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ABSTRACT 

 
In this paper a subarea of Piecewise-Linear Programming named           

d o
         

An important area of the Mathematical Programming is the 

 this paper a subarea of PLP named Network Piecewise-
Linear  Programming NPLP) is explored. Several  Real-World 

The approach adopted by the authors has been to propose and 
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network Piecewise-Linear Programming (NPLP) is discussed.           
Initially the problem formulation, main efiniti ns and related 
Concepts are presented.  In the sequence of the paper, four  
specialized algorithms for NPLP, as well as the results of a           
preliminary computational study, are presented. 
 
 
 
1. INTRODUCTION 
 
  
Piecewise-Linear Programming (PLP), which is related with the 
minimization of a convex separable piecewise-linear objective 
function, subject to linear constraints. The relevance of this 
topic is justified by its many theoretical and practical 
applications in L 1 estimation, determination of initial feasible 
solution for linear programs, as well as in Goal, Nonlinear or 
Interval Programming, for instance (see [1]). 

 
In

applications of NPLP are found in Telephone Network Expansion, 
Power Distribution Networks and in Planning Operation of Water 
Multireservoir Systems (see [2]). 
 
  
to implemented specialized algorithms for solving NPL Programs 
directly, so the use of transformations (see [6]) from NPL 
programs to equivalent LP programs are not necessary. Here are 
presented four algorithms for NPLP: Primal (Strongly Feasible) 
Simplex, Dual-Method, Out-Of-Kilter, and Cost-Scaling (Strongly 
Polynomial). 
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The final intent of this research is to study the relative 

effectiveness of these algorithms. Here are only presented 
preliminary results of algorithms' performance. 
 
2. PROBLEM STATEMENT, DEFINITIONS AND CONCEPTS 

In this section, we introduce the Network Piecewise-Linear  
Programs formulation, relevant definitions and related concepts  
necessary to algorithms' presentation (see [2], [3], [4], [5], 
and [6], for details). 

 Let G = (N,E) be a direct network with |N| = n nodes and 
|E| = m arcs. The vector b = (bi) denotes the nodes demands 
satisfying ∑i b = 0, and A = (aij) is the node-arc incidence 
matrix, defined by atj,j = -1, ahj,j = +1 and ai,j = 0 if i ≠ tj, hj, 
where tj, and hj are the tail and the head of the arc j ∈ E, 
respectively. 
  For each arc j is associated a nonnegative variable flow x 
as well as a sequence of juxtaposed intervals [dkj , dk+1j] ,see 
figure 1, corresponding to a sequence of increasing cost 
coefficients ckj. When xj ∈ [dfjj , dfj+1j], where f  is named the 
current interval of the arc j, the value of the piecewise-linear 
function C

j

j (Xj) is given by: 
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 A Network Piecewise-Linear Program is related to find an arc 
flow vector x = (X j) in G, optimal solution to MIN {C(x): Ax = b, 

x  0}, where C(x) =  C≥ Σ j j  (x j) is a convex separable piecewise- 
linear objective function. 

 

 

Figure 1: A typical convex piecewise-linear function  
associated with arc j ∈ E. 

The Dual Program related to this NPL Program is to find a



 
 
node price vector y = (yj) and an arc current cost vector z = (z ) 
optimal solution to the problem 

j
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Observe that f  is the current interval of z j and satisfies j

[ ]j
fj

j
fj

j ccz 1, +ε  with f   {1.. m  }, where m jis the total number  

of juxtaposed intervals related to arc j. 
j ∈ j

Every basis of the NPL Program is associated with a spanning 
tree T and an arc current interval vector f = (f ). j

Consider a distinguished and fixed node to be the root of 
T. For each node i there is a unique path i , in T that connects 
node i to the root. A basic arc j 

p
∈ T is said to be down (up) if  

it is directed away (to) the root in T. 
The addition of a nonbasic arc s creates, in T U {s}, a 

cycle  =  U  defined by   = {j sQ +
sQ −

sQ +
sQ ∈  : j, s have the same 

direction in  } and  = Q \ . 
sQ

sQ −
sQ +

sQ
The removal of a basic arc r creates a subtree that defines 

a node partition (Sr, N \ Sr), where Sr = {i ∈ N: r ∈ P i }. 
The cut-set Kr = K+r U K-r, associated with the basic arc r, 

is defined by the subsets of arcs K+r = {j ∈ E| j,rj hst ε ∈ N \  

sr} and K-r = {j ∈ E| t  j ∈ N \ s r, h j ∈ s r }. 
Given a spanning tree T and an arc current interval vector 

f =  (f ), the unique associated basic solution (x,y,z), 

consisting of an arc flow vector x = (X ), a node price vector y 

= (Y ), and a current interval vector z = (Z ),is computed as 
follows: 

j

j

j j

Y i  = 0 if i is the root, 

Y i  =  T is an up arc in Pjc fj
jj :[∑ ∈  i ] -   T is a down 

arc in P i  ] if i ≠ root, 

jc fj
j :[∑ ∈

jz  =c fj
j j if j ∈ T, 

jz   = max {Y  – Y  ,    c }    if   j  hj tj j
1 ∈  E   \   T, 

jX   = d  if j ∈ E \ T, and fj
j

jX    j ∈ T are computed by back substitution in Ax = b. 
 
NOTES:  (a) There is no need to consider other dual variables 

besides Y in order to work with the dual method; 
(b) A vector x' is a primal feasible flow if Ax' = b, and 
x'≥ 0; 
(c) A primal feasible flow x is optimal to the NPL Program 



 
 
 

 
if C(x) ≤  C(x') for every primal feasible flow x'. 

For each j ∈ E define the left and the right reduced costs 
as below: 
 
for j ∈ T, let c- j =  c+ j  =  0, 

for j ∈ E \ T, let =  and  = . −
jc ,c tjhjj

1fj yy +−− +
jc tjhjj

fjc yy +−
 
It is possible to show that a basic solution is dual 

feasible when ≤ 0 and  ≥ 0 for j −
jc +

jc ∈ E. 
A basic dual feasible solution is called optimal if for 

every arc j ∈ T, X  ∈ [d fj
j  , d ], assume c  = d ] = - ∞, and  j

1fj
j
+ 1fj

j
− 1fj

j
−

c 1fj
j
+  = d = ∞, if they are not defined. 1fj

j
+

Some specific definitions useful to the Out-of-Kilter 
algorithm description are presented in the section 3.3. 

 
Finally, additional concepts (generalizations of the 

concepts introduced in [7]) are necessary due to Cost-Scaling 
algorithm presentation in section 3.4. 

Let a primal feasible flow x such that x   [d , dj ∈ fj
j

 1fj
j
+ ]. 

Given α > 0, x is called α-optimal if it satisfies: 
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                  where k = f , and c'j j = ck j  - y hj  + y . tj

A pseudo flow is an arc flow vector x that does not 
necessarily satisfy Ax = b. It is said to be α-optimal when it 
satisfies the above conditions. 

For a given pseudo flow x define the node flow excess 
vector e = (e i ), with e i  = bi - ∑  [x : t  = i] + ∑  [xj j j j  j : h  = i]. 

Observe that if e = (e i ) = 0 then the pseudo flow x is a primal 
feasible flow. 

j

In the next section we described the four implemented 
algorithms, Primal Simplex, Dual Method, Out-of-Kilter and Cost-
caling, with its main operational characteristics. S

 
3.  ALGORITHMS FOR NETWORK PIECEWISE-LINEAR PROGRAMS 

 
Now let us introduce each one of the specialized developed 

lgorithms for solving NPL Programs. a
 
3.1 PRIMAL SIMPLEX ALGORITHM 

 
For this study a network specialization of a well-known 

simplex method for PLP (see [1]) was implemented. 



 
 
 
Denote: 

Ĉ  if  Ĉ  if  Ĉ+= ss c ;0<+
sc −= ss c ,0>−

sc =s  0 otherwise. 
The basic steps of the algorithm may be written as below.     

0. Let T, f = (f ) be, respectively, a spanning tree and an arc j

current interval vector associated with a basic primal     
feasible solution (x,y). 

 
1. Select an entering nonbasic arc s ∉ T such that Ĉ  ≠ 0. s

If there is no such an arc then STOP:CURRENT SOLUTI ONOPTIMAL. 
Otherwise set s  = s and compute the cycle Q = Q0

+ U Q- formed  

  in T U { s }. 0

 
2. Perform the ratio test on the cycle Q 
 If Ĉ s  < 0 then 

 
compute δ  = d  - d  δ 1 = min {d0 s

fs 1+ ,s
fs  :1

js
fj X−+

 j є Q+ \ {s }}, 0

 
and δ2 = min {x  - d : j є Qj j

fj - \ {s }}. 0

else 
compute δ  = d  δ2 ,1

s
fs

s
fs d −− 1 = min {x  - d  : j є Qj j

fj + \ {s }}, 0

 
and δ2 = min { d : J \ {s }}. jj

fj X−+1 −Qε 0

 
Let δ = min { δ 0 , δ 1 , δ2 }. 
Select a leaving arc r ∈ Q that minimizes δ. 
If there is no such an arc then STOP:NO FINITE SOLUTION.  
Otherwise if Ĉ  < 0 set f  = f  - 1. s s s

Update the flow vector x (arcs in Q). 
Update the price vector y (in the subtree T U {s } \ {r}). 0

If the new Ĉ  ≠ 0 then set s = r and GO TO 2. r

If r ≠ s  then update the spanning tree T = T U {r} \ {s }. 0 0

GO TO 1. 
In order to obtain an initial arc flow basic vector x, it  

is enough to consider any spanning tr nd additional intervals  ee a
with values d= - ∞, c= - ∞ for each basic arc with negative  
flow. Therefore, phase I of the Simplex Method does not need to 
be considered as a separated phase. 

In NPL Programs rm t 
that it is updated e flow vector x, and we performed an  

we perfo ed a Pivo operation each time  
th

Iterati whe  is chosen a nonbasic entering arc. The main  on n 
eris c f  l st an i hat

leaving arc is not a candidate to enter in the basis  

it
charact ti o the a pivot of  iteration s t  the  

(immediately). 



 
Note that all pivoting associated to a same iteration have  

entering and leaving arcs that belong to the same cycle Q. In  
order to  effi nt, the algorithm is implemented with just one   be cie

In act, the implemented algorithm has the property of  
update of the spanning tree and nodes price per iteration. 
 

f
dege

Stalling (exponentially long degenerate pivot sequence)  
avoiding both Cycling (cyclic nerate pivot sequence) and 

phenomena. 
 

This is possible by starting the algorithm with a Strongly  
Feasible Basic Flow vector x, with a modified ratio test (which  
breaks ties adequately) maintainin trong Feasibility of all  g 
basis, and using a smart selection he entering arc in each  

S
of t

iteration. For details see reference [8], here we present the  
main related ideas. 
 

A basic flow vector x is called strongly feasible if every  
degenerate basic arc J ∈ T with x  = d  is up in T, and every  j j

fj 1+

degenerate basic arc J ∈ T with x  = d  is down in T. This is an  j j
fj

extension  e concept f strongly feasible spanning trees  of th o
introduced by Cunningham ([9]) and Barr, Glover and Klingman  
([10]) for Linear Networks. 

An initial strongly feasible basic flow vector x, and an  
 

associated current interval arc vector f, can be obtained from  
any feasible spanning ee by creasing or decreasing by 1  tr in  
(which is adequate) the current interval f  associated each  j

Degenerate basic arc j that do not satisfy the strong feasibility  
property. 

The rule to maintain strong feasibility throughout the 
 

algorithm is as follows: Let s be the entering arc and let w be 
the last common node of the paths in T from the root to the end  
nodes of arc s, t  Consider the cycle Q formed in  s  and n s .
T U {s}. Traverse this cycle starting at node w with the same  
direction of s if Ĉ
Ĉ

s < 0, or with the opposite direction of s if  
s > 0. Choose as the leaving arc r the first one of the cycle  
that satisfies the ratio test. 

With these two modifications the proposed algorithm avoid  
 

cyclin  Further ore if is adopted refinement in the selection  g. m , a 
of the entering arc stalling does not occur. There is several 
entering rules (see [8]) with this characteristics. 

We have implemented the rule known by Least Recently  
 

Considered ( RC) Let ..m  any fixed ordering of the arcs  L Rule:  l be
and suppose that in the last iteration arc j was the entering 
arc. So, in the next iteration should be select the arc s as the  
entering one the first arc of the sequence j+1, j+2,..., m,  
m+l,...,j which is a candidate (Ĉs ≠ 0). 
 

3.2. DUAL ALGORITHM 

The second optimizer code, utilized in this research, is  
 

based on the dual method on a graph proposed by Ali, Padman and 
Thiagarajan (see [11]), and its description is given below. 



 
 
 
 
0. Let T, f = (fj) be a spanning tree and an arc current nterval 

vector associated with a basic dual feasible solution x,y). 
 
1. Select a leaving basic arc r ∈ T such that: 
 
   Xr < dfrr or xr > dfr+1r . 
 
 If there is no such an arc then STOP:CURRENT SOLUTION OPTIMAL. 
 Otherwise compute the cut-set Kr = K+r U K-r associated with r. 
 
2. Perform the ratio test on the cut-set Kr. 
    
   If xr > dfr+1r 

 
then set δ0 = cfr+1r – yhr + ytr  and f = r = fr + 1. 
 
else set δ0  =  cfr-1r - yhr  +  ytr. 

    
If (  > drx fr+1

r and r is up) or (xr < dfrr and r down) 
   then [case 1] 

compute δ1 = min { + (cfj  - yhj + ytj):j ∈K+r}, j

   δ2 = min { - (cfj-1j - yhj + ytj):j ∈K-r}. 
else [case 2] 

     compute δ1 = min { - (cfj-1j - yhj + ytj):j ∈K++r}, 
        δ2 = min { + (cfjj - yhj + ytj):j ∈K-r}. 

Compute δ = min { δ0 , δ1 , δ2 }. 
Select an entering arc s ∈ Kr that minimizes δ. 
 
If there is no such an arc then STOP:PRIMAL IS INFEASIBLE. 
Otherwise if (s ∈K-r in case 1) or (s ∈ K+r in case 2)  
    then set fs= fs - 1. 
 
Update the flow Xj in the arcs j in the cycle T U {s}.  
Update the nodes prices y1 in the subtree T \ {r}. 
If r ≠ s then update the spanning tree T U {s} \ {r}. 
If (xs < dfss or xs > dfs+1s) then set r = s and GO TO 2. 
GO TO 1. 

 
Observe that an in ial basic dua  feasible o tion can be  it l s lu  

obtained by introducing an artificial root node 0 with demand   
b0 = 0 and n artificial arcs from the root to every other node  
with a unique feasible interval [0,0] with cost 0. 
 

The starting solution can be obtained by setting the price  
vector y = 0. The flow vector x and the current interval vector  
f are set to xj = dfjj, in such a way that cfj-1j ≤ 0 ≤ cfjj for all  
j ∈ E and then the artificial arc flows are computed by solving 



 
 
 
the system of constraints by back substitution. 
 

In order to reduce the computational effort, we force the  
leaving arc r to be the previous entering arc s whenever such an  
arc is candidate to leave e spanning tree. In this way the cut- th
set and the spanning tree do not have to be update for one or  
more iterations. We call a pivoting every time that the ratio  
test is executed and we call an iteration every time the cut-set  
is determined. 
 

An efficient data structure to maintain the spanning tree  
and the cut-set is used, and consist of four node vectors,  
predecessor, thread, reverse thread and node partition indices,  
and one arc vector to store the cut-set. 
 
3.3. OUT-OF-KILTER ALGORITHM 
 

The next mp men d algorithm  a specialized version for   i le te is
NPL Programs of the Out-of-Kilter method for Network Linear  
Programs presented in reference [12]. 
 

Before to exhibit the algorithm, let us to introduce useful  
specific concepts and notations to this approach. 
 

From the general theory of Linear Programming is possible  
(see [2]) to write the Complementary Slackness Conditions (CSC)  
associated with the Primal and Dual NPL Programs as below, where  
x, y, z as defined before: 
 

dfj   <  xj  < d fj+1j      y⇒ hj – ytj = cfjj, j

cfj-1j  <  yhj –  ytj < cfjj       x⇒ j = dfjj. 
( and zj = max {c1j , yhj – ytj } ). 

Giv  an ar j ∈ E if the CSC are satisfied then j is said  en c  , 
to be In Kilter (IK), otherwise j is Out-of-Kilter (OK). The  
Kilter Number (NK ≥ 0) ssociated with the arc j is how much the  a
flow x may be alter in order to put (or to remain, if arc j is  
IK yet) the arc j in IK status. 
 

So for each solution (x,y,z) is possible to associate a  
Solution Kilter Number (NK), computed by NK = ∑ j NK, j ∈ E. 
 

Now, to find the current interval fj ∈ {l..mj}, where mj is 
the total number of juxtaposed intervals related to arc j, in 
order to satisfy cfjj ≤ Zj < cfj+1j , for each arc j ∈ E. It is  
possible to demonstrate (see [4], [8], and [12]) that: 
 
if  cfjj  <  Zj  <  cfj+1j  then NKj = |xj - dfjj | , 
if zj = cfjj  =  yhj  – ytj then NKj = dfjj – xj  for xj < dfj  , j

NKj = 0 for  dfj  ≤  xj ≤  dfj+1j , j

NKj = Xj  -  dfj+1j for  dfj+1j  < xj. 
if zj = c1j > yhj – ytj then NKj = xj – d1j. 



 
 

Besides this, define cj" by:  
 
if dfjj < xj + dfj+1j    then cj" = c hj

fj
j – y  + ytj. 

 
if xj = dkj with k ∈ {l..mj} then cj" = ckj – zj
    c

  for Zj < ckj, 
j" = 0 for ckj ≤ zj ≤ ck+1j,  

    cj"= ck+1j - zj  for ck+1j < zj.  
Now we are able to describe the algorithm's phases. 

 
0. Let (x,y,z) be a solution to a NPL Program satisfying Ax = b, 

x ≥ 0, Zj = max {c1j yhj – ytj and cfjj ≤ zj ≤ cfj+1j with 
fj ∈ {1. .mj}. 

 
1. Compute NK associated with the current solution. 
 

 If NK = 0 then STOP:CURRENT SOLUTION OPTIMAL.  
  Otherwise let s ∈ E be an arc with NKs > 0. 
 

Let T = θ  and  = 0, for each i 1Δ ∈ N.  
Compute c"s. 
If cs > 0 then let V = {hs and hsΔ  = NKs. 

else let V = {ts} and tsΔ = NKs. 
 
2. Let Ψ1 = {r ≠ s, cr" < 0, tr ∉ V, hr ∈ V and xr < dfrr}, 

  Ψ2 = {r ≠ s, cr" = 0, tr ∉ V, hr ∈ V and xr < dfrr}, 
  Ψ3 = {r ≠ s, cr" > 0, tr ∈ V, hr ∉ V and xr < dfrr}, and 
  Ψ4 = {r ≠ s, cr" = 0, tr,∈,V, hr ∉ V and x, > }. r

1frd −

 
If ø then GO TO 3. =4321 ΨUΨUΨUΨ
Let  .ΨUΨUΨUΨr 4321∈
Case  : 1Ψr∈

.{r}UTTand}{tUVV,}Xd,{ΔminΔlet rrr
fr

nrtr ==−=  

Case : 2Ψr∈
.{r}UTTand}{tUVV,}Xd,{ΔminΔlet rrr

fr
nrtr ==−=  

 
Case  :Ψr 3∈

.{r}UTTand}{hUVV,}Xd,{ΔminΔlet rrr
fr

nrtr ==−=  

Case  :Ψr 3∈

    .{r}UTTand}{hUVV,}Xd,{ΔminΔlet rrr
fr

nrtr ==−=

If { V then GO TO 2. }⊄ss h,t



 
     

Increase by min { }tshs ,ΔΔ  the flow in the arcs of the cycle Q 
    formed in the subgraph (V,T). 
 
    GO TO 1. 

{ }
{ }

{ }.ψuψr:cminθ

,0candVtV,h:rψ

,0candVtV,h:rψLet.3

21
"

r

"
rrr2

"
rrr1

∈=

<∈∉=

>∉∈=

  and 

If   θ = ∞ then STOP:NO FINITE SOLUTION. 
{ } for,yy,cmaxzandθyy tjhj

1
jjii −=+=  Otherwise update 

all i  and j ∈ E. N∈
 
GO TO 2. 

 
Note that this algorithm can be initialized with any 

solution (x,y,z) that satisfies Ax = b, x ≥ 0, and for j ∈ E 

Zj = max { } .yy,c hj
1
j tj−  

 
3.4. COST-SCALING ALGORITHM 
 

In this section is presented a extension of the Minimum Cost 
Flow Circulation Algorithm proposed by Goldberg and Tarjan (see 
[7])  solve NPL Programs with integer data. It is possible to to
prove that this specialized algorithm (see [5] and [6]) is a  
strongly polynomial one, and runs in 0(n.m'.log n.min(log nC ,  
m' .log n)) time, where n is the number of nodes, m' is the total 
number of intervals, and C is the largest integer arc cost. 

The implemented algorithm is described below, and it 
 

utilizes a cost scaling technique and a maximum flow routine to 
solve the subproblems generated by the scaling. 
 
Denote:         and ,yycc,dd,dd tjhjj

1fj
jj

1fj
j

fj
jj +−=== −−++−

         .cc tjhjj
1fj

j yy +−= ++

0. Let x,y be the starting feasible flow and prices vector, 
 respectively. Let α = max { },c h

k  all k = 1.. and j ∈ E. ,m j

1. Set   [ ].2 logα=α
 While α ≥ 1 do 
 For j ∈ E do 

 while  .dxand,1ffdo'c jjjjj
+=−=α+≥

 while  .dxand,1ffdo'c jjjjj
−=+=α−≤

For (i ∈ E and ) do 0e1 >
 Repeat 
If exists j such that ( )jjj dxandit +<=  then  .dx jj

+=



 
 

If exists j such that ( ) .dxthendxandih jjjjj
−− =>=  

If exists j such that ( )α−>== jjjj canddx,it   

   then  .1ff jj −=

If exists j such that ( )α+<== ++
jjjj canddx,it   

        then  .1ff jj +=

If none of the above then .αyy ii +=  
      Until  .0ei =

      Set  .2/α=α
 This algorithm can be written as a strongly polynomial 
one,see reference [6] for details. 
 
The idea is to start with any 2 α-optimal feasible flow for 

some α equal to a power of two, then this flow is transformed 
into a pseudo flow that is α-optimal, by increasing or decreasing 
the flow through the arcs that do not satisfy the α-optimality 
conditions (see section 2). 

Such an operation creates some node excess flows. With a 
 

sequence of pushing and relabelling operations that reduce the 
excess flow |e1| of each node, this α-optimal pseudo flow is 
transformed into an α-optimal feasible flow. The process is 
repeated until α < 1. 
 

If no feasible flow is known at start, it is possible to 
begin with x = 0 and y = 0, however a check for feasibility in 
the first iteration should be introduced in order to detect 
infeasible problems. 

 
4. SOME COMMENTS AND PRELIMINARY COMPUTATIONAL RESULTS 
 

  In order to obtain initial exploratory data about the 
relative performance of the four presented algorithms, some 
experiments were run with PASCAL implementations of these 
algorithms on an IBM compatible 386 microcomputer.  

These  were performed by solving randomly 
 

experiments
generated NPL Programs (details of this generator in [8]), with 
up to 1200 nodes, 32000 arcs, and 9 intervals per arc, and the 
CPU time (excluding Input/Output times) spent by each algorithm 
for solving these problems was observed. 

In figures 2, 3 and 4 are esented the CPU times - mean of 
 

pr

algorithms. It is possible to observed the influence of the  
10 randomly generated NPL problems - for the three best detected 

number of nodes, mber of arc  and number f i erv s per arc, nu s, o nt al
respectively, n algorithms' performance, for the generated i
problems. The results of the Dual Algorithm are not presented 
because it was the worst algorithm every time. 
 

It is interesting to note the good performance of the Out- 
of-Kilter relative to CPU times spent by the Simplex, practically 

 



 
these algorithms had identical behaviour, and both shown great 
superiority over the Dual and Cost-Scaling algorithms, for 
solving the generated NPL Programs. 
 

The main objectiv of this research is to develop a  e 
statistically designed experiments for studying the relative 
effectiveness of these four algorithms, and for identifying the 
effect on solution time when are changed (singly or in  
combinations) the two factors: problem class and problem size. 
 

The work's idea is based on the paper published by Amini and 
Barr (see 3]  wher th authors mpl yed rigorous statistical  [1 ), e e  e o
procedure in order to compare the three best-known network 
reoptimization algorithms. 
 

Therefore, at the moment, it is being devised a statistical 
experimental design to evaluate the relative efficiencies of the 
four algorithms in question, and a NPL optimization testing 
system to generate the data for the statistical proposed study. 

Below are presented the preliminary computational results 
 

observed for the Primal, the Out-of-Kilter, and the Cost-Scaling 
algorit  to solve th randomly generated NPL problems hms

t
related to the Dual orithm's performance were excluded, 

e   
(transshipment networks). As mentioned above he cpu times 

alg

others three algorithms. In the next figures the CPU times are 
because the values were very higher than that ones related to the 

given in seconds, and the algorithm identification is made using 
the symbols: 

 
□ ↔ Primal, ◊ ↔ Cost-Scaling, and ∆ ↔ Out-of-Kilter. 
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Figure 2.CPU as a Function of  Figure 2.CPU as a Function of 
  the number of Nodes    the number of Arcs 
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Figure 4. CPU as a function of the Number of Intervals per Arc 
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