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ABSTRACT 

Integer programming (IP) problems are difficult to solve due to the integer restrictions 

imposed on them. A technique for solving these problems is the cutting plane method. In this 

method, linear constraints are added to the associated linear programming (LP) problem until 

an integer optimal solution is found. These constraints cut off part of the LP solution space 

but do not eliminate any feasible integer solution. In this report algorithms for solving IP due 

to Gomory and to Dantzig are presented. Two other cutting plane approaches and two 

extensions to Gomory's algorithm are also discussed. Although these methods are 

mathematically elegant they are known to have slow convergence and an explosive storage 

requirement. As a result cutting planes are generally not computationally successful. 
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1 - Introduction 
 

The concept of adding linear inequality constraints (cutting planes) to the linear 

programming (LP) problem was first introduced by Dantzig, Fulkerson and Johnson (1954) 

in their work on the traveling salesman problem. These constraints effectively cut off parts 

of the convex feasible region which do not contain any feasible integer points. Later 

Markowitz and Manne (1957) suggested a similar approach. 

 

 In      1958,  Gomory  (1963a)   provided    the   first  cutting   plane  algorithm  that  systematically 

generated cuts that can be applied to integer programming (IP) problems. In 1960, he 

produced a second cutting plane algorithm for the IP problems which maintains all-integer 

tableaux (Gomory 1963b). Gomory (1966) then extended his first cutting plane algorithm to 

deal with mixed integer programming (MIP) problems. Another researcher in this area is 

Dantzig (1959) who proposed a cut that did not lead to a convergent algorithm. All these 

algorithms are classified as dual cutting plane algorithms as they maintained dual feasibility 

when applied to the optimal solution of the LP-relaxation of the IP problems. 

 

 Glover (1965) and Young (1968) introduced cutting plane algorithms which maintain 

linear problems that are primal feasible. Since primal feasible integer solutions are 

successively produced, the technique is referred to as a primal cutting plane algorithm. In 

the 1980's a hybrid dual and primal algorithm was proposed by Ghandforoush and Austin 

(1981) to solve all-integer IP. This algorithm is a modification of a procedure introduced 

by Glover (1967). 

 

The basic idea of the cutting plane method is very simple. The value of the optimal 

solution to the LP-relaxation (i.e., the IP problem without the integer restrictions) is an upper 

bound to the value of the IP objective function. If this solution is integer feasible then it is 

the optimal solution to IP. If the optimal solution of the LP-relaxation is fractional, then we 

generate a valid inequality that would cut off part of the LP solution space, including the 

current optimal basic solution but without cutting off any feasible integer solution. This 

procedure is repeated by adding cuts to the current LP until an integer solution is obtained. 
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2 - Dual cutting plane algorithms 

 

Dual cutting plane algorithms utilize the dual simplex method to maintain dual 

feasibility. There are four algorithms classified as dual, three due to Gomory and one due 

to Dantzig. 

 

 

2.1 Gomory's fractional algorithm 

 

 The first cutting plane algorithm introduced by Gomory (1963a) to solve pure IP 

(PIP) problems is known as Gomory's fractional cuts because all the nonzero coefficients of 

the generated cuts are less than one. It is sometimes referred to as the method of integer 

form. This is also the first cutting plane algorithm that was proven to be finitely convergent. 

 

 Consider the PIP problem: 

 

 maximise       ∑
=

n

1j
jjxc

 subject to       (1) m1,...,ibxa 'i

n

1j
jij −=≤∑

=

 .n,...j,egerintandx j 10 =≥  

 

where the data are required to be integral (constraints are cleared of fractions) to ensure that 

the value of objective function and the slack variables are integral for any integer solution. 

Gomory's fractional cuts can be derived as follows. Suppose that we have an optimal 

solution of the LP-relaxation which is noninteger. Consider the pth row of the noninteger 

solution. This can be expressed as 
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ipjjelpp xaax ∑−= 0
      (2) 

 

where J is the set of nonbasic variables, which can be written as 

 

   ∑∑ −−+=
jeJ jpjjjuJ pjppp xfxafax ][][ 00    (3) 

 

Where 10][ , <≤+= pjpjpjpj ffaa  and [y] denotes the largest less then or equal to y. 

This can be rearrange as 

 

   ∑∑ −=+=
jeJ jpjpjjuJ pjpp xffxaax 00 ][][   (4) 

 

Given that  and  0≥pjf ,,0 Jjx j ∈≥

     ∑ ≥ 0jpJ xf      (5) 

 

Thus  

 

 ∑ ≤− 00 pjpJp fxff     (6) 

 

Since all the variables are required to be integer, it follows that the left hand side of the 

equation (4) will be integer, hence the right hand side must also be integer. Thus the left 

hand side of (6) is required to be integer and therefore 

 

 ∑ ≤−
jeJ jpJp xff 00     (7) 
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and can be written in the form 

 

 ∑+−=
00 p jpJpp xffs     (8) 

 

where sp is a nonnegative integer slack variable. This is Gomory’s cut for solving PIP 

problems. Adding the new constraint (8) to the optimal tableau of the related LP problem 

results in a primal infeasible problem which can be solved using the dual simplex method. 

 

The basic algorithm for Gomory's fractional cuts is as follows: 

 

Step 1: Initialisation 

Solve the LP-relaxation. If it is infeasible, so is the IP problem-terminate. Otherwise 

go to step 2. 

 

Step 2: Optimality test 

If the optimal solution to LP-relaxation is integer feasible then it is optimal to IP -

terminate. Otherwise go to step 3. 

 

Step 3: Cutting and pivoting 

Choose a row r with  and add to the bottom of the simplex tableau, the 00 >rf

fractional cut or constraint (8). 

 

Step 4: Reoptimization 

Reoptimize the new LP using the dual simplex method. If the solution to the new LP 

problem is infeasible, the IP has no solution - terminate. If the new optimum is 

integer feasible, the IP is solved - terminate. Otherwise go to step 2. 

 

It is a standard practice to drop each added inequality immediately after its slack 

variable re-enters the set of basic variables. That is, when a new inequality is introduced it 

is used as the pivot row so its slack becomes nonbasic. When this slack variable returns to 

the basic set, it and its defining row are omitted. The tableau contains exactly n nonbasic 
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variables always. Hence if this rule is followed, there will never more than n cuts at any 

stage of the algorithm. 

 

For the algorithm to converge to the optimal solution after a finite number of 

iterations, it is necessary to ensure that some lower bound M is known for the value of the 

objective function x0 Selection of source row is also important to support a finite algorithm. 

The intention when selecting the source row is to produce an inequality in which the ratio 

jff /0  is as large as possible since the larger the value of the ratio, the stronger the cut. 

Geometrically, the ratio Jff0  can be regarded as the intersection point of the cut (8) at its 

limit (with zero valued slack variable) with each xj axis. A classical rule suggested by Salkin 

and Mathur (1989) is to generate the inequality from the row with the largest fractional 

component. 

 

Jenkins and Peters (1987) listed a variety of Gomory's cuts which are derived 

according to the selection of the source row. In their report they recommended the cut known 

as the Maximum ratio to solve general IP problems. This is the Gomory's fractional cut with 

the source row as the row that has 

 

 ( )
( ).][

][max
∑ −

−

j ijij

jj
i aa

bb     (9) 
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An illustration of Gomory's fractional algorithm: 

 

Example 1: 

 maximize z=3x1+4x2 

 subject to 

 1552 21 ≤+ xx  

 522 21 ≤+ xx  

  and integer 0≥ix

 for i=1,2. 

 

Solution: 

 

The optimal solution of the LP relaxation is 

 

 xl = 3.92857     x2 = 1.42857,     ZLP = 17.5. 

 

In this example the selection of source row is done by choosing the row with the largest 

fraction . It takes three cuts to solve this IP problem. In the tableuax,  indicates the 0rf ( )←

leaving variable and ( )↓  , the entering variable. The double underlined element denotes the 

pivot element. 
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Table  1.1: The optimal tableau for the LP relaxation 

 

 

 

 
 1 

↓

− 4x  3x−  
 0x  35/2 ½ 1 

 source 1x  55/14 5/14 1/7 
 2x  10/7 -1/7 1/7 
← 1S  -13/14 -5/14 -1/7 

 
Table 1.2: 
 
 

  

 

 
 1 

↓

− 4S  3x−  
 0x  81/5 7/5 4/5 
 1x  3 1 0 

Source 2x  9/5 -2/5 1/5 
 4x  13/5 -14/5 2/5 
← 2S  -4/5 -3/5 -1/5 

 
Table 1.3: 
 
 
  

 

 
 1 2S−  

↓

− 3x  
 0x  43/3 7/3 1/3 

 source 1x  5/3 5/3 -1/3 
 2x  7/3 -2/3 1/3 
 1S  4/3 -5/3 1/3 
← 3S  -2/3 -2/3 -2/3 

 S3 = -2/3+2/3S2x4+2/3x3 In 
terms of structural 
variables, x1+x2 ≤ 6. 

 S1 = -13/14+5/14x4+1/7x3 
In terms of structural 
variables, x1 ≤ 3. 

 
Since s1 enters the basis we can delete s1 and the corresponding row from the tableau. 
 
 
 
 

 
 

 
 
 
7 



Table 1.4 
 
 
  1 -S2 -S3

x0 14 2 2 
x1 2 2 -2 
x 2 2 -1 2 
x 4 5 -6 -2 
x 3 1 1 -3/2 

 
 
 
 
 
 
 

This gives an optimal solution for IP since all the variables xi for i=1,2 are integers i.e., 

x1=2,  x 2=2 and the objective function value is 14. 

 

Graphically we can illustrate this example as follows: 

 Figure 1
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2.2 Gomory's all-integer algorithm 

 

Gomory's dual fractional algorithm suffer from round-off error and has not been 

successful in practice for solving large problems. Gomory (1963b) developed a second 

cutting plane algorithm which is not susceptible to round-off errors. This algorithm is a direct 

extension of the classical dual simplex method and the only difference is that the pivot row 

in the all-integer algorithm is generated at each iteration and ensures a -1 pivot. Since the 

technique maintains all-integer tableaux, it is referred as dual all-integer algorithm. 

 

The difference between this algorithm and the fractional algorithm is that the all-

integer algorithm is applied to the initial tableau. Furthermore, there is no optimization, 

generation of constraints, reoptimization, etc. In this method, inequalities are generated at 

each iteration starting with the very first. Each of these constraints is used as the pivot row, 

and is constructed so that it has integral coefficients and the pivot is -1. 

 

Consider the all-integer programming problem: 

 

  ∑
=

n

j
jj xcmaximise

1

  .,...,1,
1

mibxatosubject
n

j
ijij =≤∑

=

           (10) 

 .,...,1,0 njintegerandx j =≥  

 j i, all for    integerbac iijj ,,  
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A general dual all-integer algorithm is as follows: 

 

Step 1 : 

 Start with an all-integer simplex tableau which contains a dual feasible solution. Go 

to step 2. 

 

Step 2: 

Select a primal infeasible row ( ).p,p 00ai.e., p0 ≠<  . If none exists, the tableau 

exhibits the optimal integer solution - terminate. Otherwise go to step 3. 

 

Step 3: 

Designate the pivot column q to be the lexicographically smallest among those having 

0a <pj  . If none exists ( ).n1,...,jfor  0ai.e., pj =≥  there is no integer feasible solution -

terminate. Go to step 4. 

 

Step 4: 

Derive an all-integer inequality for row p which is not satisfied at the current primal 

solution. (Its slack will be negative). It must also have a -1 coefficient in column q. 

Append it to the bottom of the tableau and label it the pivot row. Perform a dual 

simplex  pivot operation and return to step 2. 

 

Note that a vector A is lexicographically positive (denoted as ) if its first nonzero 0>A

element is positive. A vector A is said to be lexicographically greater than a vector B if A-

B > 0. If -A > 0, A is called lexicographically negative (denoted as A-< 0) and if A-B•< 0, A 

is lexicographically smaller than B. 

 

 To begin the calculations, it is necessary to have all-integer dual feasible tableau with 

00 >ja   for all  where J is the set of nonbasic variables. If the initial solution is not dual Jj∈

feasible, that is, at least one 00 <ja  , then a redundant constraint of the form 

 ∑ ∈
−=

Jj jxps     (11) 
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where p is a suitably large integer, is added. 

 

 Let the all-integer cut generated on the pth row be as follows: 

 ∑ ⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
=

jeJ j
pjpo

p xaas
λλ

    (12) 

 

where sp is a nonnegative integer slack variable and λ  is a positive number found by the 

following rules: 

 

Step 1 : select a column 

With p as the generating row, le q be the lexicographically smallest column among 

those having 0<pja  for ally  Jj∈ . 

 

Step 2: choose hj 

 

Let  , and for every 1=qh ( )qjj ≠≥ 1   with ,0a <pj  , let hj be the largest integer satisfying 

 

 Jjpp
h qj

j

∈>⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ 1    (13) 

 

where PJ  denotes the column vector of elements { }0,1,2,...mi,a ij =  . The symbol ‘>’ 

denotes lexicographically greater than. 

 

Step 3: choose  jλ

 For each ( ,10a ≥< jpj )  set 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

j

pj
jeJ h

amaxλ     (14) 

 

 Note that jλ  is not necessarily an integer. 
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Richard (1967) and Salkin and Mathur (1989) suggested a few rules for selecting an 

eligible row (the row with 00a r0 ≠< r,  ) as the source row. Some of these include: 

1. Select the first eligible row. 

2. Select the first eligible row at the current iteration, the second eligible row at 

the next iteration, etc.. That is, select an eligible row by a cyclic process. 

3. Randomly select an eligible row. 

4. Select an eligible row which produces the lexicographically largest pivot column. 

This attempts to change the  r0a  column as much as possible. 

5. Select an eligible row containing the least number of negative elements. 

This attempts to avoid, or at least limit the degeneracy. 

 

The disadvantage of this algorithm is the presence of dual-degenerate iterations in 

which it moves from one lattice point to another without improving the value of the objective 

function. It is also noted by Parker and Rardin (1988) that this dual all-integer algorithm is 

weaker than the fractional algorithm. 

 

An illustration of all-integer algorithm: 

 

Example 2: 

 

 

integerandx
xxx

xxx
xxxtosubject

xxxxmaximise

j 0
1333

1104
10023

54

321

321

321

3210

≥
≤++
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Solution: 

Table   2.1: 

 
 1 −X1 −X2 −X3

−X0 10 -4 -5 -1
−X4 10 3 2 0
−X5 11 1 4 0
−X6 13 3 3 1

 

 

 

 

 

The initial solution is not dual feasible, therefore a redundant constraint, 32115 xxxs −−−=   

Added 

 

Table   2.2: 

 

 1 −X1 −X2 −X3
−X0 0 -4 -5 -1
← S 15 1 1 1
−X4 10 3 2 0
−X5 11 1 4 0
−X6 13 3 3 1

 

 

 

 

 

 

By pivoting on this row and x2 column we get a dual feasible initial solution. 

Table     2.3:   

        
 

 1 
↓

− X  S−  3X−  
 X0 75 1 5 4 
 X2 15 1 1 1 
 X4 -20 1 -2 -2 

Source X5 -49 -3 -4 -4 
 X6 -32 0 -3 -2 
 ← S1 -17 -1 -2 -2 

.  P is  and q is   5x 1x
4,11 == sx hh  and  ,33=xh  

,33=xh 1=λ s  and  ,

 

 x 3
1

3 1=λ  

311

max

x2s2x17s
3

+++−=
=λ
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Table   2.4: 
 
 
  1 −S1 −S ↓

− 3X  

 X0 58 1 3 2 
 X2 -2 1 -1 -1 
Source X4 -37 1 -4 -4 
 X5 2 -3 2 2 
 X6 -32 0 -3 -2 
 X1 17 -1 2 2 
 2S←  -10 0 -1 -1 

 P is X4 and q is X3 
hx3=1,      hs=1, 
λx3=4,  λs= 3

14  
λmax=4 
S2=-10+0S1+X3 

 
 
Table 2.5: 
 
 
  1 ↓

− 1S  
−S −X3

 X0 58 1 1 2 
 X2 8 1 0 -1 
 X4 3 1 0 -4 
Source X5 -18 -3 0 2 
 X6 -12 0 -1 -2 
 X1 -3 -1 0 2 
 X3 10 0 1 -1 
 3S←  -6 -1 0 0 

 P is X5 and q is S1 
 hs1=1, 
λmax=4 
S3=-6+S1+0S+0S2 

 
 
Table 2.6: 
 
 
  1 −S ↓

− S  
-X3

 X0 32 1 1 2 
 X2 2 1 0 -1 
 X4 -3 1 0 -4 
 X5 0 -3 0 2 
Source X6 -12 0 -1 -2 
 X1 -3 -1 0 2 
 X3 10 0 1 -1 
 4S←  -6 0 -1 -1 

 P is X5 and q is S 
 h s1=1,h s2=1 
λmax=2 
S4=-6+0S3+0S3+S2 
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Table   2.7: 

  1 −S3
↓

− S
4

−S2

 X0 26 1 1 1 
 X2 2 1 0 -1 
 X4 -3 1 0 -4 
 X5 0 -3 0 2 
Source X6 -6 0 -1 -2 
 X1 3 -1 0 2 
 X3 4 0 1 -2 
 S 6 0 -1 1 
 5S←  -6 0 -1 -1 

 

 

Table 2.8: 

 

 

↓  1 −S3 −S5 − S
2

 X0 20 1 1 0 
 X2 2 1 0 -1 
Source X4 -3 1 0 -4 
 X5 0 -3 0 2 
 X6 0 0 -1 0 
 X1 3 -1 0 2 
 X3 -2 0 1 -3 
 S4 6 0 -1 1 
 6S←  -1 0 0 -1 

Table 2.9:  

   1 ↓

 

 

 

 

 

− S
3

-S5 -S2

 X0 20 1 1 0 
 X2 3 1 0 -1 
Source X4 1 1 0 -4 
 X5 -2 -3 0 2 
 X6 0 0 -1 0 
 X1 1 -1 0 2 
 X3 1 0 1 -3 
 S2 1 0 0 -1 
 7S←  -1 -1 0 0    

 P is X4 and q is S2 
 h s3 =1 
 λ s3 = 3 
 λmax= 3 
S7 = -1+S3+0S5+0S2

 P is X4 and q is S2 
 h s2 =1 
 λ s2 = 4 
 λmax= 4 
S6 = -1+0S3+0S5+S2 

 P is X 6 and q is S4 
 h s4=1,h s2=1 
λ s4 = 1, λ s2 = 1 
λmax=1 
S5=-6+0S3+S4+S2 

 

15 



Table 2.10:       

 1 -S7 -S5 -S2 
 

X0             19    1   1    0 
X2             2    1   0   -1 
X4             0    1   0   -4 
X5 1   -3   0    2 
X6 0    0  -1    0 
X1 2   -1   0    2 
X3 1    0   1   -3 
S3 1   -1   0    0 

 

This tableau gives an 
IP optimal solution 
With x1=2, x2=2, x3=1 
And x0=19. 

(Whenever the slack variable of the added inequality becomes basic it and its corresponding row 

is omitted from the tableau.) 

2.3 Dantzig's cut 

           Consider the PIP problem (1) where the data are required to be integral. Suppose an 

optimal solution to the LP-relaxation of the associated IP problem is given. If this solution 

is not integer feasible that is, if at least one of the basic variables is noninteger, then one or 

more of the nonbasic variables must be nonnegative in any IP optimal solution. Accordingly, 

the sum of the nonbasic variables must be at least unity in such a solution. Based on this 

argument Dantzig (1959) proposed using the cut 

1≥∑ jjεε x                                                                        (15)  

where J denotes the set of the current nonbasic variables. 

Dantzig's cut follow the same algorithm as Gomory's fractional cut for solving PIP (with all 

constraints to be integral). Dantzig did not prove this method converges. However Gomory and 

Hoffman (1963) claimed that Dantzig cuts do not provide a finite algorithm. 

 

                Bowman and Nemhauser (1970) showed that a modified Dantzig cut yields a finite 

dual simplex algorithm   for the PIP problem.    Let p be the topmost row with xp as a 

 

16 



noninteger basic variable. Then the modified stronger cut is as follows:  

 
1≥∑ ε j*Jj x                     (16) 

where J* = {j¦j  ∈ J and āpj is noninteger}. 

 
 
 
 
2.4 Gomory's mixed integer algorithm 

Gomory's fractional cut algorithm was amended to deal with MIP problems. Garfinkel 

and Nemhauser (1972) asserted that to ensure that this algorithm is convergent it is required 

that the value of the objective function x0 to be integer. If x0 is not integer constrained then 

the algorithm may not always converge [see e.g., Garfinkel and Nemhauser (1972)]. 

Consider the MIP problem: 
 

   maximize     jj

n

j
xc∑

=1

   subject to        (17) .,...,1,
1

mibxa ijij

n

j
=≤∑

=

 

                       
|

j

j

kj,x

kj,x

∈≤

∈≥

0

0
 

 
 

 
 
where K and K' are the set of integer variables and the set of continuous variables 
respectively. 
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Let the cut generated from the pth row be as follows

∑ ∈
+−=

Jj jpjpop xgfs        (18)

where 

 

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

>−
−

≤

<
−

≥

=

variableintegeranisxandffif)f(
f

f

variableintegeranisxandffiff

variablecontinuousaisxandaifa
f

f

variablecontinuousaisxandaifa

g

jfppjpj
p

p

jppjpj

jpjpj

p

p

jpjpj

pj

0
0

0

0

0

0

1
1

0
1

0

                 (19) 

and fpj = āpj-[āpj] for j=0,l,...,n. The derivation of the expression gpj can be found eg. in 

Salkin and Mathur (1989). 

Since the slack variable sp is not necessarily an integer linear combination of the 

original non-basic variables, it will not always take an integer value in every mixed integer 

solutions. Salkin and Mathur (1989) suggested that the slack variable and its corresponding 

row to be dropped after it re-enters the basis, as these constraints are not eligible to generate 

inequalities. 
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3 - Other cutting plane approaches 
 
         Two other cutting plane approaches for solving PIP problems are primal all-integer 

and primal-dual all-integer algorithm. The first finite primal algorithm was proposed by 

Young (1965) and the first hybrid algorithm was proposed by Glover (1967). 

3.1 Primal cutting plane algorithm 

           The second all-integer cutting plane algorithm is the primal algorithm. It starts with 

a primal feasible but dual infeasible tableau. It maintains primal feasibility while moving 

towards dual feasibility and thus optimality. The cuts are generated in such a way that the 

pivot element is always "+1" thus maintaining integer tableaux. 

The best known primal algorithm is the simplified primal algorithm due to Young 

(1968) which converges to optimality in a finite but possibly very large number of iterations. 

It uses the same cut form as Gomory's all-integer cut (12) except that ār0>0. A limitation 

of this algorithm is the possibility of long sequences of degenerate pivots during which the 

algorithm makes no progress towards the solution. In order to eliminate these long 

sequences Arnold and Bellmore (1974) modified an algorithm due to Glover. They examined 

the structure of these sequences so that both the termination of a sequence and the tableau 

at that point can be predicted. Then they proposed an algorithm that exploits this structure 

by performing the iterations of the sequence implicitly rather than explicitly. 

It is known that primal algorithms are more likely to be slower than the Gomory's 

fractional algorithm (see eg., Nemhauser and Wolsey (1988)). Because of poor computational 

experience, little recent research on this approach has taken place. 
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3.2 Primal-Dual cutting plane algorithm 

This approach is a hybrid, or primal-dual technique, in which the tableaux are 

permitted to be both primal-infeasible and dual-infeasible. Glover (1967) developed an 

algorithm called Pseudo-primal-dual to deal with solving an all-integer IP problem. This 

algorithm solves all-integer IP problem in two stages, systematically violating and restoring 

dual feasibility while maintaining an all-integer tableau. 

It begins with a dual feasible tableau and a cut is generated from the row with the 

largest number of negative elements. The dual simplex method is then used to solve the new 

problem. At this stage, provided dual feasibility is not destroyed, the process is repeated until 

an optimal solution is reached. Otherwise dual feasibility is restored by a sequence of 

"pseudo-primal" pivot steps using the column that is lexicographically most negative when 

divided by the corresponding coefficient in the source row and the pivot row from the dual 

stage. 

Ghandforoush and Austin (1981) proposed an algorithm called Constructive primal-

dual algorithm (CPDA). This is a modification and improvement of Glover's method. This 

algorithm solves all-integer IP problems by starting primal-feasible and dual-feasible. CPDA 

avoids degenerate iterations by developing a cut which deliberately moves into the infeasible 

region and then attempts to return to primal feasiblity at a better solution point than the one 

for which it departed. 

Later Ghandforoush (1983) proposed an improvement to CPDA by incoporating an 

advanced primal (feasible) start algorithm introduced by Austin and Hanna (1983). Its 

convergence to optimality in a finite number of iterations has not been proven. In 1985 

Austin and Ghandforoush proposed another technique by the name Surrogate cutting plane 

algorithm (SCPA) for solving all-integer IP. At that time they found that (SCPA) was a 

promising approach for solving small problems. However, it appears that no computational 

experience of applying the method to large IP problems has been reported. 
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4 - Extensions of cutting plane algorithm 

Since Gomory introduced his first cutting plane algorithm, many other cutting plane 

methods have been developed to improve the cut. Two such methods are the composite cut 

and the deep cut. 

Martin's Accelerated Euclidean Algorithm 

Gomory's fractional cuts algorithm is proven to be finite although convergence is 

often found to be very slow. To overcome this problem, Martin (1963) proposed an 

algorithm which is called Accelerated Euclidean Algorithm. He aimed to accelerate 

convergence towards optimality while maintaining dual feasiblity and primal feasiblity. This 

method is an extension of Gomory's fractional algorithm where a series of Gomory cuts 

were generated from the same row until the pivot element becomes integer. These cuts are 

referred to as composite cuts. 

              The basic technique consists of solving the LP-relaxation, and then introducing a 

composite cut and resolving the LP. The process repeated until an optimal LP tableau with 

an integer primal solution is found or reoptimization is not possible. 

Transforming the optimal tableau to one with an integer primal solution is 

accomplished by a composite cut which can be done as follows: 

Step 1: 

        Select a row v with a noninteger element. Generate a Gomory cut from v and  

         determine a dual simplex pivot column p. 

Step 2: 

Update row v by pivoting on the element in the current Gomory cut in column p. If 

the pivot element becomes integer, go to step 4. Otherwise, go to step 3. 
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Step 3: 

    Derive a Gomory cut from the updated row v. Go to step 2. 

Step 4: 

          Find the composite cut r which after one pivot on the element in its row in column 

         p will convert the original row v to its form found in step 2. 

Step 5: 

Append r to the optimal LP simplex tableau and pivot on the element in its row in 

column p. If the new tableau has an integer solution, then the IP optimal solution has 

been found - terminate. Otherwise go to step 1. (Another composite cut is required.) 

        The composite cut is obtained by expressing the last of these cuts in terms of the previous 

cuts to get an expression in the form of nonbasic variables. Notice that when generating and 

applying the Gomory's cut, only the single generating row needs to be updated each time 
as the entire problem will be updated when the composite cut is added. 

 

 

Deep cuts 

In the early 70's a few researchers attempted to find better cuts which cut deeper into 

the convex hull of IP. Mitra et al (1970), based their algorithm on Gomory's fractional cut 

(8), by taking the fractional parts as ratios of I/D where I is the integral part and D is the 

modulus of the determinant. Consider a cut 

 

ppNBp xdd ∈∑≤0                 (20) 

which is a cut from a series of parallel cuts given by 
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  ppNBp xdrDd ∈∑≤+0             r = 0,1,2,                                (21) 

The larger the value of r the deeper the cut into the convex space of IP. To get a deep cut, 

it is sufficient to find the minimum value of r where xp>0 and integer such that 

rDdxd ppNBp +=∑ ∈ 0                 (22) 

Mitra et.al proposed an approach to find the minimum value of r which used the concept of 

solving diophantine equations referred as Positive Diophantine algorithm. Their aim was to 

locate lattice points on the finite parallel planes within the bounds 
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p d
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5 - Conclusions 

In this report, a few algorithms for solving general IP are presented and some of them 

are discussed in detail. No comparison of their efficiency or superiority has been done 

because codes for cutting plane algorithm are not readily available. 

The cutting plane approaches mentioned in this review are generally found to be 

unsuccessful computationally. Some of the reasons for this include: 

        (i) Early revised simplex codes had data structures which required matrix data to be  

             specified in a column order format. Within this format, it was difficult to add cutting 

             plane constraints.  
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(ii) The cutting planes discussed are known to have a high density of nonzero 

coefficients and thus lead to explosive storage requirement and destroy the sparsiry 

that is widely present in real life large scale LP and IP problems. The revised simplex 

method exploits this sparsity thus enabling large problem to be solved. 

(iii) Cutting plane methods are genarally found to have slow convergence. Thus, many 

cuts are usually required to be added causing not only problems of solution time but 

also of problem size. 

The main computational difficulty in the implementation of Gomory's fractional 

algorithm has come from numerical errors in computer arithmetic and not from the number 

of iterations. As simplex arithmetic proceeds, the least significant parts of computed values, 

that is, the fractional parts of coefficients in simplex tableaux, are naturally the most likely 

to include errors. In other words the algorithm suffers from round-off errors. To overcome 

this, all-integer algorithms were proposed. However, it is known (see e.g., Nemhauser and 

Wolsey (1988) and Parker and Rardin (1988)), that the all-integer algorithms (due to the all-

integer restrictions imposed on this approach) are weaker than Gomory's fractional cut 

algorithm. Computational testing, although limited, has not in general been encouraging. 

Only recently, the theory and application of stronger cuts such as those that define 

facets and faces of reasonable dimension have been developed. These cuts are derived by 

studying the facial structure of the related problems and are known to preserve sparsity and 

have moderate storage requirement. This approach of strong cutting plane methods will be 

discussed in a forthcoming report by Abdul Hamid et al. (1993).         
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