670 research outputs found

    The s-monotone index selection rules for pivot algorithms of linear programming

    Get PDF
    In this paper we introduce the concept of s-monotone index selection rule for linear programming problems. We show that several known anti-cycling pivot rules like the minimal index, Last-In–First-Out and the most-often-selected-variable pivot rules are s-monotone index selection rules. Furthermore, we show a possible way to define new s-monotone pivot rules. We prove that several known algorithms like the primal (dual) simplex, MBU-simplex algorithms and criss-cross algorithm with s-monotone pivot rules are finite methods. We implemented primal simplex and primal MBU-simplex algorithms, in MATLAB, using three s-monotone index selection rules, the minimal-index, the Last-In–First-Out (LIFO) and the Most-Often-Selected-Variable (MOSV) index selection rule. Numerical results demonstrate the viability of the above listed s-monotone index selection rules in the framework of pivot algorithms

    Cutting plane methods for general integer programming

    Get PDF
    Integer programming (IP) problems are difficult to solve due to the integer restrictions imposed on them. A technique for solving these problems is the cutting plane method. In this method, linear constraints are added to the associated linear programming (LP) problem until an integer optimal solution is found. These constraints cut off part of the LP solution space but do not eliminate any feasible integer solution. In this report algorithms for solving IP due to Gomory and to Dantzig are presented. Two other cutting plane approaches and two extensions to Gomory's algorithm are also discussed. Although these methods are mathematically elegant they are known to have slow convergence and an explosive storage requirement. As a result cutting planes are generally not computationally successful

    A Parametric Simplex Algorithm for Linear Vector Optimization Problems

    Get PDF
    In this paper, a parametric simplex algorithm for solving linear vector optimization problems (LVOPs) is presented. This algorithm can be seen as a variant of the multi-objective simplex (Evans-Steuer) algorithm [12]. Different from it, the proposed algorithm works in the parameter space and does not aim to find the set of all efficient solutions. Instead, it finds a solution in the sense of Loehne [16], that is, it finds a subset of efficient solutions that allows to generate the whole frontier. In that sense, it can also be seen as a generalization of the parametric self-dual simplex algorithm, which originally is designed for solving single objective linear optimization problems, and is modified to solve two objective bounded LVOPs with the positive orthant as the ordering cone in Ruszczynski and Vanderbei [21]. The algorithm proposed here works for any dimension, any solid pointed polyhedral ordering cone C and for bounded as well as unbounded problems. Numerical results are provided to compare the proposed algorithm with an objective space based LVOP algorithm (Benson algorithm in [13]), that also provides a solution in the sense of [16], and with Evans-Steuer algorithm [12]. The results show that for non-degenerate problems the proposed algorithm outperforms Benson algorithm and is on par with Evan-Steuer algorithm. For highly degenerate problems Benson's algorithm [13] excels the simplex-type algorithms; however, the parametric simplex algorithm is for these problems computationally much more efficient than Evans-Steuer algorithm.Comment: 27 pages, 4 figures, 5 table

    Criss-cross methods: A fresh view on pivot algorithms

    Get PDF
    Criss-cross methods are pivot algorithms that solve linear programming problems in one phase starting with any basic solution. The first finite criss-cross method was invented by Chang, Terlaky and Wang independently. Unlike the simplex method that follows a monotonic edge path on the feasible region, the trace of a criss-cross method is neither monotonic (with respect to the objective function) nor feasibility preserving. The main purpose of this paper is to present mathematical ideas and proof techniques behind finite criss-cross pivot methods. A recent result on the existence of a short admissible pivot path to an optimal basis is given, indicating shortest pivot paths from any basis might be indeed short for criss-cross type algorithms. The origins and the history of criss-cross methods are also touched upo
    • …
    corecore