

TR/05/94 April 1994

ALGORITHMS FOR NETWORK PIECEWISE-LINEAR
PROGRAMS

F.A.S. Marins
A. Machado
C. Perin

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/334833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ALGORITHMS FOR NETWORK PIECEWISELINEAR PROGRAMS

F.A.S. MARINS 2,1 , A. MACHADO 3 and C. PERIN 3
fernando.marins@brunel.ac.uk clovis@ime.unicamp.br

ABSTRACT

In this paper a subarea of Piecewise-Linear Programming named

d o

An important area of the Mathematical Programming is the

 this paper a subarea of PLP named Network Piecewise-
Linear Programming NPLP) is explored. Several Real-World

The approach adopted by the authors has been to propose and

1UNIVERSIDADE ESTADUAL PAULISTA-CAMPUS DE GUARATINGOETÁ-DEPARTAMENTO DE PRODUCÁO-CEP 12500-000-GUARATINGUETÁ-SP-BRAZIL.

BRUNEL UNIVERSITY-DEPARTMENT OF MATHEMATICS & STATISTICS. UXBRIDGE - MIDDLESEX, UB8 3PH - ENGLAND, UK.

UNIVERSIDADE ESTADUAL DE CAMPIMAS - INSTITUTO DE MATEMÁTICA, ESTATISTICA E CIENCIA DA COMPUTÁO. CEP 13061-970

 CAMP

network Piecewise-Linear Programming (NPLP) is discussed.
Initially the problem formulation, main efiniti ns and related
Concepts are presented. In the sequence of the paper, four
specialized algorithms for NPLP, as well as the results of a
preliminary computational study, are presented.

1. INTRODUCTION

Piecewise-Linear Programming (PLP), which is related with the
minimization of a convex separable piecewise-linear objective
function, subject to linear constraints. The relevance of this
topic is justified by its many theoretical and practical
applications in L 1 estimation, determination of initial feasible
solution for linear programs, as well as in Goal, Nonlinear or
Interval Programming, for instance (see [1]).

In

applications of NPLP are found in Telephone Network Expansion,
Power Distribution Networks and in Planning Operation of Water
Multireservoir Systems (see [2]).

to implemented specialized algorithms for solving NPL Programs
directly, so the use of transformations (see [6]) from NPL
programs to equivalent LP programs are not necessary. Here are
presented four algorithms for NPLP: Primal (Strongly Feasible)
Simplex, Dual-Method, Out-Of-Kilter, and Cost-Scaling (Strongly
Polynomial).

2

3

IMAS - SP – BRAZIL

mailto:fernando.marins@brunel.ac.uk

The final intent of this research is to study the relative

effectiveness of these algorithms. Here are only presented
preliminary results of algorithms' performance.

2. PROBLEM STATEMENT, DEFINITIONS AND CONCEPTS

In this section, we introduce the Network Piecewise-Linear
Programs formulation, relevant definitions and related concepts
necessary to algorithms' presentation (see [2], [3], [4], [5],
and [6], for details).

 Let G = (N,E) be a direct network with |N| = n nodes and
|E| = m arcs. The vector b = (bi) denotes the nodes demands
satisfying ∑i b = 0, and A = (aij) is the node-arc incidence
matrix, defined by atj,j = -1, ahj,j = +1 and ai,j = 0 if i ≠ tj, hj,
where tj, and hj are the tail and the head of the arc j ∈ E,
respectively.
 For each arc j is associated a nonnegative variable flow x
as well as a sequence of juxtaposed intervals [dkj , dk+1j] ,see
figure 1, corresponding to a sequence of increasing cost
coefficients ckj. When xj ∈ [dfjj , dfj+1j], where f is named the
current interval of the arc j, the value of the piecewise-linear
function C

j

j (Xj) is given by:

 []).d(xc11..fk:)d(dc)(xc j
fj

jj
fj

jj
k1k

jj
k

jjj −+−=−∑= +

 A Network Piecewise-Linear Program is related to find an arc
flow vector x = (X j) in G, optimal solution to MIN {C(x): Ax = b,

x 0}, where C(x) = C≥ Σ j j (x j) is a convex separable piecewise-
linear objective function.

Figure 1: A typical convex piecewise-linear function
associated with arc j ∈ E.

The Dual Program related to this NPL Program is to find a

node price vector y = (yj) and an arc current cost vector z = (z)
optimal solution to the problem

j

MAX (yb - D(z): ,}Ej,cz,ozy i

j
jA ε≥≤−

where D(z) = and ,)z('D jjj∑

 []).cz(d1f..1k:)cc(d)z('D fj

jjj
1fj

j
k
jj

k
j

k
jjj −+−=−∑= +++

Observe that f is the current interval of z j and satisfies j

[]j
fj

j
fj

j ccz 1, +ε with f {1.. m }, where m jis the total number

of juxtaposed intervals related to arc j.
j ∈ j

Every basis of the NPL Program is associated with a spanning
tree T and an arc current interval vector f = (f). j

Consider a distinguished and fixed node to be the root of
T. For each node i there is a unique path i , in T that connects
node i to the root. A basic arc j

p
∈ T is said to be down (up) if

it is directed away (to) the root in T.
The addition of a nonbasic arc s creates, in T U {s}, a

cycle = U defined by = {j sQ +
sQ −

sQ +
sQ ∈ : j, s have the same

direction in } and = Q \ .
sQ

sQ −
sQ +

sQ
The removal of a basic arc r creates a subtree that defines

a node partition (Sr, N \ Sr), where Sr = {i ∈ N: r ∈ P i }.
The cut-set Kr = K+r U K-r, associated with the basic arc r,

is defined by the subsets of arcs K+r = {j ∈ E| j,rj hst ε ∈ N \

sr} and K-r = {j ∈ E| t j ∈ N \ s r, h j ∈ s r }.
Given a spanning tree T and an arc current interval vector

f = (f), the unique associated basic solution (x,y,z),

consisting of an arc flow vector x = (X), a node price vector y

= (Y), and a current interval vector z = (Z),is computed as
follows:

j

j

j j

Y i = 0 if i is the root,

Y i = T is an up arc in Pjc fj
jj :[∑ ∈ i] - T is a down

arc in P i] if i ≠ root,

jc fj
j :[∑ ∈

jz =c fj
j j if j ∈ T,

jz = max {Y – Y , c } if j hj tj j
1 ∈ E \ T,

jX = d if j ∈ E \ T, and fj
j

jX j ∈ T are computed by back substitution in Ax = b.

NOTES: (a) There is no need to consider other dual variables

besides Y in order to work with the dual method;
(b) A vector x' is a primal feasible flow if Ax' = b, and
x'≥ 0;
(c) A primal feasible flow x is optimal to the NPL Program

if C(x) ≤ C(x') for every primal feasible flow x'.

For each j ∈ E define the left and the right reduced costs
as below:

for j ∈ T, let c- j = c+ j = 0,

for j ∈ E \ T, let = and = . −
jc ,c tjhjj

1fj yy +−− +
jc tjhjj

fjc yy +−

It is possible to show that a basic solution is dual

feasible when ≤ 0 and ≥ 0 for j −
jc +

jc ∈ E.
A basic dual feasible solution is called optimal if for

every arc j ∈ T, X ∈ [d fj
j , d], assume c = d] = - ∞, and j

1fj
j
+ 1fj

j
− 1fj

j
−

c 1fj
j
+ = d = ∞, if they are not defined. 1fj

j
+

Some specific definitions useful to the Out-of-Kilter
algorithm description are presented in the section 3.3.

Finally, additional concepts (generalizations of the

concepts introduced in [7]) are necessary due to Cost-Scaling
algorithm presentation in section 3.4.

Let a primal feasible flow x such that x [d , dj ∈ fj
j

 1fj
j
+].

Given α > 0, x is called α-optimal if it satisfies:

,dXαc'

α,c'αdXd

,dXαc'

1k
jjj

j
1k

jj
k
j

k
jjj

+

+

=⇒+>

+<<⇒<<

=⇒−<

 where k = f , and c'j j = ck j - y hj + y . tj

A pseudo flow is an arc flow vector x that does not
necessarily satisfy Ax = b. It is said to be α-optimal when it
satisfies the above conditions.

For a given pseudo flow x define the node flow excess
vector e = (e i), with e i = bi - ∑ [x : t = i] + ∑ [xj j j j j : h = i].

Observe that if e = (e i) = 0 then the pseudo flow x is a primal
feasible flow.

j

In the next section we described the four implemented
algorithms, Primal Simplex, Dual Method, Out-of-Kilter and Cost-
caling, with its main operational characteristics. S

3. ALGORITHMS FOR NETWORK PIECEWISE-LINEAR PROGRAMS

Now let us introduce each one of the specialized developed

lgorithms for solving NPL Programs. a

3.1 PRIMAL SIMPLEX ALGORITHM

For this study a network specialization of a well-known

simplex method for PLP (see [1]) was implemented.

Denote:

Ĉ if Ĉ if Ĉ+= ss c ;0<+
sc −= ss c ,0>−

sc =s 0 otherwise.
The basic steps of the algorithm may be written as below.

0. Let T, f = (f) be, respectively, a spanning tree and an arc j

current interval vector associated with a basic primal
feasible solution (x,y).

1. Select an entering nonbasic arc s ∉ T such that Ĉ ≠ 0. s

If there is no such an arc then STOP:CURRENT SOLUTI ONOPTIMAL.
Otherwise set s = s and compute the cycle Q = Q0

+ U Q- formed

 in T U { s }. 0

2. Perform the ratio test on the cycle Q
 If Ĉ s < 0 then

compute δ = d - d δ 1 = min {d0 s

fs 1+ ,s
fs :1

js
fj X−+

 j є Q+ \ {s }}, 0

and δ2 = min {x - d : j є Qj j

fj - \ {s }}. 0

else
compute δ = d δ2 ,1

s
fs

s
fs d −− 1 = min {x - d : j є Qj j

fj + \ {s }}, 0

and δ2 = min { d : J \ {s }}. jj

fj X−+1 −Qε 0

Let δ = min { δ 0 , δ 1 , δ2 }.
Select a leaving arc r ∈ Q that minimizes δ.
If there is no such an arc then STOP:NO FINITE SOLUTION.
Otherwise if Ĉ < 0 set f = f - 1. s s s

Update the flow vector x (arcs in Q).
Update the price vector y (in the subtree T U {s } \ {r}). 0

If the new Ĉ ≠ 0 then set s = r and GO TO 2. r

If r ≠ s then update the spanning tree T = T U {r} \ {s }. 0 0

GO TO 1.
In order to obtain an initial arc flow basic vector x, it

is enough to consider any spanning tr nd additional intervals ee a
with values d= - ∞, c= - ∞ for each basic arc with negative
flow. Therefore, phase I of the Simplex Method does not need to
be considered as a separated phase.

In NPL Programs rm t
that it is updated e flow vector x, and we performed an

we perfo ed a Pivo operation each time
th

Iterati whe is chosen a nonbasic entering arc. The main on n
eris c f l st an i hat

leaving arc is not a candidate to enter in the basis

it
charact ti o the a pivot of iteration s t the

(immediately).

Note that all pivoting associated to a same iteration have

entering and leaving arcs that belong to the same cycle Q. In
order to effi nt, the algorithm is implemented with just one be cie

In act, the implemented algorithm has the property of
update of the spanning tree and nodes price per iteration.

f
dege

Stalling (exponentially long degenerate pivot sequence)
avoiding both Cycling (cyclic nerate pivot sequence) and

phenomena.

This is possible by starting the algorithm with a Strongly
Feasible Basic Flow vector x, with a modified ratio test (which
breaks ties adequately) maintainin trong Feasibility of all g
basis, and using a smart selection he entering arc in each

S
of t

iteration. For details see reference [8], here we present the
main related ideas.

A basic flow vector x is called strongly feasible if every
degenerate basic arc J ∈ T with x = d is up in T, and every j j

fj 1+

degenerate basic arc J ∈ T with x = d is down in T. This is an j j
fj

extension e concept f strongly feasible spanning trees of th o
introduced by Cunningham ([9]) and Barr, Glover and Klingman
([10]) for Linear Networks.

An initial strongly feasible basic flow vector x, and an

associated current interval arc vector f, can be obtained from
any feasible spanning ee by creasing or decreasing by 1 tr in
(which is adequate) the current interval f associated each j

Degenerate basic arc j that do not satisfy the strong feasibility
property.

The rule to maintain strong feasibility throughout the

algorithm is as follows: Let s be the entering arc and let w be
the last common node of the paths in T from the root to the end
nodes of arc s, t Consider the cycle Q formed in s and n s .
T U {s}. Traverse this cycle starting at node w with the same
direction of s if Ĉ
Ĉ

s < 0, or with the opposite direction of s if
s > 0. Choose as the leaving arc r the first one of the cycle
that satisfies the ratio test.

With these two modifications the proposed algorithm avoid

cyclin Further ore if is adopted refinement in the selection g. m , a
of the entering arc stalling does not occur. There is several
entering rules (see [8]) with this characteristics.

We have implemented the rule known by Least Recently

Considered (RC) Let ..m any fixed ordering of the arcs L Rule: l be
and suppose that in the last iteration arc j was the entering
arc. So, in the next iteration should be select the arc s as the
entering one the first arc of the sequence j+1, j+2,..., m,
m+l,...,j which is a candidate (Ĉs ≠ 0).

3.2. DUAL ALGORITHM

The second optimizer code, utilized in this research, is

based on the dual method on a graph proposed by Ali, Padman and
Thiagarajan (see [11]), and its description is given below.

0. Let T, f = (fj) be a spanning tree and an arc current nterval

vector associated with a basic dual feasible solution x,y).

1. Select a leaving basic arc r ∈ T such that:

 Xr < dfrr or xr > dfr+1r .

 If there is no such an arc then STOP:CURRENT SOLUTION OPTIMAL.
 Otherwise compute the cut-set Kr = K+r U K-r associated with r.

2. Perform the ratio test on the cut-set Kr.

 If xr > dfr+1r

then set δ0 = cfr+1r – yhr + ytr and f = r = fr + 1.

else set δ0 = cfr-1r - yhr + ytr.

If (> drx fr+1

r and r is up) or (xr < dfrr and r down)
 then [case 1]

compute δ1 = min { + (cfj - yhj + ytj):j ∈K+r}, j

 δ2 = min { - (cfj-1j - yhj + ytj):j ∈K-r}.
else [case 2]

 compute δ1 = min { - (cfj-1j - yhj + ytj):j ∈K++r},
 δ2 = min { + (cfjj - yhj + ytj):j ∈K-r}.

Compute δ = min { δ0 , δ1 , δ2 }.
Select an entering arc s ∈ Kr that minimizes δ.

If there is no such an arc then STOP:PRIMAL IS INFEASIBLE.
Otherwise if (s ∈K-r in case 1) or (s ∈ K+r in case 2)
 then set fs= fs - 1.

Update the flow Xj in the arcs j in the cycle T U {s}.
Update the nodes prices y1 in the subtree T \ {r}.
If r ≠ s then update the spanning tree T U {s} \ {r}.
If (xs < dfss or xs > dfs+1s) then set r = s and GO TO 2.
GO TO 1.

Observe that an in ial basic dua feasible o tion can be it l s lu

obtained by introducing an artificial root node 0 with demand
b0 = 0 and n artificial arcs from the root to every other node
with a unique feasible interval [0,0] with cost 0.

The starting solution can be obtained by setting the price
vector y = 0. The flow vector x and the current interval vector
f are set to xj = dfjj, in such a way that cfj-1j ≤ 0 ≤ cfjj for all
j ∈ E and then the artificial arc flows are computed by solving

the system of constraints by back substitution.

In order to reduce the computational effort, we force the
leaving arc r to be the previous entering arc s whenever such an
arc is candidate to leave e spanning tree. In this way the cut- th
set and the spanning tree do not have to be update for one or
more iterations. We call a pivoting every time that the ratio
test is executed and we call an iteration every time the cut-set
is determined.

An efficient data structure to maintain the spanning tree
and the cut-set is used, and consist of four node vectors,
predecessor, thread, reverse thread and node partition indices,
and one arc vector to store the cut-set.

3.3. OUT-OF-KILTER ALGORITHM

The next mp men d algorithm a specialized version for i le te is
NPL Programs of the Out-of-Kilter method for Network Linear
Programs presented in reference [12].

Before to exhibit the algorithm, let us to introduce useful
specific concepts and notations to this approach.

From the general theory of Linear Programming is possible
(see [2]) to write the Complementary Slackness Conditions (CSC)
associated with the Primal and Dual NPL Programs as below, where
x, y, z as defined before:

dfj < xj < d fj+1j y⇒ hj – ytj = cfjj, j

cfj-1j < yhj – ytj < cfjj x⇒ j = dfjj.
(and zj = max {c1j , yhj – ytj }).

Giv an ar j ∈ E if the CSC are satisfied then j is said en c ,
to be In Kilter (IK), otherwise j is Out-of-Kilter (OK). The
Kilter Number (NK ≥ 0) ssociated with the arc j is how much the a
flow x may be alter in order to put (or to remain, if arc j is
IK yet) the arc j in IK status.

So for each solution (x,y,z) is possible to associate a
Solution Kilter Number (NK), computed by NK = ∑ j NK, j ∈ E.

Now, to find the current interval fj ∈ {l..mj}, where mj is
the total number of juxtaposed intervals related to arc j, in
order to satisfy cfjj ≤ Zj < cfj+1j , for each arc j ∈ E. It is
possible to demonstrate (see [4], [8], and [12]) that:

if cfjj < Zj < cfj+1j then NKj = |xj - dfjj | ,
if zj = cfjj = yhj – ytj then NKj = dfjj – xj for xj < dfj , j

NKj = 0 for dfj ≤ xj ≤ dfj+1j , j

NKj = Xj - dfj+1j for dfj+1j < xj.
if zj = c1j > yhj – ytj then NKj = xj – d1j.

Besides this, define cj" by:

if dfjj < xj + dfj+1j then cj" = c hj

fj
j – y + ytj.

if xj = dkj with k ∈ {l..mj} then cj" = ckj – zj
 c

 for Zj < ckj,
j" = 0 for ckj ≤ zj ≤ ck+1j,

 cj"= ck+1j - zj for ck+1j < zj.
Now we are able to describe the algorithm's phases.

0. Let (x,y,z) be a solution to a NPL Program satisfying Ax = b,

x ≥ 0, Zj = max {c1j yhj – ytj and cfjj ≤ zj ≤ cfj+1j with
fj ∈ {1. .mj}.

1. Compute NK associated with the current solution.

 If NK = 0 then STOP:CURRENT SOLUTION OPTIMAL.
 Otherwise let s ∈ E be an arc with NKs > 0.

Let T = θ and = 0, for each i 1Δ ∈ N.
Compute c"s.
If cs > 0 then let V = {hs and hsΔ = NKs.

else let V = {ts} and tsΔ = NKs.

2. Let Ψ1 = {r ≠ s, cr" < 0, tr ∉ V, hr ∈ V and xr < dfrr},

 Ψ2 = {r ≠ s, cr" = 0, tr ∉ V, hr ∈ V and xr < dfrr},
 Ψ3 = {r ≠ s, cr" > 0, tr ∈ V, hr ∉ V and xr < dfrr}, and
 Ψ4 = {r ≠ s, cr" = 0, tr,∈,V, hr ∉ V and x, > }. r

1frd −

If ø then GO TO 3. =4321 ΨUΨUΨUΨ
Let .ΨUΨUΨUΨr 4321∈
Case : 1Ψr∈

.{r}UTTand}{tUVV,}Xd,{ΔminΔlet rrr
fr

nrtr ==−=

Case : 2Ψr∈
.{r}UTTand}{tUVV,}Xd,{ΔminΔlet rrr

fr
nrtr ==−=

Case :Ψr 3∈

.{r}UTTand}{hUVV,}Xd,{ΔminΔlet rrr
fr

nrtr ==−=

Case :Ψr 3∈

 .{r}UTTand}{hUVV,}Xd,{ΔminΔlet rrr
fr

nrtr ==−=

If { V then GO TO 2. }⊄ss h,t

Increase by min { }tshs ,ΔΔ the flow in the arcs of the cycle Q
 formed in the subgraph (V,T).

 GO TO 1.

{ }
{ }

{ }.ψuψr:cminθ

,0candVtV,h:rψ

,0candVtV,h:rψLet.3

21
"

r

"
rrr2

"
rrr1

∈=

<∈∉=

>∉∈=

 and

If θ = ∞ then STOP:NO FINITE SOLUTION.
{ } for,yy,cmaxzandθyy tjhj

1
jjii −=+= Otherwise update

all i and j ∈ E. N∈

GO TO 2.

Note that this algorithm can be initialized with any

solution (x,y,z) that satisfies Ax = b, x ≥ 0, and for j ∈ E

Zj = max { } .yy,c hj
1
j tj−

3.4. COST-SCALING ALGORITHM

In this section is presented a extension of the Minimum Cost
Flow Circulation Algorithm proposed by Goldberg and Tarjan (see
[7]) solve NPL Programs with integer data. It is possible to to
prove that this specialized algorithm (see [5] and [6]) is a
strongly polynomial one, and runs in 0(n.m'.log n.min(log nC ,
m' .log n)) time, where n is the number of nodes, m' is the total
number of intervals, and C is the largest integer arc cost.

The implemented algorithm is described below, and it

utilizes a cost scaling technique and a maximum flow routine to
solve the subproblems generated by the scaling.

Denote: and ,yycc,dd,dd tjhjj

1fj
jj

1fj
j

fj
jj +−=== −−++−

 .cc tjhjj
1fj

j yy +−= ++

0. Let x,y be the starting feasible flow and prices vector,
 respectively. Let α = max { },c h

k all k = 1.. and j ∈ E. ,m j

1. Set [].2 logα=α
 While α ≥ 1 do
 For j ∈ E do

 while .dxand,1ffdo'c jjjjj
+=−=α+≥

 while .dxand,1ffdo'c jjjjj
−=+=α−≤

For (i ∈ E and) do 0e1 >
 Repeat
If exists j such that ()jjj dxandit +<= then .dx jj

+=

If exists j such that () .dxthendxandih jjjjj
−− =>=

If exists j such that ()α−>== jjjj canddx,it

 then .1ff jj −=

If exists j such that ()α+<== ++
jjjj canddx,it

 then .1ff jj +=

If none of the above then .αyy ii +=
 Until .0ei =

 Set .2/α=α
 This algorithm can be written as a strongly polynomial
one,see reference [6] for details.

The idea is to start with any 2 α-optimal feasible flow for

some α equal to a power of two, then this flow is transformed
into a pseudo flow that is α-optimal, by increasing or decreasing
the flow through the arcs that do not satisfy the α-optimality
conditions (see section 2).

Such an operation creates some node excess flows. With a

sequence of pushing and relabelling operations that reduce the
excess flow |e1| of each node, this α-optimal pseudo flow is
transformed into an α-optimal feasible flow. The process is
repeated until α < 1.

If no feasible flow is known at start, it is possible to
begin with x = 0 and y = 0, however a check for feasibility in
the first iteration should be introduced in order to detect
infeasible problems.

4. SOME COMMENTS AND PRELIMINARY COMPUTATIONAL RESULTS

 In order to obtain initial exploratory data about the
relative performance of the four presented algorithms, some
experiments were run with PASCAL implementations of these
algorithms on an IBM compatible 386 microcomputer.

These were performed by solving randomly

experiments
generated NPL Programs (details of this generator in [8]), with
up to 1200 nodes, 32000 arcs, and 9 intervals per arc, and the
CPU time (excluding Input/Output times) spent by each algorithm
for solving these problems was observed.

In figures 2, 3 and 4 are esented the CPU times - mean of

pr

algorithms. It is possible to observed the influence of the
10 randomly generated NPL problems - for the three best detected

number of nodes, mber of arc and number f i erv s per arc, nu s, o nt al
respectively, n algorithms' performance, for the generated i
problems. The results of the Dual Algorithm are not presented
because it was the worst algorithm every time.

It is interesting to note the good performance of the Out-
of-Kilter relative to CPU times spent by the Simplex, practically

these algorithms had identical behaviour, and both shown great
superiority over the Dual and Cost-Scaling algorithms, for
solving the generated NPL Programs.

The main objectiv of this research is to develop a e
statistically designed experiments for studying the relative
effectiveness of these four algorithms, and for identifying the
effect on solution time when are changed (singly or in
combinations) the two factors: problem class and problem size.

The work's idea is based on the paper published by Amini and
Barr (see 3] wher th authors mpl yed rigorous statistical [1), e e e o
procedure in order to compare the three best-known network
reoptimization algorithms.

Therefore, at the moment, it is being devised a statistical
experimental design to evaluate the relative efficiencies of the
four algorithms in question, and a NPL optimization testing
system to generate the data for the statistical proposed study.

Below are presented the preliminary computational results

observed for the Primal, the Out-of-Kilter, and the Cost-Scaling
algorit to solve th randomly generated NPL problems hms

t
related to the Dual orithm's performance were excluded,

e
(transshipment networks). As mentioned above he cpu times

alg

others three algorithms. In the next figures the CPU times are
because the values were very higher than that ones related to the

given in seconds, and the algorithm identification is made using
the symbols:

□ ↔ Primal, ◊ ↔ Cost-Scaling, and ∆ ↔ Out-of-Kilter.

 Number of Nodes Number of Arcs

Figure 2.CPU as a Function of Figure 2.CPU as a Function of
 the number of Nodes the number of Arcs

Number of Intervals per Arc

Figure 4. CPU as a function of the Number of Intervals per Arc

5. REFERENCES

[1] Fourer, R. (1985). A Simplex Method for Piecewise-Linear

Programming I: Derivation and Proof. Mathematical
Programming 13, 1-13.

[2] Perin, C. and Marins, F.A.S. (1988). Strong Feasibility

in Network Piecewise-Linear Programs. In: Proceedings of
the IV Latin-Iberian-American Congress on Operations
Research and System Engineering,Rio de Janeiro-RJ, Brazil.

[3] Perin, C. and Marins, F.A.S. (1991). Computational

Experience with Dual Simplex Algorithm for Network
Piecewise-Linear Programs. In: Proceedings of the XIII
World Congress on Computation and Applied Mathematics,
Dublin, Ireland.

[4] Perin, C. and Marins, F.A.S. (1989). An Out-of-Kilter

Algorithm for Network Piecewise-Linear Programs. In:
Proceedings of the XII National Congress on Computational
and Applied Mathematics, Sao Jose do Rio Preto-SP, Brazil.

[5] Machado, A., Perin, C. and Marins, F.A.S. (1992). A

Strongly Polynomial Algorithm for Network Piecewise-
Linear Programs. In: Proceedings of the XXIV Brazilian
Symposium of Operations Research, Salvador-BA, Brazil.

[6] Machado, A., Perin, C. and Marins, F.A.S. (1993). An

 O(n.m'.log n.min(log nC , m'logn)) Algorithm for Network
Piecewise-Linear Programs. In: Proceedings of the XXV
Brazilian Symposium of Operations Research, Campinas-SP,
Brazil.

[7] Goldberg, A.V. and Tarjan, R. (1990). Finding Minimum –

Cost Circulations by Successive Approximation.
Mathematics of Operations Research 15:3 August, 430-466.

[8] Marins, F.A.S. (1987). Studies of Network Piecewise-

Linear Programs. Library of the IMECC-UNICAMP, Campinas-
SP, Brazil (PhD Dissertation, Electrical Engineering
College, State University of Campinas, Campinas-SP-Brazil).

[9] Cunningham, W.H. (1976). A Network Simplex Method.
Mathematical Programming 11, 105-116.

[10] Barr, R.S., Glover, F. and Klingman, D. (1977). The
Alternating Basis Algorithm for Assignment Problems.
Mathematical Programming 13, 1-13.

[11] Ali, A. , Padman, R. and Thiagarajan, H. (1989). Dual
Algorithm for Pure Network Problems. Operations Research
37:1, 159-171.

[12] Kennington, J.L. and Helgason, R.V. (1980). Algorithms

for Network Programming. John Wiley & Sons, New York.

[13] Amini, M.M. and Barr, R.S. (1993). Network Reoptimization

Algorithms: A Statistically Designed Comparison. ORSA
Journal on Computing 5:4.

Acknowledgements: This work was partially supported by FAPESP-
Fundacão de Amparo à Pesquisa do Estado de São Paulo (Brazil)
and CNPq - Conselho Nacional de Desenvolvimento Cientifico e
Tecnol6gico (Brazil).

W9253286

