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Abstract 

Criss-cross methods are pivot algorithms that solve linear programming problems in one phase 
starting with any basic solution. The first finite criss-cross method was invented by Chang, Terlaky 
and Wang independently. Unlike the simplex method that follows a monotonic edge path on the 
feasible region, the trace of a criss-cross method is neither monotonic (with respect to the objective 
function) nor feasibility preserving. The main purpose of this paper is to present mathematical 
ideas and proof techniques behind finite criss-cross pivot methods. A recent result on the existence 
of a short admissible pivot path to an optimal basis is given, indicating shortest pivot paths from 
any basis might be indeed short for criss-cross type algorithms. The origins and the history of 
criss-cross methods are also touched upon. ~ 1997 The Mathematical Programming Society, Inc. 
Published by Elsevier Science B.V. 
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1. Introduct ion 

Consider the following primal and dual 

standard form: 

(P) min{ cTx I A x  = b, x >~ 0}, 

(D) m a x { b T y  [ ATy  <<. c}, 

linear programming (LP) problem pair in 
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where A is a given m x n rational matrix, c and b are n and m dimensional given 

rational vectors, respectively, and A T denotes the transpose of  the matrix A. As usual, 

the first linear programming problem (P) is called the primal problem and the second 
problem (D) is called the dual problem. This pair of  linear programming problems will 

be frequently referred to as LP(A,  b, c). 
Linear programming has been one of  the most turbulent areas of  applied mathematics 

in the last fifty years. Despite the flux of  many recent approaches, Dantzig's simplex 

method [22] still remains to be one of  the most efficient algorithms for a great majority 

of practical problems [5].  It is generally observed that for most cases the required 

number of  pivot steps is a linear (and at most quadratic) function of  the number 

of variables. This observation about the practical efficiency of  the simplex method is 

theoretically justified by proving its polynomial behavior in the expected number of  pivot 

steps [ 51,1,10,70] for various probabilistic models. On the other hand, for most variants 

(specified by additional pivot rules) of the simplex method there are examples for 

which the number of  pivot steps is exponential. For such exponential examples see e.g. 
[2,37,46,56,57,59,60]. To find a polynomial pivot algorithm I for linear programtning, 

i.e. one for which the number of  pivot operations is bounded by a polynomial function 

of  the input size, or to prove that such pivot algorithms do not exist 2 seems to be very 

hard. In fact, to clarify if there exists such a polynomial time simplex algorithm and the 

closely related "Hirsch conjecture" [47] are among the most challenging open problems 

in linear programming and in polyhedral theory. 
The simplex method successfully combines greedy concepts such as preserving feasi- 

bility and forcing monotonicity of  the objective value. It utilizes fundamental geometrical 

and combinatorial properties of  linear programming problems represented by basic so- 

lutions. A further reason for the practical efficiency of  the simplex method is in the fact 
that it is very flexible, i.e. there are plenty of possibilities to select the pivot element 

during the procedure, even in case of nondegeneracy. Therefore many simplex variants -~ 

have been developed during the last fifty years. 

In the recent years, however, the major research efforts in linear programming have 

been shifted first to the ellipsoid method by Khachian [43] and later, even more in- 

tensively, to interior point methods 4 initiated by the seminal paper of  Karmarkar [42].  
New studies on pivot-based algorithms are not receiving much attention even among 

researchers in the field of  linear programming. Moreover, a large part of  the work was 

presented in terms of  oriented matroid programming and frequently without explicitly 

specializing the new pivot methods for the linear programming case, thus remained 
unknown for researchers who are not familiar with the oriented matroid terminology. 

I A pivot algorithm might be a polynomial simplex algorithm or more generally any finite pivot method that 
traverses through possibly both primal and dual infeasible basic solutions. 

2 To date no exponential example is known for Zadeh's [79] pivot selection rule. 
3 A recent survey on pivot rules is given by Terlaky and Zhang 1671. 
4 For recent results on interior point methods the reader can consult the books of Roos, Terlaky and Vial 

1611, Wright 1781, Kojima et al. [481 and the collection of survey papers in [4,661. 
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1.1. Fundamentals 

371 

Before discussing criss-cross methods, we consider problems (P) and (D) again. A 
vector x E IR n is called primal feasible  if it is nonnegative and Ax  = b, i.e. satisfies all the 

constraints o f  problem (P);  a vector y E R"' is called dual feasible if s = c - ATy ) O, 

i.e. it satisfies all the constraints in (D).  The weak duality theorem provides a sufficient 

condition for optimality. 

Proposi t ion 1 (Weak duality). I f  x E R" is primal feasible and y E N m is dual feasible 

then cTx ~ bTy, where the equality is satisfied if f  XTS = O. 

Corol la ry  2 (Complementarity).  / f  x E R" is primal feasible,  y E R m is dual feasible 

and xT s = 0 then x and y are primal and dual optimal respectively. 

The strong duality theorem states that if LP(A,  b, c) is both primal and dual feasible, 

then there are primal and dual feasible solutions such that cTx = bTy (or equivalently 

xTs = 0), implying both are optimal. Consequently this sufficient condition of  optimality 

for a dual pair of  feasible solutions is necessary, too. The least-index criss-cross method 
described in Section 3 will yield a very simple algorithmic proof of  this fundamental 

result. 
The complementarity condition represents a strong combinatorial character of  linear 

programming problems that is featured by pivot algorithms. In the view of  the above 

discussions the set of  optimal solutions can be characterized as the set of  solutions of  

the system 

A x  = b ATy + s = c 

xTs = 0  (1) 

x>~O s~>O 

Since ',all pivot methods 5 generate basic solutions, their intermediate solutions satisfy 

both equality constraints and the complementarity condition. 

Simplex pivot methods always require and preserve either primal or dual feasibility of 

the generated basic solutions. A primal (dual, respectively) simplex method is initiated 

by a primal (dual) feasible basic solution. If  neither optimality nor unboundedness is 
detected then a new basis and the related basic solution is chosen in such a way that 

a dual (primal) infeasible variable enters (leaves) the basis and: ( I )  the new basis is 

again primal (dual) feasible; (2) the new basis differs exactly by one element from the 

old one, i.e. the new basis is a neighbor of  the old one. Feasibility of  the basic solution 

is preserved throughout and the primal (dual) objective function value is monotonically 

decreasing (increasing) at each basis exchange. To produce a primal or dual feasible 

5 In this paper pivot methods refer to those algorithms which maintain only one basis at a time. There are 
pivot algorithms of different type, e.g. the algorithm [ 141 maintains two different bases at a time. 
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Criss-cross method 1 

XiS i = 0 Vi  

i A x = b  A = :: 

~ S  : x~>0 />0 i 

....... l interior point methods { ....... 

11 
Dual simplex 

Fig. I. Algorithms. 

basic solution is a nontrivial task. It requires the solution of another LP problem, the 
so-called first phase problem. 

If no feasibility (nonnegativity) condition is forced to hold or forced to be preserved, 
then we can talk about criss-cross methods. A finite criss-cross method goes through 
some (possibly both primal and dual infeasible) basic solutions until either primal 
infeasibility, dual infeasibility or optimality of the LP is detected. This procedure can 
start with any basic solution and solves the linear programming problem in one phase 

in a finite number of pivot steps. The least-index criss-cross method (to be presented 
in Section 3) is perhaps the simplest such algorithm and gives rise to a very short 
algorithmic proof of the LP strong duality theorem (see Theorem 9). 

Contrary to pivot methods where complementarity is maintained throughout the solu- 
tion process, intermediate solutions generated by interior point methods typically satisfy 
all equality and nonnegativity conditions but complementarity. Complementarity is at- 
tained just at termination. Thus interior point methods do not make explicit use of the 
combinatorial features of linear programming. Fig. 1 illustrates the requirements of the 
different methods. 

Another fundamental property in linear programming is that the primal and dual 
feasible directions are in orthogonal subspaces i.e., the subspaces {x { Ax = 0} and {s I 
s = A f y }  are orthogonal. This orthogonality in a slightly extended form is fully utilized 
not only in pivot methods but in interior point methods as well. Certain "sign" properties 
of orthogonal sub@aces furnish the base for a combinatorial abstraction [8,29] and for 
deeper understanding of origins and perspectives of combinatorial pivot algorithms. 

The main purpose of this paper is to present mathematical ideas and proof techniques 
behind finite criss-cross pivot methods, and to give a fresh view on pivot algorithms. 

The paper is organized as follows. At the end of this section, we present a (non- 
standard but useful) matrix notation which we use throughout the paper. In Section 2 
termination criteria are discussed and the concept of admissible pivots is introduced. 
In Section 3 we present the least-index criss-cross method for linear programming 
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problems. Based on the finiteness result a simple constructive proof of the LP strong 

duality theorem is given. Some discussions on the flexibility of the least-index criss- 

cross method and notes on worst-case behavior are included as well. In Section 4 recent 

results on the shortest pivot sequence to an optimal basis is presented. In Section 5 

some conclusions follow and further research problems are given. Finally in Section 6 

the origins and the history of criss-cross methods are given. 

1.2. Matrix notation 

Here we present some basic notations and definitions for linear systems. 

For finite sets L and E, an L x E matrix is an array of doubly indexed numbers or 

variables 

A = (asj : i E L, j E E) 

where each member of L is called a row index, each member of E is called a column 

index and each aij is called a component. For R C_ L and S C_ E, the R x S matrix 

(ars : r E R , s  E S) is called a submatrix of A, and will be denoted by ARs. We use 

simplified notations like, AR for ARe, A.s for ALS, As for A{i}e, and A.j for At{j} .  Also, 

for a positive integer m, we use expressions such as m x E matrix to mean an L x E 

matrix with the usual index set L = {1,2 . . . . .  m}. Thus, our matrix notation is simply 

an extension of the usual matrix notation, and this extension enables us to describe pivot 

algorithms in a simple and rigorous way. 

Let m = ILl and assume rank(A) = m. Consider the homogeneous system of linear 

equalities: 6 

Ax = 0, (2) 

where x is an unknown vector in m E. The system can be written alternately as 

~ - ~ a q x j = O  V i E L .  (3) 

.jE E 

A subset B of E is said to be a basis if IBI = m and the square submatrix A.e is 

nonsingular. The complement E \  B of a basis B is called a nonbasis and denoted by, N. 

When B is a basis, we denote by (A.R)-  I the B x L matrix U such that the product UA.8 

is the B x B identity matrix 1 (B), i.e., U is the left inverse. Since we consider matrix 

rows and columns to be indexed by sets, for two matrices to be multipliable, the column 

index set of the first matrix must be equal to the row index set of the second matrix. 

Let B be any basis. The dictionao, D = D ( B )  of the basis B is the B x N matrix 

--UA.N = - (  A.13 ) - IA .N.  It is important to note that the dictionary represents the system 

of linear equations, equivalent to (2) ,  given by 

xB = DxN, (4) 

6 Such linear systems arise in linear programming as one introduces a new variable to homogenize the 
right-hand side. The formal definition will be given in Section 3. 
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x l  [ I 

Fig. 2. Orthogonality of x E JV'(A) and s E 7~(A). 

which can also be written as 

xi = ~ dijxj  Vi E B. (5)  
.iEN 

Here the dij's denote the components of  D. For any specific nonbasic element q E N, 

the unique solution ~ to the system (2)  with Y~/ = I and 2j = 0 for all j E N \ {q} 

is called the basic solution (associated with B and q),  and denoted by x ( B , q ) .  Once 

the dictionary is given, the basic solution can easily be read: x ( B , q ) 8  = D.q and 

x ( B , q ) N \ { q  } =0.  

For those who are not familiar with the notion of  dictionary (first introduced in [62] 

and elaborated in [15] ),  we note that the LP tableau matrix (see, e.g. [22] ) T = T ( B )  

is related to the dictionary D = D ( B )  by T = [1 ~B/ - D] .  

For any p E B and q E N with dpq 4= O, the set B - p + q is again a basis, and the 

replacement of  B by B - p + q is called the pivot operation on (p, q). Here, - p  and 

+ q  are a short torm of  single-element deletion \ {p} and addition U {q}, respectively. 

We define two vector subspaces of  R e associated with the matrix A: 

JV'(A) = {x C R e l A x = O } ,  (6)  

7~.(A) = { s  C RE I s = A T y ,  y E RL},  (7)  

where A/ ' (A) is the null space of A and 7-4.(A) is the row space of A. When a basis B 

for Ax  = 0 is given, these two spaces are given symmetrically as 

x E Ag(A)  .'. ;. xB = DXN, (8)  

s E ~ ( A )  .: ;. sN =--DVSB. (9)  

This orthogonali ty is illustrated 7 in Fig. 2. Consequently any dictionary represents a 

dual pair of orthogonal subspaces in a very compact form. Often we have to prove 

certain properties of  subspaces and these duality relations (8)  and (9)  give us a way to 

avoid proving two statements separately which are dual to each other. 

R e m a r k  3 (Dualization). We use the convenient term dualization to mean exchanging 

the dictionary D with - D  T. Via dualization, one can induce a correct statement on the 

dual space 77.(A) by dualyzing and interpreting a proven statement on the primal space 

.Af(A). Although there is some asymmetry in the representation of the two spaces .A/(A) 

7 For space efficiency here and in the subsequent figures we will draw all vectors as if they were row vectors. 
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and 7¢(A),  we are concerned only with properties of  these spaces as vector subspaces 

and thus it is of  no importance. 

Clearly the vector x(  B, q) ,  defined as x (B, q) ~ = D.q, x (  B, q)q = 1 and x (B, q)N-q = 
0, is in .A/(A). Given a basis B and a vector s~ there is a unique vector s ¢ 7~(A) of  
the dual system satisfying sN = AT.N(A~ I)Ts8 = --DTsB and it is associated with the 

dual basis N. We define the dual basic solution for p ¢ B and denote it by s (N,p)  if 
s (N ,p )p  = 1, s (N ,p )8_p  = 0 and s (N ,p)N = (--DV).p = ( - D . p )  v, i.e., the dual basic 

vector is represented in the pth row of D. Due to the orthogonality of  the row and null 
spaces the above defined vectors x ( B, q) and s (N, p)  are orthogonal. One also realizes 

that x( B, q)p = - s (  N, p)q = dpq. 

2. Termination and admissible pivots 

2.1. Terminal dictionaries 

Considering the notation introduced in Section 1.2 for the primal-dual LP problems 

(P) and (D)  we define the matrix 

(:11 o) 
A- = A 0 - (10) 

representing the orthogonal linear subspaces related to (P) and (D) respectively. Clearly 

the assumption rank(A) = m implies rank(A) = m -I- 1. We define two index sets E 
and E as {1 . . . . .  n} and {l . . . . .  n, f ,g} ,  respectively, where f is associated with the 
unit vector (i.e. closely related to the objective vector c of  the LP problem) and g is 

associated with the last column vector i.e. to the right-hand side vector b. Both f and 
g are considered special symbols not in E and the matrix A is an (m + 1 ) x E matrix. 

Now it is easy to see that the primal problem (P) and the dual problem (D) of 
LP(A,  b, c) are equivalent to the lbllowing formulation which we use in the sequel: 

(P)  max{x f  I x E .N'(A-), x~ = 1 and .:cj ) 0 Vj E E}, ( 1 1 ) 

(D)  max{s~ [ s C ~(A- ) ,  sf = 1 and sj ) 0 Vj E E}. (12) 

In this formulation, the primal problem and the dual problem are completely symmetrical. 
In particular, this suggests that any LP problem can be cast into the form (V,f, g) where 

V is a given vector subspace of R 2. Its dual is (V ±, g, f )  which is obtained by taking 
the orthogonal subspace and interchanging the objective f and the right-hand side g. 
This form represents a very strong relation between the duality of linear programming 

and the orthogonal duality of  vector subspaces. 
Comparing with the original formulation, the variable x /  is set to the negative of  

the original objective function cTx, while the dual objective variable sg represents the 
original dual objective function bTy. Thus the weak duality condition Corollary 2 reads: 
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Optimal 

P - O  0 

Primal inconsistent 

q 
+ 
® 

Dual inconsistent 

Fig. 3. Terminal tableau structures. 

Proposi t ion 4 (Symmetric form of weak duality). 

feasible solutions 

Xf q- Sg = -- £ XjSj ~ O, 
j=l 

and they are both optimal if the equality holds above: 

£ x j s / =  O. 
j=l 

For any pair (x, s) of primal-dual 

(13) 

(14) 

A basis B- with f E B ~ g is said to be a basis of the linear programming problem 
or an LP basis for short. The notation B = B - f will also be used. One says that 

a basis is feasible if x(B,g)B = D(B)B{g} 7> 0 and dual feasible if for N = E - B, 

N = N - g one has s (N,  f ) N  = --D{/}N ) O. One sees that by definition the vectors 

x(B,g)  and s(N, f )  are feasible solutions for the problems (P) and (D) respectively. 

A basis is said to be optimal if it is both primal and dual feasible. A basis B is said to 

be primal inconsistent if there exists p E B such that dpg < 0 and DpN ~ O, and dual 
inconsistent if there exists q E N such that dyq > 0 and Doq >1 O. We will call a basis (a 

dictionary) terminal if it is either optimal, primal or dual inconsistent. The sign structure 

of optimal, primal and dual inconsistent dictionaries are illustrated in Fig. 3. Here and 

Ibr the subsequent figures, we indicate the positive, nonnegative, negative, nonpositive 

and zero components by +,  O, - ,  O, 0, respectively. One can easily verify the tbllowing: 

m 

P r o p o s i t i o n  5. Let an LP basis B be given. 
(i) If-B is optimal then the associated basic solutions ate primal and dual optimal 

solutions. 
(ii) If B is primal inconsistent then the primal problem is infeasible. 

(iii) If B is dual inconsistent then the dual problem is infeasible. 

2.2. Admissible pivots 

A variable index i E E is said to be primal (dual) feasible at an LP basis if the 

associated value in the current primal (dual) basic solution is nonnegative, i.e. either 
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f 

P 

g g 
f 

q 

÷ 

type I 

q 
+ 

type II 

Fig. 4. Two types of admissible pivots for LP. 

i E N o r i E B  and dig<O ( e i t h e r i E B o r i E N a n d d f i > 0 ) .  
A natural and simple requirement that one can ask from a pivot selection is the 

following: when a primal (dual) infeasible variable is selected for a pivot then, after the 

pivot, both pivot variables should become primal (dual) feasible. Such pivots locally 
aim to improve the infeasibility status of  the solution and are described here. 

For p E B and q E N with dpq :/: 0, a pivot on (p, q) is said to be admissible if  

either ( I )  dpg < 0 and dpq :> 0 or (II)  dfq > 0 and dpq < O. See Fig. 4. 
The reader can easily verify the following. 

Propos i t ion  6, After a pivot of type I, both of p and q become primal feasible. 
After a pivot of type H, both of p and q become dual feasible. 

3. Finite  criss-cross  methods  

3.1. Algorithm 

Now we are ready to describe the least-index criss-cross method. This criss-cross 
method is a purely combinatorial pivoting method for solving LP problems, it uses 
admissible pivots and traverses through different (possibly both primal and dual infea- 
sible) bases until the associated basic solution is optimal, or an evidence of primal or 
dual infeasibility is found. It assumes that the variables are linearly ordered. 

Least -Index  Criss-Cross  Method 

Init ia l izat ion 

let B be an initial basis with f E B ~ g; 

whi le  true do 

if  dBg >~ 0 and dfN <~ 0 then 
(I)  stop: the current solution solves LP(A,  b, c); 

else 

p := min{i E B ] dig < 0}; 
q := min{j  E N I dfj > 0}; 
r := rain{p, q}; 
if r = p then 
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i f  dpN <~ 0 then 
(II)  stop: LP(A,  b, c) has no primal feasible solution; 

else 
let q := min{j  E N ] dpj > 0}; 

endif  
rise (i.e. r = q) 

if  dBq >/0 then 
(111) stop: LP(A,  b, c) has no dual feasible solution; 

else 
let p := min{i E N [ diq < 0}; 

endif  
endif  
perform a pivot: B := B - p + q; 

endwhile 
end. 

See Fig. 5 for a visual description of  the least-index criss-cross method. It is worth- 

while to mention some nice characteristics: 
• It can start with any basis and thus is of  only one phase. 
• No ratio test is used to preserve feasibility, only the signs of  components in a 

dictionary and a prefixed ordering of  variables determine the pivot selection. 
Proposition 5 shows that at termination ( I )  the vectors x ( B , g )  and s (N,  f )  are primal 
and dual optimal for L P ( A , b , c ) ,  respectively. Further, primal and dual infeasibility 
at the cases ( I / )  and (HI)  follows from the same proposition. The only thing which 

remains to be shown is the finiteness. 

3.2. Finiteness 

Directly or indirectly most ( i f  not all) finiteness proofs of  the least-index criss-cross 
method rely on some fundamental proposition on "almost terminal" dictionaries. First 
we present this proposition and a simple proof. 

A dictionary is called almost terminal (with respect to a constraint index k E E) if 
it is not terminal but by discarding a single row or column (indexed by k) it becomes 
terminal. Observe that we have four structurally different almost terminal dictionaries, 
see Fig. 6. 

Proposi t ion  7. Consider a linear programming problem LP(A,  b, c) and fix an element 

k C E. Then at most one type o f  the four almost terminal dictionaries A, B, A* and B* 
with respect to k may exist. 

One can prove Proposition 7 in many different ways. Here we shall give two proofs. 
The first one makes use of  the notion of  redundancy of  constraints. This proof, which 
appeared first in [27] ,  has never been published before. 
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dictionary D 

choose first infeasible j J  I q 

P 

choose fu'st 
positive in 

row p 

 tlo -. 
Stop prircial infeasible 

p -  + 

+ 

choose f i r s ~  
Stop optimal 

q 
negative in 

column q 
@ 

+ 

Stop dual infeasible 

0 

q q 
+ 

pivot [ pivot } 

Fig. 5. Scheme of  the least-index criss-cross method. 

For the first proof  we need one definition. An inequality or equality constraint in an 

LP problem is said to be redundant if  the restriction is implied by other constraints. 

Thus any redundant constraint can be removed from the problem without changing the 

set o f  feasible solutions. 

P r o o f  o f  P r o p o s i t i o n  7. We will show that no two different types can coexist. There 

are six pairs o f  cases to consider. We denote by (A A*) the case that both types A and 

A* exist simultaneously, etc. 

Let us first observe the tol lowing basic facts: 

(a)  I f  there exists a basis of  type A then 

• there is a primal feasible solution x with xk = 0, and 

• the constraint sk >~ 0 is nonredundant for (D) .  

(a*)  I f  there exists a basis o f  type A* then 

• there is a dual feasible solution s with sk = 0, and 

• the constraint x t  ~> 0 is nonredundant for (P) .  

(b )  I f  there exists a basis o f  type B then 

• the constraint xk > /0  is redundant for (P) ,  and 



380 K. Fukuda, T. Terlaky/Mathematical Programming 79 (1997) 369-395 

k 
A: 0 0 + A*: Q 

I 0 k 

®: 

0 

B: B*: 

P - @  G +  

q 

I + 
® 

® 

Fig. 6. Almost terminal dictionaries. 

• no primal feasible solution x with xk = 0 exists. 
(b*) If there exists a basis of  type B* then 

• the constraint s~ >~ 0 is redundant for (D),  and 

• no dual feasible solution s with sk = 0 exists. 

All claims in (a) and (a*) are straightforward from the associated basic solutions. To see 

(b),  we look at the pth equation in a type B dictionary: x v = dpgW~jCN_k dpixj-f-dl, ky k. 
Since dt, u < O, dpk > 0 and dvj <~ 0 for all j E N - k, the nonnegativity of  the variables 
in this equation excluding x~ forces xk to be strictly positive and thus (b).  By dualization 

(or direct interpretation), (b*) follows too. 

The claims above immediately eliminate the possibilities of  simultaneous existence of  

all pairs of  almost terminal dictionaries, except for the case (A A*), as easily verified 
with the following table: 

Type A: 

3 primal feasible x with xk = O. 

sk ) 0 is nonredundant for (D).  

Type B: 

xk >/0  is 

/3 primal 

redundant for (P). 

feasible x with xk = 0. 

l Type A*: 

3 dual feasible s with sk = O. 

x~ /> 0 is nonredundant for (P). 

Type B*: 

sk >7 0 is redundant for (D).  
/3 dual feasible s with sk = O. 

To prove that the remaining case (A A*) is impossible, assume we have a dictionary 
D of  type A and a dictionary D ~ of  type A*. Let x = x (B ,  g) and x ~ = x ( B  t, g). By the 

sign patterns of  these dictionaries, it is easy to see 

( , )  both x and x ~ are optimal for the LP problem L-ff obtained from the primal LP 
by reversing the inequality in xk 7> 0 (i.e. xk ~ 0). 
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Fig. 7. Case (B B*). 
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Fig. 8. Case (A B*). 

Moreover, observing the equation represented by the f t h  row of D, since dfk ~> 0 and 
d f) <~ 0 for all j C B - k, every feasible solution to LP with a negative kth component 
has an objective value strictly less than the optimal value dfg. Thus no optimal solution 

- -  / 

to LP can have a negative kth component. Since x k < O, we have a contradiction. [] 

Now we give the second proof  which makes use of  orthogonality of  two vector 

subspaces .A/'(A-) and ~ ( A ) .  

Second proof of Proposition 7. We have six pairs of  cases to consider. We use the same 
notation such as (A A*) to mean the case that both types A and A* exist simultaneously. 
In this proof  a dictionary and the associated basis for case A or B will be denoted by 

/ - - !  - - /  

D, B, N, and for case A* or B* by D ,  B ,  N .  The case (A A*) is the most involved, 
thus we begin first with the easier cases. 

(B B*): The vectors s ( N , p )  and x(B~,q)  are in the orthogonal subspaces 7"¢,(A-) 
and .A/'(A-) respectively. It is easy to see from the sign patterns of  dictionaries that their 
inner product is positive (see Fig. 7),  contradicting to the orthogonality. Thus this case 

cannot occur. 
(A B*): The vectors s ( N , f )  and x ( B ' , q )  are in the orthogonal subspaces ~ ( A )  

and A/'(A) respectively. Clearly their inner product is positive as shown in Fig. 8, a 
contradiction. Thus this case cannot occur. 

(B A*): By dualization, this case reduces to the case (A B*), and thus this case cannot 
occur. 

(A A*): This is a slightly more involved case. The vectors s ( N , f )  and s ( N ~ , f )  
are in the row space 7~(A) and the vectors x(B,g) and x(B ,g) are in the null space 
JV'(A). See Fig. 9 for their sign structures. 

The vectors [ s (N ,  f )  - s ( N  ~, f )  ] and [ x ( B  ~, g) - x (B ,  g) ] are orthogonal as well. 
Observe their product is positive because ( I ) the f component is zero in the first vector; 
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Fig. 9. Cause (A A*). 

(2) the g component is zero in the second vector; (3) the k component is negative in 

both vectors; (4) for each of the remaining components the product is nonnegative. This 

contradicts to the fact that they are orthogonal. Thus the types A and A* cannot exist 

simultaneously. 

(A* B*): This case is similar to the case (A B*). 

(A B): This case is dual to (A* B*) and also similar to the case (B A*). U] 

Now we prove the finiteness of the least-index criss-cross method. 

Theorem 8. The least-index criss-cross method is finite. 

Proof. Since the number of bases is finite, it is enough to show that each basis might be 

visited at most once by the algorithm. The proof is by contradiction. Assume that a basis 

is visited twice. Then the algorithm generates a cycle, i.e. starting from this basis, after 

a certain number of steps the same basis is reached again. Without loss of generality we 

may also assume that this cycling example is minimal and E = {1 . . . . .  n}. This implies 

each variable in E, in particular n, must enter and leave a basis during the cycle. 

There are two situations when n as a nonbasic element might enter a basis. The first 

case A is when the current dictionary is almost optimal with respect to n, and the second 

case B is when some basic variable, say p, is primal infeasible and dp,, determines the 

only admissible pivot in row p. Similarly, there are only two cases in which n as a basic 

element might leave a basis. The first case A* is when the current dictionary is ahnost 

optimal with respect to n, and the second case B is when some nonbasic variable, say 

q, is dual infeasible and dnq determines the only admissible pivot in column q. Thus at 
least one case of the four possible combinations (A A*), (A B*), (B A*) and (B B*) 
must occur. On the other hand, the described cases A, B, A* and B* coincide with the 

four almost terminal dictionaries of Fig. 6 for k = n. By Proposition 7, none of (A A*), 

(A B*), (B A*) and (B B*) can occur, a contradiction. [] 

One of the most important consequences of the finiteness of the least-index criss-cross 

method is the strong duality theorem of linear programming. We believe this is one of 

the simplest algorithmic proofs of this fundamental result. 
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Theorem 9 (Strong duality). Exactly one o f  the following two cases occurs for  any 

linear programming problem LP(A,  b, c).  

• At least one o f  the primal problem (P) and the dual problem (D) is infeasible. 

• Both problems have an optimal solution and the optimal objective values are equal. 

Proof.  By using Gaussian elimination, one finds either the inconsistency of  Ax = b 

(thus identifies primal infeasibility), or an LP basis in finite steps, possibly discarding 

some redundant equations. For the latter case, apply the least-index criss-cross method 

with this initial LP basis. By Theorem 8, it terminates with one of  the three terminal 

dictionaries of  Proposition 5 (see also Fig. 3), hence either an optimal solution pair is 

obtained or infeasibility is detected either from the primal or from the dual side. []  

It is worthwhile to mention another simple proof of  the strong duality theorem due 
to Edmonds [26] .  It involves a new way of  solving an LP problem by considering 

a sequence of  feasibility problems with an extra inequality expressing the objective 

function bounded by certain constant. By a clever update of  the constant the algorithm 

finds the optimal value by solving finitely many feasibility problems. He also proposes 

a combinatorial pivot algorithm to solve feasibility problems whose correctness can be 

proved by a simpler version of  Proposition 7. 
The following corollaries are based on different interpretations of  the least-index 

criss-cross method and this way alternative proofs can be derived. The first corollary 

is based on a recursive interpretation of  the algorithm. This recursive interpretation and 
the finiteness proof  based on it can be derived from the results due to Bland and Jensen 

[7,8,401 and can be found in Valiaho's paper [72].  

Coro l la ry  10 (Recursive interpretation). As performing the least-index criss-cross 

method at each pivot one can make a note o f  the larger o f  the two indices r = max{p, q} 
that entered or left the basis. In this list, an index must be fol lowed by another larger 

one before the same index occurs anew. 

Proof. At a given basis, by using the predefined ordering of  the indices in the dictionary, 

we identify first the largest index r -  1 for which all the variables i ~< r - 1 are both 

primal and dual feasible. If  r - 1 = n the problem is optimally solved. Else, r is primal 

or dual infeasible. Let t - 1 be the largest index for which d~j <<, 0 for all j ~< t - 1 or 

dir >~ 0 for all i <~ t -- 1, respectively. If  t - 1 = n then primal or dual infeasibility is 

detected. Else, let k = max{r, t}. Then we have a terminal dictionary for the subproblem 

involving the variables i ~< k -  1 and an almost terminal dictionary for the subproblem 

involving the variables i ~< k. The new pivot involves the index k as the larger one of  

the two pivot indices. This happens at one of  the four situations illustrated at Fig. 6 if 

we look at the subproblem involving only the indices i ~< k. When the same index k 
occurs anew in the list, then an index higher than k must have been involved in a pivot 

want else at the new occurrence of  the index k another dictionary from Fig. 6 for the 

subproblem i ~< k would occur that is not possible by Proposition 7. [] 
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The recursive interpretation is becoming apparent when one notes that the size of  

the solved subproblem (the subproblem for which a terminal dictionary is obtained) is 

monotonically increasing. The third finiteness proof is based on the technique developed 
by Edmonds and Fukuda [29] and adapted by Fukuda and Matsui [32] to the case of 

the least-index criss-cross method. 

Corol la ry  11 (Lexicographically increasing list). Let u E R" be a binary vector set 

initially to be the zero vector. In applying the algorithm let r = max(p,  q} be the larger 

o f  the two indices p that entered or q that left the basis. At each pivot update u as 

fol lows: let ur = 1 and ui = 0 Vi < r. The remaining components o f  u stay unchanged. 

Then at each step o f  the least-index criss-cross method the vector u strictly increases 

lexicographically, thus the method terminates in a finite number o f  steps. 

Proof. This follows immediately from Corollary 10. [] 

In all three finiteness proofs above, the main tool is Proposition 7. Note that the 

finiteness of  Bland's least-index rule [8] is an easy consequence of  this proposition as 

well. 

3.3. Flexibility 

Once an ordering of  the index set is chosen, the pivot sequence of  the least-index 

criss-cross method is uniquely determined. This way the least-index criss-cross method 

seems to be completely rigid. Having a closer look at the finiteness proofs one can see 

tile essential mechanism to guarantee the finiteness and there is a great deal of  hidden 

flexibility. This can be easily seen from the last convergence theorem, Corollary 11. 

There one can easily analyze what kind of  reordering of the index list is allowed while 

the strict lexicographic increase of  the indicator vector u is preserved. 
A zero interval of an indicator vector u is a set of consecutive indices i in E such 

that ui = 0. At beginning the set E is itself a zero interval. It is very easy to see 

that the variable ordering within any zero interval is not important for the finiteness. 

This implies that one can reorder the variables within any zero intervals as one likes. 
These reorderings do not change the vector u, and do not change the position of  the 

components equal to one in u. 
It should be noted that one can exploit the variable reordering even further. The idea 

is to "forget" some pivot history coded in the u vector if one can gain more. An extreme 

case is when it is better to reorder all the variables by forgetting all the history and 

starting all over from scratch. Such an idea was presented in [26,31]. 
Both the recursive interpretation and the flexibility of pivot selection in the least-index 

criss-cross method make it possible to develop other finite variants. Such finite criss- 

cross methods, which do not rely on a fixed index ordering, can be developed based on 

the finite simplex rules presented by Zhang [80].  Using either of  the above presented 

two Corollaries 10 or 11 the reader can easily verify the finiteness of  the following two 

criss-cross methods [ 81 ]. 
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• First in last out (FILO).  First, choose a primal or dual infeasible variable that 
has changed its basis/nonbasis status most recently. Then choose a variable in the 
selected row or column so that the pivot is admissible and that has changed its 
basis/nonbasis status most recently. When more than one candidates exist with the 
same pivot age, break tie as you like (e.g. randomly). 

• Most  often selected variable. First, choose a primal or dual infeasible variable that 
has changed its basis/nonbasis status most frequently. Then choose a variable in 
the selected row or column so that the pivot is admissible and that has changed its 
basis/nonbasis status most frequently. When more than one candidates exist with 
the same pivot frequency, break tie as you like (e.g. randomly). 

3.4. Exponential  and average behavior 

The worst-case exponential behavior of the least-index criss-cross method was studied 
by Roos [60]. Roos' exponential example is a variant of the Klee-Minty [46] cube. In 
this example the starting solution is the origin defined by a feasible basis, the variables 
are ordered so that the finite criss-cross method follows a simplex path, i.e. without 
making any ratio test feasibility of the starting basis is preserved. Another exponen- 
tial example was presented by Fukuda and Namiki [33] for linear complementarity 

problems. 
Contrary to the worst-case behavior, to date not much is known about the expected 

number of pivot steps required by criss-cross methods to solve LP problems. The only 

notable result was obtained by Fukuda and Namiki [33]. They averaged the length 
of all possible pivot sequences on an exponential example for linear complementarity 
problems by considering all possible orderings of the variables. They proved that for 
some class of problems where the longest criss-cross path is exponential, the average 
length of all possible criss-cross paths is exactly the dimension of the problem space. 

4. Best-case analysis of admissible pivot methods 

As it is the case tbr many simplex algorithms, the least-index criss-cross method dis- 
cussed in Section 3 is not a polynomial-time algorithm, see [60]. A question we would 
like to ask is as to whether there exists a polynomial criss-cross method? Unfortunately 
we have no reasonable ways to answer this question at this moment. However, a recent 
work of Fukuda, Ltithi and Namiki [30] shows the existence of a short sequence of 
admissible pivots (introduced in Section 2.2) of length at most m to an optimal basis 

from any given basis. 
In this section we shall present this result (in a slightly weaker form) which indicates 

a potential direction for us to look for polynomial time pivot algorithms. It is noteworthy 
that we do not know of any such result for feasibility preserving algorithms, and in fact, 

the maximum length of shortest feasibility-preserving pivot sequences between two 
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feasible bases is not known to be bounded by a polynomial in the size of  the associated 

LP. 

4.1. Short pivot sequences 

Throughout, we assume that an LP basis is given. Finding one LP basis (or proving 
that none exists) can easily be done by Gaussian elimination. The goal of a pivot 
algorithm is to find a terminal basis by a sequence of pivot operations starting with a 
given LP basis. 

Let B be an LP basis, i.e. a basis with f E B ~ g. Recall that for p E B - f and 
q E N - g  with dpq ~ 0, a pivot on (p ,q)  is said to be admissible if either (I) dpg < 0 

and dpq ~> 0 or ( I I )  dfq > 0 and dpq < 0 (see Fig. 4). 
Admissible pivots are very natural elementary operations to be used in any pivot 

algorithms by the following reasons. 

Proposition 12. Let B be any LP basis. Then the following statements hoM. 

(a) l f  B is not terminal, then there exists an admissible pivot at B. 

(b) I f  the LP has an optimal solution, then there exists an admissible pivot at B if 

and only if  B is not optimal. 

Proof. Statement (a) is clear with the definitions. To prove (b), assume that the LP 
has an optimal solution. This together with the LP duality theorem, Theorem 9 implies 
that neither a primal inconsistent nor a dual inconsistent basis exists. Thus if a basis B 
is not optimal, there exists an admissible pivot. The other implication is trivial. [] 

We define an admissible pivot method for LP as a pivot method that only uses 
admissible pivots. It is not difficult to verify the following. 

Remark  13. The primal simplex method, the dual simplex method, Bland's recursive 

pivot method [8], the Edmonds-Fukuda method [29,6] and the least-index criss-cross 
method [64,65,74] are all admissible pivot methods. More precisely, the primal simplex 
method and the Edmonds-Fukuda method use admissible pivots of type II only, the 
dual simplex method uses admissible pivots of type I only, and both Bland's recursive 
method and the criss-cross methods discussed in Section 3 use admissible pivots of both 
type I and type II. 

Now a simple fundamental question arises. 

Question. What is the length of the shortest sequence of admissible pivots from a given 

LP basis B to any fixed optimal basis B*? 

It turns out that this question has a rather disappointing answer. In some cases, no 
such sequence exists and thus the shortest length is undefined, as shown in the following 
example. 



K. Fukuda, T. Terlaky/Mathematical Programming 79 (1997) 369-395 387 

. g 1 2 
.... 

m a x  / 
- , ~  ~ B 3 + - + 
f\'\ 4 

4 / 
3 / 

.• g 3 2 

B B* f I ~  

Fig. 10. B* unreachable from B by admissible pivots. 

Example  14. Consider the LP illustrated in Fig. I0. In this example, E = {1 ,2 ,3 ,4 ,  

f ,  g}, and the set of  feasible solutions is the shaded triangle region. There are two optimal 

bases B* = { 1,4, f }  and B** = { 1,3, f} .  At the dictionary for the basis B = {3, 4, f } ,  
there is only one admissible pivot, that is at (4, 1). Clearly by this pivot, one reaches 

the basis B**. Thus, the basis B* is not reachable from B by any admissible pivots. 

The question becomes interesting once we assume nondegeneracy. We say that an LP 

basis B is nondegenerate if dig 4 :0  for all basic variable i E B - f .  An LP basis B is 

said to be dual-nondegenerate if the associated nonbasis is nondegenerate for the dual 

problem, or equivalently dfj  ~ 0 for all nonbasic variable j E N - g. Finally, an LP 
basis is fully nondegenerate if it is both nondegenerate and dual-nondegenerate. One can 

easily prove the following. 

Lemma 15. I fLP has a fully nondegenerate optimal basis, then it is the unique optimal 
basis. 

Our main theorem in this section is the following which is a consequence of  the 
uniqueness lemma above. 

Theorem 16. If  an LP has a fully nondegenerate optimal basis B*, then there exists a 
sequence of  I B* \ B[ admissible pivots from any LP basis B. 

Proof.  Let B* be a fully nondegenerate optimal basis for a given LP and let B be any 
LP basis different from B*. Set B0 = B \ B*, B1 = B* fq B, No = N \ N* = B* \ B and 

N1 = N* N N. Consider the submatrix D '  = O(Bo+f)(No+g) of  the dictionary D = D ( B ) .  
The matrix D '  represents a smaller linear optimization problem LP ' with variables 

B0 U No, see Fig. 11. 
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Fig. 11. A partition of the dictionary D = D(B). 

It is easy to see that LP ~ has a fully nondegenerate optimal basis, namely No + f ,  and 
by Lemma 15 it is a unique optimal basis. This implies that the basis B0 + f cannot be 

terminal. This together with Proposition 12(a) implies that there exists an admissible 
pivot in D ~. This transformation makes the resulting basis closer to the feasible basis 

B* by one. Hence, by applying the same argument, we can arrive at B* by a sequence 
of admissible transformations involving exactly [B* \ B I pivots. [] 

One might suspect that this theorem is a disguised form of a simple well-known 
lemma in linear algebra: any two bases B and B ~ of a matrix A can be connected by a 
sequence of IB' \ B{ pivot operations. As it was illustrated by Example 14, the validity 
of our theorem critically depends on the full nondegeneracy assumption, which has no 
counterpart in this lemma. Therefore we do not see any easy way to relate these two 

statements with similar appearances. 
In order to apply the theorem to general degenerate LPs, we can use a standard 

technique of lexicographic (symbolic) perturbation to both the primal and the dual LP. 
This makes all LP bases fully nondegenerate symbolically, see [30] for details. 

5. Conclusions and open problems 

The goal of the present paper was to provide a good motivation to study a class 
of pivot algorithms which is more general than the class of simplex algorithms. This 
broader view on pivot methods resulted in a family of simple, finite, one-phase methods, 
it made possible to give simple constructive proofs for the LP strong duality theorem, 
and it allowed us to explore the combinatorial structures of linear optimization problems. 
New results on the existence of a short admissible pivot path were presented. This is a 
weaker analogue of the old, very difficult problem, the so-called d-step conjecture [47]. 

Some related open problems are sketched below. 
The simplex method has been studied extensively by many researchers since it was 

invented in 1947 by Dantzig [ 21,23 ], but yet it resists the resolution of the long-standing 
open problem: 
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Open Problem 1. Is there any pivot rule for the simplex method which terminates in a 
number of pivots bounded by a polynomial in m and n? 

Unfortunately this problem 1 seems to be too hard because the existence question: 

Open Problem 2. Is there a simplex-pivot path to an optimal basis from any given 

feasible basis whose length is bounded by a polynomial of m and n? 

appears to be already too hard. Observe that a solution of the first problem gives a 
solution to the second one. Furthermore, the affirmative answer to this latter simpler 
question would imply the solution of the famous diameter problem of convex polytopes: 

Open Problem 3. Is the combinatorial diameter of a d-dimensional polytope with m- 

facets bounded by a polynomial in m and d? 

Although some interesting results on the diameter of polytopes have been obtained 
recently (e.g. [41 ]) ,  we must admit that we are still quite far from the solution to this 
"simpler" problem. 

In Section 4 a positive answer to a much weaker question is presented. We have seen 
that if the optimal basis is fully nondegenerate, a short admissible pivot path from any 
basis to the optimal basis exists. This existence result raises the following more difficult 

question (posed by H.-J. Li.ithi): 

Open Problem 4. For any given LP, is there an ordering of variables for which the least- 

index criss-cross method finds an optimal basis from any given basis in a polynomial 

number of pivots? 

A much simplified question, which seems to be already hard, is: 

Open Problem 4 I. For any given LP, a given optimal basis and a given initial basis, is 
there an ordering of variables for which the least index criss-cross method terminates in 
a polynomial number of pivots? 

Although the least-index criss-cross method presented in Section 3 admits an expo- 
nential example, the ultimate goal of our study is of course to answer the most basic 

question: 

Open Problem 5. Is there a polynomial criss-cross method? 

Another open problem concerns the practicality of criss-cross rules. Contrary to the 
many efficient implementations of simplex methods, to date no practically efficient 
criss-cross method is known. Thus the following question remains. 

Open Problem 6. Is there a practically efficient finite criss-cross method? 
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Preliminary but interesting experimental results on some modifications of  the least- 
index criss-cross method were presented in [58]. 

As we mentioned earlier, not much is known on the expected number of pivot steps of 
criss-cross methods. This is in sharp contrast to the extensive literature on the expected 

number of  steps of  simplex methods. 

Open Problem 7. What is the expected number of pivots required by a finite criss-cross 
method to solve an LP? 

Of course this is not a single question. One can pose this question with respect to 
many different probabilistic models and with different criss-cross algorithms. 

6. Historical  notes  

6.1. Origins 

From the early days of LP research, people have been looking for an algorithm that 
avoids the two phase procedure needed in the simplex method when solving the general 
LP problem. Such a method was assumed to rely on the intrinsic symmetry behind the 
primal and dual problems (self-dual), and it should be able to start with any basic 

solution. 
There were several attempts made to relax the feasibility requirement in the sim- 

plex method. It is important to mention Dantzig's [22] parametric self-dual simplex 
algorithm. This algorithm can be interpreted as Lemke's [50] algorithm for the cor- 
responding linear complementarity problem [52]. In the sixties people realized that 

pivot sequences through possibly infeasible basic solutions might result in significantly 
shorter paths to the optimum. Moreover a self-dual one phase procedure was expected 
to make linear programming more easily accessible for broader public. Probably these 
advantages stimulated the birth of Zionts' [82,83] criss-cross method (after which the 

finite criss-cross methods discussed in this paper were named too). 

Remark  17 (Zionts' criss-cross method). Assuming that the reader is familiar with 

both the primal and dual simplex methods, Zionts' criss-cross method can easily be 
explained. 

• It can be initialized by any, possibly both primal and dual infeasible basis. I f  

the basis is not optimal, then there are some primal or dual infeasible variables. 
One might choose any of these. It is advised to choose primal and dual infeasible 

variables alternately if  possible. 
• If  the selected variable is dual infeasible, then it enters the basis and the leaving 

variable is chosen among the primal feasible variables in such a way that primal 
feasibility of  these variables is preserved. 
I f  no such basis exchange is possible another infeasible variable is selected. 
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• I f  the selected variable is primal infeasible, then it leaves the basis and the entering 

variable is chosen among the dual feasible variables in such a way that dual 

feasibility of  these variables is preserved. 
If  no such basis exchange is possible another infeasible variable is selected. 

If  the current basis is infeasible, but none of  the infeasible variables allows a pivot 

fulfilling the above requirements then it is proved that the problem L P ( A ,  b , c )  has no 

optimal solution. 
Once a primal or dual feasible solution is reached then Zionts'  method reduces to the 

primal or  dual simplex method respectively. 

One attractive character o f  Zionts '  criss-cross method is primal-dual symmetry (self- 

duality), and this alone differentiates itself from the simplex method. However it is not 

clear 8 how one can design a finite version (i.e. a finite pivot rule) of  this method. 

Nevertheless, this is the first root o f  the finite criss-cross methods studied in this paper. 

The other root o f  finite criss-cross methods was the intellectual effort to find finite 

variants (other than the lexicographic rule [ 13,24] ) o f  the simplex method and its 

specialized variants. These efforts were also stimulated by studying the combinatorial 

structures behind linear programming. From the early seventies in several branches of  

the optimization theory, finitely convergent algorithms were published, and in partic- 
ular consistent labelling 9 and pivot selection rules based on least index ordering Io 

established a solid foundation for finite pivot algorithms. 

The birth o f  oriented matroids and oriented matroid programming [8,9,28] gave an 

essential impulse to this research. It became clear that although the simplex method has 

rich combinatorial structures, some essential results like the finiteness o f  Bland's minimal 

index rule [8] cannot be proved in the oriented matroid context. In fact Edmonds and 

Fukuda [29]  showed that it might cycle in the oriented matroid case due to the possibility 
o f  nondegenerate cycling which is impossible in linear programming. 

Interesting combinatorial pivot algorithms were discovered and mainly published in 

the oriented matroid context. Among them are Bland's recursive algorithm [7,8],  the 
Edmonds-Fukuda algorithm [29] (the interested reader can find variants and general- 

izations in e.g. [6,16,75,76,80] ). All these methods in the linear case are variants of  the 

simplex method, i.e. they preserve the feasibility of  the basis. In contrast, in the case 

o f  oriented matroid programming only Todd's finite lexicographic method [68,69] pre- 

serves feasibility of  the basis and therefore yields a finite simplex algorithm for oriented 

matroids. For a thorough survey on pivot algorithms the reader is referred to [67].  

All these research results made the time ripe for the discovery o f  finite criss-cross 

methods. It is remarkable that almost at the same time, in different parts of  the world 

8 Because in some c~scs ZionLs" me~od reduces to the simplex method, lexicographic peaurbation or minimal 
index resolution is a must when one thinks about finiteness. However these do not ,seem to be sufficient to 
prove finiteness in the general case when the initial basis is both primal and dual infeasible. 

9 See Tucker's [71 I consistent labelling technique in the Ford-Fulkerson flow algorithm 
l°See Murty's 155 ] Bard-type scheme for the P-matrix linear complementarity problem and Bland's [81 

celebrated least index rule in linear programming. 
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(China, Hungary, USA) essentially the same result was obtained independently by 
approaching the problem from quite different directions. 

6.2. Birth 

The first finite criss-cross ',algorithm, which we called the least-index criss-cross 

method, was discovered independently by Chang [12], Terlaky [63,65,64] and Wang 
[741 A strongly related general recursion was found by Jensen [40]. 

In his unpublished report [ 12] Chang presented in 1979 this algorithm for positive 

semidefinite linear complementarity problems as a generalization of Murty's [ 55 ] Bard- 
type scheme. He was studying the role of least index resolution of degeneracy problems 
in Lemke's algorithm [49,50] and in variants of the principal pivoting method [ 18] as 

one solves linear complementarity problems. If one specializes the algorithm on page 
59 of his long report to the linear programming case, precisely the finite, least-index 

criss-cross method is obtained. Unfortunately this result remained unknown until the 

early nineties [38,72]. 
At the end of 1983, Terlaky presented the least-index criss-cross algorithm for LP 

[63,64] and then immediately generalized in 1984 to the oriented matroid case [65]. 
Since then the algorithm was known by the name "finite (or convergent) criss-cross 
method". This name was given due to the motivation from Zionts' [82] ideas. These 

papers inspired a good deal of research on criss-cross methods in the last decade. 
Wang's motivation was quite different. He was working on oriented matroids and tried 

to resolve the problems arising from possible cycling of Bland's least index simplex 
algorithm in oriented matroids. In 1985 Wang [74] presented his version for oriented 
matroid programming under the name "a finite conformal elimination free algorithm" 

which again turned out to be the same finite criss-cross method. 
Bland and his then Ph.D. student Jensen worked on the recursive line. Their research 

resulted in a general recursive scheme [40]. Jensen's "generalized relaxed recursive 

scheme" is actually a general model for finite pivot algorithms and it is easy to see that 
the least-index criss-cross method can be interpreted as a concrete realization of this 

general scheme. 
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