHARE2B 62 0.33 49 0.28 21.0% 14.4%

SHIP04L 58 28.72 55 27.82 5.2% 3.1%

SHIP04S 54 19.83 52 19.38 3.7% 2.3%

SHIP08L 56 134.90 54 131.96 3.6% 2.2%

SHIP08S 54 85.15 52 83.21 3.7% 2.3%

SHIP12L 67 385.83 65 369.89 3.0% 4.1%

SHIP12S 59 221.67 57 217.05 3.4% 2.1%

STANDATA 162 17.42 128 14.24 21.0% 18.2%

STANDGUB‡ 39 10.89 34 9.75 12.8% 10.4%

STANDMPS 210 25.56 165 20.93 21.4% 18.1%

STOCFOR1 21 0.12 19 0.11 9.5% 5.1%

STOCFOR2 67 73.89 57 63.10 14.9% 14.6%

TRUSS 36 72.82 30 62.15 16.7% 14.7%

WOOD1P 24 9.47 18 6.99 25.0% 26.2%

WOODW 40 77.29 35 72.40 12.5% 6.3%

Average 12.6% 9.9%

† and ‡ denote instances solved with the primal (†) and/or dual (‡) logarithmic barrier methods
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Even though all eight techniques discussed in this chapter have the same theoretical run-

ning time per iteration, one would expect some additional computational effort by the newly

created techniques at each step. Partitioning the objective function is an extra computa-

tional task incorporated in these algorithms. Although two search directions are computed

instead of one, the most time consuming step can be calculated once for both of them. This

can be done by expressing both search directions in terms of the partitioned vectors, and

calculating the identical term once for both of them. Thus, only an extra matrix-vector

multiplication is required, and this time can be reduced due to the many zeros in both

orthogonal vectors. Solving 2DSLPs is computationally more expensive in practice than

1DSLPs, even though their theoretical running times are the same. Finally, calculating a

new and improved solution doubles the time because of the additional search direction.

Despite the fact that the newly created two dimensional search interior point algorithms

require more computational effort than their corresponding one dimensional search interior

point algorithms, this additional computational effort is somewhat simple. Observe that Ta-

bles 5.2–5.5 show that the average improvement in solution time closely follows the average

improvement in the number of iterations. This result implies that the additional computa-

tional effort is minimal since it only affected the solution time of 2DIMP
aff⊥ and 2DIMP

log⊥ by

approximately 2%, and 2DIMD
aff⊥ and 2DIMD

log⊥ by only 3%.

The author believes that the improvement in solution time is primarily linked to a sig-

nificant improvement in objective function value per iteration (Theorem 5.2.1 and Corollary

5.2.1). To check this claim, the objective function value obtained by moving through a one

dimensional search direction (z1D) and a two dimensional search direction (z2D) were com-

puted from the same feasible interior solution at each iteration k. Similar to ∆ described in

Chapter 4.2.2.3, relative improvement in the objective function value at each iteration k is

defined as:

∆k =

(
z2D − zcurrent

z1D − zcurrent

− 1

)
× 100%,
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Table 5.6: Average relative improvement in the objective function value per iteration (∆)

Name
Improvement (∆)

Name
Improvement (∆)

2DIMP
⊥

1DIMP
2DIMD

⊥
1DIMD

2DIMP
⊥

1DIMP
2DIMD

⊥
1DIMD

25FV47‡ 18.7% 26.8% SC50A 7.0% 9.5%

ADLITTLE 12.6% 28.7% SC50B 6.3% 14.4%

AFIRO 19.5% 12.6% SCAGR7 18.5% 45.1%

AGG2† 4.5% 9.7% SCAGR25 27.2% 40.1%

BANDM† 26.4% 44.7% SCFXM1† 18.1% 14.6%

BEACONFD 6.3% 33.9% SCFXM2† 38.9% 9.0%

BLEND 16.4% 10.0% SCFXM3‡ 14.2% 13.4%

BNL1 13.8% 54.8% SCORPION 2.1% 53.2%

BNL2‡ 10.8% 16.1% SCRS8‡ 16.3% 8.1%

BORE3D† 30.7% 25.8% SCSD1† 12.2% 96.5%

BRANDY 31.3% 24.3% SCSD6 14.3% 6.2%

CZPROB† 12.0% 64.3% SCTAP1† 13.6% 21.9%

D2Q06C‡ 19.4% 27.5% SCTAP2 8.1% 16.7%

D6CUBE 5.4% 8.1% SCTAP3 8.6% 9.5%

DEGEN2 6.8% 3.3% SHARE1B† 36.6% 57.7%

DEGEN3 6.7% 3.6% SHARE2B 37.0% 89.8%

E226‡ 9.2% 13.8% SHIP04L 6.0% 11.3%

ETAMACRO†‡ 4.2% 8.1% SHIP04S 1.8% 11.9%

FIT1D 40.7% 44.6% SHIP08L 6.5% 87.0%

FIT1P‡ 31.6% 62.2% SHIP08S 7.6% 46.8%

GANGES‡ 2.7% 1.3% SHIP12L 14.5% 49.6%

GROW7† 8.0% 6.7% SHIP12S 12.4% 7.1%

GROW15 6.4% 3.0% STANDATA 51.9% 6.5%

GROW22 5.7% 6.0% STANDGUB‡ 40.3% 68.8%

ISRAEL† 24.5% 50.0% STANDMPS 8.9% 5.9%

KB2 31.5% 17.5% STOCFOR1 26.0% 10.4%

QAP8 0.7% 0.0% STOCFOR2 22.3% 7.7%

RECIPELP‡ 8.7% 6.4% TRUSS 14.3% 40.0%

SC105 5.5% 16.3% WOOD1P 82.0% 64.9%

SC205‡ 30.8% 16.7% WOODW 45.6% 45.3%

Average 17.8% 26.9%

† and ‡ denote instances solved with the primal (†) and/or dual (‡) logarithmic barrier methods
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where zcurrent is the z value of the current solution. The average relative improvement in

objective function value per iteration (∆) is obtained by averaging all values of ∆k. That is,

∆ represents how much more, on average, the newly created two dimensional search interior

point algorithms improve the objective function value per iteration than the classical one

dimensional search interior point algorithms.

Table 5.6 shows that on average, 2DIMP
aff⊥ and 2DIMP

log⊥ improve the objective function

value at each iteration by approximately 18% more than 1DIMP
aff and 1DIMP

log. This im-

provement becomes 27% when comparing 2DIMD
aff⊥ and 2DIMD

log⊥ with the corresponding

one dimensional search version. When analyzing just instances solved with the affine scaling

techniques, these improvements are 18% and 28%, respectively. Similarly, when analyzing

only the problems solved with the logarithmic barrier methods, these improvements are 19%

and 22%, respectively.

To summarize, 2DIMP
aff⊥, 2DIMP

log⊥, 2DIMD
aff⊥, and 2DIMD

log⊥ are shown to be more effec-

tive than 1DIMP
aff, 1DIMP

log, 1DIMD
aff, and 1DIMD

log based on the results of this computational

study. Overall, the two dimensional search interior point algorithms improved the number

of iterations by about 15% and solution time by approximately 12%. This improvement may

be attributed to the minimal extra computational effort required by these newly developed

algorithms and a significant average relative improvement in objective function value per

iteration of approximately 23%.
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Chapter 6

Conclusions and Future Research

This dissertation introduces a change of paradigm in optimization methods. The majority

of algorithms designed to solve optimization models can be categorized as one dimensional

search techniques. That is, these iterative methods determine an improved solution at each

iteration by solving a one dimensional subspace problem. In contrast, this dissertation’s

research creates several algorithms to solve linear programming problems where the move-

ment between solutions is determined by solving a two dimensional subspace linear pro-

gram. These novel two dimensional search algorithms, when tested over numerous random

and benchmark linear programs, demonstrate the potential of multidimensional searches in

optimization methods. Overall, the number of iterations and solution time are reduced by

an average of approximately 25%. The following sections describe the major conclusions

obtained with this dissertation and potential topics for future research.

6.1 Conclusions

While one dimensional search techniques are limited by all solutions contained in a single ray,

two dimensional search methods benefit from the addition of a second search direction. This

second search direction allows these algorithms to search over a plane. Consequently, two

dimensional search methods improve the objective function value at each iteration by at least
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as much the corresponding one dimensional search version under broad conditions. On the

other hand, solving a two dimensional subspace problem likely requires more computational

effort than solving a one dimensional subspace problem. Therefore, effective techniques to

solve this two dimensional subspace problem must be created in order to counteract the

additional effort.

To accomplish this critical result, this dissertation presents the slope algorithm (SA),

an effective technique to find an optimal basis and an optimal solution to linear programs

with only two variables. The slope algorithm evaluates the “slope” of each constraint in a

two variable linear program and contrasts these values with the slope formed by both cost

coefficients. Sufficient conditions guarantee that the slope algorithm either identifies a ray

of unboundedness, or finds an optimal solution and also an optimal basis. By deriving theo-

retical results on nonsupportive constraints, the slope algorithm’s running time is bounded

by a linear logarithmic function in terms of the number of constraints.

While the slope algorithm is an interesting procedure to quickly solve two variable linear

programs, its true benefit is realized as a pivoting technique incorporated into a primal

simplex framework. This development results in the double pivot simplex method (DPSM),

an advancement to the well-known simplex method. The double pivot simplex method pivots

up to two nonbasic entering variables with two basic leaving variables at each iteration instead

of one single variable from the simplex method. In this case, the slope algorithm replaces

the minimum ratio test and determines both leaving basic variables. Because of the slope

algorithm’s low complexity, an iteration of the double pivot simplex method has the same

theoretical running time as an iteration of the simplex method. This dissertation also proves

that given a nondegenerate linear program, the double pivot simplex method solves the

problem within a finite number of steps. In addition, the double pivot simplex method also

diminishes some of the negative effects caused by degenerate linear programs.

Computational experiments tested the double pivot simplex method on random linear

programs and benchmark instances from Netlib and MIPLIB. When compared to the simplex

method, computational results show an improvement in the number of pivots and solution

time of nearly 17% in random dense instances and 30% in random sparse problems, on av-
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erage. Furthermore, the number of pivots are improved by about 41% when tested over

benchmark instances. When comparing to the primal simplex implementation of CPLEX, a

state-of-the-art high performance mathematical programming solver, the double pivot sim-

plex method reduces the number of pivots by approximately 22%, on average, in benchmark

linear programs.

Similar to the slope algorithm, this dissertation’s research also creates the ratio algorithm

(RA), a method to determine an optimal basis and an optimal solution of linear programs

with only two constraints. The ratio algorithm compares the ratio of all variables, which are

formed by the constraint values of the two constraints, with the ratio formed by the right-

hand side values. The ratio algorithm determines two variables that define an optimal basis to

such a problem following infeasibility conditions and optimality properties. The complexity

of the ratio algorithm is bounded by sorting a list of numbers, which size equals the number

of variables, and is theoretically faster than all other existing techniques capable of finding

an optimal basis of such simple problems. When the ratio algorithm is implemented within

a dual simplex framework, it results in the double pivot dual simplex method (DPDSM),

where two variables are exchanged at each iteration instead of one.

All of the aforementioned algorithms are designed from the context of a simplex frame-

work. This dissertation’s research also creates two dimensional search techniques using an

interior point framework. In this case, one of the critical steps is to determine two effective

search directions. Hence, this dissertation provides two principles for determining search

directions. First, the selected two search directions should lead to a solution with an objec-

tive function value that is at least as good as the objective function value obtained with a

single search direction. The second principle focuses on selecting two search directions that

increase the feasible region of two dimensional subspace linear programs.

Using both of these principles, novel two dimensional search interior point algorithms are

presented. First, the two dimensional search primal affine scaling interior point algorithm

(2DIMP
aff⊥) and the two dimensional search primal logarithmic barrier interior point algo-

rithm (2DIMP
log⊥) are created. From a feasible interior solution, each step of these techniques

randomly partitions the objective function into two orthogonal vectors. These vectors are
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used to generate two feasible and potentially improving search directions. Because of this

partitioning scheme, one can represent a one dimensional search direction as a nonnega-

tive linear combination of both two dimensional search directions, which satisfies the first

principle. Furthermore, the orthogonality condition satisfies the second principle. When in-

tersected with the feasible region of the linear program, these search directions create a two

dimensional subspace linear program that is used to determine a new and improved feasible

interior solution.

Computational experiments tested both primal two dimensional search interior point

algorithms jointly versus the corresponding one dimensional search version. Experiments

were tested on benchmark linear programs from Netlib. On average, the number of iterations

is improved by 16% and solution time is reduced by 14%. When analyzing the average relative

improvement in the objective function value per iteration, both primal methods determine

successive feasible interior solutions that are 18% better than the classical one dimensional

search primal affine scaling and logarithmic barrier interior point algorithms.

This dissertation’s research also creates the two dimensional search dual affine scaling

interior point algorithm (2DIMD
aff⊥) and the two dimensional search dual logarithmic bar-

rier interior point algorithm (2DIMD
log⊥). These techniques follow a similar procedure to

the primal methods, but search directions are computed by solving the corresponding dual

problem, and the right-hand side vector is randomly and orthogonally partitioned at each

step. Computational experiments in this case show an improvement of approximately 13%

in the number of iterations and 10% in solution time. The average relative improvement in

objective function value per iteration is approximately 27%.

When all computational results presented in this dissertation’s computational studies

are averaged, one can see that the number of iterations and solution time are reduced by

nearly 25%. This substantial improvement demonstrates the potential of two dimensional

searches in linear programming. If implemented into state-of-the-art commercial and open

source solvers, these and other future developed multidimensional search algorithms could

potentially decrease the solution time to solve not only linear programs, but also other critical

classes of optimization models.
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6.2 Future Research

This dissertation sets the stage for other important research in multidimensional searches

applied to optimization methods. During the development of this dissertation’s research,

some critical questions emerged. Answering these research questions could substantially im-

prove the understanding of multidimensional search algorithms. These ideas are theoretical,

algorithmic, and computational in nature. The following sections describe some of these

future research ideas.

6.2.1 Future Simplex Framework Research

One potential future research topic is to determine the benefit of double pivots in current

state-of-the-art commercial and/or open source mathematical programming solvers. Con-

sequently, the primary research task on this topic should develop an efficient method to

update the basis factorization with two variables simultaneously. A complete implementa-

tion on these solvers would enable experiments to provide new computational results to the

double pivot simplex method. Furthermore, this implementation would more accurately test

the computational effectiveness of the double pivot dual simplex method.

Research could also extend double pivots to other simplex framework results. For in-

stance, creating a primal and dual double pivot simplex method with lower and upper bounds

is a potential future study. If computationally more effective than the corresponding single

pivot version, these newly developed techniques could be implemented within the branch

and bound algorithm to solve integer and mixed integer programs. That is, these methods

could solve the linear relaxation problem of each child from the branching tree. In this case,

double pivots would benefit not only linear programming but also integer programming.

Another research topic could investigate whether or not double pivots prevent cycling

on degenerate linear programs. To answer this critical question, one should find a small

instance where the double pivot simplex method or the double pivot dual simplex method

cycle, or theoretically prove that these techniques do not cycle. If the first case is shown to
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be true, then generating novel pivoting rules to avoid cycling with double pivots is another

potential future research topic.

The development of a triple or higher dimensional pivot simplex method is another

promising research idea. In this case, research must create a fast technique to find an optimal

basis to linear programs with three or more decision variables. Future studies should also

determine whether or not increasing the size of the multidimensional search subproblems is

beneficial. If so, research could investigate an n dimensional pivot simplex method.

Future work could also examine how the double pivot simplex method or the double pivot

dual simplex method can benefit from parallel computing. Since both of these techniques

require more computational effort per iteration than their corresponding single pivot simplex

method, can a portion of this step be performed in parallel? Along the same lines, if one

answers the aforementioned triple or more pivot problem, a parallel implementation should

become more effective.

Expanding the applicability of both the slope algorithm and the ratio algorithm can also

benefit the field of multidimensional searches. For instance, the slope and ratio algorithms

could be implemented to find an optimal basis to the subproblems of decomposition, column

generation, and block pivot techniques. Furthermore, the ratio algorithm could be imple-

mented within the network simplex method to solve network flow problems with exactly two

linear side constraints. In this case, research should investigate conditions to merge both

techniques and still maintain the basis structure of the network.

6.2.2 Future Interior Point Framework Research

An obvious research question is whether or not the two dimensional search primal and dual

affine scaling and logarithmic barrier interior point algorithms presented in this dissertation

theoretically converge to an optimal solution. One potential research idea is to develop

a nontrivial relationship between the two search directions and the feasible region of the

linear program. The goal is to determine the dual estimates for the primal algorithms and
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the primal estimates for the dual techniques. Thus, one could prove convergence using

complementary slackness.

This dissertation presents two principles for determining search directions. The two

dimensional search interior point algorithms created in this dissertation’s research partially

achieve the second principle by orthogonally partitioning the objective function and right-

hand side vectors. Future research could investigate another technique to better accomplish

the second principle. In this case, one could find a method to generate two search directions

that are orthogonal to each other in the projected space.

Another promising research topic is to create the first primal-dual two dimensional search

interior point algorithm. This dissertation, along with other previous research, demonstrate

the potential of multidimensional searches to more quickly solve linear programming prob-

lems. Since primal-dual interior point methods are frequently used to solve large scale linear

programs rather than the primal and dual algorithms, expanding the knowledge of multidi-

mensional searches to create novel and effective primal-dual techniques would be extremely

useful. To further complement existing methods, these newly developed primal-dual algo-

rithms could also incorporate predictor-corrector steps and initial infeasible interior solutions.

Similar to a simplex framework, future research could also investigate three or higher di-

mensional search interior point algorithms. Furthermore, developing two dimensional search

methods to solve nonlinear programming problems is another possible future study. Both

of these research topics would enhance the applicability of multidimensional searches, and

could improve current state-of-the-art nonlinear optimization methods.

In summary, this dissertation sets the stage for exciting future research topics in mul-

tidimensional search algorithms for linear programming and other classes of optimization

problems. Only time will be able to answer whether or not these multidimensional search

methods will create a completely different perspective of optimization algorithms and change

the current paradigm. The author believes that these algorithms have the potential to sub-

stantially advance operations research solution techniques and will contribute to a more

efficient society.
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